xref: /linux/drivers/md/dm-thin.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Copyright (C) 2011 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 
17 #define	DM_MSG_PREFIX	"thin"
18 
19 /*
20  * Tunable constants
21  */
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27 
28 /*
29  * The block size of the device holding pool data must be
30  * between 64KB and 1GB.
31  */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34 
35 /*
36  * Device id is restricted to 24 bits.
37  */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39 
40 /*
41  * How do we handle breaking sharing of data blocks?
42  * =================================================
43  *
44  * We use a standard copy-on-write btree to store the mappings for the
45  * devices (note I'm talking about copy-on-write of the metadata here, not
46  * the data).  When you take an internal snapshot you clone the root node
47  * of the origin btree.  After this there is no concept of an origin or a
48  * snapshot.  They are just two device trees that happen to point to the
49  * same data blocks.
50  *
51  * When we get a write in we decide if it's to a shared data block using
52  * some timestamp magic.  If it is, we have to break sharing.
53  *
54  * Let's say we write to a shared block in what was the origin.  The
55  * steps are:
56  *
57  * i) plug io further to this physical block. (see bio_prison code).
58  *
59  * ii) quiesce any read io to that shared data block.  Obviously
60  * including all devices that share this block.  (see deferred_set code)
61  *
62  * iii) copy the data block to a newly allocate block.  This step can be
63  * missed out if the io covers the block. (schedule_copy).
64  *
65  * iv) insert the new mapping into the origin's btree
66  * (process_prepared_mapping).  This act of inserting breaks some
67  * sharing of btree nodes between the two devices.  Breaking sharing only
68  * effects the btree of that specific device.  Btrees for the other
69  * devices that share the block never change.  The btree for the origin
70  * device as it was after the last commit is untouched, ie. we're using
71  * persistent data structures in the functional programming sense.
72  *
73  * v) unplug io to this physical block, including the io that triggered
74  * the breaking of sharing.
75  *
76  * Steps (ii) and (iii) occur in parallel.
77  *
78  * The metadata _doesn't_ need to be committed before the io continues.  We
79  * get away with this because the io is always written to a _new_ block.
80  * If there's a crash, then:
81  *
82  * - The origin mapping will point to the old origin block (the shared
83  * one).  This will contain the data as it was before the io that triggered
84  * the breaking of sharing came in.
85  *
86  * - The snap mapping still points to the old block.  As it would after
87  * the commit.
88  *
89  * The downside of this scheme is the timestamp magic isn't perfect, and
90  * will continue to think that data block in the snapshot device is shared
91  * even after the write to the origin has broken sharing.  I suspect data
92  * blocks will typically be shared by many different devices, so we're
93  * breaking sharing n + 1 times, rather than n, where n is the number of
94  * devices that reference this data block.  At the moment I think the
95  * benefits far, far outweigh the disadvantages.
96  */
97 
98 /*----------------------------------------------------------------*/
99 
100 /*
101  * Sometimes we can't deal with a bio straight away.  We put them in prison
102  * where they can't cause any mischief.  Bios are put in a cell identified
103  * by a key, multiple bios can be in the same cell.  When the cell is
104  * subsequently unlocked the bios become available.
105  */
106 struct bio_prison;
107 
108 struct cell_key {
109 	int virtual;
110 	dm_thin_id dev;
111 	dm_block_t block;
112 };
113 
114 struct dm_bio_prison_cell {
115 	struct hlist_node list;
116 	struct bio_prison *prison;
117 	struct cell_key key;
118 	struct bio *holder;
119 	struct bio_list bios;
120 };
121 
122 struct bio_prison {
123 	spinlock_t lock;
124 	mempool_t *cell_pool;
125 
126 	unsigned nr_buckets;
127 	unsigned hash_mask;
128 	struct hlist_head *cells;
129 };
130 
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133 	uint32_t n = 128;
134 
135 	nr_cells /= 4;
136 	nr_cells = min(nr_cells, 8192u);
137 
138 	while (n < nr_cells)
139 		n <<= 1;
140 
141 	return n;
142 }
143 
144 static struct kmem_cache *_cell_cache;
145 
146 /*
147  * @nr_cells should be the number of cells you want in use _concurrently_.
148  * Don't confuse it with the number of distinct keys.
149  */
150 static struct bio_prison *prison_create(unsigned nr_cells)
151 {
152 	unsigned i;
153 	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154 	size_t len = sizeof(struct bio_prison) +
155 		(sizeof(struct hlist_head) * nr_buckets);
156 	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157 
158 	if (!prison)
159 		return NULL;
160 
161 	spin_lock_init(&prison->lock);
162 	prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
163 	if (!prison->cell_pool) {
164 		kfree(prison);
165 		return NULL;
166 	}
167 
168 	prison->nr_buckets = nr_buckets;
169 	prison->hash_mask = nr_buckets - 1;
170 	prison->cells = (struct hlist_head *) (prison + 1);
171 	for (i = 0; i < nr_buckets; i++)
172 		INIT_HLIST_HEAD(prison->cells + i);
173 
174 	return prison;
175 }
176 
177 static void prison_destroy(struct bio_prison *prison)
178 {
179 	mempool_destroy(prison->cell_pool);
180 	kfree(prison);
181 }
182 
183 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184 {
185 	const unsigned long BIG_PRIME = 4294967291UL;
186 	uint64_t hash = key->block * BIG_PRIME;
187 
188 	return (uint32_t) (hash & prison->hash_mask);
189 }
190 
191 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192 {
193 	       return (lhs->virtual == rhs->virtual) &&
194 		       (lhs->dev == rhs->dev) &&
195 		       (lhs->block == rhs->block);
196 }
197 
198 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199 						  struct cell_key *key)
200 {
201 	struct dm_bio_prison_cell *cell;
202 	struct hlist_node *tmp;
203 
204 	hlist_for_each_entry(cell, tmp, bucket, list)
205 		if (keys_equal(&cell->key, key))
206 			return cell;
207 
208 	return NULL;
209 }
210 
211 /*
212  * This may block if a new cell needs allocating.  You must ensure that
213  * cells will be unlocked even if the calling thread is blocked.
214  *
215  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
216  */
217 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
218 		      struct bio *inmate, struct dm_bio_prison_cell **ref)
219 {
220 	int r = 1;
221 	unsigned long flags;
222 	uint32_t hash = hash_key(prison, key);
223 	struct dm_bio_prison_cell *cell, *cell2;
224 
225 	BUG_ON(hash > prison->nr_buckets);
226 
227 	spin_lock_irqsave(&prison->lock, flags);
228 
229 	cell = __search_bucket(prison->cells + hash, key);
230 	if (cell) {
231 		bio_list_add(&cell->bios, inmate);
232 		goto out;
233 	}
234 
235 	/*
236 	 * Allocate a new cell
237 	 */
238 	spin_unlock_irqrestore(&prison->lock, flags);
239 	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240 	spin_lock_irqsave(&prison->lock, flags);
241 
242 	/*
243 	 * We've been unlocked, so we have to double check that
244 	 * nobody else has inserted this cell in the meantime.
245 	 */
246 	cell = __search_bucket(prison->cells + hash, key);
247 	if (cell) {
248 		mempool_free(cell2, prison->cell_pool);
249 		bio_list_add(&cell->bios, inmate);
250 		goto out;
251 	}
252 
253 	/*
254 	 * Use new cell.
255 	 */
256 	cell = cell2;
257 
258 	cell->prison = prison;
259 	memcpy(&cell->key, key, sizeof(cell->key));
260 	cell->holder = inmate;
261 	bio_list_init(&cell->bios);
262 	hlist_add_head(&cell->list, prison->cells + hash);
263 
264 	r = 0;
265 
266 out:
267 	spin_unlock_irqrestore(&prison->lock, flags);
268 
269 	*ref = cell;
270 
271 	return r;
272 }
273 
274 /*
275  * @inmates must have been initialised prior to this call
276  */
277 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
278 {
279 	struct bio_prison *prison = cell->prison;
280 
281 	hlist_del(&cell->list);
282 
283 	if (inmates) {
284 		bio_list_add(inmates, cell->holder);
285 		bio_list_merge(inmates, &cell->bios);
286 	}
287 
288 	mempool_free(cell, prison->cell_pool);
289 }
290 
291 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
292 {
293 	unsigned long flags;
294 	struct bio_prison *prison = cell->prison;
295 
296 	spin_lock_irqsave(&prison->lock, flags);
297 	__cell_release(cell, bios);
298 	spin_unlock_irqrestore(&prison->lock, flags);
299 }
300 
301 /*
302  * There are a couple of places where we put a bio into a cell briefly
303  * before taking it out again.  In these situations we know that no other
304  * bio may be in the cell.  This function releases the cell, and also does
305  * a sanity check.
306  */
307 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
308 {
309 	BUG_ON(cell->holder != bio);
310 	BUG_ON(!bio_list_empty(&cell->bios));
311 
312 	__cell_release(cell, NULL);
313 }
314 
315 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
316 {
317 	unsigned long flags;
318 	struct bio_prison *prison = cell->prison;
319 
320 	spin_lock_irqsave(&prison->lock, flags);
321 	__cell_release_singleton(cell, bio);
322 	spin_unlock_irqrestore(&prison->lock, flags);
323 }
324 
325 /*
326  * Sometimes we don't want the holder, just the additional bios.
327  */
328 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329 				     struct bio_list *inmates)
330 {
331 	struct bio_prison *prison = cell->prison;
332 
333 	hlist_del(&cell->list);
334 	bio_list_merge(inmates, &cell->bios);
335 
336 	mempool_free(cell, prison->cell_pool);
337 }
338 
339 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340 				   struct bio_list *inmates)
341 {
342 	unsigned long flags;
343 	struct bio_prison *prison = cell->prison;
344 
345 	spin_lock_irqsave(&prison->lock, flags);
346 	__cell_release_no_holder(cell, inmates);
347 	spin_unlock_irqrestore(&prison->lock, flags);
348 }
349 
350 static void cell_error(struct dm_bio_prison_cell *cell)
351 {
352 	struct bio_prison *prison = cell->prison;
353 	struct bio_list bios;
354 	struct bio *bio;
355 	unsigned long flags;
356 
357 	bio_list_init(&bios);
358 
359 	spin_lock_irqsave(&prison->lock, flags);
360 	__cell_release(cell, &bios);
361 	spin_unlock_irqrestore(&prison->lock, flags);
362 
363 	while ((bio = bio_list_pop(&bios)))
364 		bio_io_error(bio);
365 }
366 
367 /*----------------------------------------------------------------*/
368 
369 /*
370  * We use the deferred set to keep track of pending reads to shared blocks.
371  * We do this to ensure the new mapping caused by a write isn't performed
372  * until these prior reads have completed.  Otherwise the insertion of the
373  * new mapping could free the old block that the read bios are mapped to.
374  */
375 
376 struct deferred_set;
377 struct deferred_entry {
378 	struct deferred_set *ds;
379 	unsigned count;
380 	struct list_head work_items;
381 };
382 
383 struct deferred_set {
384 	spinlock_t lock;
385 	unsigned current_entry;
386 	unsigned sweeper;
387 	struct deferred_entry entries[DEFERRED_SET_SIZE];
388 };
389 
390 static void ds_init(struct deferred_set *ds)
391 {
392 	int i;
393 
394 	spin_lock_init(&ds->lock);
395 	ds->current_entry = 0;
396 	ds->sweeper = 0;
397 	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398 		ds->entries[i].ds = ds;
399 		ds->entries[i].count = 0;
400 		INIT_LIST_HEAD(&ds->entries[i].work_items);
401 	}
402 }
403 
404 static struct deferred_entry *ds_inc(struct deferred_set *ds)
405 {
406 	unsigned long flags;
407 	struct deferred_entry *entry;
408 
409 	spin_lock_irqsave(&ds->lock, flags);
410 	entry = ds->entries + ds->current_entry;
411 	entry->count++;
412 	spin_unlock_irqrestore(&ds->lock, flags);
413 
414 	return entry;
415 }
416 
417 static unsigned ds_next(unsigned index)
418 {
419 	return (index + 1) % DEFERRED_SET_SIZE;
420 }
421 
422 static void __sweep(struct deferred_set *ds, struct list_head *head)
423 {
424 	while ((ds->sweeper != ds->current_entry) &&
425 	       !ds->entries[ds->sweeper].count) {
426 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427 		ds->sweeper = ds_next(ds->sweeper);
428 	}
429 
430 	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432 }
433 
434 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435 {
436 	unsigned long flags;
437 
438 	spin_lock_irqsave(&entry->ds->lock, flags);
439 	BUG_ON(!entry->count);
440 	--entry->count;
441 	__sweep(entry->ds, head);
442 	spin_unlock_irqrestore(&entry->ds->lock, flags);
443 }
444 
445 /*
446  * Returns 1 if deferred or 0 if no pending items to delay job.
447  */
448 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449 {
450 	int r = 1;
451 	unsigned long flags;
452 	unsigned next_entry;
453 
454 	spin_lock_irqsave(&ds->lock, flags);
455 	if ((ds->sweeper == ds->current_entry) &&
456 	    !ds->entries[ds->current_entry].count)
457 		r = 0;
458 	else {
459 		list_add(work, &ds->entries[ds->current_entry].work_items);
460 		next_entry = ds_next(ds->current_entry);
461 		if (!ds->entries[next_entry].count)
462 			ds->current_entry = next_entry;
463 	}
464 	spin_unlock_irqrestore(&ds->lock, flags);
465 
466 	return r;
467 }
468 
469 /*----------------------------------------------------------------*/
470 
471 /*
472  * Key building.
473  */
474 static void build_data_key(struct dm_thin_device *td,
475 			   dm_block_t b, struct cell_key *key)
476 {
477 	key->virtual = 0;
478 	key->dev = dm_thin_dev_id(td);
479 	key->block = b;
480 }
481 
482 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483 			      struct cell_key *key)
484 {
485 	key->virtual = 1;
486 	key->dev = dm_thin_dev_id(td);
487 	key->block = b;
488 }
489 
490 /*----------------------------------------------------------------*/
491 
492 /*
493  * A pool device ties together a metadata device and a data device.  It
494  * also provides the interface for creating and destroying internal
495  * devices.
496  */
497 struct dm_thin_new_mapping;
498 
499 struct pool_features {
500 	unsigned zero_new_blocks:1;
501 	unsigned discard_enabled:1;
502 	unsigned discard_passdown:1;
503 };
504 
505 struct pool {
506 	struct list_head list;
507 	struct dm_target *ti;	/* Only set if a pool target is bound */
508 
509 	struct mapped_device *pool_md;
510 	struct block_device *md_dev;
511 	struct dm_pool_metadata *pmd;
512 
513 	uint32_t sectors_per_block;
514 	unsigned block_shift;
515 	dm_block_t offset_mask;
516 	dm_block_t low_water_blocks;
517 
518 	struct pool_features pf;
519 	unsigned low_water_triggered:1;	/* A dm event has been sent */
520 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
521 
522 	struct bio_prison *prison;
523 	struct dm_kcopyd_client *copier;
524 
525 	struct workqueue_struct *wq;
526 	struct work_struct worker;
527 	struct delayed_work waker;
528 
529 	unsigned ref_count;
530 	unsigned long last_commit_jiffies;
531 
532 	spinlock_t lock;
533 	struct bio_list deferred_bios;
534 	struct bio_list deferred_flush_bios;
535 	struct list_head prepared_mappings;
536 	struct list_head prepared_discards;
537 
538 	struct bio_list retry_on_resume_list;
539 
540 	struct deferred_set shared_read_ds;
541 	struct deferred_set all_io_ds;
542 
543 	struct dm_thin_new_mapping *next_mapping;
544 	mempool_t *mapping_pool;
545 	mempool_t *endio_hook_pool;
546 };
547 
548 /*
549  * Target context for a pool.
550  */
551 struct pool_c {
552 	struct dm_target *ti;
553 	struct pool *pool;
554 	struct dm_dev *data_dev;
555 	struct dm_dev *metadata_dev;
556 	struct dm_target_callbacks callbacks;
557 
558 	dm_block_t low_water_blocks;
559 	struct pool_features pf;
560 };
561 
562 /*
563  * Target context for a thin.
564  */
565 struct thin_c {
566 	struct dm_dev *pool_dev;
567 	struct dm_dev *origin_dev;
568 	dm_thin_id dev_id;
569 
570 	struct pool *pool;
571 	struct dm_thin_device *td;
572 };
573 
574 /*----------------------------------------------------------------*/
575 
576 /*
577  * A global list of pools that uses a struct mapped_device as a key.
578  */
579 static struct dm_thin_pool_table {
580 	struct mutex mutex;
581 	struct list_head pools;
582 } dm_thin_pool_table;
583 
584 static void pool_table_init(void)
585 {
586 	mutex_init(&dm_thin_pool_table.mutex);
587 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
588 }
589 
590 static void __pool_table_insert(struct pool *pool)
591 {
592 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
593 	list_add(&pool->list, &dm_thin_pool_table.pools);
594 }
595 
596 static void __pool_table_remove(struct pool *pool)
597 {
598 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
599 	list_del(&pool->list);
600 }
601 
602 static struct pool *__pool_table_lookup(struct mapped_device *md)
603 {
604 	struct pool *pool = NULL, *tmp;
605 
606 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
607 
608 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
609 		if (tmp->pool_md == md) {
610 			pool = tmp;
611 			break;
612 		}
613 	}
614 
615 	return pool;
616 }
617 
618 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
619 {
620 	struct pool *pool = NULL, *tmp;
621 
622 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
623 
624 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
625 		if (tmp->md_dev == md_dev) {
626 			pool = tmp;
627 			break;
628 		}
629 	}
630 
631 	return pool;
632 }
633 
634 /*----------------------------------------------------------------*/
635 
636 struct dm_thin_endio_hook {
637 	struct thin_c *tc;
638 	struct deferred_entry *shared_read_entry;
639 	struct deferred_entry *all_io_entry;
640 	struct dm_thin_new_mapping *overwrite_mapping;
641 };
642 
643 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
644 {
645 	struct bio *bio;
646 	struct bio_list bios;
647 
648 	bio_list_init(&bios);
649 	bio_list_merge(&bios, master);
650 	bio_list_init(master);
651 
652 	while ((bio = bio_list_pop(&bios))) {
653 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
654 
655 		if (h->tc == tc)
656 			bio_endio(bio, DM_ENDIO_REQUEUE);
657 		else
658 			bio_list_add(master, bio);
659 	}
660 }
661 
662 static void requeue_io(struct thin_c *tc)
663 {
664 	struct pool *pool = tc->pool;
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&pool->lock, flags);
668 	__requeue_bio_list(tc, &pool->deferred_bios);
669 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
670 	spin_unlock_irqrestore(&pool->lock, flags);
671 }
672 
673 /*
674  * This section of code contains the logic for processing a thin device's IO.
675  * Much of the code depends on pool object resources (lists, workqueues, etc)
676  * but most is exclusively called from the thin target rather than the thin-pool
677  * target.
678  */
679 
680 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
681 {
682 	return bio->bi_sector >> tc->pool->block_shift;
683 }
684 
685 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
686 {
687 	struct pool *pool = tc->pool;
688 
689 	bio->bi_bdev = tc->pool_dev->bdev;
690 	bio->bi_sector = (block << pool->block_shift) +
691 		(bio->bi_sector & pool->offset_mask);
692 }
693 
694 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
695 {
696 	bio->bi_bdev = tc->origin_dev->bdev;
697 }
698 
699 static void issue(struct thin_c *tc, struct bio *bio)
700 {
701 	struct pool *pool = tc->pool;
702 	unsigned long flags;
703 
704 	/*
705 	 * Batch together any FUA/FLUSH bios we find and then issue
706 	 * a single commit for them in process_deferred_bios().
707 	 */
708 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
709 		spin_lock_irqsave(&pool->lock, flags);
710 		bio_list_add(&pool->deferred_flush_bios, bio);
711 		spin_unlock_irqrestore(&pool->lock, flags);
712 	} else
713 		generic_make_request(bio);
714 }
715 
716 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
717 {
718 	remap_to_origin(tc, bio);
719 	issue(tc, bio);
720 }
721 
722 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
723 			    dm_block_t block)
724 {
725 	remap(tc, bio, block);
726 	issue(tc, bio);
727 }
728 
729 /*
730  * wake_worker() is used when new work is queued and when pool_resume is
731  * ready to continue deferred IO processing.
732  */
733 static void wake_worker(struct pool *pool)
734 {
735 	queue_work(pool->wq, &pool->worker);
736 }
737 
738 /*----------------------------------------------------------------*/
739 
740 /*
741  * Bio endio functions.
742  */
743 struct dm_thin_new_mapping {
744 	struct list_head list;
745 
746 	unsigned quiesced:1;
747 	unsigned prepared:1;
748 	unsigned pass_discard:1;
749 
750 	struct thin_c *tc;
751 	dm_block_t virt_block;
752 	dm_block_t data_block;
753 	struct dm_bio_prison_cell *cell, *cell2;
754 	int err;
755 
756 	/*
757 	 * If the bio covers the whole area of a block then we can avoid
758 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
759 	 * still be in the cell, so care has to be taken to avoid issuing
760 	 * the bio twice.
761 	 */
762 	struct bio *bio;
763 	bio_end_io_t *saved_bi_end_io;
764 };
765 
766 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
767 {
768 	struct pool *pool = m->tc->pool;
769 
770 	if (m->quiesced && m->prepared) {
771 		list_add(&m->list, &pool->prepared_mappings);
772 		wake_worker(pool);
773 	}
774 }
775 
776 static void copy_complete(int read_err, unsigned long write_err, void *context)
777 {
778 	unsigned long flags;
779 	struct dm_thin_new_mapping *m = context;
780 	struct pool *pool = m->tc->pool;
781 
782 	m->err = read_err || write_err ? -EIO : 0;
783 
784 	spin_lock_irqsave(&pool->lock, flags);
785 	m->prepared = 1;
786 	__maybe_add_mapping(m);
787 	spin_unlock_irqrestore(&pool->lock, flags);
788 }
789 
790 static void overwrite_endio(struct bio *bio, int err)
791 {
792 	unsigned long flags;
793 	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
794 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
795 	struct pool *pool = m->tc->pool;
796 
797 	m->err = err;
798 
799 	spin_lock_irqsave(&pool->lock, flags);
800 	m->prepared = 1;
801 	__maybe_add_mapping(m);
802 	spin_unlock_irqrestore(&pool->lock, flags);
803 }
804 
805 /*----------------------------------------------------------------*/
806 
807 /*
808  * Workqueue.
809  */
810 
811 /*
812  * Prepared mapping jobs.
813  */
814 
815 /*
816  * This sends the bios in the cell back to the deferred_bios list.
817  */
818 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
819 		       dm_block_t data_block)
820 {
821 	struct pool *pool = tc->pool;
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(&pool->lock, flags);
825 	cell_release(cell, &pool->deferred_bios);
826 	spin_unlock_irqrestore(&tc->pool->lock, flags);
827 
828 	wake_worker(pool);
829 }
830 
831 /*
832  * Same as cell_defer above, except it omits one particular detainee,
833  * a write bio that covers the block and has already been processed.
834  */
835 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
836 {
837 	struct bio_list bios;
838 	struct pool *pool = tc->pool;
839 	unsigned long flags;
840 
841 	bio_list_init(&bios);
842 
843 	spin_lock_irqsave(&pool->lock, flags);
844 	cell_release_no_holder(cell, &pool->deferred_bios);
845 	spin_unlock_irqrestore(&pool->lock, flags);
846 
847 	wake_worker(pool);
848 }
849 
850 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
851 {
852 	struct thin_c *tc = m->tc;
853 	struct bio *bio;
854 	int r;
855 
856 	bio = m->bio;
857 	if (bio)
858 		bio->bi_end_io = m->saved_bi_end_io;
859 
860 	if (m->err) {
861 		cell_error(m->cell);
862 		return;
863 	}
864 
865 	/*
866 	 * Commit the prepared block into the mapping btree.
867 	 * Any I/O for this block arriving after this point will get
868 	 * remapped to it directly.
869 	 */
870 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
871 	if (r) {
872 		DMERR("dm_thin_insert_block() failed");
873 		cell_error(m->cell);
874 		return;
875 	}
876 
877 	/*
878 	 * Release any bios held while the block was being provisioned.
879 	 * If we are processing a write bio that completely covers the block,
880 	 * we already processed it so can ignore it now when processing
881 	 * the bios in the cell.
882 	 */
883 	if (bio) {
884 		cell_defer_except(tc, m->cell);
885 		bio_endio(bio, 0);
886 	} else
887 		cell_defer(tc, m->cell, m->data_block);
888 
889 	list_del(&m->list);
890 	mempool_free(m, tc->pool->mapping_pool);
891 }
892 
893 static void process_prepared_discard(struct dm_thin_new_mapping *m)
894 {
895 	int r;
896 	struct thin_c *tc = m->tc;
897 
898 	r = dm_thin_remove_block(tc->td, m->virt_block);
899 	if (r)
900 		DMERR("dm_thin_remove_block() failed");
901 
902 	/*
903 	 * Pass the discard down to the underlying device?
904 	 */
905 	if (m->pass_discard)
906 		remap_and_issue(tc, m->bio, m->data_block);
907 	else
908 		bio_endio(m->bio, 0);
909 
910 	cell_defer_except(tc, m->cell);
911 	cell_defer_except(tc, m->cell2);
912 	mempool_free(m, tc->pool->mapping_pool);
913 }
914 
915 static void process_prepared(struct pool *pool, struct list_head *head,
916 			     void (*fn)(struct dm_thin_new_mapping *))
917 {
918 	unsigned long flags;
919 	struct list_head maps;
920 	struct dm_thin_new_mapping *m, *tmp;
921 
922 	INIT_LIST_HEAD(&maps);
923 	spin_lock_irqsave(&pool->lock, flags);
924 	list_splice_init(head, &maps);
925 	spin_unlock_irqrestore(&pool->lock, flags);
926 
927 	list_for_each_entry_safe(m, tmp, &maps, list)
928 		fn(m);
929 }
930 
931 /*
932  * Deferred bio jobs.
933  */
934 static int io_overlaps_block(struct pool *pool, struct bio *bio)
935 {
936 	return !(bio->bi_sector & pool->offset_mask) &&
937 		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
938 
939 }
940 
941 static int io_overwrites_block(struct pool *pool, struct bio *bio)
942 {
943 	return (bio_data_dir(bio) == WRITE) &&
944 		io_overlaps_block(pool, bio);
945 }
946 
947 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
948 			       bio_end_io_t *fn)
949 {
950 	*save = bio->bi_end_io;
951 	bio->bi_end_io = fn;
952 }
953 
954 static int ensure_next_mapping(struct pool *pool)
955 {
956 	if (pool->next_mapping)
957 		return 0;
958 
959 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
960 
961 	return pool->next_mapping ? 0 : -ENOMEM;
962 }
963 
964 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
965 {
966 	struct dm_thin_new_mapping *r = pool->next_mapping;
967 
968 	BUG_ON(!pool->next_mapping);
969 
970 	pool->next_mapping = NULL;
971 
972 	return r;
973 }
974 
975 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
976 			  struct dm_dev *origin, dm_block_t data_origin,
977 			  dm_block_t data_dest,
978 			  struct dm_bio_prison_cell *cell, struct bio *bio)
979 {
980 	int r;
981 	struct pool *pool = tc->pool;
982 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
983 
984 	INIT_LIST_HEAD(&m->list);
985 	m->quiesced = 0;
986 	m->prepared = 0;
987 	m->tc = tc;
988 	m->virt_block = virt_block;
989 	m->data_block = data_dest;
990 	m->cell = cell;
991 	m->err = 0;
992 	m->bio = NULL;
993 
994 	if (!ds_add_work(&pool->shared_read_ds, &m->list))
995 		m->quiesced = 1;
996 
997 	/*
998 	 * IO to pool_dev remaps to the pool target's data_dev.
999 	 *
1000 	 * If the whole block of data is being overwritten, we can issue the
1001 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1002 	 */
1003 	if (io_overwrites_block(pool, bio)) {
1004 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1005 
1006 		h->overwrite_mapping = m;
1007 		m->bio = bio;
1008 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1009 		remap_and_issue(tc, bio, data_dest);
1010 	} else {
1011 		struct dm_io_region from, to;
1012 
1013 		from.bdev = origin->bdev;
1014 		from.sector = data_origin * pool->sectors_per_block;
1015 		from.count = pool->sectors_per_block;
1016 
1017 		to.bdev = tc->pool_dev->bdev;
1018 		to.sector = data_dest * pool->sectors_per_block;
1019 		to.count = pool->sectors_per_block;
1020 
1021 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1022 				   0, copy_complete, m);
1023 		if (r < 0) {
1024 			mempool_free(m, pool->mapping_pool);
1025 			DMERR("dm_kcopyd_copy() failed");
1026 			cell_error(cell);
1027 		}
1028 	}
1029 }
1030 
1031 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1032 				   dm_block_t data_origin, dm_block_t data_dest,
1033 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1034 {
1035 	schedule_copy(tc, virt_block, tc->pool_dev,
1036 		      data_origin, data_dest, cell, bio);
1037 }
1038 
1039 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1040 				   dm_block_t data_dest,
1041 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1042 {
1043 	schedule_copy(tc, virt_block, tc->origin_dev,
1044 		      virt_block, data_dest, cell, bio);
1045 }
1046 
1047 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1048 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1049 			  struct bio *bio)
1050 {
1051 	struct pool *pool = tc->pool;
1052 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1053 
1054 	INIT_LIST_HEAD(&m->list);
1055 	m->quiesced = 1;
1056 	m->prepared = 0;
1057 	m->tc = tc;
1058 	m->virt_block = virt_block;
1059 	m->data_block = data_block;
1060 	m->cell = cell;
1061 	m->err = 0;
1062 	m->bio = NULL;
1063 
1064 	/*
1065 	 * If the whole block of data is being overwritten or we are not
1066 	 * zeroing pre-existing data, we can issue the bio immediately.
1067 	 * Otherwise we use kcopyd to zero the data first.
1068 	 */
1069 	if (!pool->pf.zero_new_blocks)
1070 		process_prepared_mapping(m);
1071 
1072 	else if (io_overwrites_block(pool, bio)) {
1073 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1074 
1075 		h->overwrite_mapping = m;
1076 		m->bio = bio;
1077 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1078 		remap_and_issue(tc, bio, data_block);
1079 	} else {
1080 		int r;
1081 		struct dm_io_region to;
1082 
1083 		to.bdev = tc->pool_dev->bdev;
1084 		to.sector = data_block * pool->sectors_per_block;
1085 		to.count = pool->sectors_per_block;
1086 
1087 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1088 		if (r < 0) {
1089 			mempool_free(m, pool->mapping_pool);
1090 			DMERR("dm_kcopyd_zero() failed");
1091 			cell_error(cell);
1092 		}
1093 	}
1094 }
1095 
1096 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1097 {
1098 	int r;
1099 	dm_block_t free_blocks;
1100 	unsigned long flags;
1101 	struct pool *pool = tc->pool;
1102 
1103 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1104 	if (r)
1105 		return r;
1106 
1107 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1108 		DMWARN("%s: reached low water mark, sending event.",
1109 		       dm_device_name(pool->pool_md));
1110 		spin_lock_irqsave(&pool->lock, flags);
1111 		pool->low_water_triggered = 1;
1112 		spin_unlock_irqrestore(&pool->lock, flags);
1113 		dm_table_event(pool->ti->table);
1114 	}
1115 
1116 	if (!free_blocks) {
1117 		if (pool->no_free_space)
1118 			return -ENOSPC;
1119 		else {
1120 			/*
1121 			 * Try to commit to see if that will free up some
1122 			 * more space.
1123 			 */
1124 			r = dm_pool_commit_metadata(pool->pmd);
1125 			if (r) {
1126 				DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1127 				      __func__, r);
1128 				return r;
1129 			}
1130 
1131 			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1132 			if (r)
1133 				return r;
1134 
1135 			/*
1136 			 * If we still have no space we set a flag to avoid
1137 			 * doing all this checking and return -ENOSPC.
1138 			 */
1139 			if (!free_blocks) {
1140 				DMWARN("%s: no free space available.",
1141 				       dm_device_name(pool->pool_md));
1142 				spin_lock_irqsave(&pool->lock, flags);
1143 				pool->no_free_space = 1;
1144 				spin_unlock_irqrestore(&pool->lock, flags);
1145 				return -ENOSPC;
1146 			}
1147 		}
1148 	}
1149 
1150 	r = dm_pool_alloc_data_block(pool->pmd, result);
1151 	if (r)
1152 		return r;
1153 
1154 	return 0;
1155 }
1156 
1157 /*
1158  * If we have run out of space, queue bios until the device is
1159  * resumed, presumably after having been reloaded with more space.
1160  */
1161 static void retry_on_resume(struct bio *bio)
1162 {
1163 	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1164 	struct thin_c *tc = h->tc;
1165 	struct pool *pool = tc->pool;
1166 	unsigned long flags;
1167 
1168 	spin_lock_irqsave(&pool->lock, flags);
1169 	bio_list_add(&pool->retry_on_resume_list, bio);
1170 	spin_unlock_irqrestore(&pool->lock, flags);
1171 }
1172 
1173 static void no_space(struct dm_bio_prison_cell *cell)
1174 {
1175 	struct bio *bio;
1176 	struct bio_list bios;
1177 
1178 	bio_list_init(&bios);
1179 	cell_release(cell, &bios);
1180 
1181 	while ((bio = bio_list_pop(&bios)))
1182 		retry_on_resume(bio);
1183 }
1184 
1185 static void process_discard(struct thin_c *tc, struct bio *bio)
1186 {
1187 	int r;
1188 	unsigned long flags;
1189 	struct pool *pool = tc->pool;
1190 	struct dm_bio_prison_cell *cell, *cell2;
1191 	struct cell_key key, key2;
1192 	dm_block_t block = get_bio_block(tc, bio);
1193 	struct dm_thin_lookup_result lookup_result;
1194 	struct dm_thin_new_mapping *m;
1195 
1196 	build_virtual_key(tc->td, block, &key);
1197 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1198 		return;
1199 
1200 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1201 	switch (r) {
1202 	case 0:
1203 		/*
1204 		 * Check nobody is fiddling with this pool block.  This can
1205 		 * happen if someone's in the process of breaking sharing
1206 		 * on this block.
1207 		 */
1208 		build_data_key(tc->td, lookup_result.block, &key2);
1209 		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1210 			cell_release_singleton(cell, bio);
1211 			break;
1212 		}
1213 
1214 		if (io_overlaps_block(pool, bio)) {
1215 			/*
1216 			 * IO may still be going to the destination block.  We must
1217 			 * quiesce before we can do the removal.
1218 			 */
1219 			m = get_next_mapping(pool);
1220 			m->tc = tc;
1221 			m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1222 			m->virt_block = block;
1223 			m->data_block = lookup_result.block;
1224 			m->cell = cell;
1225 			m->cell2 = cell2;
1226 			m->err = 0;
1227 			m->bio = bio;
1228 
1229 			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1230 				spin_lock_irqsave(&pool->lock, flags);
1231 				list_add(&m->list, &pool->prepared_discards);
1232 				spin_unlock_irqrestore(&pool->lock, flags);
1233 				wake_worker(pool);
1234 			}
1235 		} else {
1236 			/*
1237 			 * This path is hit if people are ignoring
1238 			 * limits->discard_granularity.  It ignores any
1239 			 * part of the discard that is in a subsequent
1240 			 * block.
1241 			 */
1242 			sector_t offset = bio->bi_sector - (block << pool->block_shift);
1243 			unsigned remaining = (pool->sectors_per_block - offset) << 9;
1244 			bio->bi_size = min(bio->bi_size, remaining);
1245 
1246 			cell_release_singleton(cell, bio);
1247 			cell_release_singleton(cell2, bio);
1248 			remap_and_issue(tc, bio, lookup_result.block);
1249 		}
1250 		break;
1251 
1252 	case -ENODATA:
1253 		/*
1254 		 * It isn't provisioned, just forget it.
1255 		 */
1256 		cell_release_singleton(cell, bio);
1257 		bio_endio(bio, 0);
1258 		break;
1259 
1260 	default:
1261 		DMERR("discard: find block unexpectedly returned %d", r);
1262 		cell_release_singleton(cell, bio);
1263 		bio_io_error(bio);
1264 		break;
1265 	}
1266 }
1267 
1268 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1269 			  struct cell_key *key,
1270 			  struct dm_thin_lookup_result *lookup_result,
1271 			  struct dm_bio_prison_cell *cell)
1272 {
1273 	int r;
1274 	dm_block_t data_block;
1275 
1276 	r = alloc_data_block(tc, &data_block);
1277 	switch (r) {
1278 	case 0:
1279 		schedule_internal_copy(tc, block, lookup_result->block,
1280 				       data_block, cell, bio);
1281 		break;
1282 
1283 	case -ENOSPC:
1284 		no_space(cell);
1285 		break;
1286 
1287 	default:
1288 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1289 		cell_error(cell);
1290 		break;
1291 	}
1292 }
1293 
1294 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1295 			       dm_block_t block,
1296 			       struct dm_thin_lookup_result *lookup_result)
1297 {
1298 	struct dm_bio_prison_cell *cell;
1299 	struct pool *pool = tc->pool;
1300 	struct cell_key key;
1301 
1302 	/*
1303 	 * If cell is already occupied, then sharing is already in the process
1304 	 * of being broken so we have nothing further to do here.
1305 	 */
1306 	build_data_key(tc->td, lookup_result->block, &key);
1307 	if (bio_detain(pool->prison, &key, bio, &cell))
1308 		return;
1309 
1310 	if (bio_data_dir(bio) == WRITE)
1311 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1312 	else {
1313 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1314 
1315 		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1316 
1317 		cell_release_singleton(cell, bio);
1318 		remap_and_issue(tc, bio, lookup_result->block);
1319 	}
1320 }
1321 
1322 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1323 			    struct dm_bio_prison_cell *cell)
1324 {
1325 	int r;
1326 	dm_block_t data_block;
1327 
1328 	/*
1329 	 * Remap empty bios (flushes) immediately, without provisioning.
1330 	 */
1331 	if (!bio->bi_size) {
1332 		cell_release_singleton(cell, bio);
1333 		remap_and_issue(tc, bio, 0);
1334 		return;
1335 	}
1336 
1337 	/*
1338 	 * Fill read bios with zeroes and complete them immediately.
1339 	 */
1340 	if (bio_data_dir(bio) == READ) {
1341 		zero_fill_bio(bio);
1342 		cell_release_singleton(cell, bio);
1343 		bio_endio(bio, 0);
1344 		return;
1345 	}
1346 
1347 	r = alloc_data_block(tc, &data_block);
1348 	switch (r) {
1349 	case 0:
1350 		if (tc->origin_dev)
1351 			schedule_external_copy(tc, block, data_block, cell, bio);
1352 		else
1353 			schedule_zero(tc, block, data_block, cell, bio);
1354 		break;
1355 
1356 	case -ENOSPC:
1357 		no_space(cell);
1358 		break;
1359 
1360 	default:
1361 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1362 		cell_error(cell);
1363 		break;
1364 	}
1365 }
1366 
1367 static void process_bio(struct thin_c *tc, struct bio *bio)
1368 {
1369 	int r;
1370 	dm_block_t block = get_bio_block(tc, bio);
1371 	struct dm_bio_prison_cell *cell;
1372 	struct cell_key key;
1373 	struct dm_thin_lookup_result lookup_result;
1374 
1375 	/*
1376 	 * If cell is already occupied, then the block is already
1377 	 * being provisioned so we have nothing further to do here.
1378 	 */
1379 	build_virtual_key(tc->td, block, &key);
1380 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1381 		return;
1382 
1383 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1384 	switch (r) {
1385 	case 0:
1386 		/*
1387 		 * We can release this cell now.  This thread is the only
1388 		 * one that puts bios into a cell, and we know there were
1389 		 * no preceding bios.
1390 		 */
1391 		/*
1392 		 * TODO: this will probably have to change when discard goes
1393 		 * back in.
1394 		 */
1395 		cell_release_singleton(cell, bio);
1396 
1397 		if (lookup_result.shared)
1398 			process_shared_bio(tc, bio, block, &lookup_result);
1399 		else
1400 			remap_and_issue(tc, bio, lookup_result.block);
1401 		break;
1402 
1403 	case -ENODATA:
1404 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1405 			cell_release_singleton(cell, bio);
1406 			remap_to_origin_and_issue(tc, bio);
1407 		} else
1408 			provision_block(tc, bio, block, cell);
1409 		break;
1410 
1411 	default:
1412 		DMERR("dm_thin_find_block() failed, error = %d", r);
1413 		cell_release_singleton(cell, bio);
1414 		bio_io_error(bio);
1415 		break;
1416 	}
1417 }
1418 
1419 static int need_commit_due_to_time(struct pool *pool)
1420 {
1421 	return jiffies < pool->last_commit_jiffies ||
1422 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1423 }
1424 
1425 static void process_deferred_bios(struct pool *pool)
1426 {
1427 	unsigned long flags;
1428 	struct bio *bio;
1429 	struct bio_list bios;
1430 	int r;
1431 
1432 	bio_list_init(&bios);
1433 
1434 	spin_lock_irqsave(&pool->lock, flags);
1435 	bio_list_merge(&bios, &pool->deferred_bios);
1436 	bio_list_init(&pool->deferred_bios);
1437 	spin_unlock_irqrestore(&pool->lock, flags);
1438 
1439 	while ((bio = bio_list_pop(&bios))) {
1440 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1441 		struct thin_c *tc = h->tc;
1442 
1443 		/*
1444 		 * If we've got no free new_mapping structs, and processing
1445 		 * this bio might require one, we pause until there are some
1446 		 * prepared mappings to process.
1447 		 */
1448 		if (ensure_next_mapping(pool)) {
1449 			spin_lock_irqsave(&pool->lock, flags);
1450 			bio_list_merge(&pool->deferred_bios, &bios);
1451 			spin_unlock_irqrestore(&pool->lock, flags);
1452 
1453 			break;
1454 		}
1455 
1456 		if (bio->bi_rw & REQ_DISCARD)
1457 			process_discard(tc, bio);
1458 		else
1459 			process_bio(tc, bio);
1460 	}
1461 
1462 	/*
1463 	 * If there are any deferred flush bios, we must commit
1464 	 * the metadata before issuing them.
1465 	 */
1466 	bio_list_init(&bios);
1467 	spin_lock_irqsave(&pool->lock, flags);
1468 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1469 	bio_list_init(&pool->deferred_flush_bios);
1470 	spin_unlock_irqrestore(&pool->lock, flags);
1471 
1472 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1473 		return;
1474 
1475 	r = dm_pool_commit_metadata(pool->pmd);
1476 	if (r) {
1477 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1478 		      __func__, r);
1479 		while ((bio = bio_list_pop(&bios)))
1480 			bio_io_error(bio);
1481 		return;
1482 	}
1483 	pool->last_commit_jiffies = jiffies;
1484 
1485 	while ((bio = bio_list_pop(&bios)))
1486 		generic_make_request(bio);
1487 }
1488 
1489 static void do_worker(struct work_struct *ws)
1490 {
1491 	struct pool *pool = container_of(ws, struct pool, worker);
1492 
1493 	process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1494 	process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1495 	process_deferred_bios(pool);
1496 }
1497 
1498 /*
1499  * We want to commit periodically so that not too much
1500  * unwritten data builds up.
1501  */
1502 static void do_waker(struct work_struct *ws)
1503 {
1504 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1505 	wake_worker(pool);
1506 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1507 }
1508 
1509 /*----------------------------------------------------------------*/
1510 
1511 /*
1512  * Mapping functions.
1513  */
1514 
1515 /*
1516  * Called only while mapping a thin bio to hand it over to the workqueue.
1517  */
1518 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1519 {
1520 	unsigned long flags;
1521 	struct pool *pool = tc->pool;
1522 
1523 	spin_lock_irqsave(&pool->lock, flags);
1524 	bio_list_add(&pool->deferred_bios, bio);
1525 	spin_unlock_irqrestore(&pool->lock, flags);
1526 
1527 	wake_worker(pool);
1528 }
1529 
1530 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1531 {
1532 	struct pool *pool = tc->pool;
1533 	struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1534 
1535 	h->tc = tc;
1536 	h->shared_read_entry = NULL;
1537 	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1538 	h->overwrite_mapping = NULL;
1539 
1540 	return h;
1541 }
1542 
1543 /*
1544  * Non-blocking function called from the thin target's map function.
1545  */
1546 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1547 			union map_info *map_context)
1548 {
1549 	int r;
1550 	struct thin_c *tc = ti->private;
1551 	dm_block_t block = get_bio_block(tc, bio);
1552 	struct dm_thin_device *td = tc->td;
1553 	struct dm_thin_lookup_result result;
1554 
1555 	map_context->ptr = thin_hook_bio(tc, bio);
1556 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1557 		thin_defer_bio(tc, bio);
1558 		return DM_MAPIO_SUBMITTED;
1559 	}
1560 
1561 	r = dm_thin_find_block(td, block, 0, &result);
1562 
1563 	/*
1564 	 * Note that we defer readahead too.
1565 	 */
1566 	switch (r) {
1567 	case 0:
1568 		if (unlikely(result.shared)) {
1569 			/*
1570 			 * We have a race condition here between the
1571 			 * result.shared value returned by the lookup and
1572 			 * snapshot creation, which may cause new
1573 			 * sharing.
1574 			 *
1575 			 * To avoid this always quiesce the origin before
1576 			 * taking the snap.  You want to do this anyway to
1577 			 * ensure a consistent application view
1578 			 * (i.e. lockfs).
1579 			 *
1580 			 * More distant ancestors are irrelevant. The
1581 			 * shared flag will be set in their case.
1582 			 */
1583 			thin_defer_bio(tc, bio);
1584 			r = DM_MAPIO_SUBMITTED;
1585 		} else {
1586 			remap(tc, bio, result.block);
1587 			r = DM_MAPIO_REMAPPED;
1588 		}
1589 		break;
1590 
1591 	case -ENODATA:
1592 		/*
1593 		 * In future, the failed dm_thin_find_block above could
1594 		 * provide the hint to load the metadata into cache.
1595 		 */
1596 	case -EWOULDBLOCK:
1597 		thin_defer_bio(tc, bio);
1598 		r = DM_MAPIO_SUBMITTED;
1599 		break;
1600 	}
1601 
1602 	return r;
1603 }
1604 
1605 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1606 {
1607 	int r;
1608 	unsigned long flags;
1609 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1610 
1611 	spin_lock_irqsave(&pt->pool->lock, flags);
1612 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1613 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1614 
1615 	if (!r) {
1616 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1617 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1618 	}
1619 
1620 	return r;
1621 }
1622 
1623 static void __requeue_bios(struct pool *pool)
1624 {
1625 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1626 	bio_list_init(&pool->retry_on_resume_list);
1627 }
1628 
1629 /*----------------------------------------------------------------
1630  * Binding of control targets to a pool object
1631  *--------------------------------------------------------------*/
1632 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1633 {
1634 	struct pool_c *pt = ti->private;
1635 
1636 	pool->ti = ti;
1637 	pool->low_water_blocks = pt->low_water_blocks;
1638 	pool->pf = pt->pf;
1639 
1640 	/*
1641 	 * If discard_passdown was enabled verify that the data device
1642 	 * supports discards.  Disable discard_passdown if not; otherwise
1643 	 * -EOPNOTSUPP will be returned.
1644 	 */
1645 	if (pt->pf.discard_passdown) {
1646 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1647 		if (!q || !blk_queue_discard(q)) {
1648 			char buf[BDEVNAME_SIZE];
1649 			DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1650 			       bdevname(pt->data_dev->bdev, buf));
1651 			pool->pf.discard_passdown = 0;
1652 		}
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1659 {
1660 	if (pool->ti == ti)
1661 		pool->ti = NULL;
1662 }
1663 
1664 /*----------------------------------------------------------------
1665  * Pool creation
1666  *--------------------------------------------------------------*/
1667 /* Initialize pool features. */
1668 static void pool_features_init(struct pool_features *pf)
1669 {
1670 	pf->zero_new_blocks = 1;
1671 	pf->discard_enabled = 1;
1672 	pf->discard_passdown = 1;
1673 }
1674 
1675 static void __pool_destroy(struct pool *pool)
1676 {
1677 	__pool_table_remove(pool);
1678 
1679 	if (dm_pool_metadata_close(pool->pmd) < 0)
1680 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1681 
1682 	prison_destroy(pool->prison);
1683 	dm_kcopyd_client_destroy(pool->copier);
1684 
1685 	if (pool->wq)
1686 		destroy_workqueue(pool->wq);
1687 
1688 	if (pool->next_mapping)
1689 		mempool_free(pool->next_mapping, pool->mapping_pool);
1690 	mempool_destroy(pool->mapping_pool);
1691 	mempool_destroy(pool->endio_hook_pool);
1692 	kfree(pool);
1693 }
1694 
1695 static struct kmem_cache *_new_mapping_cache;
1696 static struct kmem_cache *_endio_hook_cache;
1697 
1698 static struct pool *pool_create(struct mapped_device *pool_md,
1699 				struct block_device *metadata_dev,
1700 				unsigned long block_size, char **error)
1701 {
1702 	int r;
1703 	void *err_p;
1704 	struct pool *pool;
1705 	struct dm_pool_metadata *pmd;
1706 
1707 	pmd = dm_pool_metadata_open(metadata_dev, block_size);
1708 	if (IS_ERR(pmd)) {
1709 		*error = "Error creating metadata object";
1710 		return (struct pool *)pmd;
1711 	}
1712 
1713 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1714 	if (!pool) {
1715 		*error = "Error allocating memory for pool";
1716 		err_p = ERR_PTR(-ENOMEM);
1717 		goto bad_pool;
1718 	}
1719 
1720 	pool->pmd = pmd;
1721 	pool->sectors_per_block = block_size;
1722 	pool->block_shift = ffs(block_size) - 1;
1723 	pool->offset_mask = block_size - 1;
1724 	pool->low_water_blocks = 0;
1725 	pool_features_init(&pool->pf);
1726 	pool->prison = prison_create(PRISON_CELLS);
1727 	if (!pool->prison) {
1728 		*error = "Error creating pool's bio prison";
1729 		err_p = ERR_PTR(-ENOMEM);
1730 		goto bad_prison;
1731 	}
1732 
1733 	pool->copier = dm_kcopyd_client_create();
1734 	if (IS_ERR(pool->copier)) {
1735 		r = PTR_ERR(pool->copier);
1736 		*error = "Error creating pool's kcopyd client";
1737 		err_p = ERR_PTR(r);
1738 		goto bad_kcopyd_client;
1739 	}
1740 
1741 	/*
1742 	 * Create singlethreaded workqueue that will service all devices
1743 	 * that use this metadata.
1744 	 */
1745 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1746 	if (!pool->wq) {
1747 		*error = "Error creating pool's workqueue";
1748 		err_p = ERR_PTR(-ENOMEM);
1749 		goto bad_wq;
1750 	}
1751 
1752 	INIT_WORK(&pool->worker, do_worker);
1753 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1754 	spin_lock_init(&pool->lock);
1755 	bio_list_init(&pool->deferred_bios);
1756 	bio_list_init(&pool->deferred_flush_bios);
1757 	INIT_LIST_HEAD(&pool->prepared_mappings);
1758 	INIT_LIST_HEAD(&pool->prepared_discards);
1759 	pool->low_water_triggered = 0;
1760 	pool->no_free_space = 0;
1761 	bio_list_init(&pool->retry_on_resume_list);
1762 	ds_init(&pool->shared_read_ds);
1763 	ds_init(&pool->all_io_ds);
1764 
1765 	pool->next_mapping = NULL;
1766 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1767 						      _new_mapping_cache);
1768 	if (!pool->mapping_pool) {
1769 		*error = "Error creating pool's mapping mempool";
1770 		err_p = ERR_PTR(-ENOMEM);
1771 		goto bad_mapping_pool;
1772 	}
1773 
1774 	pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1775 							 _endio_hook_cache);
1776 	if (!pool->endio_hook_pool) {
1777 		*error = "Error creating pool's endio_hook mempool";
1778 		err_p = ERR_PTR(-ENOMEM);
1779 		goto bad_endio_hook_pool;
1780 	}
1781 	pool->ref_count = 1;
1782 	pool->last_commit_jiffies = jiffies;
1783 	pool->pool_md = pool_md;
1784 	pool->md_dev = metadata_dev;
1785 	__pool_table_insert(pool);
1786 
1787 	return pool;
1788 
1789 bad_endio_hook_pool:
1790 	mempool_destroy(pool->mapping_pool);
1791 bad_mapping_pool:
1792 	destroy_workqueue(pool->wq);
1793 bad_wq:
1794 	dm_kcopyd_client_destroy(pool->copier);
1795 bad_kcopyd_client:
1796 	prison_destroy(pool->prison);
1797 bad_prison:
1798 	kfree(pool);
1799 bad_pool:
1800 	if (dm_pool_metadata_close(pmd))
1801 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1802 
1803 	return err_p;
1804 }
1805 
1806 static void __pool_inc(struct pool *pool)
1807 {
1808 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1809 	pool->ref_count++;
1810 }
1811 
1812 static void __pool_dec(struct pool *pool)
1813 {
1814 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1815 	BUG_ON(!pool->ref_count);
1816 	if (!--pool->ref_count)
1817 		__pool_destroy(pool);
1818 }
1819 
1820 static struct pool *__pool_find(struct mapped_device *pool_md,
1821 				struct block_device *metadata_dev,
1822 				unsigned long block_size, char **error,
1823 				int *created)
1824 {
1825 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1826 
1827 	if (pool) {
1828 		if (pool->pool_md != pool_md)
1829 			return ERR_PTR(-EBUSY);
1830 		__pool_inc(pool);
1831 
1832 	} else {
1833 		pool = __pool_table_lookup(pool_md);
1834 		if (pool) {
1835 			if (pool->md_dev != metadata_dev)
1836 				return ERR_PTR(-EINVAL);
1837 			__pool_inc(pool);
1838 
1839 		} else {
1840 			pool = pool_create(pool_md, metadata_dev, block_size, error);
1841 			*created = 1;
1842 		}
1843 	}
1844 
1845 	return pool;
1846 }
1847 
1848 /*----------------------------------------------------------------
1849  * Pool target methods
1850  *--------------------------------------------------------------*/
1851 static void pool_dtr(struct dm_target *ti)
1852 {
1853 	struct pool_c *pt = ti->private;
1854 
1855 	mutex_lock(&dm_thin_pool_table.mutex);
1856 
1857 	unbind_control_target(pt->pool, ti);
1858 	__pool_dec(pt->pool);
1859 	dm_put_device(ti, pt->metadata_dev);
1860 	dm_put_device(ti, pt->data_dev);
1861 	kfree(pt);
1862 
1863 	mutex_unlock(&dm_thin_pool_table.mutex);
1864 }
1865 
1866 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1867 			       struct dm_target *ti)
1868 {
1869 	int r;
1870 	unsigned argc;
1871 	const char *arg_name;
1872 
1873 	static struct dm_arg _args[] = {
1874 		{0, 3, "Invalid number of pool feature arguments"},
1875 	};
1876 
1877 	/*
1878 	 * No feature arguments supplied.
1879 	 */
1880 	if (!as->argc)
1881 		return 0;
1882 
1883 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1884 	if (r)
1885 		return -EINVAL;
1886 
1887 	while (argc && !r) {
1888 		arg_name = dm_shift_arg(as);
1889 		argc--;
1890 
1891 		if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1892 			pf->zero_new_blocks = 0;
1893 			continue;
1894 		} else if (!strcasecmp(arg_name, "ignore_discard")) {
1895 			pf->discard_enabled = 0;
1896 			continue;
1897 		} else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1898 			pf->discard_passdown = 0;
1899 			continue;
1900 		}
1901 
1902 		ti->error = "Unrecognised pool feature requested";
1903 		r = -EINVAL;
1904 	}
1905 
1906 	return r;
1907 }
1908 
1909 /*
1910  * thin-pool <metadata dev> <data dev>
1911  *	     <data block size (sectors)>
1912  *	     <low water mark (blocks)>
1913  *	     [<#feature args> [<arg>]*]
1914  *
1915  * Optional feature arguments are:
1916  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1917  *	     ignore_discard: disable discard
1918  *	     no_discard_passdown: don't pass discards down to the data device
1919  */
1920 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1921 {
1922 	int r, pool_created = 0;
1923 	struct pool_c *pt;
1924 	struct pool *pool;
1925 	struct pool_features pf;
1926 	struct dm_arg_set as;
1927 	struct dm_dev *data_dev;
1928 	unsigned long block_size;
1929 	dm_block_t low_water_blocks;
1930 	struct dm_dev *metadata_dev;
1931 	sector_t metadata_dev_size;
1932 	char b[BDEVNAME_SIZE];
1933 
1934 	/*
1935 	 * FIXME Remove validation from scope of lock.
1936 	 */
1937 	mutex_lock(&dm_thin_pool_table.mutex);
1938 
1939 	if (argc < 4) {
1940 		ti->error = "Invalid argument count";
1941 		r = -EINVAL;
1942 		goto out_unlock;
1943 	}
1944 	as.argc = argc;
1945 	as.argv = argv;
1946 
1947 	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1948 	if (r) {
1949 		ti->error = "Error opening metadata block device";
1950 		goto out_unlock;
1951 	}
1952 
1953 	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1954 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1955 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1956 		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1957 
1958 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1959 	if (r) {
1960 		ti->error = "Error getting data device";
1961 		goto out_metadata;
1962 	}
1963 
1964 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1965 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1966 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1967 	    !is_power_of_2(block_size)) {
1968 		ti->error = "Invalid block size";
1969 		r = -EINVAL;
1970 		goto out;
1971 	}
1972 
1973 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1974 		ti->error = "Invalid low water mark";
1975 		r = -EINVAL;
1976 		goto out;
1977 	}
1978 
1979 	/*
1980 	 * Set default pool features.
1981 	 */
1982 	pool_features_init(&pf);
1983 
1984 	dm_consume_args(&as, 4);
1985 	r = parse_pool_features(&as, &pf, ti);
1986 	if (r)
1987 		goto out;
1988 
1989 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1990 	if (!pt) {
1991 		r = -ENOMEM;
1992 		goto out;
1993 	}
1994 
1995 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1996 			   block_size, &ti->error, &pool_created);
1997 	if (IS_ERR(pool)) {
1998 		r = PTR_ERR(pool);
1999 		goto out_free_pt;
2000 	}
2001 
2002 	/*
2003 	 * 'pool_created' reflects whether this is the first table load.
2004 	 * Top level discard support is not allowed to be changed after
2005 	 * initial load.  This would require a pool reload to trigger thin
2006 	 * device changes.
2007 	 */
2008 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2009 		ti->error = "Discard support cannot be disabled once enabled";
2010 		r = -EINVAL;
2011 		goto out_flags_changed;
2012 	}
2013 
2014 	pt->pool = pool;
2015 	pt->ti = ti;
2016 	pt->metadata_dev = metadata_dev;
2017 	pt->data_dev = data_dev;
2018 	pt->low_water_blocks = low_water_blocks;
2019 	pt->pf = pf;
2020 	ti->num_flush_requests = 1;
2021 	/*
2022 	 * Only need to enable discards if the pool should pass
2023 	 * them down to the data device.  The thin device's discard
2024 	 * processing will cause mappings to be removed from the btree.
2025 	 */
2026 	if (pf.discard_enabled && pf.discard_passdown) {
2027 		ti->num_discard_requests = 1;
2028 		/*
2029 		 * Setting 'discards_supported' circumvents the normal
2030 		 * stacking of discard limits (this keeps the pool and
2031 		 * thin devices' discard limits consistent).
2032 		 */
2033 		ti->discards_supported = 1;
2034 	}
2035 	ti->private = pt;
2036 
2037 	pt->callbacks.congested_fn = pool_is_congested;
2038 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2039 
2040 	mutex_unlock(&dm_thin_pool_table.mutex);
2041 
2042 	return 0;
2043 
2044 out_flags_changed:
2045 	__pool_dec(pool);
2046 out_free_pt:
2047 	kfree(pt);
2048 out:
2049 	dm_put_device(ti, data_dev);
2050 out_metadata:
2051 	dm_put_device(ti, metadata_dev);
2052 out_unlock:
2053 	mutex_unlock(&dm_thin_pool_table.mutex);
2054 
2055 	return r;
2056 }
2057 
2058 static int pool_map(struct dm_target *ti, struct bio *bio,
2059 		    union map_info *map_context)
2060 {
2061 	int r;
2062 	struct pool_c *pt = ti->private;
2063 	struct pool *pool = pt->pool;
2064 	unsigned long flags;
2065 
2066 	/*
2067 	 * As this is a singleton target, ti->begin is always zero.
2068 	 */
2069 	spin_lock_irqsave(&pool->lock, flags);
2070 	bio->bi_bdev = pt->data_dev->bdev;
2071 	r = DM_MAPIO_REMAPPED;
2072 	spin_unlock_irqrestore(&pool->lock, flags);
2073 
2074 	return r;
2075 }
2076 
2077 /*
2078  * Retrieves the number of blocks of the data device from
2079  * the superblock and compares it to the actual device size,
2080  * thus resizing the data device in case it has grown.
2081  *
2082  * This both copes with opening preallocated data devices in the ctr
2083  * being followed by a resume
2084  * -and-
2085  * calling the resume method individually after userspace has
2086  * grown the data device in reaction to a table event.
2087  */
2088 static int pool_preresume(struct dm_target *ti)
2089 {
2090 	int r;
2091 	struct pool_c *pt = ti->private;
2092 	struct pool *pool = pt->pool;
2093 	dm_block_t data_size, sb_data_size;
2094 
2095 	/*
2096 	 * Take control of the pool object.
2097 	 */
2098 	r = bind_control_target(pool, ti);
2099 	if (r)
2100 		return r;
2101 
2102 	data_size = ti->len >> pool->block_shift;
2103 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2104 	if (r) {
2105 		DMERR("failed to retrieve data device size");
2106 		return r;
2107 	}
2108 
2109 	if (data_size < sb_data_size) {
2110 		DMERR("pool target too small, is %llu blocks (expected %llu)",
2111 		      data_size, sb_data_size);
2112 		return -EINVAL;
2113 
2114 	} else if (data_size > sb_data_size) {
2115 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2116 		if (r) {
2117 			DMERR("failed to resize data device");
2118 			return r;
2119 		}
2120 
2121 		r = dm_pool_commit_metadata(pool->pmd);
2122 		if (r) {
2123 			DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2124 			      __func__, r);
2125 			return r;
2126 		}
2127 	}
2128 
2129 	return 0;
2130 }
2131 
2132 static void pool_resume(struct dm_target *ti)
2133 {
2134 	struct pool_c *pt = ti->private;
2135 	struct pool *pool = pt->pool;
2136 	unsigned long flags;
2137 
2138 	spin_lock_irqsave(&pool->lock, flags);
2139 	pool->low_water_triggered = 0;
2140 	pool->no_free_space = 0;
2141 	__requeue_bios(pool);
2142 	spin_unlock_irqrestore(&pool->lock, flags);
2143 
2144 	do_waker(&pool->waker.work);
2145 }
2146 
2147 static void pool_postsuspend(struct dm_target *ti)
2148 {
2149 	int r;
2150 	struct pool_c *pt = ti->private;
2151 	struct pool *pool = pt->pool;
2152 
2153 	cancel_delayed_work(&pool->waker);
2154 	flush_workqueue(pool->wq);
2155 
2156 	r = dm_pool_commit_metadata(pool->pmd);
2157 	if (r < 0) {
2158 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2159 		      __func__, r);
2160 		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2161 	}
2162 }
2163 
2164 static int check_arg_count(unsigned argc, unsigned args_required)
2165 {
2166 	if (argc != args_required) {
2167 		DMWARN("Message received with %u arguments instead of %u.",
2168 		       argc, args_required);
2169 		return -EINVAL;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2176 {
2177 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2178 	    *dev_id <= MAX_DEV_ID)
2179 		return 0;
2180 
2181 	if (warning)
2182 		DMWARN("Message received with invalid device id: %s", arg);
2183 
2184 	return -EINVAL;
2185 }
2186 
2187 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2188 {
2189 	dm_thin_id dev_id;
2190 	int r;
2191 
2192 	r = check_arg_count(argc, 2);
2193 	if (r)
2194 		return r;
2195 
2196 	r = read_dev_id(argv[1], &dev_id, 1);
2197 	if (r)
2198 		return r;
2199 
2200 	r = dm_pool_create_thin(pool->pmd, dev_id);
2201 	if (r) {
2202 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2203 		       argv[1]);
2204 		return r;
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2211 {
2212 	dm_thin_id dev_id;
2213 	dm_thin_id origin_dev_id;
2214 	int r;
2215 
2216 	r = check_arg_count(argc, 3);
2217 	if (r)
2218 		return r;
2219 
2220 	r = read_dev_id(argv[1], &dev_id, 1);
2221 	if (r)
2222 		return r;
2223 
2224 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2225 	if (r)
2226 		return r;
2227 
2228 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2229 	if (r) {
2230 		DMWARN("Creation of new snapshot %s of device %s failed.",
2231 		       argv[1], argv[2]);
2232 		return r;
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2239 {
2240 	dm_thin_id dev_id;
2241 	int r;
2242 
2243 	r = check_arg_count(argc, 2);
2244 	if (r)
2245 		return r;
2246 
2247 	r = read_dev_id(argv[1], &dev_id, 1);
2248 	if (r)
2249 		return r;
2250 
2251 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2252 	if (r)
2253 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2254 
2255 	return r;
2256 }
2257 
2258 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2259 {
2260 	dm_thin_id old_id, new_id;
2261 	int r;
2262 
2263 	r = check_arg_count(argc, 3);
2264 	if (r)
2265 		return r;
2266 
2267 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2268 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2269 		return -EINVAL;
2270 	}
2271 
2272 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2273 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2274 		return -EINVAL;
2275 	}
2276 
2277 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2278 	if (r) {
2279 		DMWARN("Failed to change transaction id from %s to %s.",
2280 		       argv[1], argv[2]);
2281 		return r;
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2288 {
2289 	int r;
2290 
2291 	r = check_arg_count(argc, 1);
2292 	if (r)
2293 		return r;
2294 
2295 	r = dm_pool_commit_metadata(pool->pmd);
2296 	if (r) {
2297 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2298 		      __func__, r);
2299 		return r;
2300 	}
2301 
2302 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2303 	if (r)
2304 		DMWARN("reserve_metadata_snap message failed.");
2305 
2306 	return r;
2307 }
2308 
2309 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2310 {
2311 	int r;
2312 
2313 	r = check_arg_count(argc, 1);
2314 	if (r)
2315 		return r;
2316 
2317 	r = dm_pool_release_metadata_snap(pool->pmd);
2318 	if (r)
2319 		DMWARN("release_metadata_snap message failed.");
2320 
2321 	return r;
2322 }
2323 
2324 /*
2325  * Messages supported:
2326  *   create_thin	<dev_id>
2327  *   create_snap	<dev_id> <origin_id>
2328  *   delete		<dev_id>
2329  *   trim		<dev_id> <new_size_in_sectors>
2330  *   set_transaction_id <current_trans_id> <new_trans_id>
2331  *   reserve_metadata_snap
2332  *   release_metadata_snap
2333  */
2334 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2335 {
2336 	int r = -EINVAL;
2337 	struct pool_c *pt = ti->private;
2338 	struct pool *pool = pt->pool;
2339 
2340 	if (!strcasecmp(argv[0], "create_thin"))
2341 		r = process_create_thin_mesg(argc, argv, pool);
2342 
2343 	else if (!strcasecmp(argv[0], "create_snap"))
2344 		r = process_create_snap_mesg(argc, argv, pool);
2345 
2346 	else if (!strcasecmp(argv[0], "delete"))
2347 		r = process_delete_mesg(argc, argv, pool);
2348 
2349 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2350 		r = process_set_transaction_id_mesg(argc, argv, pool);
2351 
2352 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2353 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2354 
2355 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2356 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2357 
2358 	else
2359 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2360 
2361 	if (!r) {
2362 		r = dm_pool_commit_metadata(pool->pmd);
2363 		if (r)
2364 			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2365 			      argv[0], r);
2366 	}
2367 
2368 	return r;
2369 }
2370 
2371 /*
2372  * Status line is:
2373  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2374  *    <used data sectors>/<total data sectors> <held metadata root>
2375  */
2376 static int pool_status(struct dm_target *ti, status_type_t type,
2377 		       char *result, unsigned maxlen)
2378 {
2379 	int r, count;
2380 	unsigned sz = 0;
2381 	uint64_t transaction_id;
2382 	dm_block_t nr_free_blocks_data;
2383 	dm_block_t nr_free_blocks_metadata;
2384 	dm_block_t nr_blocks_data;
2385 	dm_block_t nr_blocks_metadata;
2386 	dm_block_t held_root;
2387 	char buf[BDEVNAME_SIZE];
2388 	char buf2[BDEVNAME_SIZE];
2389 	struct pool_c *pt = ti->private;
2390 	struct pool *pool = pt->pool;
2391 
2392 	switch (type) {
2393 	case STATUSTYPE_INFO:
2394 		r = dm_pool_get_metadata_transaction_id(pool->pmd,
2395 							&transaction_id);
2396 		if (r)
2397 			return r;
2398 
2399 		r = dm_pool_get_free_metadata_block_count(pool->pmd,
2400 							  &nr_free_blocks_metadata);
2401 		if (r)
2402 			return r;
2403 
2404 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2405 		if (r)
2406 			return r;
2407 
2408 		r = dm_pool_get_free_block_count(pool->pmd,
2409 						 &nr_free_blocks_data);
2410 		if (r)
2411 			return r;
2412 
2413 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2414 		if (r)
2415 			return r;
2416 
2417 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2418 		if (r)
2419 			return r;
2420 
2421 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2422 		       (unsigned long long)transaction_id,
2423 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2424 		       (unsigned long long)nr_blocks_metadata,
2425 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2426 		       (unsigned long long)nr_blocks_data);
2427 
2428 		if (held_root)
2429 			DMEMIT("%llu", held_root);
2430 		else
2431 			DMEMIT("-");
2432 
2433 		break;
2434 
2435 	case STATUSTYPE_TABLE:
2436 		DMEMIT("%s %s %lu %llu ",
2437 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2438 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2439 		       (unsigned long)pool->sectors_per_block,
2440 		       (unsigned long long)pt->low_water_blocks);
2441 
2442 		count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2443 			!pt->pf.discard_passdown;
2444 		DMEMIT("%u ", count);
2445 
2446 		if (!pool->pf.zero_new_blocks)
2447 			DMEMIT("skip_block_zeroing ");
2448 
2449 		if (!pool->pf.discard_enabled)
2450 			DMEMIT("ignore_discard ");
2451 
2452 		if (!pt->pf.discard_passdown)
2453 			DMEMIT("no_discard_passdown ");
2454 
2455 		break;
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static int pool_iterate_devices(struct dm_target *ti,
2462 				iterate_devices_callout_fn fn, void *data)
2463 {
2464 	struct pool_c *pt = ti->private;
2465 
2466 	return fn(ti, pt->data_dev, 0, ti->len, data);
2467 }
2468 
2469 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2470 		      struct bio_vec *biovec, int max_size)
2471 {
2472 	struct pool_c *pt = ti->private;
2473 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2474 
2475 	if (!q->merge_bvec_fn)
2476 		return max_size;
2477 
2478 	bvm->bi_bdev = pt->data_dev->bdev;
2479 
2480 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2481 }
2482 
2483 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2484 {
2485 	/*
2486 	 * FIXME: these limits may be incompatible with the pool's data device
2487 	 */
2488 	limits->max_discard_sectors = pool->sectors_per_block;
2489 
2490 	/*
2491 	 * This is just a hint, and not enforced.  We have to cope with
2492 	 * bios that overlap 2 blocks.
2493 	 */
2494 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2495 	limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2496 }
2497 
2498 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2499 {
2500 	struct pool_c *pt = ti->private;
2501 	struct pool *pool = pt->pool;
2502 
2503 	blk_limits_io_min(limits, 0);
2504 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2505 	if (pool->pf.discard_enabled)
2506 		set_discard_limits(pool, limits);
2507 }
2508 
2509 static struct target_type pool_target = {
2510 	.name = "thin-pool",
2511 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2512 		    DM_TARGET_IMMUTABLE,
2513 	.version = {1, 2, 0},
2514 	.module = THIS_MODULE,
2515 	.ctr = pool_ctr,
2516 	.dtr = pool_dtr,
2517 	.map = pool_map,
2518 	.postsuspend = pool_postsuspend,
2519 	.preresume = pool_preresume,
2520 	.resume = pool_resume,
2521 	.message = pool_message,
2522 	.status = pool_status,
2523 	.merge = pool_merge,
2524 	.iterate_devices = pool_iterate_devices,
2525 	.io_hints = pool_io_hints,
2526 };
2527 
2528 /*----------------------------------------------------------------
2529  * Thin target methods
2530  *--------------------------------------------------------------*/
2531 static void thin_dtr(struct dm_target *ti)
2532 {
2533 	struct thin_c *tc = ti->private;
2534 
2535 	mutex_lock(&dm_thin_pool_table.mutex);
2536 
2537 	__pool_dec(tc->pool);
2538 	dm_pool_close_thin_device(tc->td);
2539 	dm_put_device(ti, tc->pool_dev);
2540 	if (tc->origin_dev)
2541 		dm_put_device(ti, tc->origin_dev);
2542 	kfree(tc);
2543 
2544 	mutex_unlock(&dm_thin_pool_table.mutex);
2545 }
2546 
2547 /*
2548  * Thin target parameters:
2549  *
2550  * <pool_dev> <dev_id> [origin_dev]
2551  *
2552  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2553  * dev_id: the internal device identifier
2554  * origin_dev: a device external to the pool that should act as the origin
2555  *
2556  * If the pool device has discards disabled, they get disabled for the thin
2557  * device as well.
2558  */
2559 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2560 {
2561 	int r;
2562 	struct thin_c *tc;
2563 	struct dm_dev *pool_dev, *origin_dev;
2564 	struct mapped_device *pool_md;
2565 
2566 	mutex_lock(&dm_thin_pool_table.mutex);
2567 
2568 	if (argc != 2 && argc != 3) {
2569 		ti->error = "Invalid argument count";
2570 		r = -EINVAL;
2571 		goto out_unlock;
2572 	}
2573 
2574 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2575 	if (!tc) {
2576 		ti->error = "Out of memory";
2577 		r = -ENOMEM;
2578 		goto out_unlock;
2579 	}
2580 
2581 	if (argc == 3) {
2582 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2583 		if (r) {
2584 			ti->error = "Error opening origin device";
2585 			goto bad_origin_dev;
2586 		}
2587 		tc->origin_dev = origin_dev;
2588 	}
2589 
2590 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2591 	if (r) {
2592 		ti->error = "Error opening pool device";
2593 		goto bad_pool_dev;
2594 	}
2595 	tc->pool_dev = pool_dev;
2596 
2597 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2598 		ti->error = "Invalid device id";
2599 		r = -EINVAL;
2600 		goto bad_common;
2601 	}
2602 
2603 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2604 	if (!pool_md) {
2605 		ti->error = "Couldn't get pool mapped device";
2606 		r = -EINVAL;
2607 		goto bad_common;
2608 	}
2609 
2610 	tc->pool = __pool_table_lookup(pool_md);
2611 	if (!tc->pool) {
2612 		ti->error = "Couldn't find pool object";
2613 		r = -EINVAL;
2614 		goto bad_pool_lookup;
2615 	}
2616 	__pool_inc(tc->pool);
2617 
2618 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2619 	if (r) {
2620 		ti->error = "Couldn't open thin internal device";
2621 		goto bad_thin_open;
2622 	}
2623 
2624 	ti->split_io = tc->pool->sectors_per_block;
2625 	ti->num_flush_requests = 1;
2626 
2627 	/* In case the pool supports discards, pass them on. */
2628 	if (tc->pool->pf.discard_enabled) {
2629 		ti->discards_supported = 1;
2630 		ti->num_discard_requests = 1;
2631 	}
2632 
2633 	dm_put(pool_md);
2634 
2635 	mutex_unlock(&dm_thin_pool_table.mutex);
2636 
2637 	return 0;
2638 
2639 bad_thin_open:
2640 	__pool_dec(tc->pool);
2641 bad_pool_lookup:
2642 	dm_put(pool_md);
2643 bad_common:
2644 	dm_put_device(ti, tc->pool_dev);
2645 bad_pool_dev:
2646 	if (tc->origin_dev)
2647 		dm_put_device(ti, tc->origin_dev);
2648 bad_origin_dev:
2649 	kfree(tc);
2650 out_unlock:
2651 	mutex_unlock(&dm_thin_pool_table.mutex);
2652 
2653 	return r;
2654 }
2655 
2656 static int thin_map(struct dm_target *ti, struct bio *bio,
2657 		    union map_info *map_context)
2658 {
2659 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2660 
2661 	return thin_bio_map(ti, bio, map_context);
2662 }
2663 
2664 static int thin_endio(struct dm_target *ti,
2665 		      struct bio *bio, int err,
2666 		      union map_info *map_context)
2667 {
2668 	unsigned long flags;
2669 	struct dm_thin_endio_hook *h = map_context->ptr;
2670 	struct list_head work;
2671 	struct dm_thin_new_mapping *m, *tmp;
2672 	struct pool *pool = h->tc->pool;
2673 
2674 	if (h->shared_read_entry) {
2675 		INIT_LIST_HEAD(&work);
2676 		ds_dec(h->shared_read_entry, &work);
2677 
2678 		spin_lock_irqsave(&pool->lock, flags);
2679 		list_for_each_entry_safe(m, tmp, &work, list) {
2680 			list_del(&m->list);
2681 			m->quiesced = 1;
2682 			__maybe_add_mapping(m);
2683 		}
2684 		spin_unlock_irqrestore(&pool->lock, flags);
2685 	}
2686 
2687 	if (h->all_io_entry) {
2688 		INIT_LIST_HEAD(&work);
2689 		ds_dec(h->all_io_entry, &work);
2690 		spin_lock_irqsave(&pool->lock, flags);
2691 		list_for_each_entry_safe(m, tmp, &work, list)
2692 			list_add(&m->list, &pool->prepared_discards);
2693 		spin_unlock_irqrestore(&pool->lock, flags);
2694 	}
2695 
2696 	mempool_free(h, pool->endio_hook_pool);
2697 
2698 	return 0;
2699 }
2700 
2701 static void thin_postsuspend(struct dm_target *ti)
2702 {
2703 	if (dm_noflush_suspending(ti))
2704 		requeue_io((struct thin_c *)ti->private);
2705 }
2706 
2707 /*
2708  * <nr mapped sectors> <highest mapped sector>
2709  */
2710 static int thin_status(struct dm_target *ti, status_type_t type,
2711 		       char *result, unsigned maxlen)
2712 {
2713 	int r;
2714 	ssize_t sz = 0;
2715 	dm_block_t mapped, highest;
2716 	char buf[BDEVNAME_SIZE];
2717 	struct thin_c *tc = ti->private;
2718 
2719 	if (!tc->td)
2720 		DMEMIT("-");
2721 	else {
2722 		switch (type) {
2723 		case STATUSTYPE_INFO:
2724 			r = dm_thin_get_mapped_count(tc->td, &mapped);
2725 			if (r)
2726 				return r;
2727 
2728 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2729 			if (r < 0)
2730 				return r;
2731 
2732 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2733 			if (r)
2734 				DMEMIT("%llu", ((highest + 1) *
2735 						tc->pool->sectors_per_block) - 1);
2736 			else
2737 				DMEMIT("-");
2738 			break;
2739 
2740 		case STATUSTYPE_TABLE:
2741 			DMEMIT("%s %lu",
2742 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2743 			       (unsigned long) tc->dev_id);
2744 			if (tc->origin_dev)
2745 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2746 			break;
2747 		}
2748 	}
2749 
2750 	return 0;
2751 }
2752 
2753 static int thin_iterate_devices(struct dm_target *ti,
2754 				iterate_devices_callout_fn fn, void *data)
2755 {
2756 	dm_block_t blocks;
2757 	struct thin_c *tc = ti->private;
2758 
2759 	/*
2760 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2761 	 * we follow a more convoluted path through to the pool's target.
2762 	 */
2763 	if (!tc->pool->ti)
2764 		return 0;	/* nothing is bound */
2765 
2766 	blocks = tc->pool->ti->len >> tc->pool->block_shift;
2767 	if (blocks)
2768 		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2769 
2770 	return 0;
2771 }
2772 
2773 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2774 {
2775 	struct thin_c *tc = ti->private;
2776 	struct pool *pool = tc->pool;
2777 
2778 	blk_limits_io_min(limits, 0);
2779 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2780 	set_discard_limits(pool, limits);
2781 }
2782 
2783 static struct target_type thin_target = {
2784 	.name = "thin",
2785 	.version = {1, 1, 0},
2786 	.module	= THIS_MODULE,
2787 	.ctr = thin_ctr,
2788 	.dtr = thin_dtr,
2789 	.map = thin_map,
2790 	.end_io = thin_endio,
2791 	.postsuspend = thin_postsuspend,
2792 	.status = thin_status,
2793 	.iterate_devices = thin_iterate_devices,
2794 	.io_hints = thin_io_hints,
2795 };
2796 
2797 /*----------------------------------------------------------------*/
2798 
2799 static int __init dm_thin_init(void)
2800 {
2801 	int r;
2802 
2803 	pool_table_init();
2804 
2805 	r = dm_register_target(&thin_target);
2806 	if (r)
2807 		return r;
2808 
2809 	r = dm_register_target(&pool_target);
2810 	if (r)
2811 		goto bad_pool_target;
2812 
2813 	r = -ENOMEM;
2814 
2815 	_cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2816 	if (!_cell_cache)
2817 		goto bad_cell_cache;
2818 
2819 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2820 	if (!_new_mapping_cache)
2821 		goto bad_new_mapping_cache;
2822 
2823 	_endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2824 	if (!_endio_hook_cache)
2825 		goto bad_endio_hook_cache;
2826 
2827 	return 0;
2828 
2829 bad_endio_hook_cache:
2830 	kmem_cache_destroy(_new_mapping_cache);
2831 bad_new_mapping_cache:
2832 	kmem_cache_destroy(_cell_cache);
2833 bad_cell_cache:
2834 	dm_unregister_target(&pool_target);
2835 bad_pool_target:
2836 	dm_unregister_target(&thin_target);
2837 
2838 	return r;
2839 }
2840 
2841 static void dm_thin_exit(void)
2842 {
2843 	dm_unregister_target(&thin_target);
2844 	dm_unregister_target(&pool_target);
2845 
2846 	kmem_cache_destroy(_cell_cache);
2847 	kmem_cache_destroy(_new_mapping_cache);
2848 	kmem_cache_destroy(_endio_hook_cache);
2849 }
2850 
2851 module_init(dm_thin_init);
2852 module_exit(dm_thin_exit);
2853 
2854 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2855 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2856 MODULE_LICENSE("GPL");
2857