xref: /linux/drivers/md/dm-thin.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm.h"
9 
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 
18 #define	DM_MSG_PREFIX	"thin"
19 
20 /*
21  * Tunable constants
22  */
23 #define ENDIO_HOOK_POOL_SIZE 1024
24 #define DEFERRED_SET_SIZE 64
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28 
29 /*
30  * The block size of the device holding pool data must be
31  * between 64KB and 1GB.
32  */
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
35 
36 /*
37  * Device id is restricted to 24 bits.
38  */
39 #define MAX_DEV_ID ((1 << 24) - 1)
40 
41 /*
42  * How do we handle breaking sharing of data blocks?
43  * =================================================
44  *
45  * We use a standard copy-on-write btree to store the mappings for the
46  * devices (note I'm talking about copy-on-write of the metadata here, not
47  * the data).  When you take an internal snapshot you clone the root node
48  * of the origin btree.  After this there is no concept of an origin or a
49  * snapshot.  They are just two device trees that happen to point to the
50  * same data blocks.
51  *
52  * When we get a write in we decide if it's to a shared data block using
53  * some timestamp magic.  If it is, we have to break sharing.
54  *
55  * Let's say we write to a shared block in what was the origin.  The
56  * steps are:
57  *
58  * i) plug io further to this physical block. (see bio_prison code).
59  *
60  * ii) quiesce any read io to that shared data block.  Obviously
61  * including all devices that share this block.  (see deferred_set code)
62  *
63  * iii) copy the data block to a newly allocate block.  This step can be
64  * missed out if the io covers the block. (schedule_copy).
65  *
66  * iv) insert the new mapping into the origin's btree
67  * (process_prepared_mapping).  This act of inserting breaks some
68  * sharing of btree nodes between the two devices.  Breaking sharing only
69  * effects the btree of that specific device.  Btrees for the other
70  * devices that share the block never change.  The btree for the origin
71  * device as it was after the last commit is untouched, ie. we're using
72  * persistent data structures in the functional programming sense.
73  *
74  * v) unplug io to this physical block, including the io that triggered
75  * the breaking of sharing.
76  *
77  * Steps (ii) and (iii) occur in parallel.
78  *
79  * The metadata _doesn't_ need to be committed before the io continues.  We
80  * get away with this because the io is always written to a _new_ block.
81  * If there's a crash, then:
82  *
83  * - The origin mapping will point to the old origin block (the shared
84  * one).  This will contain the data as it was before the io that triggered
85  * the breaking of sharing came in.
86  *
87  * - The snap mapping still points to the old block.  As it would after
88  * the commit.
89  *
90  * The downside of this scheme is the timestamp magic isn't perfect, and
91  * will continue to think that data block in the snapshot device is shared
92  * even after the write to the origin has broken sharing.  I suspect data
93  * blocks will typically be shared by many different devices, so we're
94  * breaking sharing n + 1 times, rather than n, where n is the number of
95  * devices that reference this data block.  At the moment I think the
96  * benefits far, far outweigh the disadvantages.
97  */
98 
99 /*----------------------------------------------------------------*/
100 
101 /*
102  * Sometimes we can't deal with a bio straight away.  We put them in prison
103  * where they can't cause any mischief.  Bios are put in a cell identified
104  * by a key, multiple bios can be in the same cell.  When the cell is
105  * subsequently unlocked the bios become available.
106  */
107 struct bio_prison;
108 
109 struct cell_key {
110 	int virtual;
111 	dm_thin_id dev;
112 	dm_block_t block;
113 };
114 
115 struct dm_bio_prison_cell {
116 	struct hlist_node list;
117 	struct bio_prison *prison;
118 	struct cell_key key;
119 	struct bio *holder;
120 	struct bio_list bios;
121 };
122 
123 struct bio_prison {
124 	spinlock_t lock;
125 	mempool_t *cell_pool;
126 
127 	unsigned nr_buckets;
128 	unsigned hash_mask;
129 	struct hlist_head *cells;
130 };
131 
132 static uint32_t calc_nr_buckets(unsigned nr_cells)
133 {
134 	uint32_t n = 128;
135 
136 	nr_cells /= 4;
137 	nr_cells = min(nr_cells, 8192u);
138 
139 	while (n < nr_cells)
140 		n <<= 1;
141 
142 	return n;
143 }
144 
145 static struct kmem_cache *_cell_cache;
146 
147 /*
148  * @nr_cells should be the number of cells you want in use _concurrently_.
149  * Don't confuse it with the number of distinct keys.
150  */
151 static struct bio_prison *prison_create(unsigned nr_cells)
152 {
153 	unsigned i;
154 	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
155 	size_t len = sizeof(struct bio_prison) +
156 		(sizeof(struct hlist_head) * nr_buckets);
157 	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
158 
159 	if (!prison)
160 		return NULL;
161 
162 	spin_lock_init(&prison->lock);
163 	prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
164 	if (!prison->cell_pool) {
165 		kfree(prison);
166 		return NULL;
167 	}
168 
169 	prison->nr_buckets = nr_buckets;
170 	prison->hash_mask = nr_buckets - 1;
171 	prison->cells = (struct hlist_head *) (prison + 1);
172 	for (i = 0; i < nr_buckets; i++)
173 		INIT_HLIST_HEAD(prison->cells + i);
174 
175 	return prison;
176 }
177 
178 static void prison_destroy(struct bio_prison *prison)
179 {
180 	mempool_destroy(prison->cell_pool);
181 	kfree(prison);
182 }
183 
184 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
185 {
186 	const unsigned long BIG_PRIME = 4294967291UL;
187 	uint64_t hash = key->block * BIG_PRIME;
188 
189 	return (uint32_t) (hash & prison->hash_mask);
190 }
191 
192 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
193 {
194 	       return (lhs->virtual == rhs->virtual) &&
195 		       (lhs->dev == rhs->dev) &&
196 		       (lhs->block == rhs->block);
197 }
198 
199 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
200 						  struct cell_key *key)
201 {
202 	struct dm_bio_prison_cell *cell;
203 	struct hlist_node *tmp;
204 
205 	hlist_for_each_entry(cell, tmp, bucket, list)
206 		if (keys_equal(&cell->key, key))
207 			return cell;
208 
209 	return NULL;
210 }
211 
212 /*
213  * This may block if a new cell needs allocating.  You must ensure that
214  * cells will be unlocked even if the calling thread is blocked.
215  *
216  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
217  */
218 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
219 		      struct bio *inmate, struct dm_bio_prison_cell **ref)
220 {
221 	int r = 1;
222 	unsigned long flags;
223 	uint32_t hash = hash_key(prison, key);
224 	struct dm_bio_prison_cell *cell, *cell2;
225 
226 	BUG_ON(hash > prison->nr_buckets);
227 
228 	spin_lock_irqsave(&prison->lock, flags);
229 
230 	cell = __search_bucket(prison->cells + hash, key);
231 	if (cell) {
232 		bio_list_add(&cell->bios, inmate);
233 		goto out;
234 	}
235 
236 	/*
237 	 * Allocate a new cell
238 	 */
239 	spin_unlock_irqrestore(&prison->lock, flags);
240 	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
241 	spin_lock_irqsave(&prison->lock, flags);
242 
243 	/*
244 	 * We've been unlocked, so we have to double check that
245 	 * nobody else has inserted this cell in the meantime.
246 	 */
247 	cell = __search_bucket(prison->cells + hash, key);
248 	if (cell) {
249 		mempool_free(cell2, prison->cell_pool);
250 		bio_list_add(&cell->bios, inmate);
251 		goto out;
252 	}
253 
254 	/*
255 	 * Use new cell.
256 	 */
257 	cell = cell2;
258 
259 	cell->prison = prison;
260 	memcpy(&cell->key, key, sizeof(cell->key));
261 	cell->holder = inmate;
262 	bio_list_init(&cell->bios);
263 	hlist_add_head(&cell->list, prison->cells + hash);
264 
265 	r = 0;
266 
267 out:
268 	spin_unlock_irqrestore(&prison->lock, flags);
269 
270 	*ref = cell;
271 
272 	return r;
273 }
274 
275 /*
276  * @inmates must have been initialised prior to this call
277  */
278 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
279 {
280 	struct bio_prison *prison = cell->prison;
281 
282 	hlist_del(&cell->list);
283 
284 	if (inmates) {
285 		bio_list_add(inmates, cell->holder);
286 		bio_list_merge(inmates, &cell->bios);
287 	}
288 
289 	mempool_free(cell, prison->cell_pool);
290 }
291 
292 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
293 {
294 	unsigned long flags;
295 	struct bio_prison *prison = cell->prison;
296 
297 	spin_lock_irqsave(&prison->lock, flags);
298 	__cell_release(cell, bios);
299 	spin_unlock_irqrestore(&prison->lock, flags);
300 }
301 
302 /*
303  * There are a couple of places where we put a bio into a cell briefly
304  * before taking it out again.  In these situations we know that no other
305  * bio may be in the cell.  This function releases the cell, and also does
306  * a sanity check.
307  */
308 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
309 {
310 	BUG_ON(cell->holder != bio);
311 	BUG_ON(!bio_list_empty(&cell->bios));
312 
313 	__cell_release(cell, NULL);
314 }
315 
316 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
317 {
318 	unsigned long flags;
319 	struct bio_prison *prison = cell->prison;
320 
321 	spin_lock_irqsave(&prison->lock, flags);
322 	__cell_release_singleton(cell, bio);
323 	spin_unlock_irqrestore(&prison->lock, flags);
324 }
325 
326 /*
327  * Sometimes we don't want the holder, just the additional bios.
328  */
329 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
330 				     struct bio_list *inmates)
331 {
332 	struct bio_prison *prison = cell->prison;
333 
334 	hlist_del(&cell->list);
335 	bio_list_merge(inmates, &cell->bios);
336 
337 	mempool_free(cell, prison->cell_pool);
338 }
339 
340 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
341 				   struct bio_list *inmates)
342 {
343 	unsigned long flags;
344 	struct bio_prison *prison = cell->prison;
345 
346 	spin_lock_irqsave(&prison->lock, flags);
347 	__cell_release_no_holder(cell, inmates);
348 	spin_unlock_irqrestore(&prison->lock, flags);
349 }
350 
351 static void cell_error(struct dm_bio_prison_cell *cell)
352 {
353 	struct bio_prison *prison = cell->prison;
354 	struct bio_list bios;
355 	struct bio *bio;
356 	unsigned long flags;
357 
358 	bio_list_init(&bios);
359 
360 	spin_lock_irqsave(&prison->lock, flags);
361 	__cell_release(cell, &bios);
362 	spin_unlock_irqrestore(&prison->lock, flags);
363 
364 	while ((bio = bio_list_pop(&bios)))
365 		bio_io_error(bio);
366 }
367 
368 /*----------------------------------------------------------------*/
369 
370 /*
371  * We use the deferred set to keep track of pending reads to shared blocks.
372  * We do this to ensure the new mapping caused by a write isn't performed
373  * until these prior reads have completed.  Otherwise the insertion of the
374  * new mapping could free the old block that the read bios are mapped to.
375  */
376 
377 struct deferred_set;
378 struct deferred_entry {
379 	struct deferred_set *ds;
380 	unsigned count;
381 	struct list_head work_items;
382 };
383 
384 struct deferred_set {
385 	spinlock_t lock;
386 	unsigned current_entry;
387 	unsigned sweeper;
388 	struct deferred_entry entries[DEFERRED_SET_SIZE];
389 };
390 
391 static void ds_init(struct deferred_set *ds)
392 {
393 	int i;
394 
395 	spin_lock_init(&ds->lock);
396 	ds->current_entry = 0;
397 	ds->sweeper = 0;
398 	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
399 		ds->entries[i].ds = ds;
400 		ds->entries[i].count = 0;
401 		INIT_LIST_HEAD(&ds->entries[i].work_items);
402 	}
403 }
404 
405 static struct deferred_entry *ds_inc(struct deferred_set *ds)
406 {
407 	unsigned long flags;
408 	struct deferred_entry *entry;
409 
410 	spin_lock_irqsave(&ds->lock, flags);
411 	entry = ds->entries + ds->current_entry;
412 	entry->count++;
413 	spin_unlock_irqrestore(&ds->lock, flags);
414 
415 	return entry;
416 }
417 
418 static unsigned ds_next(unsigned index)
419 {
420 	return (index + 1) % DEFERRED_SET_SIZE;
421 }
422 
423 static void __sweep(struct deferred_set *ds, struct list_head *head)
424 {
425 	while ((ds->sweeper != ds->current_entry) &&
426 	       !ds->entries[ds->sweeper].count) {
427 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428 		ds->sweeper = ds_next(ds->sweeper);
429 	}
430 
431 	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
432 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
433 }
434 
435 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
436 {
437 	unsigned long flags;
438 
439 	spin_lock_irqsave(&entry->ds->lock, flags);
440 	BUG_ON(!entry->count);
441 	--entry->count;
442 	__sweep(entry->ds, head);
443 	spin_unlock_irqrestore(&entry->ds->lock, flags);
444 }
445 
446 /*
447  * Returns 1 if deferred or 0 if no pending items to delay job.
448  */
449 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
450 {
451 	int r = 1;
452 	unsigned long flags;
453 	unsigned next_entry;
454 
455 	spin_lock_irqsave(&ds->lock, flags);
456 	if ((ds->sweeper == ds->current_entry) &&
457 	    !ds->entries[ds->current_entry].count)
458 		r = 0;
459 	else {
460 		list_add(work, &ds->entries[ds->current_entry].work_items);
461 		next_entry = ds_next(ds->current_entry);
462 		if (!ds->entries[next_entry].count)
463 			ds->current_entry = next_entry;
464 	}
465 	spin_unlock_irqrestore(&ds->lock, flags);
466 
467 	return r;
468 }
469 
470 /*----------------------------------------------------------------*/
471 
472 /*
473  * Key building.
474  */
475 static void build_data_key(struct dm_thin_device *td,
476 			   dm_block_t b, struct cell_key *key)
477 {
478 	key->virtual = 0;
479 	key->dev = dm_thin_dev_id(td);
480 	key->block = b;
481 }
482 
483 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
484 			      struct cell_key *key)
485 {
486 	key->virtual = 1;
487 	key->dev = dm_thin_dev_id(td);
488 	key->block = b;
489 }
490 
491 /*----------------------------------------------------------------*/
492 
493 /*
494  * A pool device ties together a metadata device and a data device.  It
495  * also provides the interface for creating and destroying internal
496  * devices.
497  */
498 struct dm_thin_new_mapping;
499 
500 /*
501  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
502  */
503 enum pool_mode {
504 	PM_WRITE,		/* metadata may be changed */
505 	PM_READ_ONLY,		/* metadata may not be changed */
506 	PM_FAIL,		/* all I/O fails */
507 };
508 
509 struct pool_features {
510 	enum pool_mode mode;
511 
512 	unsigned zero_new_blocks:1;
513 	unsigned discard_enabled:1;
514 	unsigned discard_passdown:1;
515 };
516 
517 struct thin_c;
518 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
519 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
520 
521 struct pool {
522 	struct list_head list;
523 	struct dm_target *ti;	/* Only set if a pool target is bound */
524 
525 	struct mapped_device *pool_md;
526 	struct block_device *md_dev;
527 	struct dm_pool_metadata *pmd;
528 
529 	dm_block_t low_water_blocks;
530 	uint32_t sectors_per_block;
531 	int sectors_per_block_shift;
532 
533 	struct pool_features pf;
534 	unsigned low_water_triggered:1;	/* A dm event has been sent */
535 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
536 
537 	struct bio_prison *prison;
538 	struct dm_kcopyd_client *copier;
539 
540 	struct workqueue_struct *wq;
541 	struct work_struct worker;
542 	struct delayed_work waker;
543 
544 	unsigned long last_commit_jiffies;
545 	unsigned ref_count;
546 
547 	spinlock_t lock;
548 	struct bio_list deferred_bios;
549 	struct bio_list deferred_flush_bios;
550 	struct list_head prepared_mappings;
551 	struct list_head prepared_discards;
552 
553 	struct bio_list retry_on_resume_list;
554 
555 	struct deferred_set shared_read_ds;
556 	struct deferred_set all_io_ds;
557 
558 	struct dm_thin_new_mapping *next_mapping;
559 	mempool_t *mapping_pool;
560 	mempool_t *endio_hook_pool;
561 
562 	process_bio_fn process_bio;
563 	process_bio_fn process_discard;
564 
565 	process_mapping_fn process_prepared_mapping;
566 	process_mapping_fn process_prepared_discard;
567 };
568 
569 static enum pool_mode get_pool_mode(struct pool *pool);
570 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
571 
572 /*
573  * Target context for a pool.
574  */
575 struct pool_c {
576 	struct dm_target *ti;
577 	struct pool *pool;
578 	struct dm_dev *data_dev;
579 	struct dm_dev *metadata_dev;
580 	struct dm_target_callbacks callbacks;
581 
582 	dm_block_t low_water_blocks;
583 	struct pool_features pf;
584 };
585 
586 /*
587  * Target context for a thin.
588  */
589 struct thin_c {
590 	struct dm_dev *pool_dev;
591 	struct dm_dev *origin_dev;
592 	dm_thin_id dev_id;
593 
594 	struct pool *pool;
595 	struct dm_thin_device *td;
596 };
597 
598 /*----------------------------------------------------------------*/
599 
600 /*
601  * A global list of pools that uses a struct mapped_device as a key.
602  */
603 static struct dm_thin_pool_table {
604 	struct mutex mutex;
605 	struct list_head pools;
606 } dm_thin_pool_table;
607 
608 static void pool_table_init(void)
609 {
610 	mutex_init(&dm_thin_pool_table.mutex);
611 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
612 }
613 
614 static void __pool_table_insert(struct pool *pool)
615 {
616 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
617 	list_add(&pool->list, &dm_thin_pool_table.pools);
618 }
619 
620 static void __pool_table_remove(struct pool *pool)
621 {
622 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
623 	list_del(&pool->list);
624 }
625 
626 static struct pool *__pool_table_lookup(struct mapped_device *md)
627 {
628 	struct pool *pool = NULL, *tmp;
629 
630 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
631 
632 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
633 		if (tmp->pool_md == md) {
634 			pool = tmp;
635 			break;
636 		}
637 	}
638 
639 	return pool;
640 }
641 
642 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
643 {
644 	struct pool *pool = NULL, *tmp;
645 
646 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
647 
648 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
649 		if (tmp->md_dev == md_dev) {
650 			pool = tmp;
651 			break;
652 		}
653 	}
654 
655 	return pool;
656 }
657 
658 /*----------------------------------------------------------------*/
659 
660 struct dm_thin_endio_hook {
661 	struct thin_c *tc;
662 	struct deferred_entry *shared_read_entry;
663 	struct deferred_entry *all_io_entry;
664 	struct dm_thin_new_mapping *overwrite_mapping;
665 };
666 
667 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
668 {
669 	struct bio *bio;
670 	struct bio_list bios;
671 
672 	bio_list_init(&bios);
673 	bio_list_merge(&bios, master);
674 	bio_list_init(master);
675 
676 	while ((bio = bio_list_pop(&bios))) {
677 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
678 
679 		if (h->tc == tc)
680 			bio_endio(bio, DM_ENDIO_REQUEUE);
681 		else
682 			bio_list_add(master, bio);
683 	}
684 }
685 
686 static void requeue_io(struct thin_c *tc)
687 {
688 	struct pool *pool = tc->pool;
689 	unsigned long flags;
690 
691 	spin_lock_irqsave(&pool->lock, flags);
692 	__requeue_bio_list(tc, &pool->deferred_bios);
693 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
694 	spin_unlock_irqrestore(&pool->lock, flags);
695 }
696 
697 /*
698  * This section of code contains the logic for processing a thin device's IO.
699  * Much of the code depends on pool object resources (lists, workqueues, etc)
700  * but most is exclusively called from the thin target rather than the thin-pool
701  * target.
702  */
703 
704 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
705 {
706 	sector_t block_nr = bio->bi_sector;
707 
708 	if (tc->pool->sectors_per_block_shift < 0)
709 		(void) sector_div(block_nr, tc->pool->sectors_per_block);
710 	else
711 		block_nr >>= tc->pool->sectors_per_block_shift;
712 
713 	return block_nr;
714 }
715 
716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
717 {
718 	struct pool *pool = tc->pool;
719 	sector_t bi_sector = bio->bi_sector;
720 
721 	bio->bi_bdev = tc->pool_dev->bdev;
722 	if (tc->pool->sectors_per_block_shift < 0)
723 		bio->bi_sector = (block * pool->sectors_per_block) +
724 				 sector_div(bi_sector, pool->sectors_per_block);
725 	else
726 		bio->bi_sector = (block << pool->sectors_per_block_shift) |
727 				(bi_sector & (pool->sectors_per_block - 1));
728 }
729 
730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
731 {
732 	bio->bi_bdev = tc->origin_dev->bdev;
733 }
734 
735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
736 {
737 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
738 		dm_thin_changed_this_transaction(tc->td);
739 }
740 
741 static void issue(struct thin_c *tc, struct bio *bio)
742 {
743 	struct pool *pool = tc->pool;
744 	unsigned long flags;
745 
746 	if (!bio_triggers_commit(tc, bio)) {
747 		generic_make_request(bio);
748 		return;
749 	}
750 
751 	/*
752 	 * Complete bio with an error if earlier I/O caused changes to
753 	 * the metadata that can't be committed e.g, due to I/O errors
754 	 * on the metadata device.
755 	 */
756 	if (dm_thin_aborted_changes(tc->td)) {
757 		bio_io_error(bio);
758 		return;
759 	}
760 
761 	/*
762 	 * Batch together any bios that trigger commits and then issue a
763 	 * single commit for them in process_deferred_bios().
764 	 */
765 	spin_lock_irqsave(&pool->lock, flags);
766 	bio_list_add(&pool->deferred_flush_bios, bio);
767 	spin_unlock_irqrestore(&pool->lock, flags);
768 }
769 
770 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
771 {
772 	remap_to_origin(tc, bio);
773 	issue(tc, bio);
774 }
775 
776 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
777 			    dm_block_t block)
778 {
779 	remap(tc, bio, block);
780 	issue(tc, bio);
781 }
782 
783 /*
784  * wake_worker() is used when new work is queued and when pool_resume is
785  * ready to continue deferred IO processing.
786  */
787 static void wake_worker(struct pool *pool)
788 {
789 	queue_work(pool->wq, &pool->worker);
790 }
791 
792 /*----------------------------------------------------------------*/
793 
794 /*
795  * Bio endio functions.
796  */
797 struct dm_thin_new_mapping {
798 	struct list_head list;
799 
800 	unsigned quiesced:1;
801 	unsigned prepared:1;
802 	unsigned pass_discard:1;
803 
804 	struct thin_c *tc;
805 	dm_block_t virt_block;
806 	dm_block_t data_block;
807 	struct dm_bio_prison_cell *cell, *cell2;
808 	int err;
809 
810 	/*
811 	 * If the bio covers the whole area of a block then we can avoid
812 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
813 	 * still be in the cell, so care has to be taken to avoid issuing
814 	 * the bio twice.
815 	 */
816 	struct bio *bio;
817 	bio_end_io_t *saved_bi_end_io;
818 };
819 
820 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
821 {
822 	struct pool *pool = m->tc->pool;
823 
824 	if (m->quiesced && m->prepared) {
825 		list_add(&m->list, &pool->prepared_mappings);
826 		wake_worker(pool);
827 	}
828 }
829 
830 static void copy_complete(int read_err, unsigned long write_err, void *context)
831 {
832 	unsigned long flags;
833 	struct dm_thin_new_mapping *m = context;
834 	struct pool *pool = m->tc->pool;
835 
836 	m->err = read_err || write_err ? -EIO : 0;
837 
838 	spin_lock_irqsave(&pool->lock, flags);
839 	m->prepared = 1;
840 	__maybe_add_mapping(m);
841 	spin_unlock_irqrestore(&pool->lock, flags);
842 }
843 
844 static void overwrite_endio(struct bio *bio, int err)
845 {
846 	unsigned long flags;
847 	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
848 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
849 	struct pool *pool = m->tc->pool;
850 
851 	m->err = err;
852 
853 	spin_lock_irqsave(&pool->lock, flags);
854 	m->prepared = 1;
855 	__maybe_add_mapping(m);
856 	spin_unlock_irqrestore(&pool->lock, flags);
857 }
858 
859 /*----------------------------------------------------------------*/
860 
861 /*
862  * Workqueue.
863  */
864 
865 /*
866  * Prepared mapping jobs.
867  */
868 
869 /*
870  * This sends the bios in the cell back to the deferred_bios list.
871  */
872 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
873 		       dm_block_t data_block)
874 {
875 	struct pool *pool = tc->pool;
876 	unsigned long flags;
877 
878 	spin_lock_irqsave(&pool->lock, flags);
879 	cell_release(cell, &pool->deferred_bios);
880 	spin_unlock_irqrestore(&tc->pool->lock, flags);
881 
882 	wake_worker(pool);
883 }
884 
885 /*
886  * Same as cell_defer above, except it omits one particular detainee,
887  * a write bio that covers the block and has already been processed.
888  */
889 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
890 {
891 	struct bio_list bios;
892 	struct pool *pool = tc->pool;
893 	unsigned long flags;
894 
895 	bio_list_init(&bios);
896 
897 	spin_lock_irqsave(&pool->lock, flags);
898 	cell_release_no_holder(cell, &pool->deferred_bios);
899 	spin_unlock_irqrestore(&pool->lock, flags);
900 
901 	wake_worker(pool);
902 }
903 
904 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
905 {
906 	if (m->bio)
907 		m->bio->bi_end_io = m->saved_bi_end_io;
908 	cell_error(m->cell);
909 	list_del(&m->list);
910 	mempool_free(m, m->tc->pool->mapping_pool);
911 }
912 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
913 {
914 	struct thin_c *tc = m->tc;
915 	struct bio *bio;
916 	int r;
917 
918 	bio = m->bio;
919 	if (bio)
920 		bio->bi_end_io = m->saved_bi_end_io;
921 
922 	if (m->err) {
923 		cell_error(m->cell);
924 		goto out;
925 	}
926 
927 	/*
928 	 * Commit the prepared block into the mapping btree.
929 	 * Any I/O for this block arriving after this point will get
930 	 * remapped to it directly.
931 	 */
932 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
933 	if (r) {
934 		DMERR("dm_thin_insert_block() failed");
935 		cell_error(m->cell);
936 		goto out;
937 	}
938 
939 	/*
940 	 * Release any bios held while the block was being provisioned.
941 	 * If we are processing a write bio that completely covers the block,
942 	 * we already processed it so can ignore it now when processing
943 	 * the bios in the cell.
944 	 */
945 	if (bio) {
946 		cell_defer_except(tc, m->cell);
947 		bio_endio(bio, 0);
948 	} else
949 		cell_defer(tc, m->cell, m->data_block);
950 
951 out:
952 	list_del(&m->list);
953 	mempool_free(m, tc->pool->mapping_pool);
954 }
955 
956 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
957 {
958 	struct thin_c *tc = m->tc;
959 
960 	bio_io_error(m->bio);
961 	cell_defer_except(tc, m->cell);
962 	cell_defer_except(tc, m->cell2);
963 	mempool_free(m, tc->pool->mapping_pool);
964 }
965 
966 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
967 {
968 	struct thin_c *tc = m->tc;
969 
970 	if (m->pass_discard)
971 		remap_and_issue(tc, m->bio, m->data_block);
972 	else
973 		bio_endio(m->bio, 0);
974 
975 	cell_defer_except(tc, m->cell);
976 	cell_defer_except(tc, m->cell2);
977 	mempool_free(m, tc->pool->mapping_pool);
978 }
979 
980 static void process_prepared_discard(struct dm_thin_new_mapping *m)
981 {
982 	int r;
983 	struct thin_c *tc = m->tc;
984 
985 	r = dm_thin_remove_block(tc->td, m->virt_block);
986 	if (r)
987 		DMERR("dm_thin_remove_block() failed");
988 
989 	process_prepared_discard_passdown(m);
990 }
991 
992 static void process_prepared(struct pool *pool, struct list_head *head,
993 			     process_mapping_fn *fn)
994 {
995 	unsigned long flags;
996 	struct list_head maps;
997 	struct dm_thin_new_mapping *m, *tmp;
998 
999 	INIT_LIST_HEAD(&maps);
1000 	spin_lock_irqsave(&pool->lock, flags);
1001 	list_splice_init(head, &maps);
1002 	spin_unlock_irqrestore(&pool->lock, flags);
1003 
1004 	list_for_each_entry_safe(m, tmp, &maps, list)
1005 		(*fn)(m);
1006 }
1007 
1008 /*
1009  * Deferred bio jobs.
1010  */
1011 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1012 {
1013 	return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
1014 }
1015 
1016 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1017 {
1018 	return (bio_data_dir(bio) == WRITE) &&
1019 		io_overlaps_block(pool, bio);
1020 }
1021 
1022 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1023 			       bio_end_io_t *fn)
1024 {
1025 	*save = bio->bi_end_io;
1026 	bio->bi_end_io = fn;
1027 }
1028 
1029 static int ensure_next_mapping(struct pool *pool)
1030 {
1031 	if (pool->next_mapping)
1032 		return 0;
1033 
1034 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1035 
1036 	return pool->next_mapping ? 0 : -ENOMEM;
1037 }
1038 
1039 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1040 {
1041 	struct dm_thin_new_mapping *r = pool->next_mapping;
1042 
1043 	BUG_ON(!pool->next_mapping);
1044 
1045 	pool->next_mapping = NULL;
1046 
1047 	return r;
1048 }
1049 
1050 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1051 			  struct dm_dev *origin, dm_block_t data_origin,
1052 			  dm_block_t data_dest,
1053 			  struct dm_bio_prison_cell *cell, struct bio *bio)
1054 {
1055 	int r;
1056 	struct pool *pool = tc->pool;
1057 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1058 
1059 	INIT_LIST_HEAD(&m->list);
1060 	m->quiesced = 0;
1061 	m->prepared = 0;
1062 	m->tc = tc;
1063 	m->virt_block = virt_block;
1064 	m->data_block = data_dest;
1065 	m->cell = cell;
1066 	m->err = 0;
1067 	m->bio = NULL;
1068 
1069 	if (!ds_add_work(&pool->shared_read_ds, &m->list))
1070 		m->quiesced = 1;
1071 
1072 	/*
1073 	 * IO to pool_dev remaps to the pool target's data_dev.
1074 	 *
1075 	 * If the whole block of data is being overwritten, we can issue the
1076 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1077 	 */
1078 	if (io_overwrites_block(pool, bio)) {
1079 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1080 
1081 		h->overwrite_mapping = m;
1082 		m->bio = bio;
1083 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1084 		remap_and_issue(tc, bio, data_dest);
1085 	} else {
1086 		struct dm_io_region from, to;
1087 
1088 		from.bdev = origin->bdev;
1089 		from.sector = data_origin * pool->sectors_per_block;
1090 		from.count = pool->sectors_per_block;
1091 
1092 		to.bdev = tc->pool_dev->bdev;
1093 		to.sector = data_dest * pool->sectors_per_block;
1094 		to.count = pool->sectors_per_block;
1095 
1096 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1097 				   0, copy_complete, m);
1098 		if (r < 0) {
1099 			mempool_free(m, pool->mapping_pool);
1100 			DMERR("dm_kcopyd_copy() failed");
1101 			cell_error(cell);
1102 		}
1103 	}
1104 }
1105 
1106 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1107 				   dm_block_t data_origin, dm_block_t data_dest,
1108 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1109 {
1110 	schedule_copy(tc, virt_block, tc->pool_dev,
1111 		      data_origin, data_dest, cell, bio);
1112 }
1113 
1114 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1115 				   dm_block_t data_dest,
1116 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1117 {
1118 	schedule_copy(tc, virt_block, tc->origin_dev,
1119 		      virt_block, data_dest, cell, bio);
1120 }
1121 
1122 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1123 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1124 			  struct bio *bio)
1125 {
1126 	struct pool *pool = tc->pool;
1127 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1128 
1129 	INIT_LIST_HEAD(&m->list);
1130 	m->quiesced = 1;
1131 	m->prepared = 0;
1132 	m->tc = tc;
1133 	m->virt_block = virt_block;
1134 	m->data_block = data_block;
1135 	m->cell = cell;
1136 	m->err = 0;
1137 	m->bio = NULL;
1138 
1139 	/*
1140 	 * If the whole block of data is being overwritten or we are not
1141 	 * zeroing pre-existing data, we can issue the bio immediately.
1142 	 * Otherwise we use kcopyd to zero the data first.
1143 	 */
1144 	if (!pool->pf.zero_new_blocks)
1145 		process_prepared_mapping(m);
1146 
1147 	else if (io_overwrites_block(pool, bio)) {
1148 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1149 
1150 		h->overwrite_mapping = m;
1151 		m->bio = bio;
1152 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1153 		remap_and_issue(tc, bio, data_block);
1154 	} else {
1155 		int r;
1156 		struct dm_io_region to;
1157 
1158 		to.bdev = tc->pool_dev->bdev;
1159 		to.sector = data_block * pool->sectors_per_block;
1160 		to.count = pool->sectors_per_block;
1161 
1162 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1163 		if (r < 0) {
1164 			mempool_free(m, pool->mapping_pool);
1165 			DMERR("dm_kcopyd_zero() failed");
1166 			cell_error(cell);
1167 		}
1168 	}
1169 }
1170 
1171 static int commit(struct pool *pool)
1172 {
1173 	int r;
1174 
1175 	r = dm_pool_commit_metadata(pool->pmd);
1176 	if (r)
1177 		DMERR("commit failed, error = %d", r);
1178 
1179 	return r;
1180 }
1181 
1182 /*
1183  * A non-zero return indicates read_only or fail_io mode.
1184  * Many callers don't care about the return value.
1185  */
1186 static int commit_or_fallback(struct pool *pool)
1187 {
1188 	int r;
1189 
1190 	if (get_pool_mode(pool) != PM_WRITE)
1191 		return -EINVAL;
1192 
1193 	r = commit(pool);
1194 	if (r)
1195 		set_pool_mode(pool, PM_READ_ONLY);
1196 
1197 	return r;
1198 }
1199 
1200 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1201 {
1202 	int r;
1203 	dm_block_t free_blocks;
1204 	unsigned long flags;
1205 	struct pool *pool = tc->pool;
1206 
1207 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1208 	if (r)
1209 		return r;
1210 
1211 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1212 		DMWARN("%s: reached low water mark, sending event.",
1213 		       dm_device_name(pool->pool_md));
1214 		spin_lock_irqsave(&pool->lock, flags);
1215 		pool->low_water_triggered = 1;
1216 		spin_unlock_irqrestore(&pool->lock, flags);
1217 		dm_table_event(pool->ti->table);
1218 	}
1219 
1220 	if (!free_blocks) {
1221 		if (pool->no_free_space)
1222 			return -ENOSPC;
1223 		else {
1224 			/*
1225 			 * Try to commit to see if that will free up some
1226 			 * more space.
1227 			 */
1228 			(void) commit_or_fallback(pool);
1229 
1230 			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1231 			if (r)
1232 				return r;
1233 
1234 			/*
1235 			 * If we still have no space we set a flag to avoid
1236 			 * doing all this checking and return -ENOSPC.
1237 			 */
1238 			if (!free_blocks) {
1239 				DMWARN("%s: no free space available.",
1240 				       dm_device_name(pool->pool_md));
1241 				spin_lock_irqsave(&pool->lock, flags);
1242 				pool->no_free_space = 1;
1243 				spin_unlock_irqrestore(&pool->lock, flags);
1244 				return -ENOSPC;
1245 			}
1246 		}
1247 	}
1248 
1249 	r = dm_pool_alloc_data_block(pool->pmd, result);
1250 	if (r)
1251 		return r;
1252 
1253 	return 0;
1254 }
1255 
1256 /*
1257  * If we have run out of space, queue bios until the device is
1258  * resumed, presumably after having been reloaded with more space.
1259  */
1260 static void retry_on_resume(struct bio *bio)
1261 {
1262 	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1263 	struct thin_c *tc = h->tc;
1264 	struct pool *pool = tc->pool;
1265 	unsigned long flags;
1266 
1267 	spin_lock_irqsave(&pool->lock, flags);
1268 	bio_list_add(&pool->retry_on_resume_list, bio);
1269 	spin_unlock_irqrestore(&pool->lock, flags);
1270 }
1271 
1272 static void no_space(struct dm_bio_prison_cell *cell)
1273 {
1274 	struct bio *bio;
1275 	struct bio_list bios;
1276 
1277 	bio_list_init(&bios);
1278 	cell_release(cell, &bios);
1279 
1280 	while ((bio = bio_list_pop(&bios)))
1281 		retry_on_resume(bio);
1282 }
1283 
1284 static void process_discard(struct thin_c *tc, struct bio *bio)
1285 {
1286 	int r;
1287 	unsigned long flags;
1288 	struct pool *pool = tc->pool;
1289 	struct dm_bio_prison_cell *cell, *cell2;
1290 	struct cell_key key, key2;
1291 	dm_block_t block = get_bio_block(tc, bio);
1292 	struct dm_thin_lookup_result lookup_result;
1293 	struct dm_thin_new_mapping *m;
1294 
1295 	build_virtual_key(tc->td, block, &key);
1296 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1297 		return;
1298 
1299 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1300 	switch (r) {
1301 	case 0:
1302 		/*
1303 		 * Check nobody is fiddling with this pool block.  This can
1304 		 * happen if someone's in the process of breaking sharing
1305 		 * on this block.
1306 		 */
1307 		build_data_key(tc->td, lookup_result.block, &key2);
1308 		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1309 			cell_release_singleton(cell, bio);
1310 			break;
1311 		}
1312 
1313 		if (io_overlaps_block(pool, bio)) {
1314 			/*
1315 			 * IO may still be going to the destination block.  We must
1316 			 * quiesce before we can do the removal.
1317 			 */
1318 			m = get_next_mapping(pool);
1319 			m->tc = tc;
1320 			m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1321 			m->virt_block = block;
1322 			m->data_block = lookup_result.block;
1323 			m->cell = cell;
1324 			m->cell2 = cell2;
1325 			m->err = 0;
1326 			m->bio = bio;
1327 
1328 			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1329 				spin_lock_irqsave(&pool->lock, flags);
1330 				list_add(&m->list, &pool->prepared_discards);
1331 				spin_unlock_irqrestore(&pool->lock, flags);
1332 				wake_worker(pool);
1333 			}
1334 		} else {
1335 			/*
1336 			 * The DM core makes sure that the discard doesn't span
1337 			 * a block boundary.  So we submit the discard of a
1338 			 * partial block appropriately.
1339 			 */
1340 			cell_release_singleton(cell, bio);
1341 			cell_release_singleton(cell2, bio);
1342 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1343 				remap_and_issue(tc, bio, lookup_result.block);
1344 			else
1345 				bio_endio(bio, 0);
1346 		}
1347 		break;
1348 
1349 	case -ENODATA:
1350 		/*
1351 		 * It isn't provisioned, just forget it.
1352 		 */
1353 		cell_release_singleton(cell, bio);
1354 		bio_endio(bio, 0);
1355 		break;
1356 
1357 	default:
1358 		DMERR("discard: find block unexpectedly returned %d", r);
1359 		cell_release_singleton(cell, bio);
1360 		bio_io_error(bio);
1361 		break;
1362 	}
1363 }
1364 
1365 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1366 			  struct cell_key *key,
1367 			  struct dm_thin_lookup_result *lookup_result,
1368 			  struct dm_bio_prison_cell *cell)
1369 {
1370 	int r;
1371 	dm_block_t data_block;
1372 
1373 	r = alloc_data_block(tc, &data_block);
1374 	switch (r) {
1375 	case 0:
1376 		schedule_internal_copy(tc, block, lookup_result->block,
1377 				       data_block, cell, bio);
1378 		break;
1379 
1380 	case -ENOSPC:
1381 		no_space(cell);
1382 		break;
1383 
1384 	default:
1385 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1386 		cell_error(cell);
1387 		break;
1388 	}
1389 }
1390 
1391 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1392 			       dm_block_t block,
1393 			       struct dm_thin_lookup_result *lookup_result)
1394 {
1395 	struct dm_bio_prison_cell *cell;
1396 	struct pool *pool = tc->pool;
1397 	struct cell_key key;
1398 
1399 	/*
1400 	 * If cell is already occupied, then sharing is already in the process
1401 	 * of being broken so we have nothing further to do here.
1402 	 */
1403 	build_data_key(tc->td, lookup_result->block, &key);
1404 	if (bio_detain(pool->prison, &key, bio, &cell))
1405 		return;
1406 
1407 	if (bio_data_dir(bio) == WRITE && bio->bi_size)
1408 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1409 	else {
1410 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1411 
1412 		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1413 
1414 		cell_release_singleton(cell, bio);
1415 		remap_and_issue(tc, bio, lookup_result->block);
1416 	}
1417 }
1418 
1419 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1420 			    struct dm_bio_prison_cell *cell)
1421 {
1422 	int r;
1423 	dm_block_t data_block;
1424 
1425 	/*
1426 	 * Remap empty bios (flushes) immediately, without provisioning.
1427 	 */
1428 	if (!bio->bi_size) {
1429 		cell_release_singleton(cell, bio);
1430 		remap_and_issue(tc, bio, 0);
1431 		return;
1432 	}
1433 
1434 	/*
1435 	 * Fill read bios with zeroes and complete them immediately.
1436 	 */
1437 	if (bio_data_dir(bio) == READ) {
1438 		zero_fill_bio(bio);
1439 		cell_release_singleton(cell, bio);
1440 		bio_endio(bio, 0);
1441 		return;
1442 	}
1443 
1444 	r = alloc_data_block(tc, &data_block);
1445 	switch (r) {
1446 	case 0:
1447 		if (tc->origin_dev)
1448 			schedule_external_copy(tc, block, data_block, cell, bio);
1449 		else
1450 			schedule_zero(tc, block, data_block, cell, bio);
1451 		break;
1452 
1453 	case -ENOSPC:
1454 		no_space(cell);
1455 		break;
1456 
1457 	default:
1458 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1459 		set_pool_mode(tc->pool, PM_READ_ONLY);
1460 		cell_error(cell);
1461 		break;
1462 	}
1463 }
1464 
1465 static void process_bio(struct thin_c *tc, struct bio *bio)
1466 {
1467 	int r;
1468 	dm_block_t block = get_bio_block(tc, bio);
1469 	struct dm_bio_prison_cell *cell;
1470 	struct cell_key key;
1471 	struct dm_thin_lookup_result lookup_result;
1472 
1473 	/*
1474 	 * If cell is already occupied, then the block is already
1475 	 * being provisioned so we have nothing further to do here.
1476 	 */
1477 	build_virtual_key(tc->td, block, &key);
1478 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1479 		return;
1480 
1481 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1482 	switch (r) {
1483 	case 0:
1484 		/*
1485 		 * We can release this cell now.  This thread is the only
1486 		 * one that puts bios into a cell, and we know there were
1487 		 * no preceding bios.
1488 		 */
1489 		/*
1490 		 * TODO: this will probably have to change when discard goes
1491 		 * back in.
1492 		 */
1493 		cell_release_singleton(cell, bio);
1494 
1495 		if (lookup_result.shared)
1496 			process_shared_bio(tc, bio, block, &lookup_result);
1497 		else
1498 			remap_and_issue(tc, bio, lookup_result.block);
1499 		break;
1500 
1501 	case -ENODATA:
1502 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1503 			cell_release_singleton(cell, bio);
1504 			remap_to_origin_and_issue(tc, bio);
1505 		} else
1506 			provision_block(tc, bio, block, cell);
1507 		break;
1508 
1509 	default:
1510 		DMERR("dm_thin_find_block() failed, error = %d", r);
1511 		cell_release_singleton(cell, bio);
1512 		bio_io_error(bio);
1513 		break;
1514 	}
1515 }
1516 
1517 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1518 {
1519 	int r;
1520 	int rw = bio_data_dir(bio);
1521 	dm_block_t block = get_bio_block(tc, bio);
1522 	struct dm_thin_lookup_result lookup_result;
1523 
1524 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1525 	switch (r) {
1526 	case 0:
1527 		if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1528 			bio_io_error(bio);
1529 		else
1530 			remap_and_issue(tc, bio, lookup_result.block);
1531 		break;
1532 
1533 	case -ENODATA:
1534 		if (rw != READ) {
1535 			bio_io_error(bio);
1536 			break;
1537 		}
1538 
1539 		if (tc->origin_dev) {
1540 			remap_to_origin_and_issue(tc, bio);
1541 			break;
1542 		}
1543 
1544 		zero_fill_bio(bio);
1545 		bio_endio(bio, 0);
1546 		break;
1547 
1548 	default:
1549 		DMERR("dm_thin_find_block() failed, error = %d", r);
1550 		bio_io_error(bio);
1551 		break;
1552 	}
1553 }
1554 
1555 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1556 {
1557 	bio_io_error(bio);
1558 }
1559 
1560 static int need_commit_due_to_time(struct pool *pool)
1561 {
1562 	return jiffies < pool->last_commit_jiffies ||
1563 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1564 }
1565 
1566 static void process_deferred_bios(struct pool *pool)
1567 {
1568 	unsigned long flags;
1569 	struct bio *bio;
1570 	struct bio_list bios;
1571 
1572 	bio_list_init(&bios);
1573 
1574 	spin_lock_irqsave(&pool->lock, flags);
1575 	bio_list_merge(&bios, &pool->deferred_bios);
1576 	bio_list_init(&pool->deferred_bios);
1577 	spin_unlock_irqrestore(&pool->lock, flags);
1578 
1579 	while ((bio = bio_list_pop(&bios))) {
1580 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1581 		struct thin_c *tc = h->tc;
1582 
1583 		/*
1584 		 * If we've got no free new_mapping structs, and processing
1585 		 * this bio might require one, we pause until there are some
1586 		 * prepared mappings to process.
1587 		 */
1588 		if (ensure_next_mapping(pool)) {
1589 			spin_lock_irqsave(&pool->lock, flags);
1590 			bio_list_merge(&pool->deferred_bios, &bios);
1591 			spin_unlock_irqrestore(&pool->lock, flags);
1592 
1593 			break;
1594 		}
1595 
1596 		if (bio->bi_rw & REQ_DISCARD)
1597 			pool->process_discard(tc, bio);
1598 		else
1599 			pool->process_bio(tc, bio);
1600 	}
1601 
1602 	/*
1603 	 * If there are any deferred flush bios, we must commit
1604 	 * the metadata before issuing them.
1605 	 */
1606 	bio_list_init(&bios);
1607 	spin_lock_irqsave(&pool->lock, flags);
1608 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1609 	bio_list_init(&pool->deferred_flush_bios);
1610 	spin_unlock_irqrestore(&pool->lock, flags);
1611 
1612 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1613 		return;
1614 
1615 	if (commit_or_fallback(pool)) {
1616 		while ((bio = bio_list_pop(&bios)))
1617 			bio_io_error(bio);
1618 		return;
1619 	}
1620 	pool->last_commit_jiffies = jiffies;
1621 
1622 	while ((bio = bio_list_pop(&bios)))
1623 		generic_make_request(bio);
1624 }
1625 
1626 static void do_worker(struct work_struct *ws)
1627 {
1628 	struct pool *pool = container_of(ws, struct pool, worker);
1629 
1630 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1631 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1632 	process_deferred_bios(pool);
1633 }
1634 
1635 /*
1636  * We want to commit periodically so that not too much
1637  * unwritten data builds up.
1638  */
1639 static void do_waker(struct work_struct *ws)
1640 {
1641 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1642 	wake_worker(pool);
1643 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1644 }
1645 
1646 /*----------------------------------------------------------------*/
1647 
1648 static enum pool_mode get_pool_mode(struct pool *pool)
1649 {
1650 	return pool->pf.mode;
1651 }
1652 
1653 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1654 {
1655 	int r;
1656 
1657 	pool->pf.mode = mode;
1658 
1659 	switch (mode) {
1660 	case PM_FAIL:
1661 		DMERR("switching pool to failure mode");
1662 		pool->process_bio = process_bio_fail;
1663 		pool->process_discard = process_bio_fail;
1664 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1665 		pool->process_prepared_discard = process_prepared_discard_fail;
1666 		break;
1667 
1668 	case PM_READ_ONLY:
1669 		DMERR("switching pool to read-only mode");
1670 		r = dm_pool_abort_metadata(pool->pmd);
1671 		if (r) {
1672 			DMERR("aborting transaction failed");
1673 			set_pool_mode(pool, PM_FAIL);
1674 		} else {
1675 			dm_pool_metadata_read_only(pool->pmd);
1676 			pool->process_bio = process_bio_read_only;
1677 			pool->process_discard = process_discard;
1678 			pool->process_prepared_mapping = process_prepared_mapping_fail;
1679 			pool->process_prepared_discard = process_prepared_discard_passdown;
1680 		}
1681 		break;
1682 
1683 	case PM_WRITE:
1684 		pool->process_bio = process_bio;
1685 		pool->process_discard = process_discard;
1686 		pool->process_prepared_mapping = process_prepared_mapping;
1687 		pool->process_prepared_discard = process_prepared_discard;
1688 		break;
1689 	}
1690 }
1691 
1692 /*----------------------------------------------------------------*/
1693 
1694 /*
1695  * Mapping functions.
1696  */
1697 
1698 /*
1699  * Called only while mapping a thin bio to hand it over to the workqueue.
1700  */
1701 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1702 {
1703 	unsigned long flags;
1704 	struct pool *pool = tc->pool;
1705 
1706 	spin_lock_irqsave(&pool->lock, flags);
1707 	bio_list_add(&pool->deferred_bios, bio);
1708 	spin_unlock_irqrestore(&pool->lock, flags);
1709 
1710 	wake_worker(pool);
1711 }
1712 
1713 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1714 {
1715 	struct pool *pool = tc->pool;
1716 	struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1717 
1718 	h->tc = tc;
1719 	h->shared_read_entry = NULL;
1720 	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1721 	h->overwrite_mapping = NULL;
1722 
1723 	return h;
1724 }
1725 
1726 /*
1727  * Non-blocking function called from the thin target's map function.
1728  */
1729 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1730 			union map_info *map_context)
1731 {
1732 	int r;
1733 	struct thin_c *tc = ti->private;
1734 	dm_block_t block = get_bio_block(tc, bio);
1735 	struct dm_thin_device *td = tc->td;
1736 	struct dm_thin_lookup_result result;
1737 
1738 	map_context->ptr = thin_hook_bio(tc, bio);
1739 
1740 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1741 		bio_io_error(bio);
1742 		return DM_MAPIO_SUBMITTED;
1743 	}
1744 
1745 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1746 		thin_defer_bio(tc, bio);
1747 		return DM_MAPIO_SUBMITTED;
1748 	}
1749 
1750 	r = dm_thin_find_block(td, block, 0, &result);
1751 
1752 	/*
1753 	 * Note that we defer readahead too.
1754 	 */
1755 	switch (r) {
1756 	case 0:
1757 		if (unlikely(result.shared)) {
1758 			/*
1759 			 * We have a race condition here between the
1760 			 * result.shared value returned by the lookup and
1761 			 * snapshot creation, which may cause new
1762 			 * sharing.
1763 			 *
1764 			 * To avoid this always quiesce the origin before
1765 			 * taking the snap.  You want to do this anyway to
1766 			 * ensure a consistent application view
1767 			 * (i.e. lockfs).
1768 			 *
1769 			 * More distant ancestors are irrelevant. The
1770 			 * shared flag will be set in their case.
1771 			 */
1772 			thin_defer_bio(tc, bio);
1773 			r = DM_MAPIO_SUBMITTED;
1774 		} else {
1775 			remap(tc, bio, result.block);
1776 			r = DM_MAPIO_REMAPPED;
1777 		}
1778 		break;
1779 
1780 	case -ENODATA:
1781 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1782 			/*
1783 			 * This block isn't provisioned, and we have no way
1784 			 * of doing so.  Just error it.
1785 			 */
1786 			bio_io_error(bio);
1787 			r = DM_MAPIO_SUBMITTED;
1788 			break;
1789 		}
1790 		/* fall through */
1791 
1792 	case -EWOULDBLOCK:
1793 		/*
1794 		 * In future, the failed dm_thin_find_block above could
1795 		 * provide the hint to load the metadata into cache.
1796 		 */
1797 		thin_defer_bio(tc, bio);
1798 		r = DM_MAPIO_SUBMITTED;
1799 		break;
1800 
1801 	default:
1802 		/*
1803 		 * Must always call bio_io_error on failure.
1804 		 * dm_thin_find_block can fail with -EINVAL if the
1805 		 * pool is switched to fail-io mode.
1806 		 */
1807 		bio_io_error(bio);
1808 		r = DM_MAPIO_SUBMITTED;
1809 		break;
1810 	}
1811 
1812 	return r;
1813 }
1814 
1815 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1816 {
1817 	int r;
1818 	unsigned long flags;
1819 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1820 
1821 	spin_lock_irqsave(&pt->pool->lock, flags);
1822 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1823 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1824 
1825 	if (!r) {
1826 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1827 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1828 	}
1829 
1830 	return r;
1831 }
1832 
1833 static void __requeue_bios(struct pool *pool)
1834 {
1835 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1836 	bio_list_init(&pool->retry_on_resume_list);
1837 }
1838 
1839 /*----------------------------------------------------------------
1840  * Binding of control targets to a pool object
1841  *--------------------------------------------------------------*/
1842 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1843 {
1844 	struct pool_c *pt = ti->private;
1845 
1846 	/*
1847 	 * We want to make sure that degraded pools are never upgraded.
1848 	 */
1849 	enum pool_mode old_mode = pool->pf.mode;
1850 	enum pool_mode new_mode = pt->pf.mode;
1851 
1852 	if (old_mode > new_mode)
1853 		new_mode = old_mode;
1854 
1855 	pool->ti = ti;
1856 	pool->low_water_blocks = pt->low_water_blocks;
1857 	pool->pf = pt->pf;
1858 	set_pool_mode(pool, new_mode);
1859 
1860 	/*
1861 	 * If discard_passdown was enabled verify that the data device
1862 	 * supports discards.  Disable discard_passdown if not; otherwise
1863 	 * -EOPNOTSUPP will be returned.
1864 	 */
1865 	/* FIXME: pull this out into a sep fn. */
1866 	if (pt->pf.discard_passdown) {
1867 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1868 		if (!q || !blk_queue_discard(q)) {
1869 			char buf[BDEVNAME_SIZE];
1870 			DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1871 			       bdevname(pt->data_dev->bdev, buf));
1872 			pool->pf.discard_passdown = 0;
1873 		}
1874 	}
1875 
1876 	return 0;
1877 }
1878 
1879 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1880 {
1881 	if (pool->ti == ti)
1882 		pool->ti = NULL;
1883 }
1884 
1885 /*----------------------------------------------------------------
1886  * Pool creation
1887  *--------------------------------------------------------------*/
1888 /* Initialize pool features. */
1889 static void pool_features_init(struct pool_features *pf)
1890 {
1891 	pf->mode = PM_WRITE;
1892 	pf->zero_new_blocks = 1;
1893 	pf->discard_enabled = 1;
1894 	pf->discard_passdown = 1;
1895 }
1896 
1897 static void __pool_destroy(struct pool *pool)
1898 {
1899 	__pool_table_remove(pool);
1900 
1901 	if (dm_pool_metadata_close(pool->pmd) < 0)
1902 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1903 
1904 	prison_destroy(pool->prison);
1905 	dm_kcopyd_client_destroy(pool->copier);
1906 
1907 	if (pool->wq)
1908 		destroy_workqueue(pool->wq);
1909 
1910 	if (pool->next_mapping)
1911 		mempool_free(pool->next_mapping, pool->mapping_pool);
1912 	mempool_destroy(pool->mapping_pool);
1913 	mempool_destroy(pool->endio_hook_pool);
1914 	kfree(pool);
1915 }
1916 
1917 static struct kmem_cache *_new_mapping_cache;
1918 static struct kmem_cache *_endio_hook_cache;
1919 
1920 static struct pool *pool_create(struct mapped_device *pool_md,
1921 				struct block_device *metadata_dev,
1922 				unsigned long block_size,
1923 				int read_only, char **error)
1924 {
1925 	int r;
1926 	void *err_p;
1927 	struct pool *pool;
1928 	struct dm_pool_metadata *pmd;
1929 	bool format_device = read_only ? false : true;
1930 
1931 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1932 	if (IS_ERR(pmd)) {
1933 		*error = "Error creating metadata object";
1934 		return (struct pool *)pmd;
1935 	}
1936 
1937 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1938 	if (!pool) {
1939 		*error = "Error allocating memory for pool";
1940 		err_p = ERR_PTR(-ENOMEM);
1941 		goto bad_pool;
1942 	}
1943 
1944 	pool->pmd = pmd;
1945 	pool->sectors_per_block = block_size;
1946 	if (block_size & (block_size - 1))
1947 		pool->sectors_per_block_shift = -1;
1948 	else
1949 		pool->sectors_per_block_shift = __ffs(block_size);
1950 	pool->low_water_blocks = 0;
1951 	pool_features_init(&pool->pf);
1952 	pool->prison = prison_create(PRISON_CELLS);
1953 	if (!pool->prison) {
1954 		*error = "Error creating pool's bio prison";
1955 		err_p = ERR_PTR(-ENOMEM);
1956 		goto bad_prison;
1957 	}
1958 
1959 	pool->copier = dm_kcopyd_client_create();
1960 	if (IS_ERR(pool->copier)) {
1961 		r = PTR_ERR(pool->copier);
1962 		*error = "Error creating pool's kcopyd client";
1963 		err_p = ERR_PTR(r);
1964 		goto bad_kcopyd_client;
1965 	}
1966 
1967 	/*
1968 	 * Create singlethreaded workqueue that will service all devices
1969 	 * that use this metadata.
1970 	 */
1971 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1972 	if (!pool->wq) {
1973 		*error = "Error creating pool's workqueue";
1974 		err_p = ERR_PTR(-ENOMEM);
1975 		goto bad_wq;
1976 	}
1977 
1978 	INIT_WORK(&pool->worker, do_worker);
1979 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1980 	spin_lock_init(&pool->lock);
1981 	bio_list_init(&pool->deferred_bios);
1982 	bio_list_init(&pool->deferred_flush_bios);
1983 	INIT_LIST_HEAD(&pool->prepared_mappings);
1984 	INIT_LIST_HEAD(&pool->prepared_discards);
1985 	pool->low_water_triggered = 0;
1986 	pool->no_free_space = 0;
1987 	bio_list_init(&pool->retry_on_resume_list);
1988 	ds_init(&pool->shared_read_ds);
1989 	ds_init(&pool->all_io_ds);
1990 
1991 	pool->next_mapping = NULL;
1992 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1993 						      _new_mapping_cache);
1994 	if (!pool->mapping_pool) {
1995 		*error = "Error creating pool's mapping mempool";
1996 		err_p = ERR_PTR(-ENOMEM);
1997 		goto bad_mapping_pool;
1998 	}
1999 
2000 	pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
2001 							 _endio_hook_cache);
2002 	if (!pool->endio_hook_pool) {
2003 		*error = "Error creating pool's endio_hook mempool";
2004 		err_p = ERR_PTR(-ENOMEM);
2005 		goto bad_endio_hook_pool;
2006 	}
2007 	pool->ref_count = 1;
2008 	pool->last_commit_jiffies = jiffies;
2009 	pool->pool_md = pool_md;
2010 	pool->md_dev = metadata_dev;
2011 	__pool_table_insert(pool);
2012 
2013 	return pool;
2014 
2015 bad_endio_hook_pool:
2016 	mempool_destroy(pool->mapping_pool);
2017 bad_mapping_pool:
2018 	destroy_workqueue(pool->wq);
2019 bad_wq:
2020 	dm_kcopyd_client_destroy(pool->copier);
2021 bad_kcopyd_client:
2022 	prison_destroy(pool->prison);
2023 bad_prison:
2024 	kfree(pool);
2025 bad_pool:
2026 	if (dm_pool_metadata_close(pmd))
2027 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2028 
2029 	return err_p;
2030 }
2031 
2032 static void __pool_inc(struct pool *pool)
2033 {
2034 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2035 	pool->ref_count++;
2036 }
2037 
2038 static void __pool_dec(struct pool *pool)
2039 {
2040 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2041 	BUG_ON(!pool->ref_count);
2042 	if (!--pool->ref_count)
2043 		__pool_destroy(pool);
2044 }
2045 
2046 static struct pool *__pool_find(struct mapped_device *pool_md,
2047 				struct block_device *metadata_dev,
2048 				unsigned long block_size, int read_only,
2049 				char **error, int *created)
2050 {
2051 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2052 
2053 	if (pool) {
2054 		if (pool->pool_md != pool_md) {
2055 			*error = "metadata device already in use by a pool";
2056 			return ERR_PTR(-EBUSY);
2057 		}
2058 		__pool_inc(pool);
2059 
2060 	} else {
2061 		pool = __pool_table_lookup(pool_md);
2062 		if (pool) {
2063 			if (pool->md_dev != metadata_dev) {
2064 				*error = "different pool cannot replace a pool";
2065 				return ERR_PTR(-EINVAL);
2066 			}
2067 			__pool_inc(pool);
2068 
2069 		} else {
2070 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2071 			*created = 1;
2072 		}
2073 	}
2074 
2075 	return pool;
2076 }
2077 
2078 /*----------------------------------------------------------------
2079  * Pool target methods
2080  *--------------------------------------------------------------*/
2081 static void pool_dtr(struct dm_target *ti)
2082 {
2083 	struct pool_c *pt = ti->private;
2084 
2085 	mutex_lock(&dm_thin_pool_table.mutex);
2086 
2087 	unbind_control_target(pt->pool, ti);
2088 	__pool_dec(pt->pool);
2089 	dm_put_device(ti, pt->metadata_dev);
2090 	dm_put_device(ti, pt->data_dev);
2091 	kfree(pt);
2092 
2093 	mutex_unlock(&dm_thin_pool_table.mutex);
2094 }
2095 
2096 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2097 			       struct dm_target *ti)
2098 {
2099 	int r;
2100 	unsigned argc;
2101 	const char *arg_name;
2102 
2103 	static struct dm_arg _args[] = {
2104 		{0, 3, "Invalid number of pool feature arguments"},
2105 	};
2106 
2107 	/*
2108 	 * No feature arguments supplied.
2109 	 */
2110 	if (!as->argc)
2111 		return 0;
2112 
2113 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2114 	if (r)
2115 		return -EINVAL;
2116 
2117 	while (argc && !r) {
2118 		arg_name = dm_shift_arg(as);
2119 		argc--;
2120 
2121 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2122 			pf->zero_new_blocks = 0;
2123 
2124 		else if (!strcasecmp(arg_name, "ignore_discard"))
2125 			pf->discard_enabled = 0;
2126 
2127 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2128 			pf->discard_passdown = 0;
2129 
2130 		else if (!strcasecmp(arg_name, "read_only"))
2131 			pf->mode = PM_READ_ONLY;
2132 
2133 		else {
2134 			ti->error = "Unrecognised pool feature requested";
2135 			r = -EINVAL;
2136 			break;
2137 		}
2138 	}
2139 
2140 	return r;
2141 }
2142 
2143 /*
2144  * thin-pool <metadata dev> <data dev>
2145  *	     <data block size (sectors)>
2146  *	     <low water mark (blocks)>
2147  *	     [<#feature args> [<arg>]*]
2148  *
2149  * Optional feature arguments are:
2150  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2151  *	     ignore_discard: disable discard
2152  *	     no_discard_passdown: don't pass discards down to the data device
2153  */
2154 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2155 {
2156 	int r, pool_created = 0;
2157 	struct pool_c *pt;
2158 	struct pool *pool;
2159 	struct pool_features pf;
2160 	struct dm_arg_set as;
2161 	struct dm_dev *data_dev;
2162 	unsigned long block_size;
2163 	dm_block_t low_water_blocks;
2164 	struct dm_dev *metadata_dev;
2165 	sector_t metadata_dev_size;
2166 	char b[BDEVNAME_SIZE];
2167 
2168 	/*
2169 	 * FIXME Remove validation from scope of lock.
2170 	 */
2171 	mutex_lock(&dm_thin_pool_table.mutex);
2172 
2173 	if (argc < 4) {
2174 		ti->error = "Invalid argument count";
2175 		r = -EINVAL;
2176 		goto out_unlock;
2177 	}
2178 	as.argc = argc;
2179 	as.argv = argv;
2180 
2181 	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
2182 	if (r) {
2183 		ti->error = "Error opening metadata block device";
2184 		goto out_unlock;
2185 	}
2186 
2187 	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
2188 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2189 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2190 		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2191 
2192 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2193 	if (r) {
2194 		ti->error = "Error getting data device";
2195 		goto out_metadata;
2196 	}
2197 
2198 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2199 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2200 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2201 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2202 		ti->error = "Invalid block size";
2203 		r = -EINVAL;
2204 		goto out;
2205 	}
2206 
2207 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2208 		ti->error = "Invalid low water mark";
2209 		r = -EINVAL;
2210 		goto out;
2211 	}
2212 
2213 	/*
2214 	 * Set default pool features.
2215 	 */
2216 	pool_features_init(&pf);
2217 
2218 	dm_consume_args(&as, 4);
2219 	r = parse_pool_features(&as, &pf, ti);
2220 	if (r)
2221 		goto out;
2222 
2223 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2224 	if (!pt) {
2225 		r = -ENOMEM;
2226 		goto out;
2227 	}
2228 
2229 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2230 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2231 	if (IS_ERR(pool)) {
2232 		r = PTR_ERR(pool);
2233 		goto out_free_pt;
2234 	}
2235 
2236 	/*
2237 	 * 'pool_created' reflects whether this is the first table load.
2238 	 * Top level discard support is not allowed to be changed after
2239 	 * initial load.  This would require a pool reload to trigger thin
2240 	 * device changes.
2241 	 */
2242 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2243 		ti->error = "Discard support cannot be disabled once enabled";
2244 		r = -EINVAL;
2245 		goto out_flags_changed;
2246 	}
2247 
2248 	/*
2249 	 * The block layer requires discard_granularity to be a power of 2.
2250 	 */
2251 	if (pf.discard_enabled && !is_power_of_2(block_size)) {
2252 		ti->error = "Discard support must be disabled when the block size is not a power of 2";
2253 		r = -EINVAL;
2254 		goto out_flags_changed;
2255 	}
2256 
2257 	pt->pool = pool;
2258 	pt->ti = ti;
2259 	pt->metadata_dev = metadata_dev;
2260 	pt->data_dev = data_dev;
2261 	pt->low_water_blocks = low_water_blocks;
2262 	pt->pf = pf;
2263 	ti->num_flush_requests = 1;
2264 	/*
2265 	 * Only need to enable discards if the pool should pass
2266 	 * them down to the data device.  The thin device's discard
2267 	 * processing will cause mappings to be removed from the btree.
2268 	 */
2269 	if (pf.discard_enabled && pf.discard_passdown) {
2270 		ti->num_discard_requests = 1;
2271 		/*
2272 		 * Setting 'discards_supported' circumvents the normal
2273 		 * stacking of discard limits (this keeps the pool and
2274 		 * thin devices' discard limits consistent).
2275 		 */
2276 		ti->discards_supported = true;
2277 	}
2278 	ti->private = pt;
2279 
2280 	pt->callbacks.congested_fn = pool_is_congested;
2281 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2282 
2283 	mutex_unlock(&dm_thin_pool_table.mutex);
2284 
2285 	return 0;
2286 
2287 out_flags_changed:
2288 	__pool_dec(pool);
2289 out_free_pt:
2290 	kfree(pt);
2291 out:
2292 	dm_put_device(ti, data_dev);
2293 out_metadata:
2294 	dm_put_device(ti, metadata_dev);
2295 out_unlock:
2296 	mutex_unlock(&dm_thin_pool_table.mutex);
2297 
2298 	return r;
2299 }
2300 
2301 static int pool_map(struct dm_target *ti, struct bio *bio,
2302 		    union map_info *map_context)
2303 {
2304 	int r;
2305 	struct pool_c *pt = ti->private;
2306 	struct pool *pool = pt->pool;
2307 	unsigned long flags;
2308 
2309 	/*
2310 	 * As this is a singleton target, ti->begin is always zero.
2311 	 */
2312 	spin_lock_irqsave(&pool->lock, flags);
2313 	bio->bi_bdev = pt->data_dev->bdev;
2314 	r = DM_MAPIO_REMAPPED;
2315 	spin_unlock_irqrestore(&pool->lock, flags);
2316 
2317 	return r;
2318 }
2319 
2320 /*
2321  * Retrieves the number of blocks of the data device from
2322  * the superblock and compares it to the actual device size,
2323  * thus resizing the data device in case it has grown.
2324  *
2325  * This both copes with opening preallocated data devices in the ctr
2326  * being followed by a resume
2327  * -and-
2328  * calling the resume method individually after userspace has
2329  * grown the data device in reaction to a table event.
2330  */
2331 static int pool_preresume(struct dm_target *ti)
2332 {
2333 	int r;
2334 	struct pool_c *pt = ti->private;
2335 	struct pool *pool = pt->pool;
2336 	sector_t data_size = ti->len;
2337 	dm_block_t sb_data_size;
2338 
2339 	/*
2340 	 * Take control of the pool object.
2341 	 */
2342 	r = bind_control_target(pool, ti);
2343 	if (r)
2344 		return r;
2345 
2346 	(void) sector_div(data_size, pool->sectors_per_block);
2347 
2348 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2349 	if (r) {
2350 		DMERR("failed to retrieve data device size");
2351 		return r;
2352 	}
2353 
2354 	if (data_size < sb_data_size) {
2355 		DMERR("pool target too small, is %llu blocks (expected %llu)",
2356 		      (unsigned long long)data_size, sb_data_size);
2357 		return -EINVAL;
2358 
2359 	} else if (data_size > sb_data_size) {
2360 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2361 		if (r) {
2362 			DMERR("failed to resize data device");
2363 			/* FIXME Stricter than necessary: Rollback transaction instead here */
2364 			set_pool_mode(pool, PM_READ_ONLY);
2365 			return r;
2366 		}
2367 
2368 		(void) commit_or_fallback(pool);
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static void pool_resume(struct dm_target *ti)
2375 {
2376 	struct pool_c *pt = ti->private;
2377 	struct pool *pool = pt->pool;
2378 	unsigned long flags;
2379 
2380 	spin_lock_irqsave(&pool->lock, flags);
2381 	pool->low_water_triggered = 0;
2382 	pool->no_free_space = 0;
2383 	__requeue_bios(pool);
2384 	spin_unlock_irqrestore(&pool->lock, flags);
2385 
2386 	do_waker(&pool->waker.work);
2387 }
2388 
2389 static void pool_postsuspend(struct dm_target *ti)
2390 {
2391 	struct pool_c *pt = ti->private;
2392 	struct pool *pool = pt->pool;
2393 
2394 	cancel_delayed_work(&pool->waker);
2395 	flush_workqueue(pool->wq);
2396 	(void) commit_or_fallback(pool);
2397 }
2398 
2399 static int check_arg_count(unsigned argc, unsigned args_required)
2400 {
2401 	if (argc != args_required) {
2402 		DMWARN("Message received with %u arguments instead of %u.",
2403 		       argc, args_required);
2404 		return -EINVAL;
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2411 {
2412 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2413 	    *dev_id <= MAX_DEV_ID)
2414 		return 0;
2415 
2416 	if (warning)
2417 		DMWARN("Message received with invalid device id: %s", arg);
2418 
2419 	return -EINVAL;
2420 }
2421 
2422 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2423 {
2424 	dm_thin_id dev_id;
2425 	int r;
2426 
2427 	r = check_arg_count(argc, 2);
2428 	if (r)
2429 		return r;
2430 
2431 	r = read_dev_id(argv[1], &dev_id, 1);
2432 	if (r)
2433 		return r;
2434 
2435 	r = dm_pool_create_thin(pool->pmd, dev_id);
2436 	if (r) {
2437 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2438 		       argv[1]);
2439 		return r;
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2446 {
2447 	dm_thin_id dev_id;
2448 	dm_thin_id origin_dev_id;
2449 	int r;
2450 
2451 	r = check_arg_count(argc, 3);
2452 	if (r)
2453 		return r;
2454 
2455 	r = read_dev_id(argv[1], &dev_id, 1);
2456 	if (r)
2457 		return r;
2458 
2459 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2460 	if (r)
2461 		return r;
2462 
2463 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2464 	if (r) {
2465 		DMWARN("Creation of new snapshot %s of device %s failed.",
2466 		       argv[1], argv[2]);
2467 		return r;
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2474 {
2475 	dm_thin_id dev_id;
2476 	int r;
2477 
2478 	r = check_arg_count(argc, 2);
2479 	if (r)
2480 		return r;
2481 
2482 	r = read_dev_id(argv[1], &dev_id, 1);
2483 	if (r)
2484 		return r;
2485 
2486 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2487 	if (r)
2488 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2489 
2490 	return r;
2491 }
2492 
2493 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2494 {
2495 	dm_thin_id old_id, new_id;
2496 	int r;
2497 
2498 	r = check_arg_count(argc, 3);
2499 	if (r)
2500 		return r;
2501 
2502 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2503 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2504 		return -EINVAL;
2505 	}
2506 
2507 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2508 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2509 		return -EINVAL;
2510 	}
2511 
2512 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2513 	if (r) {
2514 		DMWARN("Failed to change transaction id from %s to %s.",
2515 		       argv[1], argv[2]);
2516 		return r;
2517 	}
2518 
2519 	return 0;
2520 }
2521 
2522 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2523 {
2524 	int r;
2525 
2526 	r = check_arg_count(argc, 1);
2527 	if (r)
2528 		return r;
2529 
2530 	(void) commit_or_fallback(pool);
2531 
2532 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2533 	if (r)
2534 		DMWARN("reserve_metadata_snap message failed.");
2535 
2536 	return r;
2537 }
2538 
2539 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2540 {
2541 	int r;
2542 
2543 	r = check_arg_count(argc, 1);
2544 	if (r)
2545 		return r;
2546 
2547 	r = dm_pool_release_metadata_snap(pool->pmd);
2548 	if (r)
2549 		DMWARN("release_metadata_snap message failed.");
2550 
2551 	return r;
2552 }
2553 
2554 /*
2555  * Messages supported:
2556  *   create_thin	<dev_id>
2557  *   create_snap	<dev_id> <origin_id>
2558  *   delete		<dev_id>
2559  *   trim		<dev_id> <new_size_in_sectors>
2560  *   set_transaction_id <current_trans_id> <new_trans_id>
2561  *   reserve_metadata_snap
2562  *   release_metadata_snap
2563  */
2564 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2565 {
2566 	int r = -EINVAL;
2567 	struct pool_c *pt = ti->private;
2568 	struct pool *pool = pt->pool;
2569 
2570 	if (!strcasecmp(argv[0], "create_thin"))
2571 		r = process_create_thin_mesg(argc, argv, pool);
2572 
2573 	else if (!strcasecmp(argv[0], "create_snap"))
2574 		r = process_create_snap_mesg(argc, argv, pool);
2575 
2576 	else if (!strcasecmp(argv[0], "delete"))
2577 		r = process_delete_mesg(argc, argv, pool);
2578 
2579 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2580 		r = process_set_transaction_id_mesg(argc, argv, pool);
2581 
2582 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2583 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2584 
2585 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2586 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2587 
2588 	else
2589 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2590 
2591 	if (!r)
2592 		(void) commit_or_fallback(pool);
2593 
2594 	return r;
2595 }
2596 
2597 static void emit_flags(struct pool_features *pf, char *result,
2598 		       unsigned sz, unsigned maxlen)
2599 {
2600 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2601 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2602 	DMEMIT("%u ", count);
2603 
2604 	if (!pf->zero_new_blocks)
2605 		DMEMIT("skip_block_zeroing ");
2606 
2607 	if (!pf->discard_enabled)
2608 		DMEMIT("ignore_discard ");
2609 
2610 	if (!pf->discard_passdown)
2611 		DMEMIT("no_discard_passdown ");
2612 
2613 	if (pf->mode == PM_READ_ONLY)
2614 		DMEMIT("read_only ");
2615 }
2616 
2617 /*
2618  * Status line is:
2619  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2620  *    <used data sectors>/<total data sectors> <held metadata root>
2621  */
2622 static int pool_status(struct dm_target *ti, status_type_t type,
2623 		       unsigned status_flags, char *result, unsigned maxlen)
2624 {
2625 	int r;
2626 	unsigned sz = 0;
2627 	uint64_t transaction_id;
2628 	dm_block_t nr_free_blocks_data;
2629 	dm_block_t nr_free_blocks_metadata;
2630 	dm_block_t nr_blocks_data;
2631 	dm_block_t nr_blocks_metadata;
2632 	dm_block_t held_root;
2633 	char buf[BDEVNAME_SIZE];
2634 	char buf2[BDEVNAME_SIZE];
2635 	struct pool_c *pt = ti->private;
2636 	struct pool *pool = pt->pool;
2637 
2638 	switch (type) {
2639 	case STATUSTYPE_INFO:
2640 		if (get_pool_mode(pool) == PM_FAIL) {
2641 			DMEMIT("Fail");
2642 			break;
2643 		}
2644 
2645 		/* Commit to ensure statistics aren't out-of-date */
2646 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2647 			(void) commit_or_fallback(pool);
2648 
2649 		r = dm_pool_get_metadata_transaction_id(pool->pmd,
2650 							&transaction_id);
2651 		if (r)
2652 			return r;
2653 
2654 		r = dm_pool_get_free_metadata_block_count(pool->pmd,
2655 							  &nr_free_blocks_metadata);
2656 		if (r)
2657 			return r;
2658 
2659 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2660 		if (r)
2661 			return r;
2662 
2663 		r = dm_pool_get_free_block_count(pool->pmd,
2664 						 &nr_free_blocks_data);
2665 		if (r)
2666 			return r;
2667 
2668 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2669 		if (r)
2670 			return r;
2671 
2672 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2673 		if (r)
2674 			return r;
2675 
2676 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2677 		       (unsigned long long)transaction_id,
2678 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2679 		       (unsigned long long)nr_blocks_metadata,
2680 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2681 		       (unsigned long long)nr_blocks_data);
2682 
2683 		if (held_root)
2684 			DMEMIT("%llu ", held_root);
2685 		else
2686 			DMEMIT("- ");
2687 
2688 		if (pool->pf.mode == PM_READ_ONLY)
2689 			DMEMIT("ro ");
2690 		else
2691 			DMEMIT("rw ");
2692 
2693 		if (pool->pf.discard_enabled && pool->pf.discard_passdown)
2694 			DMEMIT("discard_passdown");
2695 		else
2696 			DMEMIT("no_discard_passdown");
2697 
2698 		break;
2699 
2700 	case STATUSTYPE_TABLE:
2701 		DMEMIT("%s %s %lu %llu ",
2702 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2703 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2704 		       (unsigned long)pool->sectors_per_block,
2705 		       (unsigned long long)pt->low_water_blocks);
2706 		emit_flags(&pt->pf, result, sz, maxlen);
2707 		break;
2708 	}
2709 
2710 	return 0;
2711 }
2712 
2713 static int pool_iterate_devices(struct dm_target *ti,
2714 				iterate_devices_callout_fn fn, void *data)
2715 {
2716 	struct pool_c *pt = ti->private;
2717 
2718 	return fn(ti, pt->data_dev, 0, ti->len, data);
2719 }
2720 
2721 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2722 		      struct bio_vec *biovec, int max_size)
2723 {
2724 	struct pool_c *pt = ti->private;
2725 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2726 
2727 	if (!q->merge_bvec_fn)
2728 		return max_size;
2729 
2730 	bvm->bi_bdev = pt->data_dev->bdev;
2731 
2732 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2733 }
2734 
2735 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2736 {
2737 	/*
2738 	 * FIXME: these limits may be incompatible with the pool's data device
2739 	 */
2740 	limits->max_discard_sectors = pool->sectors_per_block;
2741 
2742 	/*
2743 	 * This is just a hint, and not enforced.  We have to cope with
2744 	 * bios that cover a block partially.  A discard that spans a block
2745 	 * boundary is not sent to this target.
2746 	 */
2747 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2748 	limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2749 }
2750 
2751 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2752 {
2753 	struct pool_c *pt = ti->private;
2754 	struct pool *pool = pt->pool;
2755 
2756 	blk_limits_io_min(limits, 0);
2757 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2758 	if (pool->pf.discard_enabled)
2759 		set_discard_limits(pool, limits);
2760 }
2761 
2762 static struct target_type pool_target = {
2763 	.name = "thin-pool",
2764 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2765 		    DM_TARGET_IMMUTABLE,
2766 	.version = {1, 3, 0},
2767 	.module = THIS_MODULE,
2768 	.ctr = pool_ctr,
2769 	.dtr = pool_dtr,
2770 	.map = pool_map,
2771 	.postsuspend = pool_postsuspend,
2772 	.preresume = pool_preresume,
2773 	.resume = pool_resume,
2774 	.message = pool_message,
2775 	.status = pool_status,
2776 	.merge = pool_merge,
2777 	.iterate_devices = pool_iterate_devices,
2778 	.io_hints = pool_io_hints,
2779 };
2780 
2781 /*----------------------------------------------------------------
2782  * Thin target methods
2783  *--------------------------------------------------------------*/
2784 static void thin_dtr(struct dm_target *ti)
2785 {
2786 	struct thin_c *tc = ti->private;
2787 
2788 	mutex_lock(&dm_thin_pool_table.mutex);
2789 
2790 	__pool_dec(tc->pool);
2791 	dm_pool_close_thin_device(tc->td);
2792 	dm_put_device(ti, tc->pool_dev);
2793 	if (tc->origin_dev)
2794 		dm_put_device(ti, tc->origin_dev);
2795 	kfree(tc);
2796 
2797 	mutex_unlock(&dm_thin_pool_table.mutex);
2798 }
2799 
2800 /*
2801  * Thin target parameters:
2802  *
2803  * <pool_dev> <dev_id> [origin_dev]
2804  *
2805  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2806  * dev_id: the internal device identifier
2807  * origin_dev: a device external to the pool that should act as the origin
2808  *
2809  * If the pool device has discards disabled, they get disabled for the thin
2810  * device as well.
2811  */
2812 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2813 {
2814 	int r;
2815 	struct thin_c *tc;
2816 	struct dm_dev *pool_dev, *origin_dev;
2817 	struct mapped_device *pool_md;
2818 
2819 	mutex_lock(&dm_thin_pool_table.mutex);
2820 
2821 	if (argc != 2 && argc != 3) {
2822 		ti->error = "Invalid argument count";
2823 		r = -EINVAL;
2824 		goto out_unlock;
2825 	}
2826 
2827 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2828 	if (!tc) {
2829 		ti->error = "Out of memory";
2830 		r = -ENOMEM;
2831 		goto out_unlock;
2832 	}
2833 
2834 	if (argc == 3) {
2835 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2836 		if (r) {
2837 			ti->error = "Error opening origin device";
2838 			goto bad_origin_dev;
2839 		}
2840 		tc->origin_dev = origin_dev;
2841 	}
2842 
2843 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2844 	if (r) {
2845 		ti->error = "Error opening pool device";
2846 		goto bad_pool_dev;
2847 	}
2848 	tc->pool_dev = pool_dev;
2849 
2850 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2851 		ti->error = "Invalid device id";
2852 		r = -EINVAL;
2853 		goto bad_common;
2854 	}
2855 
2856 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2857 	if (!pool_md) {
2858 		ti->error = "Couldn't get pool mapped device";
2859 		r = -EINVAL;
2860 		goto bad_common;
2861 	}
2862 
2863 	tc->pool = __pool_table_lookup(pool_md);
2864 	if (!tc->pool) {
2865 		ti->error = "Couldn't find pool object";
2866 		r = -EINVAL;
2867 		goto bad_pool_lookup;
2868 	}
2869 	__pool_inc(tc->pool);
2870 
2871 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2872 		ti->error = "Couldn't open thin device, Pool is in fail mode";
2873 		goto bad_thin_open;
2874 	}
2875 
2876 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2877 	if (r) {
2878 		ti->error = "Couldn't open thin internal device";
2879 		goto bad_thin_open;
2880 	}
2881 
2882 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2883 	if (r)
2884 		goto bad_thin_open;
2885 
2886 	ti->num_flush_requests = 1;
2887 	ti->flush_supported = true;
2888 
2889 	/* In case the pool supports discards, pass them on. */
2890 	if (tc->pool->pf.discard_enabled) {
2891 		ti->discards_supported = true;
2892 		ti->num_discard_requests = 1;
2893 		ti->discard_zeroes_data_unsupported = true;
2894 		/* Discard requests must be split on a block boundary */
2895 		ti->split_discard_requests = true;
2896 	}
2897 
2898 	dm_put(pool_md);
2899 
2900 	mutex_unlock(&dm_thin_pool_table.mutex);
2901 
2902 	return 0;
2903 
2904 bad_thin_open:
2905 	__pool_dec(tc->pool);
2906 bad_pool_lookup:
2907 	dm_put(pool_md);
2908 bad_common:
2909 	dm_put_device(ti, tc->pool_dev);
2910 bad_pool_dev:
2911 	if (tc->origin_dev)
2912 		dm_put_device(ti, tc->origin_dev);
2913 bad_origin_dev:
2914 	kfree(tc);
2915 out_unlock:
2916 	mutex_unlock(&dm_thin_pool_table.mutex);
2917 
2918 	return r;
2919 }
2920 
2921 static int thin_map(struct dm_target *ti, struct bio *bio,
2922 		    union map_info *map_context)
2923 {
2924 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2925 
2926 	return thin_bio_map(ti, bio, map_context);
2927 }
2928 
2929 static int thin_endio(struct dm_target *ti,
2930 		      struct bio *bio, int err,
2931 		      union map_info *map_context)
2932 {
2933 	unsigned long flags;
2934 	struct dm_thin_endio_hook *h = map_context->ptr;
2935 	struct list_head work;
2936 	struct dm_thin_new_mapping *m, *tmp;
2937 	struct pool *pool = h->tc->pool;
2938 
2939 	if (h->shared_read_entry) {
2940 		INIT_LIST_HEAD(&work);
2941 		ds_dec(h->shared_read_entry, &work);
2942 
2943 		spin_lock_irqsave(&pool->lock, flags);
2944 		list_for_each_entry_safe(m, tmp, &work, list) {
2945 			list_del(&m->list);
2946 			m->quiesced = 1;
2947 			__maybe_add_mapping(m);
2948 		}
2949 		spin_unlock_irqrestore(&pool->lock, flags);
2950 	}
2951 
2952 	if (h->all_io_entry) {
2953 		INIT_LIST_HEAD(&work);
2954 		ds_dec(h->all_io_entry, &work);
2955 		spin_lock_irqsave(&pool->lock, flags);
2956 		list_for_each_entry_safe(m, tmp, &work, list)
2957 			list_add(&m->list, &pool->prepared_discards);
2958 		spin_unlock_irqrestore(&pool->lock, flags);
2959 	}
2960 
2961 	mempool_free(h, pool->endio_hook_pool);
2962 
2963 	return 0;
2964 }
2965 
2966 static void thin_postsuspend(struct dm_target *ti)
2967 {
2968 	if (dm_noflush_suspending(ti))
2969 		requeue_io((struct thin_c *)ti->private);
2970 }
2971 
2972 /*
2973  * <nr mapped sectors> <highest mapped sector>
2974  */
2975 static int thin_status(struct dm_target *ti, status_type_t type,
2976 		       unsigned status_flags, char *result, unsigned maxlen)
2977 {
2978 	int r;
2979 	ssize_t sz = 0;
2980 	dm_block_t mapped, highest;
2981 	char buf[BDEVNAME_SIZE];
2982 	struct thin_c *tc = ti->private;
2983 
2984 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2985 		DMEMIT("Fail");
2986 		return 0;
2987 	}
2988 
2989 	if (!tc->td)
2990 		DMEMIT("-");
2991 	else {
2992 		switch (type) {
2993 		case STATUSTYPE_INFO:
2994 			r = dm_thin_get_mapped_count(tc->td, &mapped);
2995 			if (r)
2996 				return r;
2997 
2998 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2999 			if (r < 0)
3000 				return r;
3001 
3002 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3003 			if (r)
3004 				DMEMIT("%llu", ((highest + 1) *
3005 						tc->pool->sectors_per_block) - 1);
3006 			else
3007 				DMEMIT("-");
3008 			break;
3009 
3010 		case STATUSTYPE_TABLE:
3011 			DMEMIT("%s %lu",
3012 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3013 			       (unsigned long) tc->dev_id);
3014 			if (tc->origin_dev)
3015 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3016 			break;
3017 		}
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 static int thin_iterate_devices(struct dm_target *ti,
3024 				iterate_devices_callout_fn fn, void *data)
3025 {
3026 	sector_t blocks;
3027 	struct thin_c *tc = ti->private;
3028 	struct pool *pool = tc->pool;
3029 
3030 	/*
3031 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3032 	 * we follow a more convoluted path through to the pool's target.
3033 	 */
3034 	if (!pool->ti)
3035 		return 0;	/* nothing is bound */
3036 
3037 	blocks = pool->ti->len;
3038 	(void) sector_div(blocks, pool->sectors_per_block);
3039 	if (blocks)
3040 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3041 
3042 	return 0;
3043 }
3044 
3045 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
3046 {
3047 	struct thin_c *tc = ti->private;
3048 	struct pool *pool = tc->pool;
3049 
3050 	blk_limits_io_min(limits, 0);
3051 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3052 	set_discard_limits(pool, limits);
3053 }
3054 
3055 static struct target_type thin_target = {
3056 	.name = "thin",
3057 	.version = {1, 3, 0},
3058 	.module	= THIS_MODULE,
3059 	.ctr = thin_ctr,
3060 	.dtr = thin_dtr,
3061 	.map = thin_map,
3062 	.end_io = thin_endio,
3063 	.postsuspend = thin_postsuspend,
3064 	.status = thin_status,
3065 	.iterate_devices = thin_iterate_devices,
3066 	.io_hints = thin_io_hints,
3067 };
3068 
3069 /*----------------------------------------------------------------*/
3070 
3071 static int __init dm_thin_init(void)
3072 {
3073 	int r;
3074 
3075 	pool_table_init();
3076 
3077 	r = dm_register_target(&thin_target);
3078 	if (r)
3079 		return r;
3080 
3081 	r = dm_register_target(&pool_target);
3082 	if (r)
3083 		goto bad_pool_target;
3084 
3085 	r = -ENOMEM;
3086 
3087 	_cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
3088 	if (!_cell_cache)
3089 		goto bad_cell_cache;
3090 
3091 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3092 	if (!_new_mapping_cache)
3093 		goto bad_new_mapping_cache;
3094 
3095 	_endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
3096 	if (!_endio_hook_cache)
3097 		goto bad_endio_hook_cache;
3098 
3099 	return 0;
3100 
3101 bad_endio_hook_cache:
3102 	kmem_cache_destroy(_new_mapping_cache);
3103 bad_new_mapping_cache:
3104 	kmem_cache_destroy(_cell_cache);
3105 bad_cell_cache:
3106 	dm_unregister_target(&pool_target);
3107 bad_pool_target:
3108 	dm_unregister_target(&thin_target);
3109 
3110 	return r;
3111 }
3112 
3113 static void dm_thin_exit(void)
3114 {
3115 	dm_unregister_target(&thin_target);
3116 	dm_unregister_target(&pool_target);
3117 
3118 	kmem_cache_destroy(_cell_cache);
3119 	kmem_cache_destroy(_new_mapping_cache);
3120 	kmem_cache_destroy(_endio_hook_cache);
3121 }
3122 
3123 module_init(dm_thin_init);
3124 module_exit(dm_thin_exit);
3125 
3126 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3127 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3128 MODULE_LICENSE("GPL");
3129