1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011-2012 Red Hat UK. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-thin-metadata.h" 9 #include "dm-bio-prison-v1.h" 10 #include "dm.h" 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/jiffies.h> 16 #include <linux/log2.h> 17 #include <linux/list.h> 18 #include <linux/rculist.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sort.h> 24 #include <linux/rbtree.h> 25 26 #define DM_MSG_PREFIX "thin" 27 28 /* 29 * Tunable constants 30 */ 31 #define ENDIO_HOOK_POOL_SIZE 1024 32 #define MAPPING_POOL_SIZE 1024 33 #define COMMIT_PERIOD HZ 34 #define NO_SPACE_TIMEOUT_SECS 60 35 36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 37 38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 39 "A percentage of time allocated for copy on write"); 40 41 /* 42 * The block size of the device holding pool data must be 43 * between 64KB and 1GB. 44 */ 45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 47 48 /* 49 * Device id is restricted to 24 bits. 50 */ 51 #define MAX_DEV_ID ((1 << 24) - 1) 52 53 /* 54 * How do we handle breaking sharing of data blocks? 55 * ================================================= 56 * 57 * We use a standard copy-on-write btree to store the mappings for the 58 * devices (note I'm talking about copy-on-write of the metadata here, not 59 * the data). When you take an internal snapshot you clone the root node 60 * of the origin btree. After this there is no concept of an origin or a 61 * snapshot. They are just two device trees that happen to point to the 62 * same data blocks. 63 * 64 * When we get a write in we decide if it's to a shared data block using 65 * some timestamp magic. If it is, we have to break sharing. 66 * 67 * Let's say we write to a shared block in what was the origin. The 68 * steps are: 69 * 70 * i) plug io further to this physical block. (see bio_prison code). 71 * 72 * ii) quiesce any read io to that shared data block. Obviously 73 * including all devices that share this block. (see dm_deferred_set code) 74 * 75 * iii) copy the data block to a newly allocate block. This step can be 76 * missed out if the io covers the block. (schedule_copy). 77 * 78 * iv) insert the new mapping into the origin's btree 79 * (process_prepared_mapping). This act of inserting breaks some 80 * sharing of btree nodes between the two devices. Breaking sharing only 81 * effects the btree of that specific device. Btrees for the other 82 * devices that share the block never change. The btree for the origin 83 * device as it was after the last commit is untouched, ie. we're using 84 * persistent data structures in the functional programming sense. 85 * 86 * v) unplug io to this physical block, including the io that triggered 87 * the breaking of sharing. 88 * 89 * Steps (ii) and (iii) occur in parallel. 90 * 91 * The metadata _doesn't_ need to be committed before the io continues. We 92 * get away with this because the io is always written to a _new_ block. 93 * If there's a crash, then: 94 * 95 * - The origin mapping will point to the old origin block (the shared 96 * one). This will contain the data as it was before the io that triggered 97 * the breaking of sharing came in. 98 * 99 * - The snap mapping still points to the old block. As it would after 100 * the commit. 101 * 102 * The downside of this scheme is the timestamp magic isn't perfect, and 103 * will continue to think that data block in the snapshot device is shared 104 * even after the write to the origin has broken sharing. I suspect data 105 * blocks will typically be shared by many different devices, so we're 106 * breaking sharing n + 1 times, rather than n, where n is the number of 107 * devices that reference this data block. At the moment I think the 108 * benefits far, far outweigh the disadvantages. 109 */ 110 111 /*----------------------------------------------------------------*/ 112 113 /* 114 * Key building. 115 */ 116 enum lock_space { 117 VIRTUAL, 118 PHYSICAL 119 }; 120 121 static void build_key(struct dm_thin_device *td, enum lock_space ls, 122 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 123 { 124 key->virtual = (ls == VIRTUAL); 125 key->dev = dm_thin_dev_id(td); 126 key->block_begin = b; 127 key->block_end = e; 128 } 129 130 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 131 struct dm_cell_key *key) 132 { 133 build_key(td, PHYSICAL, b, b + 1llu, key); 134 } 135 136 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 137 struct dm_cell_key *key) 138 { 139 build_key(td, VIRTUAL, b, b + 1llu, key); 140 } 141 142 /*----------------------------------------------------------------*/ 143 144 #define THROTTLE_THRESHOLD (1 * HZ) 145 146 struct throttle { 147 struct rw_semaphore lock; 148 unsigned long threshold; 149 bool throttle_applied; 150 }; 151 152 static void throttle_init(struct throttle *t) 153 { 154 init_rwsem(&t->lock); 155 t->throttle_applied = false; 156 } 157 158 static void throttle_work_start(struct throttle *t) 159 { 160 t->threshold = jiffies + THROTTLE_THRESHOLD; 161 } 162 163 static void throttle_work_update(struct throttle *t) 164 { 165 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) { 166 down_write(&t->lock); 167 t->throttle_applied = true; 168 } 169 } 170 171 static void throttle_work_complete(struct throttle *t) 172 { 173 if (t->throttle_applied) { 174 t->throttle_applied = false; 175 up_write(&t->lock); 176 } 177 } 178 179 static void throttle_lock(struct throttle *t) 180 { 181 down_read(&t->lock); 182 } 183 184 static void throttle_unlock(struct throttle *t) 185 { 186 up_read(&t->lock); 187 } 188 189 /*----------------------------------------------------------------*/ 190 191 /* 192 * A pool device ties together a metadata device and a data device. It 193 * also provides the interface for creating and destroying internal 194 * devices. 195 */ 196 struct dm_thin_new_mapping; 197 198 /* 199 * The pool runs in various modes. Ordered in degraded order for comparisons. 200 */ 201 enum pool_mode { 202 PM_WRITE, /* metadata may be changed */ 203 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 204 205 /* 206 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 207 */ 208 PM_OUT_OF_METADATA_SPACE, 209 PM_READ_ONLY, /* metadata may not be changed */ 210 211 PM_FAIL, /* all I/O fails */ 212 }; 213 214 struct pool_features { 215 enum pool_mode mode; 216 217 bool zero_new_blocks:1; 218 bool discard_enabled:1; 219 bool discard_passdown:1; 220 bool error_if_no_space:1; 221 }; 222 223 struct thin_c; 224 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 225 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 226 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 227 228 #define CELL_SORT_ARRAY_SIZE 8192 229 230 struct pool { 231 struct list_head list; 232 struct dm_target *ti; /* Only set if a pool target is bound */ 233 234 struct mapped_device *pool_md; 235 struct block_device *data_dev; 236 struct block_device *md_dev; 237 struct dm_pool_metadata *pmd; 238 239 dm_block_t low_water_blocks; 240 uint32_t sectors_per_block; 241 int sectors_per_block_shift; 242 243 struct pool_features pf; 244 bool low_water_triggered:1; /* A dm event has been sent */ 245 bool suspended:1; 246 bool out_of_data_space:1; 247 248 struct dm_bio_prison *prison; 249 struct dm_kcopyd_client *copier; 250 251 struct work_struct worker; 252 struct workqueue_struct *wq; 253 struct throttle throttle; 254 struct delayed_work waker; 255 struct delayed_work no_space_timeout; 256 257 unsigned long last_commit_jiffies; 258 unsigned int ref_count; 259 260 spinlock_t lock; 261 struct bio_list deferred_flush_bios; 262 struct bio_list deferred_flush_completions; 263 struct list_head prepared_mappings; 264 struct list_head prepared_discards; 265 struct list_head prepared_discards_pt2; 266 struct list_head active_thins; 267 268 struct dm_deferred_set *shared_read_ds; 269 struct dm_deferred_set *all_io_ds; 270 271 struct dm_thin_new_mapping *next_mapping; 272 273 process_bio_fn process_bio; 274 process_bio_fn process_discard; 275 276 process_cell_fn process_cell; 277 process_cell_fn process_discard_cell; 278 279 process_mapping_fn process_prepared_mapping; 280 process_mapping_fn process_prepared_discard; 281 process_mapping_fn process_prepared_discard_pt2; 282 283 struct dm_bio_prison_cell **cell_sort_array; 284 285 mempool_t mapping_pool; 286 }; 287 288 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 289 290 static enum pool_mode get_pool_mode(struct pool *pool) 291 { 292 return pool->pf.mode; 293 } 294 295 static void notify_of_pool_mode_change(struct pool *pool) 296 { 297 static const char *descs[] = { 298 "write", 299 "out-of-data-space", 300 "read-only", 301 "read-only", 302 "fail" 303 }; 304 const char *extra_desc = NULL; 305 enum pool_mode mode = get_pool_mode(pool); 306 307 if (mode == PM_OUT_OF_DATA_SPACE) { 308 if (!pool->pf.error_if_no_space) 309 extra_desc = " (queue IO)"; 310 else 311 extra_desc = " (error IO)"; 312 } 313 314 dm_table_event(pool->ti->table); 315 DMINFO("%s: switching pool to %s%s mode", 316 dm_device_name(pool->pool_md), 317 descs[(int)mode], extra_desc ? : ""); 318 } 319 320 /* 321 * Target context for a pool. 322 */ 323 struct pool_c { 324 struct dm_target *ti; 325 struct pool *pool; 326 struct dm_dev *data_dev; 327 struct dm_dev *metadata_dev; 328 329 dm_block_t low_water_blocks; 330 struct pool_features requested_pf; /* Features requested during table load */ 331 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 332 }; 333 334 /* 335 * Target context for a thin. 336 */ 337 struct thin_c { 338 struct list_head list; 339 struct dm_dev *pool_dev; 340 struct dm_dev *origin_dev; 341 sector_t origin_size; 342 dm_thin_id dev_id; 343 344 struct pool *pool; 345 struct dm_thin_device *td; 346 struct mapped_device *thin_md; 347 348 bool requeue_mode:1; 349 spinlock_t lock; 350 struct list_head deferred_cells; 351 struct bio_list deferred_bio_list; 352 struct bio_list retry_on_resume_list; 353 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 354 355 /* 356 * Ensures the thin is not destroyed until the worker has finished 357 * iterating the active_thins list. 358 */ 359 refcount_t refcount; 360 struct completion can_destroy; 361 }; 362 363 /*----------------------------------------------------------------*/ 364 365 static bool block_size_is_power_of_two(struct pool *pool) 366 { 367 return pool->sectors_per_block_shift >= 0; 368 } 369 370 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 371 { 372 return block_size_is_power_of_two(pool) ? 373 (b << pool->sectors_per_block_shift) : 374 (b * pool->sectors_per_block); 375 } 376 377 /*----------------------------------------------------------------*/ 378 379 struct discard_op { 380 struct thin_c *tc; 381 struct blk_plug plug; 382 struct bio *parent_bio; 383 struct bio *bio; 384 }; 385 386 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 387 { 388 BUG_ON(!parent); 389 390 op->tc = tc; 391 blk_start_plug(&op->plug); 392 op->parent_bio = parent; 393 op->bio = NULL; 394 } 395 396 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 397 { 398 struct thin_c *tc = op->tc; 399 sector_t s = block_to_sectors(tc->pool, data_b); 400 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 401 402 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT, 403 &op->bio); 404 } 405 406 static void end_discard(struct discard_op *op, int r) 407 { 408 if (op->bio) { 409 /* 410 * Even if one of the calls to issue_discard failed, we 411 * need to wait for the chain to complete. 412 */ 413 bio_chain(op->bio, op->parent_bio); 414 op->bio->bi_opf = REQ_OP_DISCARD; 415 submit_bio(op->bio); 416 } 417 418 blk_finish_plug(&op->plug); 419 420 /* 421 * Even if r is set, there could be sub discards in flight that we 422 * need to wait for. 423 */ 424 if (r && !op->parent_bio->bi_status) 425 op->parent_bio->bi_status = errno_to_blk_status(r); 426 bio_endio(op->parent_bio); 427 } 428 429 /*----------------------------------------------------------------*/ 430 431 /* 432 * wake_worker() is used when new work is queued and when pool_resume is 433 * ready to continue deferred IO processing. 434 */ 435 static void wake_worker(struct pool *pool) 436 { 437 queue_work(pool->wq, &pool->worker); 438 } 439 440 /*----------------------------------------------------------------*/ 441 442 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 443 struct dm_bio_prison_cell **cell_result) 444 { 445 int r; 446 struct dm_bio_prison_cell *cell_prealloc; 447 448 /* 449 * Allocate a cell from the prison's mempool. 450 * This might block but it can't fail. 451 */ 452 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 453 454 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 455 if (r) 456 /* 457 * We reused an old cell; we can get rid of 458 * the new one. 459 */ 460 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 461 462 return r; 463 } 464 465 static void cell_release(struct pool *pool, 466 struct dm_bio_prison_cell *cell, 467 struct bio_list *bios) 468 { 469 dm_cell_release(pool->prison, cell, bios); 470 dm_bio_prison_free_cell(pool->prison, cell); 471 } 472 473 static void cell_visit_release(struct pool *pool, 474 void (*fn)(void *, struct dm_bio_prison_cell *), 475 void *context, 476 struct dm_bio_prison_cell *cell) 477 { 478 dm_cell_visit_release(pool->prison, fn, context, cell); 479 dm_bio_prison_free_cell(pool->prison, cell); 480 } 481 482 static void cell_release_no_holder(struct pool *pool, 483 struct dm_bio_prison_cell *cell, 484 struct bio_list *bios) 485 { 486 dm_cell_release_no_holder(pool->prison, cell, bios); 487 dm_bio_prison_free_cell(pool->prison, cell); 488 } 489 490 static void cell_error_with_code(struct pool *pool, 491 struct dm_bio_prison_cell *cell, blk_status_t error_code) 492 { 493 dm_cell_error(pool->prison, cell, error_code); 494 dm_bio_prison_free_cell(pool->prison, cell); 495 } 496 497 static blk_status_t get_pool_io_error_code(struct pool *pool) 498 { 499 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 500 } 501 502 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 503 { 504 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 505 } 506 507 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 508 { 509 cell_error_with_code(pool, cell, 0); 510 } 511 512 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 513 { 514 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 515 } 516 517 /*----------------------------------------------------------------*/ 518 519 /* 520 * A global list of pools that uses a struct mapped_device as a key. 521 */ 522 static struct dm_thin_pool_table { 523 struct mutex mutex; 524 struct list_head pools; 525 } dm_thin_pool_table; 526 527 static void pool_table_init(void) 528 { 529 mutex_init(&dm_thin_pool_table.mutex); 530 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 531 } 532 533 static void pool_table_exit(void) 534 { 535 mutex_destroy(&dm_thin_pool_table.mutex); 536 } 537 538 static void __pool_table_insert(struct pool *pool) 539 { 540 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 541 list_add(&pool->list, &dm_thin_pool_table.pools); 542 } 543 544 static void __pool_table_remove(struct pool *pool) 545 { 546 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 547 list_del(&pool->list); 548 } 549 550 static struct pool *__pool_table_lookup(struct mapped_device *md) 551 { 552 struct pool *pool = NULL, *tmp; 553 554 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 555 556 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 557 if (tmp->pool_md == md) { 558 pool = tmp; 559 break; 560 } 561 } 562 563 return pool; 564 } 565 566 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 567 { 568 struct pool *pool = NULL, *tmp; 569 570 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 571 572 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 573 if (tmp->md_dev == md_dev) { 574 pool = tmp; 575 break; 576 } 577 } 578 579 return pool; 580 } 581 582 /*----------------------------------------------------------------*/ 583 584 struct dm_thin_endio_hook { 585 struct thin_c *tc; 586 struct dm_deferred_entry *shared_read_entry; 587 struct dm_deferred_entry *all_io_entry; 588 struct dm_thin_new_mapping *overwrite_mapping; 589 struct rb_node rb_node; 590 struct dm_bio_prison_cell *cell; 591 }; 592 593 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 594 { 595 bio_list_merge(bios, master); 596 bio_list_init(master); 597 } 598 599 static void error_bio_list(struct bio_list *bios, blk_status_t error) 600 { 601 struct bio *bio; 602 603 while ((bio = bio_list_pop(bios))) { 604 bio->bi_status = error; 605 bio_endio(bio); 606 } 607 } 608 609 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 610 blk_status_t error) 611 { 612 struct bio_list bios; 613 614 bio_list_init(&bios); 615 616 spin_lock_irq(&tc->lock); 617 __merge_bio_list(&bios, master); 618 spin_unlock_irq(&tc->lock); 619 620 error_bio_list(&bios, error); 621 } 622 623 static void requeue_deferred_cells(struct thin_c *tc) 624 { 625 struct pool *pool = tc->pool; 626 struct list_head cells; 627 struct dm_bio_prison_cell *cell, *tmp; 628 629 INIT_LIST_HEAD(&cells); 630 631 spin_lock_irq(&tc->lock); 632 list_splice_init(&tc->deferred_cells, &cells); 633 spin_unlock_irq(&tc->lock); 634 635 list_for_each_entry_safe(cell, tmp, &cells, user_list) 636 cell_requeue(pool, cell); 637 } 638 639 static void requeue_io(struct thin_c *tc) 640 { 641 struct bio_list bios; 642 643 bio_list_init(&bios); 644 645 spin_lock_irq(&tc->lock); 646 __merge_bio_list(&bios, &tc->deferred_bio_list); 647 __merge_bio_list(&bios, &tc->retry_on_resume_list); 648 spin_unlock_irq(&tc->lock); 649 650 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 651 requeue_deferred_cells(tc); 652 } 653 654 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 655 { 656 struct thin_c *tc; 657 658 rcu_read_lock(); 659 list_for_each_entry_rcu(tc, &pool->active_thins, list) 660 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 661 rcu_read_unlock(); 662 } 663 664 static void error_retry_list(struct pool *pool) 665 { 666 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 667 } 668 669 /* 670 * This section of code contains the logic for processing a thin device's IO. 671 * Much of the code depends on pool object resources (lists, workqueues, etc) 672 * but most is exclusively called from the thin target rather than the thin-pool 673 * target. 674 */ 675 676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 677 { 678 struct pool *pool = tc->pool; 679 sector_t block_nr = bio->bi_iter.bi_sector; 680 681 if (block_size_is_power_of_two(pool)) 682 block_nr >>= pool->sectors_per_block_shift; 683 else 684 (void) sector_div(block_nr, pool->sectors_per_block); 685 686 return block_nr; 687 } 688 689 /* 690 * Returns the _complete_ blocks that this bio covers. 691 */ 692 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 693 dm_block_t *begin, dm_block_t *end) 694 { 695 struct pool *pool = tc->pool; 696 sector_t b = bio->bi_iter.bi_sector; 697 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 698 699 b += pool->sectors_per_block - 1ull; /* so we round up */ 700 701 if (block_size_is_power_of_two(pool)) { 702 b >>= pool->sectors_per_block_shift; 703 e >>= pool->sectors_per_block_shift; 704 } else { 705 (void) sector_div(b, pool->sectors_per_block); 706 (void) sector_div(e, pool->sectors_per_block); 707 } 708 709 if (e < b) 710 /* Can happen if the bio is within a single block. */ 711 e = b; 712 713 *begin = b; 714 *end = e; 715 } 716 717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 718 { 719 struct pool *pool = tc->pool; 720 sector_t bi_sector = bio->bi_iter.bi_sector; 721 722 bio_set_dev(bio, tc->pool_dev->bdev); 723 if (block_size_is_power_of_two(pool)) 724 bio->bi_iter.bi_sector = 725 (block << pool->sectors_per_block_shift) | 726 (bi_sector & (pool->sectors_per_block - 1)); 727 else 728 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 729 sector_div(bi_sector, pool->sectors_per_block); 730 } 731 732 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 733 { 734 bio_set_dev(bio, tc->origin_dev->bdev); 735 } 736 737 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 738 { 739 return op_is_flush(bio->bi_opf) && 740 dm_thin_changed_this_transaction(tc->td); 741 } 742 743 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 744 { 745 struct dm_thin_endio_hook *h; 746 747 if (bio_op(bio) == REQ_OP_DISCARD) 748 return; 749 750 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 751 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 752 } 753 754 static void issue(struct thin_c *tc, struct bio *bio) 755 { 756 struct pool *pool = tc->pool; 757 758 if (!bio_triggers_commit(tc, bio)) { 759 dm_submit_bio_remap(bio, NULL); 760 return; 761 } 762 763 /* 764 * Complete bio with an error if earlier I/O caused changes to 765 * the metadata that can't be committed e.g, due to I/O errors 766 * on the metadata device. 767 */ 768 if (dm_thin_aborted_changes(tc->td)) { 769 bio_io_error(bio); 770 return; 771 } 772 773 /* 774 * Batch together any bios that trigger commits and then issue a 775 * single commit for them in process_deferred_bios(). 776 */ 777 spin_lock_irq(&pool->lock); 778 bio_list_add(&pool->deferred_flush_bios, bio); 779 spin_unlock_irq(&pool->lock); 780 } 781 782 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 783 { 784 remap_to_origin(tc, bio); 785 issue(tc, bio); 786 } 787 788 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 789 dm_block_t block) 790 { 791 remap(tc, bio, block); 792 issue(tc, bio); 793 } 794 795 /*----------------------------------------------------------------*/ 796 797 /* 798 * Bio endio functions. 799 */ 800 struct dm_thin_new_mapping { 801 struct list_head list; 802 803 bool pass_discard:1; 804 bool maybe_shared:1; 805 806 /* 807 * Track quiescing, copying and zeroing preparation actions. When this 808 * counter hits zero the block is prepared and can be inserted into the 809 * btree. 810 */ 811 atomic_t prepare_actions; 812 813 blk_status_t status; 814 struct thin_c *tc; 815 dm_block_t virt_begin, virt_end; 816 dm_block_t data_block; 817 struct dm_bio_prison_cell *cell; 818 819 /* 820 * If the bio covers the whole area of a block then we can avoid 821 * zeroing or copying. Instead this bio is hooked. The bio will 822 * still be in the cell, so care has to be taken to avoid issuing 823 * the bio twice. 824 */ 825 struct bio *bio; 826 bio_end_io_t *saved_bi_end_io; 827 }; 828 829 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 830 { 831 struct pool *pool = m->tc->pool; 832 833 if (atomic_dec_and_test(&m->prepare_actions)) { 834 list_add_tail(&m->list, &pool->prepared_mappings); 835 wake_worker(pool); 836 } 837 } 838 839 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 840 { 841 unsigned long flags; 842 struct pool *pool = m->tc->pool; 843 844 spin_lock_irqsave(&pool->lock, flags); 845 __complete_mapping_preparation(m); 846 spin_unlock_irqrestore(&pool->lock, flags); 847 } 848 849 static void copy_complete(int read_err, unsigned long write_err, void *context) 850 { 851 struct dm_thin_new_mapping *m = context; 852 853 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 854 complete_mapping_preparation(m); 855 } 856 857 static void overwrite_endio(struct bio *bio) 858 { 859 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 860 struct dm_thin_new_mapping *m = h->overwrite_mapping; 861 862 bio->bi_end_io = m->saved_bi_end_io; 863 864 m->status = bio->bi_status; 865 complete_mapping_preparation(m); 866 } 867 868 /*----------------------------------------------------------------*/ 869 870 /* 871 * Workqueue. 872 */ 873 874 /* 875 * Prepared mapping jobs. 876 */ 877 878 /* 879 * This sends the bios in the cell, except the original holder, back 880 * to the deferred_bios list. 881 */ 882 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 883 { 884 struct pool *pool = tc->pool; 885 unsigned long flags; 886 int has_work; 887 888 spin_lock_irqsave(&tc->lock, flags); 889 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 890 has_work = !bio_list_empty(&tc->deferred_bio_list); 891 spin_unlock_irqrestore(&tc->lock, flags); 892 893 if (has_work) 894 wake_worker(pool); 895 } 896 897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 898 899 struct remap_info { 900 struct thin_c *tc; 901 struct bio_list defer_bios; 902 struct bio_list issue_bios; 903 }; 904 905 static void __inc_remap_and_issue_cell(void *context, 906 struct dm_bio_prison_cell *cell) 907 { 908 struct remap_info *info = context; 909 struct bio *bio; 910 911 while ((bio = bio_list_pop(&cell->bios))) { 912 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 913 bio_list_add(&info->defer_bios, bio); 914 else { 915 inc_all_io_entry(info->tc->pool, bio); 916 917 /* 918 * We can't issue the bios with the bio prison lock 919 * held, so we add them to a list to issue on 920 * return from this function. 921 */ 922 bio_list_add(&info->issue_bios, bio); 923 } 924 } 925 } 926 927 static void inc_remap_and_issue_cell(struct thin_c *tc, 928 struct dm_bio_prison_cell *cell, 929 dm_block_t block) 930 { 931 struct bio *bio; 932 struct remap_info info; 933 934 info.tc = tc; 935 bio_list_init(&info.defer_bios); 936 bio_list_init(&info.issue_bios); 937 938 /* 939 * We have to be careful to inc any bios we're about to issue 940 * before the cell is released, and avoid a race with new bios 941 * being added to the cell. 942 */ 943 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 944 &info, cell); 945 946 while ((bio = bio_list_pop(&info.defer_bios))) 947 thin_defer_bio(tc, bio); 948 949 while ((bio = bio_list_pop(&info.issue_bios))) 950 remap_and_issue(info.tc, bio, block); 951 } 952 953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 954 { 955 cell_error(m->tc->pool, m->cell); 956 list_del(&m->list); 957 mempool_free(m, &m->tc->pool->mapping_pool); 958 } 959 960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 961 { 962 struct pool *pool = tc->pool; 963 964 /* 965 * If the bio has the REQ_FUA flag set we must commit the metadata 966 * before signaling its completion. 967 */ 968 if (!bio_triggers_commit(tc, bio)) { 969 bio_endio(bio); 970 return; 971 } 972 973 /* 974 * Complete bio with an error if earlier I/O caused changes to the 975 * metadata that can't be committed, e.g, due to I/O errors on the 976 * metadata device. 977 */ 978 if (dm_thin_aborted_changes(tc->td)) { 979 bio_io_error(bio); 980 return; 981 } 982 983 /* 984 * Batch together any bios that trigger commits and then issue a 985 * single commit for them in process_deferred_bios(). 986 */ 987 spin_lock_irq(&pool->lock); 988 bio_list_add(&pool->deferred_flush_completions, bio); 989 spin_unlock_irq(&pool->lock); 990 } 991 992 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 993 { 994 struct thin_c *tc = m->tc; 995 struct pool *pool = tc->pool; 996 struct bio *bio = m->bio; 997 int r; 998 999 if (m->status) { 1000 cell_error(pool, m->cell); 1001 goto out; 1002 } 1003 1004 /* 1005 * Commit the prepared block into the mapping btree. 1006 * Any I/O for this block arriving after this point will get 1007 * remapped to it directly. 1008 */ 1009 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1010 if (r) { 1011 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1012 cell_error(pool, m->cell); 1013 goto out; 1014 } 1015 1016 /* 1017 * Release any bios held while the block was being provisioned. 1018 * If we are processing a write bio that completely covers the block, 1019 * we already processed it so can ignore it now when processing 1020 * the bios in the cell. 1021 */ 1022 if (bio) { 1023 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1024 complete_overwrite_bio(tc, bio); 1025 } else { 1026 inc_all_io_entry(tc->pool, m->cell->holder); 1027 remap_and_issue(tc, m->cell->holder, m->data_block); 1028 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1029 } 1030 1031 out: 1032 list_del(&m->list); 1033 mempool_free(m, &pool->mapping_pool); 1034 } 1035 1036 /*----------------------------------------------------------------*/ 1037 1038 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1039 { 1040 struct thin_c *tc = m->tc; 1041 1042 if (m->cell) 1043 cell_defer_no_holder(tc, m->cell); 1044 mempool_free(m, &tc->pool->mapping_pool); 1045 } 1046 1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1048 { 1049 bio_io_error(m->bio); 1050 free_discard_mapping(m); 1051 } 1052 1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1054 { 1055 bio_endio(m->bio); 1056 free_discard_mapping(m); 1057 } 1058 1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1060 { 1061 int r; 1062 struct thin_c *tc = m->tc; 1063 1064 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1065 if (r) { 1066 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1067 bio_io_error(m->bio); 1068 } else 1069 bio_endio(m->bio); 1070 1071 cell_defer_no_holder(tc, m->cell); 1072 mempool_free(m, &tc->pool->mapping_pool); 1073 } 1074 1075 /*----------------------------------------------------------------*/ 1076 1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1078 struct bio *discard_parent) 1079 { 1080 /* 1081 * We've already unmapped this range of blocks, but before we 1082 * passdown we have to check that these blocks are now unused. 1083 */ 1084 int r = 0; 1085 bool shared = true; 1086 struct thin_c *tc = m->tc; 1087 struct pool *pool = tc->pool; 1088 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1089 struct discard_op op; 1090 1091 begin_discard(&op, tc, discard_parent); 1092 while (b != end) { 1093 /* find start of unmapped run */ 1094 for (; b < end; b++) { 1095 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1096 if (r) 1097 goto out; 1098 1099 if (!shared) 1100 break; 1101 } 1102 1103 if (b == end) 1104 break; 1105 1106 /* find end of run */ 1107 for (e = b + 1; e != end; e++) { 1108 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1109 if (r) 1110 goto out; 1111 1112 if (shared) 1113 break; 1114 } 1115 1116 r = issue_discard(&op, b, e); 1117 if (r) 1118 goto out; 1119 1120 b = e; 1121 } 1122 out: 1123 end_discard(&op, r); 1124 } 1125 1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1127 { 1128 unsigned long flags; 1129 struct pool *pool = m->tc->pool; 1130 1131 spin_lock_irqsave(&pool->lock, flags); 1132 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1133 spin_unlock_irqrestore(&pool->lock, flags); 1134 wake_worker(pool); 1135 } 1136 1137 static void passdown_endio(struct bio *bio) 1138 { 1139 /* 1140 * It doesn't matter if the passdown discard failed, we still want 1141 * to unmap (we ignore err). 1142 */ 1143 queue_passdown_pt2(bio->bi_private); 1144 bio_put(bio); 1145 } 1146 1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1148 { 1149 int r; 1150 struct thin_c *tc = m->tc; 1151 struct pool *pool = tc->pool; 1152 struct bio *discard_parent; 1153 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1154 1155 /* 1156 * Only this thread allocates blocks, so we can be sure that the 1157 * newly unmapped blocks will not be allocated before the end of 1158 * the function. 1159 */ 1160 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1161 if (r) { 1162 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1163 bio_io_error(m->bio); 1164 cell_defer_no_holder(tc, m->cell); 1165 mempool_free(m, &pool->mapping_pool); 1166 return; 1167 } 1168 1169 /* 1170 * Increment the unmapped blocks. This prevents a race between the 1171 * passdown io and reallocation of freed blocks. 1172 */ 1173 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1174 if (r) { 1175 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1176 bio_io_error(m->bio); 1177 cell_defer_no_holder(tc, m->cell); 1178 mempool_free(m, &pool->mapping_pool); 1179 return; 1180 } 1181 1182 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO); 1183 discard_parent->bi_end_io = passdown_endio; 1184 discard_parent->bi_private = m; 1185 if (m->maybe_shared) 1186 passdown_double_checking_shared_status(m, discard_parent); 1187 else { 1188 struct discard_op op; 1189 1190 begin_discard(&op, tc, discard_parent); 1191 r = issue_discard(&op, m->data_block, data_end); 1192 end_discard(&op, r); 1193 } 1194 } 1195 1196 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1197 { 1198 int r; 1199 struct thin_c *tc = m->tc; 1200 struct pool *pool = tc->pool; 1201 1202 /* 1203 * The passdown has completed, so now we can decrement all those 1204 * unmapped blocks. 1205 */ 1206 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1207 m->data_block + (m->virt_end - m->virt_begin)); 1208 if (r) { 1209 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1210 bio_io_error(m->bio); 1211 } else 1212 bio_endio(m->bio); 1213 1214 cell_defer_no_holder(tc, m->cell); 1215 mempool_free(m, &pool->mapping_pool); 1216 } 1217 1218 static void process_prepared(struct pool *pool, struct list_head *head, 1219 process_mapping_fn *fn) 1220 { 1221 struct list_head maps; 1222 struct dm_thin_new_mapping *m, *tmp; 1223 1224 INIT_LIST_HEAD(&maps); 1225 spin_lock_irq(&pool->lock); 1226 list_splice_init(head, &maps); 1227 spin_unlock_irq(&pool->lock); 1228 1229 list_for_each_entry_safe(m, tmp, &maps, list) 1230 (*fn)(m); 1231 } 1232 1233 /* 1234 * Deferred bio jobs. 1235 */ 1236 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1237 { 1238 return bio->bi_iter.bi_size == 1239 (pool->sectors_per_block << SECTOR_SHIFT); 1240 } 1241 1242 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1243 { 1244 return (bio_data_dir(bio) == WRITE) && 1245 io_overlaps_block(pool, bio); 1246 } 1247 1248 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1249 bio_end_io_t *fn) 1250 { 1251 *save = bio->bi_end_io; 1252 bio->bi_end_io = fn; 1253 } 1254 1255 static int ensure_next_mapping(struct pool *pool) 1256 { 1257 if (pool->next_mapping) 1258 return 0; 1259 1260 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1261 1262 return pool->next_mapping ? 0 : -ENOMEM; 1263 } 1264 1265 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1266 { 1267 struct dm_thin_new_mapping *m = pool->next_mapping; 1268 1269 BUG_ON(!pool->next_mapping); 1270 1271 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1272 INIT_LIST_HEAD(&m->list); 1273 m->bio = NULL; 1274 1275 pool->next_mapping = NULL; 1276 1277 return m; 1278 } 1279 1280 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1281 sector_t begin, sector_t end) 1282 { 1283 struct dm_io_region to; 1284 1285 to.bdev = tc->pool_dev->bdev; 1286 to.sector = begin; 1287 to.count = end - begin; 1288 1289 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1290 } 1291 1292 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1293 dm_block_t data_begin, 1294 struct dm_thin_new_mapping *m) 1295 { 1296 struct pool *pool = tc->pool; 1297 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1298 1299 h->overwrite_mapping = m; 1300 m->bio = bio; 1301 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1302 inc_all_io_entry(pool, bio); 1303 remap_and_issue(tc, bio, data_begin); 1304 } 1305 1306 /* 1307 * A partial copy also needs to zero the uncopied region. 1308 */ 1309 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1310 struct dm_dev *origin, dm_block_t data_origin, 1311 dm_block_t data_dest, 1312 struct dm_bio_prison_cell *cell, struct bio *bio, 1313 sector_t len) 1314 { 1315 struct pool *pool = tc->pool; 1316 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1317 1318 m->tc = tc; 1319 m->virt_begin = virt_block; 1320 m->virt_end = virt_block + 1u; 1321 m->data_block = data_dest; 1322 m->cell = cell; 1323 1324 /* 1325 * quiesce action + copy action + an extra reference held for the 1326 * duration of this function (we may need to inc later for a 1327 * partial zero). 1328 */ 1329 atomic_set(&m->prepare_actions, 3); 1330 1331 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1332 complete_mapping_preparation(m); /* already quiesced */ 1333 1334 /* 1335 * IO to pool_dev remaps to the pool target's data_dev. 1336 * 1337 * If the whole block of data is being overwritten, we can issue the 1338 * bio immediately. Otherwise we use kcopyd to clone the data first. 1339 */ 1340 if (io_overwrites_block(pool, bio)) 1341 remap_and_issue_overwrite(tc, bio, data_dest, m); 1342 else { 1343 struct dm_io_region from, to; 1344 1345 from.bdev = origin->bdev; 1346 from.sector = data_origin * pool->sectors_per_block; 1347 from.count = len; 1348 1349 to.bdev = tc->pool_dev->bdev; 1350 to.sector = data_dest * pool->sectors_per_block; 1351 to.count = len; 1352 1353 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1354 0, copy_complete, m); 1355 1356 /* 1357 * Do we need to zero a tail region? 1358 */ 1359 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1360 atomic_inc(&m->prepare_actions); 1361 ll_zero(tc, m, 1362 data_dest * pool->sectors_per_block + len, 1363 (data_dest + 1) * pool->sectors_per_block); 1364 } 1365 } 1366 1367 complete_mapping_preparation(m); /* drop our ref */ 1368 } 1369 1370 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1371 dm_block_t data_origin, dm_block_t data_dest, 1372 struct dm_bio_prison_cell *cell, struct bio *bio) 1373 { 1374 schedule_copy(tc, virt_block, tc->pool_dev, 1375 data_origin, data_dest, cell, bio, 1376 tc->pool->sectors_per_block); 1377 } 1378 1379 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1380 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1381 struct bio *bio) 1382 { 1383 struct pool *pool = tc->pool; 1384 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1385 1386 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1387 m->tc = tc; 1388 m->virt_begin = virt_block; 1389 m->virt_end = virt_block + 1u; 1390 m->data_block = data_block; 1391 m->cell = cell; 1392 1393 /* 1394 * If the whole block of data is being overwritten or we are not 1395 * zeroing pre-existing data, we can issue the bio immediately. 1396 * Otherwise we use kcopyd to zero the data first. 1397 */ 1398 if (pool->pf.zero_new_blocks) { 1399 if (io_overwrites_block(pool, bio)) 1400 remap_and_issue_overwrite(tc, bio, data_block, m); 1401 else 1402 ll_zero(tc, m, data_block * pool->sectors_per_block, 1403 (data_block + 1) * pool->sectors_per_block); 1404 } else 1405 process_prepared_mapping(m); 1406 } 1407 1408 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1409 dm_block_t data_dest, 1410 struct dm_bio_prison_cell *cell, struct bio *bio) 1411 { 1412 struct pool *pool = tc->pool; 1413 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1414 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1415 1416 if (virt_block_end <= tc->origin_size) 1417 schedule_copy(tc, virt_block, tc->origin_dev, 1418 virt_block, data_dest, cell, bio, 1419 pool->sectors_per_block); 1420 1421 else if (virt_block_begin < tc->origin_size) 1422 schedule_copy(tc, virt_block, tc->origin_dev, 1423 virt_block, data_dest, cell, bio, 1424 tc->origin_size - virt_block_begin); 1425 1426 else 1427 schedule_zero(tc, virt_block, data_dest, cell, bio); 1428 } 1429 1430 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1431 1432 static void requeue_bios(struct pool *pool); 1433 1434 static bool is_read_only_pool_mode(enum pool_mode mode) 1435 { 1436 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1437 } 1438 1439 static bool is_read_only(struct pool *pool) 1440 { 1441 return is_read_only_pool_mode(get_pool_mode(pool)); 1442 } 1443 1444 static void check_for_metadata_space(struct pool *pool) 1445 { 1446 int r; 1447 const char *ooms_reason = NULL; 1448 dm_block_t nr_free; 1449 1450 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1451 if (r) 1452 ooms_reason = "Could not get free metadata blocks"; 1453 else if (!nr_free) 1454 ooms_reason = "No free metadata blocks"; 1455 1456 if (ooms_reason && !is_read_only(pool)) { 1457 DMERR("%s", ooms_reason); 1458 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1459 } 1460 } 1461 1462 static void check_for_data_space(struct pool *pool) 1463 { 1464 int r; 1465 dm_block_t nr_free; 1466 1467 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1468 return; 1469 1470 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1471 if (r) 1472 return; 1473 1474 if (nr_free) { 1475 set_pool_mode(pool, PM_WRITE); 1476 requeue_bios(pool); 1477 } 1478 } 1479 1480 /* 1481 * A non-zero return indicates read_only or fail_io mode. 1482 * Many callers don't care about the return value. 1483 */ 1484 static int commit(struct pool *pool) 1485 { 1486 int r; 1487 1488 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1489 return -EINVAL; 1490 1491 r = dm_pool_commit_metadata(pool->pmd); 1492 if (r) 1493 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1494 else { 1495 check_for_metadata_space(pool); 1496 check_for_data_space(pool); 1497 } 1498 1499 return r; 1500 } 1501 1502 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1503 { 1504 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1505 DMWARN("%s: reached low water mark for data device: sending event.", 1506 dm_device_name(pool->pool_md)); 1507 spin_lock_irq(&pool->lock); 1508 pool->low_water_triggered = true; 1509 spin_unlock_irq(&pool->lock); 1510 dm_table_event(pool->ti->table); 1511 } 1512 } 1513 1514 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1515 { 1516 int r; 1517 dm_block_t free_blocks; 1518 struct pool *pool = tc->pool; 1519 1520 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1521 return -EINVAL; 1522 1523 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1524 if (r) { 1525 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1526 return r; 1527 } 1528 1529 check_low_water_mark(pool, free_blocks); 1530 1531 if (!free_blocks) { 1532 /* 1533 * Try to commit to see if that will free up some 1534 * more space. 1535 */ 1536 r = commit(pool); 1537 if (r) 1538 return r; 1539 1540 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1541 if (r) { 1542 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1543 return r; 1544 } 1545 1546 if (!free_blocks) { 1547 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1548 return -ENOSPC; 1549 } 1550 } 1551 1552 r = dm_pool_alloc_data_block(pool->pmd, result); 1553 if (r) { 1554 if (r == -ENOSPC) 1555 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1556 else 1557 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1558 return r; 1559 } 1560 1561 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1562 if (r) { 1563 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1564 return r; 1565 } 1566 1567 if (!free_blocks) { 1568 /* Let's commit before we use up the metadata reserve. */ 1569 r = commit(pool); 1570 if (r) 1571 return r; 1572 } 1573 1574 return 0; 1575 } 1576 1577 /* 1578 * If we have run out of space, queue bios until the device is 1579 * resumed, presumably after having been reloaded with more space. 1580 */ 1581 static void retry_on_resume(struct bio *bio) 1582 { 1583 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1584 struct thin_c *tc = h->tc; 1585 1586 spin_lock_irq(&tc->lock); 1587 bio_list_add(&tc->retry_on_resume_list, bio); 1588 spin_unlock_irq(&tc->lock); 1589 } 1590 1591 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1592 { 1593 enum pool_mode m = get_pool_mode(pool); 1594 1595 switch (m) { 1596 case PM_WRITE: 1597 /* Shouldn't get here */ 1598 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1599 return BLK_STS_IOERR; 1600 1601 case PM_OUT_OF_DATA_SPACE: 1602 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1603 1604 case PM_OUT_OF_METADATA_SPACE: 1605 case PM_READ_ONLY: 1606 case PM_FAIL: 1607 return BLK_STS_IOERR; 1608 default: 1609 /* Shouldn't get here */ 1610 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1611 return BLK_STS_IOERR; 1612 } 1613 } 1614 1615 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1616 { 1617 blk_status_t error = should_error_unserviceable_bio(pool); 1618 1619 if (error) { 1620 bio->bi_status = error; 1621 bio_endio(bio); 1622 } else 1623 retry_on_resume(bio); 1624 } 1625 1626 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1627 { 1628 struct bio *bio; 1629 struct bio_list bios; 1630 blk_status_t error; 1631 1632 error = should_error_unserviceable_bio(pool); 1633 if (error) { 1634 cell_error_with_code(pool, cell, error); 1635 return; 1636 } 1637 1638 bio_list_init(&bios); 1639 cell_release(pool, cell, &bios); 1640 1641 while ((bio = bio_list_pop(&bios))) 1642 retry_on_resume(bio); 1643 } 1644 1645 static void process_discard_cell_no_passdown(struct thin_c *tc, 1646 struct dm_bio_prison_cell *virt_cell) 1647 { 1648 struct pool *pool = tc->pool; 1649 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1650 1651 /* 1652 * We don't need to lock the data blocks, since there's no 1653 * passdown. We only lock data blocks for allocation and breaking sharing. 1654 */ 1655 m->tc = tc; 1656 m->virt_begin = virt_cell->key.block_begin; 1657 m->virt_end = virt_cell->key.block_end; 1658 m->cell = virt_cell; 1659 m->bio = virt_cell->holder; 1660 1661 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1662 pool->process_prepared_discard(m); 1663 } 1664 1665 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1666 struct bio *bio) 1667 { 1668 struct pool *pool = tc->pool; 1669 1670 int r; 1671 bool maybe_shared; 1672 struct dm_cell_key data_key; 1673 struct dm_bio_prison_cell *data_cell; 1674 struct dm_thin_new_mapping *m; 1675 dm_block_t virt_begin, virt_end, data_begin; 1676 1677 while (begin != end) { 1678 r = ensure_next_mapping(pool); 1679 if (r) 1680 /* we did our best */ 1681 return; 1682 1683 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1684 &data_begin, &maybe_shared); 1685 if (r) 1686 /* 1687 * Silently fail, letting any mappings we've 1688 * created complete. 1689 */ 1690 break; 1691 1692 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1693 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1694 /* contention, we'll give up with this range */ 1695 begin = virt_end; 1696 continue; 1697 } 1698 1699 /* 1700 * IO may still be going to the destination block. We must 1701 * quiesce before we can do the removal. 1702 */ 1703 m = get_next_mapping(pool); 1704 m->tc = tc; 1705 m->maybe_shared = maybe_shared; 1706 m->virt_begin = virt_begin; 1707 m->virt_end = virt_end; 1708 m->data_block = data_begin; 1709 m->cell = data_cell; 1710 m->bio = bio; 1711 1712 /* 1713 * The parent bio must not complete before sub discard bios are 1714 * chained to it (see end_discard's bio_chain)! 1715 * 1716 * This per-mapping bi_remaining increment is paired with 1717 * the implicit decrement that occurs via bio_endio() in 1718 * end_discard(). 1719 */ 1720 bio_inc_remaining(bio); 1721 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1722 pool->process_prepared_discard(m); 1723 1724 begin = virt_end; 1725 } 1726 } 1727 1728 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1729 { 1730 struct bio *bio = virt_cell->holder; 1731 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1732 1733 /* 1734 * The virt_cell will only get freed once the origin bio completes. 1735 * This means it will remain locked while all the individual 1736 * passdown bios are in flight. 1737 */ 1738 h->cell = virt_cell; 1739 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1740 1741 /* 1742 * We complete the bio now, knowing that the bi_remaining field 1743 * will prevent completion until the sub range discards have 1744 * completed. 1745 */ 1746 bio_endio(bio); 1747 } 1748 1749 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1750 { 1751 dm_block_t begin, end; 1752 struct dm_cell_key virt_key; 1753 struct dm_bio_prison_cell *virt_cell; 1754 1755 get_bio_block_range(tc, bio, &begin, &end); 1756 if (begin == end) { 1757 /* 1758 * The discard covers less than a block. 1759 */ 1760 bio_endio(bio); 1761 return; 1762 } 1763 1764 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1765 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1766 /* 1767 * Potential starvation issue: We're relying on the 1768 * fs/application being well behaved, and not trying to 1769 * send IO to a region at the same time as discarding it. 1770 * If they do this persistently then it's possible this 1771 * cell will never be granted. 1772 */ 1773 return; 1774 1775 tc->pool->process_discard_cell(tc, virt_cell); 1776 } 1777 1778 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1779 struct dm_cell_key *key, 1780 struct dm_thin_lookup_result *lookup_result, 1781 struct dm_bio_prison_cell *cell) 1782 { 1783 int r; 1784 dm_block_t data_block; 1785 struct pool *pool = tc->pool; 1786 1787 r = alloc_data_block(tc, &data_block); 1788 switch (r) { 1789 case 0: 1790 schedule_internal_copy(tc, block, lookup_result->block, 1791 data_block, cell, bio); 1792 break; 1793 1794 case -ENOSPC: 1795 retry_bios_on_resume(pool, cell); 1796 break; 1797 1798 default: 1799 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1800 __func__, r); 1801 cell_error(pool, cell); 1802 break; 1803 } 1804 } 1805 1806 static void __remap_and_issue_shared_cell(void *context, 1807 struct dm_bio_prison_cell *cell) 1808 { 1809 struct remap_info *info = context; 1810 struct bio *bio; 1811 1812 while ((bio = bio_list_pop(&cell->bios))) { 1813 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1814 bio_op(bio) == REQ_OP_DISCARD) 1815 bio_list_add(&info->defer_bios, bio); 1816 else { 1817 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1818 1819 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1820 inc_all_io_entry(info->tc->pool, bio); 1821 bio_list_add(&info->issue_bios, bio); 1822 } 1823 } 1824 } 1825 1826 static void remap_and_issue_shared_cell(struct thin_c *tc, 1827 struct dm_bio_prison_cell *cell, 1828 dm_block_t block) 1829 { 1830 struct bio *bio; 1831 struct remap_info info; 1832 1833 info.tc = tc; 1834 bio_list_init(&info.defer_bios); 1835 bio_list_init(&info.issue_bios); 1836 1837 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1838 &info, cell); 1839 1840 while ((bio = bio_list_pop(&info.defer_bios))) 1841 thin_defer_bio(tc, bio); 1842 1843 while ((bio = bio_list_pop(&info.issue_bios))) 1844 remap_and_issue(tc, bio, block); 1845 } 1846 1847 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1848 dm_block_t block, 1849 struct dm_thin_lookup_result *lookup_result, 1850 struct dm_bio_prison_cell *virt_cell) 1851 { 1852 struct dm_bio_prison_cell *data_cell; 1853 struct pool *pool = tc->pool; 1854 struct dm_cell_key key; 1855 1856 /* 1857 * If cell is already occupied, then sharing is already in the process 1858 * of being broken so we have nothing further to do here. 1859 */ 1860 build_data_key(tc->td, lookup_result->block, &key); 1861 if (bio_detain(pool, &key, bio, &data_cell)) { 1862 cell_defer_no_holder(tc, virt_cell); 1863 return; 1864 } 1865 1866 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1867 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1868 cell_defer_no_holder(tc, virt_cell); 1869 } else { 1870 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1871 1872 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1873 inc_all_io_entry(pool, bio); 1874 remap_and_issue(tc, bio, lookup_result->block); 1875 1876 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1877 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1878 } 1879 } 1880 1881 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1882 struct dm_bio_prison_cell *cell) 1883 { 1884 int r; 1885 dm_block_t data_block; 1886 struct pool *pool = tc->pool; 1887 1888 /* 1889 * Remap empty bios (flushes) immediately, without provisioning. 1890 */ 1891 if (!bio->bi_iter.bi_size) { 1892 inc_all_io_entry(pool, bio); 1893 cell_defer_no_holder(tc, cell); 1894 1895 remap_and_issue(tc, bio, 0); 1896 return; 1897 } 1898 1899 /* 1900 * Fill read bios with zeroes and complete them immediately. 1901 */ 1902 if (bio_data_dir(bio) == READ) { 1903 zero_fill_bio(bio); 1904 cell_defer_no_holder(tc, cell); 1905 bio_endio(bio); 1906 return; 1907 } 1908 1909 r = alloc_data_block(tc, &data_block); 1910 switch (r) { 1911 case 0: 1912 if (tc->origin_dev) 1913 schedule_external_copy(tc, block, data_block, cell, bio); 1914 else 1915 schedule_zero(tc, block, data_block, cell, bio); 1916 break; 1917 1918 case -ENOSPC: 1919 retry_bios_on_resume(pool, cell); 1920 break; 1921 1922 default: 1923 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1924 __func__, r); 1925 cell_error(pool, cell); 1926 break; 1927 } 1928 } 1929 1930 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1931 { 1932 int r; 1933 struct pool *pool = tc->pool; 1934 struct bio *bio = cell->holder; 1935 dm_block_t block = get_bio_block(tc, bio); 1936 struct dm_thin_lookup_result lookup_result; 1937 1938 if (tc->requeue_mode) { 1939 cell_requeue(pool, cell); 1940 return; 1941 } 1942 1943 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1944 switch (r) { 1945 case 0: 1946 if (lookup_result.shared) 1947 process_shared_bio(tc, bio, block, &lookup_result, cell); 1948 else { 1949 inc_all_io_entry(pool, bio); 1950 remap_and_issue(tc, bio, lookup_result.block); 1951 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1952 } 1953 break; 1954 1955 case -ENODATA: 1956 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1957 inc_all_io_entry(pool, bio); 1958 cell_defer_no_holder(tc, cell); 1959 1960 if (bio_end_sector(bio) <= tc->origin_size) 1961 remap_to_origin_and_issue(tc, bio); 1962 1963 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1964 zero_fill_bio(bio); 1965 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1966 remap_to_origin_and_issue(tc, bio); 1967 1968 } else { 1969 zero_fill_bio(bio); 1970 bio_endio(bio); 1971 } 1972 } else 1973 provision_block(tc, bio, block, cell); 1974 break; 1975 1976 default: 1977 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1978 __func__, r); 1979 cell_defer_no_holder(tc, cell); 1980 bio_io_error(bio); 1981 break; 1982 } 1983 } 1984 1985 static void process_bio(struct thin_c *tc, struct bio *bio) 1986 { 1987 struct pool *pool = tc->pool; 1988 dm_block_t block = get_bio_block(tc, bio); 1989 struct dm_bio_prison_cell *cell; 1990 struct dm_cell_key key; 1991 1992 /* 1993 * If cell is already occupied, then the block is already 1994 * being provisioned so we have nothing further to do here. 1995 */ 1996 build_virtual_key(tc->td, block, &key); 1997 if (bio_detain(pool, &key, bio, &cell)) 1998 return; 1999 2000 process_cell(tc, cell); 2001 } 2002 2003 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2004 struct dm_bio_prison_cell *cell) 2005 { 2006 int r; 2007 int rw = bio_data_dir(bio); 2008 dm_block_t block = get_bio_block(tc, bio); 2009 struct dm_thin_lookup_result lookup_result; 2010 2011 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2012 switch (r) { 2013 case 0: 2014 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2015 handle_unserviceable_bio(tc->pool, bio); 2016 if (cell) 2017 cell_defer_no_holder(tc, cell); 2018 } else { 2019 inc_all_io_entry(tc->pool, bio); 2020 remap_and_issue(tc, bio, lookup_result.block); 2021 if (cell) 2022 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2023 } 2024 break; 2025 2026 case -ENODATA: 2027 if (cell) 2028 cell_defer_no_holder(tc, cell); 2029 if (rw != READ) { 2030 handle_unserviceable_bio(tc->pool, bio); 2031 break; 2032 } 2033 2034 if (tc->origin_dev) { 2035 inc_all_io_entry(tc->pool, bio); 2036 remap_to_origin_and_issue(tc, bio); 2037 break; 2038 } 2039 2040 zero_fill_bio(bio); 2041 bio_endio(bio); 2042 break; 2043 2044 default: 2045 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2046 __func__, r); 2047 if (cell) 2048 cell_defer_no_holder(tc, cell); 2049 bio_io_error(bio); 2050 break; 2051 } 2052 } 2053 2054 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2055 { 2056 __process_bio_read_only(tc, bio, NULL); 2057 } 2058 2059 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2060 { 2061 __process_bio_read_only(tc, cell->holder, cell); 2062 } 2063 2064 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2065 { 2066 bio_endio(bio); 2067 } 2068 2069 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2070 { 2071 bio_io_error(bio); 2072 } 2073 2074 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2075 { 2076 cell_success(tc->pool, cell); 2077 } 2078 2079 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2080 { 2081 cell_error(tc->pool, cell); 2082 } 2083 2084 /* 2085 * FIXME: should we also commit due to size of transaction, measured in 2086 * metadata blocks? 2087 */ 2088 static int need_commit_due_to_time(struct pool *pool) 2089 { 2090 return !time_in_range(jiffies, pool->last_commit_jiffies, 2091 pool->last_commit_jiffies + COMMIT_PERIOD); 2092 } 2093 2094 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2095 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2096 2097 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2098 { 2099 struct rb_node **rbp, *parent; 2100 struct dm_thin_endio_hook *pbd; 2101 sector_t bi_sector = bio->bi_iter.bi_sector; 2102 2103 rbp = &tc->sort_bio_list.rb_node; 2104 parent = NULL; 2105 while (*rbp) { 2106 parent = *rbp; 2107 pbd = thin_pbd(parent); 2108 2109 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2110 rbp = &(*rbp)->rb_left; 2111 else 2112 rbp = &(*rbp)->rb_right; 2113 } 2114 2115 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2116 rb_link_node(&pbd->rb_node, parent, rbp); 2117 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2118 } 2119 2120 static void __extract_sorted_bios(struct thin_c *tc) 2121 { 2122 struct rb_node *node; 2123 struct dm_thin_endio_hook *pbd; 2124 struct bio *bio; 2125 2126 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2127 pbd = thin_pbd(node); 2128 bio = thin_bio(pbd); 2129 2130 bio_list_add(&tc->deferred_bio_list, bio); 2131 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2132 } 2133 2134 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2135 } 2136 2137 static void __sort_thin_deferred_bios(struct thin_c *tc) 2138 { 2139 struct bio *bio; 2140 struct bio_list bios; 2141 2142 bio_list_init(&bios); 2143 bio_list_merge(&bios, &tc->deferred_bio_list); 2144 bio_list_init(&tc->deferred_bio_list); 2145 2146 /* Sort deferred_bio_list using rb-tree */ 2147 while ((bio = bio_list_pop(&bios))) 2148 __thin_bio_rb_add(tc, bio); 2149 2150 /* 2151 * Transfer the sorted bios in sort_bio_list back to 2152 * deferred_bio_list to allow lockless submission of 2153 * all bios. 2154 */ 2155 __extract_sorted_bios(tc); 2156 } 2157 2158 static void process_thin_deferred_bios(struct thin_c *tc) 2159 { 2160 struct pool *pool = tc->pool; 2161 struct bio *bio; 2162 struct bio_list bios; 2163 struct blk_plug plug; 2164 unsigned int count = 0; 2165 2166 if (tc->requeue_mode) { 2167 error_thin_bio_list(tc, &tc->deferred_bio_list, 2168 BLK_STS_DM_REQUEUE); 2169 return; 2170 } 2171 2172 bio_list_init(&bios); 2173 2174 spin_lock_irq(&tc->lock); 2175 2176 if (bio_list_empty(&tc->deferred_bio_list)) { 2177 spin_unlock_irq(&tc->lock); 2178 return; 2179 } 2180 2181 __sort_thin_deferred_bios(tc); 2182 2183 bio_list_merge(&bios, &tc->deferred_bio_list); 2184 bio_list_init(&tc->deferred_bio_list); 2185 2186 spin_unlock_irq(&tc->lock); 2187 2188 blk_start_plug(&plug); 2189 while ((bio = bio_list_pop(&bios))) { 2190 /* 2191 * If we've got no free new_mapping structs, and processing 2192 * this bio might require one, we pause until there are some 2193 * prepared mappings to process. 2194 */ 2195 if (ensure_next_mapping(pool)) { 2196 spin_lock_irq(&tc->lock); 2197 bio_list_add(&tc->deferred_bio_list, bio); 2198 bio_list_merge(&tc->deferred_bio_list, &bios); 2199 spin_unlock_irq(&tc->lock); 2200 break; 2201 } 2202 2203 if (bio_op(bio) == REQ_OP_DISCARD) 2204 pool->process_discard(tc, bio); 2205 else 2206 pool->process_bio(tc, bio); 2207 2208 if ((count++ & 127) == 0) { 2209 throttle_work_update(&pool->throttle); 2210 dm_pool_issue_prefetches(pool->pmd); 2211 } 2212 cond_resched(); 2213 } 2214 blk_finish_plug(&plug); 2215 } 2216 2217 static int cmp_cells(const void *lhs, const void *rhs) 2218 { 2219 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2220 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2221 2222 BUG_ON(!lhs_cell->holder); 2223 BUG_ON(!rhs_cell->holder); 2224 2225 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2226 return -1; 2227 2228 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2229 return 1; 2230 2231 return 0; 2232 } 2233 2234 static unsigned int sort_cells(struct pool *pool, struct list_head *cells) 2235 { 2236 unsigned int count = 0; 2237 struct dm_bio_prison_cell *cell, *tmp; 2238 2239 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2240 if (count >= CELL_SORT_ARRAY_SIZE) 2241 break; 2242 2243 pool->cell_sort_array[count++] = cell; 2244 list_del(&cell->user_list); 2245 } 2246 2247 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2248 2249 return count; 2250 } 2251 2252 static void process_thin_deferred_cells(struct thin_c *tc) 2253 { 2254 struct pool *pool = tc->pool; 2255 struct list_head cells; 2256 struct dm_bio_prison_cell *cell; 2257 unsigned int i, j, count; 2258 2259 INIT_LIST_HEAD(&cells); 2260 2261 spin_lock_irq(&tc->lock); 2262 list_splice_init(&tc->deferred_cells, &cells); 2263 spin_unlock_irq(&tc->lock); 2264 2265 if (list_empty(&cells)) 2266 return; 2267 2268 do { 2269 count = sort_cells(tc->pool, &cells); 2270 2271 for (i = 0; i < count; i++) { 2272 cell = pool->cell_sort_array[i]; 2273 BUG_ON(!cell->holder); 2274 2275 /* 2276 * If we've got no free new_mapping structs, and processing 2277 * this bio might require one, we pause until there are some 2278 * prepared mappings to process. 2279 */ 2280 if (ensure_next_mapping(pool)) { 2281 for (j = i; j < count; j++) 2282 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2283 2284 spin_lock_irq(&tc->lock); 2285 list_splice(&cells, &tc->deferred_cells); 2286 spin_unlock_irq(&tc->lock); 2287 return; 2288 } 2289 2290 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2291 pool->process_discard_cell(tc, cell); 2292 else 2293 pool->process_cell(tc, cell); 2294 } 2295 cond_resched(); 2296 } while (!list_empty(&cells)); 2297 } 2298 2299 static void thin_get(struct thin_c *tc); 2300 static void thin_put(struct thin_c *tc); 2301 2302 /* 2303 * We can't hold rcu_read_lock() around code that can block. So we 2304 * find a thin with the rcu lock held; bump a refcount; then drop 2305 * the lock. 2306 */ 2307 static struct thin_c *get_first_thin(struct pool *pool) 2308 { 2309 struct thin_c *tc = NULL; 2310 2311 rcu_read_lock(); 2312 if (!list_empty(&pool->active_thins)) { 2313 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2314 thin_get(tc); 2315 } 2316 rcu_read_unlock(); 2317 2318 return tc; 2319 } 2320 2321 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2322 { 2323 struct thin_c *old_tc = tc; 2324 2325 rcu_read_lock(); 2326 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2327 thin_get(tc); 2328 thin_put(old_tc); 2329 rcu_read_unlock(); 2330 return tc; 2331 } 2332 thin_put(old_tc); 2333 rcu_read_unlock(); 2334 2335 return NULL; 2336 } 2337 2338 static void process_deferred_bios(struct pool *pool) 2339 { 2340 struct bio *bio; 2341 struct bio_list bios, bio_completions; 2342 struct thin_c *tc; 2343 2344 tc = get_first_thin(pool); 2345 while (tc) { 2346 process_thin_deferred_cells(tc); 2347 process_thin_deferred_bios(tc); 2348 tc = get_next_thin(pool, tc); 2349 } 2350 2351 /* 2352 * If there are any deferred flush bios, we must commit the metadata 2353 * before issuing them or signaling their completion. 2354 */ 2355 bio_list_init(&bios); 2356 bio_list_init(&bio_completions); 2357 2358 spin_lock_irq(&pool->lock); 2359 bio_list_merge(&bios, &pool->deferred_flush_bios); 2360 bio_list_init(&pool->deferred_flush_bios); 2361 2362 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2363 bio_list_init(&pool->deferred_flush_completions); 2364 spin_unlock_irq(&pool->lock); 2365 2366 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2367 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2368 return; 2369 2370 if (commit(pool)) { 2371 bio_list_merge(&bios, &bio_completions); 2372 2373 while ((bio = bio_list_pop(&bios))) 2374 bio_io_error(bio); 2375 return; 2376 } 2377 pool->last_commit_jiffies = jiffies; 2378 2379 while ((bio = bio_list_pop(&bio_completions))) 2380 bio_endio(bio); 2381 2382 while ((bio = bio_list_pop(&bios))) { 2383 /* 2384 * The data device was flushed as part of metadata commit, 2385 * so complete redundant flushes immediately. 2386 */ 2387 if (bio->bi_opf & REQ_PREFLUSH) 2388 bio_endio(bio); 2389 else 2390 dm_submit_bio_remap(bio, NULL); 2391 } 2392 } 2393 2394 static void do_worker(struct work_struct *ws) 2395 { 2396 struct pool *pool = container_of(ws, struct pool, worker); 2397 2398 throttle_work_start(&pool->throttle); 2399 dm_pool_issue_prefetches(pool->pmd); 2400 throttle_work_update(&pool->throttle); 2401 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2402 throttle_work_update(&pool->throttle); 2403 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2404 throttle_work_update(&pool->throttle); 2405 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2406 throttle_work_update(&pool->throttle); 2407 process_deferred_bios(pool); 2408 throttle_work_complete(&pool->throttle); 2409 } 2410 2411 /* 2412 * We want to commit periodically so that not too much 2413 * unwritten data builds up. 2414 */ 2415 static void do_waker(struct work_struct *ws) 2416 { 2417 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2418 2419 wake_worker(pool); 2420 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2421 } 2422 2423 /* 2424 * We're holding onto IO to allow userland time to react. After the 2425 * timeout either the pool will have been resized (and thus back in 2426 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2427 */ 2428 static void do_no_space_timeout(struct work_struct *ws) 2429 { 2430 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2431 no_space_timeout); 2432 2433 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2434 pool->pf.error_if_no_space = true; 2435 notify_of_pool_mode_change(pool); 2436 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2437 } 2438 } 2439 2440 /*----------------------------------------------------------------*/ 2441 2442 struct pool_work { 2443 struct work_struct worker; 2444 struct completion complete; 2445 }; 2446 2447 static struct pool_work *to_pool_work(struct work_struct *ws) 2448 { 2449 return container_of(ws, struct pool_work, worker); 2450 } 2451 2452 static void pool_work_complete(struct pool_work *pw) 2453 { 2454 complete(&pw->complete); 2455 } 2456 2457 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2458 void (*fn)(struct work_struct *)) 2459 { 2460 INIT_WORK_ONSTACK(&pw->worker, fn); 2461 init_completion(&pw->complete); 2462 queue_work(pool->wq, &pw->worker); 2463 wait_for_completion(&pw->complete); 2464 } 2465 2466 /*----------------------------------------------------------------*/ 2467 2468 struct noflush_work { 2469 struct pool_work pw; 2470 struct thin_c *tc; 2471 }; 2472 2473 static struct noflush_work *to_noflush(struct work_struct *ws) 2474 { 2475 return container_of(to_pool_work(ws), struct noflush_work, pw); 2476 } 2477 2478 static void do_noflush_start(struct work_struct *ws) 2479 { 2480 struct noflush_work *w = to_noflush(ws); 2481 2482 w->tc->requeue_mode = true; 2483 requeue_io(w->tc); 2484 pool_work_complete(&w->pw); 2485 } 2486 2487 static void do_noflush_stop(struct work_struct *ws) 2488 { 2489 struct noflush_work *w = to_noflush(ws); 2490 2491 w->tc->requeue_mode = false; 2492 pool_work_complete(&w->pw); 2493 } 2494 2495 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2496 { 2497 struct noflush_work w; 2498 2499 w.tc = tc; 2500 pool_work_wait(&w.pw, tc->pool, fn); 2501 } 2502 2503 /*----------------------------------------------------------------*/ 2504 2505 static bool passdown_enabled(struct pool_c *pt) 2506 { 2507 return pt->adjusted_pf.discard_passdown; 2508 } 2509 2510 static void set_discard_callbacks(struct pool *pool) 2511 { 2512 struct pool_c *pt = pool->ti->private; 2513 2514 if (passdown_enabled(pt)) { 2515 pool->process_discard_cell = process_discard_cell_passdown; 2516 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2517 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2518 } else { 2519 pool->process_discard_cell = process_discard_cell_no_passdown; 2520 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2521 } 2522 } 2523 2524 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2525 { 2526 struct pool_c *pt = pool->ti->private; 2527 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2528 enum pool_mode old_mode = get_pool_mode(pool); 2529 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2530 2531 /* 2532 * Never allow the pool to transition to PM_WRITE mode if user 2533 * intervention is required to verify metadata and data consistency. 2534 */ 2535 if (new_mode == PM_WRITE && needs_check) { 2536 DMERR("%s: unable to switch pool to write mode until repaired.", 2537 dm_device_name(pool->pool_md)); 2538 if (old_mode != new_mode) 2539 new_mode = old_mode; 2540 else 2541 new_mode = PM_READ_ONLY; 2542 } 2543 /* 2544 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2545 * not going to recover without a thin_repair. So we never let the 2546 * pool move out of the old mode. 2547 */ 2548 if (old_mode == PM_FAIL) 2549 new_mode = old_mode; 2550 2551 switch (new_mode) { 2552 case PM_FAIL: 2553 dm_pool_metadata_read_only(pool->pmd); 2554 pool->process_bio = process_bio_fail; 2555 pool->process_discard = process_bio_fail; 2556 pool->process_cell = process_cell_fail; 2557 pool->process_discard_cell = process_cell_fail; 2558 pool->process_prepared_mapping = process_prepared_mapping_fail; 2559 pool->process_prepared_discard = process_prepared_discard_fail; 2560 2561 error_retry_list(pool); 2562 break; 2563 2564 case PM_OUT_OF_METADATA_SPACE: 2565 case PM_READ_ONLY: 2566 dm_pool_metadata_read_only(pool->pmd); 2567 pool->process_bio = process_bio_read_only; 2568 pool->process_discard = process_bio_success; 2569 pool->process_cell = process_cell_read_only; 2570 pool->process_discard_cell = process_cell_success; 2571 pool->process_prepared_mapping = process_prepared_mapping_fail; 2572 pool->process_prepared_discard = process_prepared_discard_success; 2573 2574 error_retry_list(pool); 2575 break; 2576 2577 case PM_OUT_OF_DATA_SPACE: 2578 /* 2579 * Ideally we'd never hit this state; the low water mark 2580 * would trigger userland to extend the pool before we 2581 * completely run out of data space. However, many small 2582 * IOs to unprovisioned space can consume data space at an 2583 * alarming rate. Adjust your low water mark if you're 2584 * frequently seeing this mode. 2585 */ 2586 pool->out_of_data_space = true; 2587 pool->process_bio = process_bio_read_only; 2588 pool->process_discard = process_discard_bio; 2589 pool->process_cell = process_cell_read_only; 2590 pool->process_prepared_mapping = process_prepared_mapping; 2591 set_discard_callbacks(pool); 2592 2593 if (!pool->pf.error_if_no_space && no_space_timeout) 2594 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2595 break; 2596 2597 case PM_WRITE: 2598 if (old_mode == PM_OUT_OF_DATA_SPACE) 2599 cancel_delayed_work_sync(&pool->no_space_timeout); 2600 pool->out_of_data_space = false; 2601 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2602 dm_pool_metadata_read_write(pool->pmd); 2603 pool->process_bio = process_bio; 2604 pool->process_discard = process_discard_bio; 2605 pool->process_cell = process_cell; 2606 pool->process_prepared_mapping = process_prepared_mapping; 2607 set_discard_callbacks(pool); 2608 break; 2609 } 2610 2611 pool->pf.mode = new_mode; 2612 /* 2613 * The pool mode may have changed, sync it so bind_control_target() 2614 * doesn't cause an unexpected mode transition on resume. 2615 */ 2616 pt->adjusted_pf.mode = new_mode; 2617 2618 if (old_mode != new_mode) 2619 notify_of_pool_mode_change(pool); 2620 } 2621 2622 static void abort_transaction(struct pool *pool) 2623 { 2624 const char *dev_name = dm_device_name(pool->pool_md); 2625 2626 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2627 if (dm_pool_abort_metadata(pool->pmd)) { 2628 DMERR("%s: failed to abort metadata transaction", dev_name); 2629 set_pool_mode(pool, PM_FAIL); 2630 } 2631 2632 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2633 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2634 set_pool_mode(pool, PM_FAIL); 2635 } 2636 } 2637 2638 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2639 { 2640 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2641 dm_device_name(pool->pool_md), op, r); 2642 2643 abort_transaction(pool); 2644 set_pool_mode(pool, PM_READ_ONLY); 2645 } 2646 2647 /*----------------------------------------------------------------*/ 2648 2649 /* 2650 * Mapping functions. 2651 */ 2652 2653 /* 2654 * Called only while mapping a thin bio to hand it over to the workqueue. 2655 */ 2656 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2657 { 2658 struct pool *pool = tc->pool; 2659 2660 spin_lock_irq(&tc->lock); 2661 bio_list_add(&tc->deferred_bio_list, bio); 2662 spin_unlock_irq(&tc->lock); 2663 2664 wake_worker(pool); 2665 } 2666 2667 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2668 { 2669 struct pool *pool = tc->pool; 2670 2671 throttle_lock(&pool->throttle); 2672 thin_defer_bio(tc, bio); 2673 throttle_unlock(&pool->throttle); 2674 } 2675 2676 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2677 { 2678 struct pool *pool = tc->pool; 2679 2680 throttle_lock(&pool->throttle); 2681 spin_lock_irq(&tc->lock); 2682 list_add_tail(&cell->user_list, &tc->deferred_cells); 2683 spin_unlock_irq(&tc->lock); 2684 throttle_unlock(&pool->throttle); 2685 2686 wake_worker(pool); 2687 } 2688 2689 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2690 { 2691 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2692 2693 h->tc = tc; 2694 h->shared_read_entry = NULL; 2695 h->all_io_entry = NULL; 2696 h->overwrite_mapping = NULL; 2697 h->cell = NULL; 2698 } 2699 2700 /* 2701 * Non-blocking function called from the thin target's map function. 2702 */ 2703 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2704 { 2705 int r; 2706 struct thin_c *tc = ti->private; 2707 dm_block_t block = get_bio_block(tc, bio); 2708 struct dm_thin_device *td = tc->td; 2709 struct dm_thin_lookup_result result; 2710 struct dm_bio_prison_cell *virt_cell, *data_cell; 2711 struct dm_cell_key key; 2712 2713 thin_hook_bio(tc, bio); 2714 2715 if (tc->requeue_mode) { 2716 bio->bi_status = BLK_STS_DM_REQUEUE; 2717 bio_endio(bio); 2718 return DM_MAPIO_SUBMITTED; 2719 } 2720 2721 if (get_pool_mode(tc->pool) == PM_FAIL) { 2722 bio_io_error(bio); 2723 return DM_MAPIO_SUBMITTED; 2724 } 2725 2726 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2727 thin_defer_bio_with_throttle(tc, bio); 2728 return DM_MAPIO_SUBMITTED; 2729 } 2730 2731 /* 2732 * We must hold the virtual cell before doing the lookup, otherwise 2733 * there's a race with discard. 2734 */ 2735 build_virtual_key(tc->td, block, &key); 2736 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2737 return DM_MAPIO_SUBMITTED; 2738 2739 r = dm_thin_find_block(td, block, 0, &result); 2740 2741 /* 2742 * Note that we defer readahead too. 2743 */ 2744 switch (r) { 2745 case 0: 2746 if (unlikely(result.shared)) { 2747 /* 2748 * We have a race condition here between the 2749 * result.shared value returned by the lookup and 2750 * snapshot creation, which may cause new 2751 * sharing. 2752 * 2753 * To avoid this always quiesce the origin before 2754 * taking the snap. You want to do this anyway to 2755 * ensure a consistent application view 2756 * (i.e. lockfs). 2757 * 2758 * More distant ancestors are irrelevant. The 2759 * shared flag will be set in their case. 2760 */ 2761 thin_defer_cell(tc, virt_cell); 2762 return DM_MAPIO_SUBMITTED; 2763 } 2764 2765 build_data_key(tc->td, result.block, &key); 2766 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2767 cell_defer_no_holder(tc, virt_cell); 2768 return DM_MAPIO_SUBMITTED; 2769 } 2770 2771 inc_all_io_entry(tc->pool, bio); 2772 cell_defer_no_holder(tc, data_cell); 2773 cell_defer_no_holder(tc, virt_cell); 2774 2775 remap(tc, bio, result.block); 2776 return DM_MAPIO_REMAPPED; 2777 2778 case -ENODATA: 2779 case -EWOULDBLOCK: 2780 thin_defer_cell(tc, virt_cell); 2781 return DM_MAPIO_SUBMITTED; 2782 2783 default: 2784 /* 2785 * Must always call bio_io_error on failure. 2786 * dm_thin_find_block can fail with -EINVAL if the 2787 * pool is switched to fail-io mode. 2788 */ 2789 bio_io_error(bio); 2790 cell_defer_no_holder(tc, virt_cell); 2791 return DM_MAPIO_SUBMITTED; 2792 } 2793 } 2794 2795 static void requeue_bios(struct pool *pool) 2796 { 2797 struct thin_c *tc; 2798 2799 rcu_read_lock(); 2800 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2801 spin_lock_irq(&tc->lock); 2802 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2803 bio_list_init(&tc->retry_on_resume_list); 2804 spin_unlock_irq(&tc->lock); 2805 } 2806 rcu_read_unlock(); 2807 } 2808 2809 /* 2810 *-------------------------------------------------------------- 2811 * Binding of control targets to a pool object 2812 *-------------------------------------------------------------- 2813 */ 2814 static bool is_factor(sector_t block_size, uint32_t n) 2815 { 2816 return !sector_div(block_size, n); 2817 } 2818 2819 /* 2820 * If discard_passdown was enabled verify that the data device 2821 * supports discards. Disable discard_passdown if not. 2822 */ 2823 static void disable_passdown_if_not_supported(struct pool_c *pt) 2824 { 2825 struct pool *pool = pt->pool; 2826 struct block_device *data_bdev = pt->data_dev->bdev; 2827 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2828 const char *reason = NULL; 2829 2830 if (!pt->adjusted_pf.discard_passdown) 2831 return; 2832 2833 if (!bdev_max_discard_sectors(pt->data_dev->bdev)) 2834 reason = "discard unsupported"; 2835 2836 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2837 reason = "max discard sectors smaller than a block"; 2838 2839 if (reason) { 2840 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason); 2841 pt->adjusted_pf.discard_passdown = false; 2842 } 2843 } 2844 2845 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2846 { 2847 struct pool_c *pt = ti->private; 2848 2849 /* 2850 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2851 */ 2852 enum pool_mode old_mode = get_pool_mode(pool); 2853 enum pool_mode new_mode = pt->adjusted_pf.mode; 2854 2855 /* 2856 * Don't change the pool's mode until set_pool_mode() below. 2857 * Otherwise the pool's process_* function pointers may 2858 * not match the desired pool mode. 2859 */ 2860 pt->adjusted_pf.mode = old_mode; 2861 2862 pool->ti = ti; 2863 pool->pf = pt->adjusted_pf; 2864 pool->low_water_blocks = pt->low_water_blocks; 2865 2866 set_pool_mode(pool, new_mode); 2867 2868 return 0; 2869 } 2870 2871 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2872 { 2873 if (pool->ti == ti) 2874 pool->ti = NULL; 2875 } 2876 2877 /* 2878 *-------------------------------------------------------------- 2879 * Pool creation 2880 *-------------------------------------------------------------- 2881 */ 2882 /* Initialize pool features. */ 2883 static void pool_features_init(struct pool_features *pf) 2884 { 2885 pf->mode = PM_WRITE; 2886 pf->zero_new_blocks = true; 2887 pf->discard_enabled = true; 2888 pf->discard_passdown = true; 2889 pf->error_if_no_space = false; 2890 } 2891 2892 static void __pool_destroy(struct pool *pool) 2893 { 2894 __pool_table_remove(pool); 2895 2896 vfree(pool->cell_sort_array); 2897 if (dm_pool_metadata_close(pool->pmd) < 0) 2898 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2899 2900 dm_bio_prison_destroy(pool->prison); 2901 dm_kcopyd_client_destroy(pool->copier); 2902 2903 cancel_delayed_work_sync(&pool->waker); 2904 cancel_delayed_work_sync(&pool->no_space_timeout); 2905 if (pool->wq) 2906 destroy_workqueue(pool->wq); 2907 2908 if (pool->next_mapping) 2909 mempool_free(pool->next_mapping, &pool->mapping_pool); 2910 mempool_exit(&pool->mapping_pool); 2911 dm_deferred_set_destroy(pool->shared_read_ds); 2912 dm_deferred_set_destroy(pool->all_io_ds); 2913 kfree(pool); 2914 } 2915 2916 static struct kmem_cache *_new_mapping_cache; 2917 2918 static struct pool *pool_create(struct mapped_device *pool_md, 2919 struct block_device *metadata_dev, 2920 struct block_device *data_dev, 2921 unsigned long block_size, 2922 int read_only, char **error) 2923 { 2924 int r; 2925 void *err_p; 2926 struct pool *pool; 2927 struct dm_pool_metadata *pmd; 2928 bool format_device = read_only ? false : true; 2929 2930 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2931 if (IS_ERR(pmd)) { 2932 *error = "Error creating metadata object"; 2933 return (struct pool *)pmd; 2934 } 2935 2936 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2937 if (!pool) { 2938 *error = "Error allocating memory for pool"; 2939 err_p = ERR_PTR(-ENOMEM); 2940 goto bad_pool; 2941 } 2942 2943 pool->pmd = pmd; 2944 pool->sectors_per_block = block_size; 2945 if (block_size & (block_size - 1)) 2946 pool->sectors_per_block_shift = -1; 2947 else 2948 pool->sectors_per_block_shift = __ffs(block_size); 2949 pool->low_water_blocks = 0; 2950 pool_features_init(&pool->pf); 2951 pool->prison = dm_bio_prison_create(); 2952 if (!pool->prison) { 2953 *error = "Error creating pool's bio prison"; 2954 err_p = ERR_PTR(-ENOMEM); 2955 goto bad_prison; 2956 } 2957 2958 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2959 if (IS_ERR(pool->copier)) { 2960 r = PTR_ERR(pool->copier); 2961 *error = "Error creating pool's kcopyd client"; 2962 err_p = ERR_PTR(r); 2963 goto bad_kcopyd_client; 2964 } 2965 2966 /* 2967 * Create singlethreaded workqueue that will service all devices 2968 * that use this metadata. 2969 */ 2970 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2971 if (!pool->wq) { 2972 *error = "Error creating pool's workqueue"; 2973 err_p = ERR_PTR(-ENOMEM); 2974 goto bad_wq; 2975 } 2976 2977 throttle_init(&pool->throttle); 2978 INIT_WORK(&pool->worker, do_worker); 2979 INIT_DELAYED_WORK(&pool->waker, do_waker); 2980 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2981 spin_lock_init(&pool->lock); 2982 bio_list_init(&pool->deferred_flush_bios); 2983 bio_list_init(&pool->deferred_flush_completions); 2984 INIT_LIST_HEAD(&pool->prepared_mappings); 2985 INIT_LIST_HEAD(&pool->prepared_discards); 2986 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2987 INIT_LIST_HEAD(&pool->active_thins); 2988 pool->low_water_triggered = false; 2989 pool->suspended = true; 2990 pool->out_of_data_space = false; 2991 2992 pool->shared_read_ds = dm_deferred_set_create(); 2993 if (!pool->shared_read_ds) { 2994 *error = "Error creating pool's shared read deferred set"; 2995 err_p = ERR_PTR(-ENOMEM); 2996 goto bad_shared_read_ds; 2997 } 2998 2999 pool->all_io_ds = dm_deferred_set_create(); 3000 if (!pool->all_io_ds) { 3001 *error = "Error creating pool's all io deferred set"; 3002 err_p = ERR_PTR(-ENOMEM); 3003 goto bad_all_io_ds; 3004 } 3005 3006 pool->next_mapping = NULL; 3007 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3008 _new_mapping_cache); 3009 if (r) { 3010 *error = "Error creating pool's mapping mempool"; 3011 err_p = ERR_PTR(r); 3012 goto bad_mapping_pool; 3013 } 3014 3015 pool->cell_sort_array = 3016 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3017 sizeof(*pool->cell_sort_array))); 3018 if (!pool->cell_sort_array) { 3019 *error = "Error allocating cell sort array"; 3020 err_p = ERR_PTR(-ENOMEM); 3021 goto bad_sort_array; 3022 } 3023 3024 pool->ref_count = 1; 3025 pool->last_commit_jiffies = jiffies; 3026 pool->pool_md = pool_md; 3027 pool->md_dev = metadata_dev; 3028 pool->data_dev = data_dev; 3029 __pool_table_insert(pool); 3030 3031 return pool; 3032 3033 bad_sort_array: 3034 mempool_exit(&pool->mapping_pool); 3035 bad_mapping_pool: 3036 dm_deferred_set_destroy(pool->all_io_ds); 3037 bad_all_io_ds: 3038 dm_deferred_set_destroy(pool->shared_read_ds); 3039 bad_shared_read_ds: 3040 destroy_workqueue(pool->wq); 3041 bad_wq: 3042 dm_kcopyd_client_destroy(pool->copier); 3043 bad_kcopyd_client: 3044 dm_bio_prison_destroy(pool->prison); 3045 bad_prison: 3046 kfree(pool); 3047 bad_pool: 3048 if (dm_pool_metadata_close(pmd)) 3049 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3050 3051 return err_p; 3052 } 3053 3054 static void __pool_inc(struct pool *pool) 3055 { 3056 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3057 pool->ref_count++; 3058 } 3059 3060 static void __pool_dec(struct pool *pool) 3061 { 3062 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3063 BUG_ON(!pool->ref_count); 3064 if (!--pool->ref_count) 3065 __pool_destroy(pool); 3066 } 3067 3068 static struct pool *__pool_find(struct mapped_device *pool_md, 3069 struct block_device *metadata_dev, 3070 struct block_device *data_dev, 3071 unsigned long block_size, int read_only, 3072 char **error, int *created) 3073 { 3074 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3075 3076 if (pool) { 3077 if (pool->pool_md != pool_md) { 3078 *error = "metadata device already in use by a pool"; 3079 return ERR_PTR(-EBUSY); 3080 } 3081 if (pool->data_dev != data_dev) { 3082 *error = "data device already in use by a pool"; 3083 return ERR_PTR(-EBUSY); 3084 } 3085 __pool_inc(pool); 3086 3087 } else { 3088 pool = __pool_table_lookup(pool_md); 3089 if (pool) { 3090 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3091 *error = "different pool cannot replace a pool"; 3092 return ERR_PTR(-EINVAL); 3093 } 3094 __pool_inc(pool); 3095 3096 } else { 3097 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3098 *created = 1; 3099 } 3100 } 3101 3102 return pool; 3103 } 3104 3105 /* 3106 *-------------------------------------------------------------- 3107 * Pool target methods 3108 *-------------------------------------------------------------- 3109 */ 3110 static void pool_dtr(struct dm_target *ti) 3111 { 3112 struct pool_c *pt = ti->private; 3113 3114 mutex_lock(&dm_thin_pool_table.mutex); 3115 3116 unbind_control_target(pt->pool, ti); 3117 __pool_dec(pt->pool); 3118 dm_put_device(ti, pt->metadata_dev); 3119 dm_put_device(ti, pt->data_dev); 3120 kfree(pt); 3121 3122 mutex_unlock(&dm_thin_pool_table.mutex); 3123 } 3124 3125 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3126 struct dm_target *ti) 3127 { 3128 int r; 3129 unsigned int argc; 3130 const char *arg_name; 3131 3132 static const struct dm_arg _args[] = { 3133 {0, 4, "Invalid number of pool feature arguments"}, 3134 }; 3135 3136 /* 3137 * No feature arguments supplied. 3138 */ 3139 if (!as->argc) 3140 return 0; 3141 3142 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3143 if (r) 3144 return -EINVAL; 3145 3146 while (argc && !r) { 3147 arg_name = dm_shift_arg(as); 3148 argc--; 3149 3150 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3151 pf->zero_new_blocks = false; 3152 3153 else if (!strcasecmp(arg_name, "ignore_discard")) 3154 pf->discard_enabled = false; 3155 3156 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3157 pf->discard_passdown = false; 3158 3159 else if (!strcasecmp(arg_name, "read_only")) 3160 pf->mode = PM_READ_ONLY; 3161 3162 else if (!strcasecmp(arg_name, "error_if_no_space")) 3163 pf->error_if_no_space = true; 3164 3165 else { 3166 ti->error = "Unrecognised pool feature requested"; 3167 r = -EINVAL; 3168 break; 3169 } 3170 } 3171 3172 return r; 3173 } 3174 3175 static void metadata_low_callback(void *context) 3176 { 3177 struct pool *pool = context; 3178 3179 DMWARN("%s: reached low water mark for metadata device: sending event.", 3180 dm_device_name(pool->pool_md)); 3181 3182 dm_table_event(pool->ti->table); 3183 } 3184 3185 /* 3186 * We need to flush the data device **before** committing the metadata. 3187 * 3188 * This ensures that the data blocks of any newly inserted mappings are 3189 * properly written to non-volatile storage and won't be lost in case of a 3190 * crash. 3191 * 3192 * Failure to do so can result in data corruption in the case of internal or 3193 * external snapshots and in the case of newly provisioned blocks, when block 3194 * zeroing is enabled. 3195 */ 3196 static int metadata_pre_commit_callback(void *context) 3197 { 3198 struct pool *pool = context; 3199 3200 return blkdev_issue_flush(pool->data_dev); 3201 } 3202 3203 static sector_t get_dev_size(struct block_device *bdev) 3204 { 3205 return bdev_nr_sectors(bdev); 3206 } 3207 3208 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3209 { 3210 sector_t metadata_dev_size = get_dev_size(bdev); 3211 3212 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3213 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 3214 bdev, THIN_METADATA_MAX_SECTORS); 3215 } 3216 3217 static sector_t get_metadata_dev_size(struct block_device *bdev) 3218 { 3219 sector_t metadata_dev_size = get_dev_size(bdev); 3220 3221 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3222 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3223 3224 return metadata_dev_size; 3225 } 3226 3227 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3228 { 3229 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3230 3231 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3232 3233 return metadata_dev_size; 3234 } 3235 3236 /* 3237 * When a metadata threshold is crossed a dm event is triggered, and 3238 * userland should respond by growing the metadata device. We could let 3239 * userland set the threshold, like we do with the data threshold, but I'm 3240 * not sure they know enough to do this well. 3241 */ 3242 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3243 { 3244 /* 3245 * 4M is ample for all ops with the possible exception of thin 3246 * device deletion which is harmless if it fails (just retry the 3247 * delete after you've grown the device). 3248 */ 3249 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3250 3251 return min((dm_block_t)1024ULL /* 4M */, quarter); 3252 } 3253 3254 /* 3255 * thin-pool <metadata dev> <data dev> 3256 * <data block size (sectors)> 3257 * <low water mark (blocks)> 3258 * [<#feature args> [<arg>]*] 3259 * 3260 * Optional feature arguments are: 3261 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3262 * ignore_discard: disable discard 3263 * no_discard_passdown: don't pass discards down to the data device 3264 * read_only: Don't allow any changes to be made to the pool metadata. 3265 * error_if_no_space: error IOs, instead of queueing, if no space. 3266 */ 3267 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3268 { 3269 int r, pool_created = 0; 3270 struct pool_c *pt; 3271 struct pool *pool; 3272 struct pool_features pf; 3273 struct dm_arg_set as; 3274 struct dm_dev *data_dev; 3275 unsigned long block_size; 3276 dm_block_t low_water_blocks; 3277 struct dm_dev *metadata_dev; 3278 fmode_t metadata_mode; 3279 3280 /* 3281 * FIXME Remove validation from scope of lock. 3282 */ 3283 mutex_lock(&dm_thin_pool_table.mutex); 3284 3285 if (argc < 4) { 3286 ti->error = "Invalid argument count"; 3287 r = -EINVAL; 3288 goto out_unlock; 3289 } 3290 3291 as.argc = argc; 3292 as.argv = argv; 3293 3294 /* make sure metadata and data are different devices */ 3295 if (!strcmp(argv[0], argv[1])) { 3296 ti->error = "Error setting metadata or data device"; 3297 r = -EINVAL; 3298 goto out_unlock; 3299 } 3300 3301 /* 3302 * Set default pool features. 3303 */ 3304 pool_features_init(&pf); 3305 3306 dm_consume_args(&as, 4); 3307 r = parse_pool_features(&as, &pf, ti); 3308 if (r) 3309 goto out_unlock; 3310 3311 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3312 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3313 if (r) { 3314 ti->error = "Error opening metadata block device"; 3315 goto out_unlock; 3316 } 3317 warn_if_metadata_device_too_big(metadata_dev->bdev); 3318 3319 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3320 if (r) { 3321 ti->error = "Error getting data device"; 3322 goto out_metadata; 3323 } 3324 3325 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3326 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3327 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3328 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3329 ti->error = "Invalid block size"; 3330 r = -EINVAL; 3331 goto out; 3332 } 3333 3334 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3335 ti->error = "Invalid low water mark"; 3336 r = -EINVAL; 3337 goto out; 3338 } 3339 3340 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3341 if (!pt) { 3342 r = -ENOMEM; 3343 goto out; 3344 } 3345 3346 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3347 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3348 if (IS_ERR(pool)) { 3349 r = PTR_ERR(pool); 3350 goto out_free_pt; 3351 } 3352 3353 /* 3354 * 'pool_created' reflects whether this is the first table load. 3355 * Top level discard support is not allowed to be changed after 3356 * initial load. This would require a pool reload to trigger thin 3357 * device changes. 3358 */ 3359 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3360 ti->error = "Discard support cannot be disabled once enabled"; 3361 r = -EINVAL; 3362 goto out_flags_changed; 3363 } 3364 3365 pt->pool = pool; 3366 pt->ti = ti; 3367 pt->metadata_dev = metadata_dev; 3368 pt->data_dev = data_dev; 3369 pt->low_water_blocks = low_water_blocks; 3370 pt->adjusted_pf = pt->requested_pf = pf; 3371 ti->num_flush_bios = 1; 3372 3373 /* 3374 * Only need to enable discards if the pool should pass 3375 * them down to the data device. The thin device's discard 3376 * processing will cause mappings to be removed from the btree. 3377 */ 3378 if (pf.discard_enabled && pf.discard_passdown) { 3379 ti->num_discard_bios = 1; 3380 3381 /* 3382 * Setting 'discards_supported' circumvents the normal 3383 * stacking of discard limits (this keeps the pool and 3384 * thin devices' discard limits consistent). 3385 */ 3386 ti->discards_supported = true; 3387 } 3388 ti->private = pt; 3389 3390 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3391 calc_metadata_threshold(pt), 3392 metadata_low_callback, 3393 pool); 3394 if (r) { 3395 ti->error = "Error registering metadata threshold"; 3396 goto out_flags_changed; 3397 } 3398 3399 dm_pool_register_pre_commit_callback(pool->pmd, 3400 metadata_pre_commit_callback, pool); 3401 3402 mutex_unlock(&dm_thin_pool_table.mutex); 3403 3404 return 0; 3405 3406 out_flags_changed: 3407 __pool_dec(pool); 3408 out_free_pt: 3409 kfree(pt); 3410 out: 3411 dm_put_device(ti, data_dev); 3412 out_metadata: 3413 dm_put_device(ti, metadata_dev); 3414 out_unlock: 3415 mutex_unlock(&dm_thin_pool_table.mutex); 3416 3417 return r; 3418 } 3419 3420 static int pool_map(struct dm_target *ti, struct bio *bio) 3421 { 3422 int r; 3423 struct pool_c *pt = ti->private; 3424 struct pool *pool = pt->pool; 3425 3426 /* 3427 * As this is a singleton target, ti->begin is always zero. 3428 */ 3429 spin_lock_irq(&pool->lock); 3430 bio_set_dev(bio, pt->data_dev->bdev); 3431 r = DM_MAPIO_REMAPPED; 3432 spin_unlock_irq(&pool->lock); 3433 3434 return r; 3435 } 3436 3437 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3438 { 3439 int r; 3440 struct pool_c *pt = ti->private; 3441 struct pool *pool = pt->pool; 3442 sector_t data_size = ti->len; 3443 dm_block_t sb_data_size; 3444 3445 *need_commit = false; 3446 3447 (void) sector_div(data_size, pool->sectors_per_block); 3448 3449 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3450 if (r) { 3451 DMERR("%s: failed to retrieve data device size", 3452 dm_device_name(pool->pool_md)); 3453 return r; 3454 } 3455 3456 if (data_size < sb_data_size) { 3457 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3458 dm_device_name(pool->pool_md), 3459 (unsigned long long)data_size, sb_data_size); 3460 return -EINVAL; 3461 3462 } else if (data_size > sb_data_size) { 3463 if (dm_pool_metadata_needs_check(pool->pmd)) { 3464 DMERR("%s: unable to grow the data device until repaired.", 3465 dm_device_name(pool->pool_md)); 3466 return 0; 3467 } 3468 3469 if (sb_data_size) 3470 DMINFO("%s: growing the data device from %llu to %llu blocks", 3471 dm_device_name(pool->pool_md), 3472 sb_data_size, (unsigned long long)data_size); 3473 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3474 if (r) { 3475 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3476 return r; 3477 } 3478 3479 *need_commit = true; 3480 } 3481 3482 return 0; 3483 } 3484 3485 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3486 { 3487 int r; 3488 struct pool_c *pt = ti->private; 3489 struct pool *pool = pt->pool; 3490 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3491 3492 *need_commit = false; 3493 3494 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3495 3496 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3497 if (r) { 3498 DMERR("%s: failed to retrieve metadata device size", 3499 dm_device_name(pool->pool_md)); 3500 return r; 3501 } 3502 3503 if (metadata_dev_size < sb_metadata_dev_size) { 3504 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3505 dm_device_name(pool->pool_md), 3506 metadata_dev_size, sb_metadata_dev_size); 3507 return -EINVAL; 3508 3509 } else if (metadata_dev_size > sb_metadata_dev_size) { 3510 if (dm_pool_metadata_needs_check(pool->pmd)) { 3511 DMERR("%s: unable to grow the metadata device until repaired.", 3512 dm_device_name(pool->pool_md)); 3513 return 0; 3514 } 3515 3516 warn_if_metadata_device_too_big(pool->md_dev); 3517 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3518 dm_device_name(pool->pool_md), 3519 sb_metadata_dev_size, metadata_dev_size); 3520 3521 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3522 set_pool_mode(pool, PM_WRITE); 3523 3524 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3525 if (r) { 3526 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3527 return r; 3528 } 3529 3530 *need_commit = true; 3531 } 3532 3533 return 0; 3534 } 3535 3536 /* 3537 * Retrieves the number of blocks of the data device from 3538 * the superblock and compares it to the actual device size, 3539 * thus resizing the data device in case it has grown. 3540 * 3541 * This both copes with opening preallocated data devices in the ctr 3542 * being followed by a resume 3543 * -and- 3544 * calling the resume method individually after userspace has 3545 * grown the data device in reaction to a table event. 3546 */ 3547 static int pool_preresume(struct dm_target *ti) 3548 { 3549 int r; 3550 bool need_commit1, need_commit2; 3551 struct pool_c *pt = ti->private; 3552 struct pool *pool = pt->pool; 3553 3554 /* 3555 * Take control of the pool object. 3556 */ 3557 r = bind_control_target(pool, ti); 3558 if (r) 3559 goto out; 3560 3561 r = maybe_resize_data_dev(ti, &need_commit1); 3562 if (r) 3563 goto out; 3564 3565 r = maybe_resize_metadata_dev(ti, &need_commit2); 3566 if (r) 3567 goto out; 3568 3569 if (need_commit1 || need_commit2) 3570 (void) commit(pool); 3571 out: 3572 /* 3573 * When a thin-pool is PM_FAIL, it cannot be rebuilt if 3574 * bio is in deferred list. Therefore need to return 0 3575 * to allow pool_resume() to flush IO. 3576 */ 3577 if (r && get_pool_mode(pool) == PM_FAIL) 3578 r = 0; 3579 3580 return r; 3581 } 3582 3583 static void pool_suspend_active_thins(struct pool *pool) 3584 { 3585 struct thin_c *tc; 3586 3587 /* Suspend all active thin devices */ 3588 tc = get_first_thin(pool); 3589 while (tc) { 3590 dm_internal_suspend_noflush(tc->thin_md); 3591 tc = get_next_thin(pool, tc); 3592 } 3593 } 3594 3595 static void pool_resume_active_thins(struct pool *pool) 3596 { 3597 struct thin_c *tc; 3598 3599 /* Resume all active thin devices */ 3600 tc = get_first_thin(pool); 3601 while (tc) { 3602 dm_internal_resume(tc->thin_md); 3603 tc = get_next_thin(pool, tc); 3604 } 3605 } 3606 3607 static void pool_resume(struct dm_target *ti) 3608 { 3609 struct pool_c *pt = ti->private; 3610 struct pool *pool = pt->pool; 3611 3612 /* 3613 * Must requeue active_thins' bios and then resume 3614 * active_thins _before_ clearing 'suspend' flag. 3615 */ 3616 requeue_bios(pool); 3617 pool_resume_active_thins(pool); 3618 3619 spin_lock_irq(&pool->lock); 3620 pool->low_water_triggered = false; 3621 pool->suspended = false; 3622 spin_unlock_irq(&pool->lock); 3623 3624 do_waker(&pool->waker.work); 3625 } 3626 3627 static void pool_presuspend(struct dm_target *ti) 3628 { 3629 struct pool_c *pt = ti->private; 3630 struct pool *pool = pt->pool; 3631 3632 spin_lock_irq(&pool->lock); 3633 pool->suspended = true; 3634 spin_unlock_irq(&pool->lock); 3635 3636 pool_suspend_active_thins(pool); 3637 } 3638 3639 static void pool_presuspend_undo(struct dm_target *ti) 3640 { 3641 struct pool_c *pt = ti->private; 3642 struct pool *pool = pt->pool; 3643 3644 pool_resume_active_thins(pool); 3645 3646 spin_lock_irq(&pool->lock); 3647 pool->suspended = false; 3648 spin_unlock_irq(&pool->lock); 3649 } 3650 3651 static void pool_postsuspend(struct dm_target *ti) 3652 { 3653 struct pool_c *pt = ti->private; 3654 struct pool *pool = pt->pool; 3655 3656 cancel_delayed_work_sync(&pool->waker); 3657 cancel_delayed_work_sync(&pool->no_space_timeout); 3658 flush_workqueue(pool->wq); 3659 (void) commit(pool); 3660 } 3661 3662 static int check_arg_count(unsigned int argc, unsigned int args_required) 3663 { 3664 if (argc != args_required) { 3665 DMWARN("Message received with %u arguments instead of %u.", 3666 argc, args_required); 3667 return -EINVAL; 3668 } 3669 3670 return 0; 3671 } 3672 3673 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3674 { 3675 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3676 *dev_id <= MAX_DEV_ID) 3677 return 0; 3678 3679 if (warning) 3680 DMWARN("Message received with invalid device id: %s", arg); 3681 3682 return -EINVAL; 3683 } 3684 3685 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool) 3686 { 3687 dm_thin_id dev_id; 3688 int r; 3689 3690 r = check_arg_count(argc, 2); 3691 if (r) 3692 return r; 3693 3694 r = read_dev_id(argv[1], &dev_id, 1); 3695 if (r) 3696 return r; 3697 3698 r = dm_pool_create_thin(pool->pmd, dev_id); 3699 if (r) { 3700 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3701 argv[1]); 3702 return r; 3703 } 3704 3705 return 0; 3706 } 3707 3708 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3709 { 3710 dm_thin_id dev_id; 3711 dm_thin_id origin_dev_id; 3712 int r; 3713 3714 r = check_arg_count(argc, 3); 3715 if (r) 3716 return r; 3717 3718 r = read_dev_id(argv[1], &dev_id, 1); 3719 if (r) 3720 return r; 3721 3722 r = read_dev_id(argv[2], &origin_dev_id, 1); 3723 if (r) 3724 return r; 3725 3726 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3727 if (r) { 3728 DMWARN("Creation of new snapshot %s of device %s failed.", 3729 argv[1], argv[2]); 3730 return r; 3731 } 3732 3733 return 0; 3734 } 3735 3736 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool) 3737 { 3738 dm_thin_id dev_id; 3739 int r; 3740 3741 r = check_arg_count(argc, 2); 3742 if (r) 3743 return r; 3744 3745 r = read_dev_id(argv[1], &dev_id, 1); 3746 if (r) 3747 return r; 3748 3749 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3750 if (r) 3751 DMWARN("Deletion of thin device %s failed.", argv[1]); 3752 3753 return r; 3754 } 3755 3756 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool) 3757 { 3758 dm_thin_id old_id, new_id; 3759 int r; 3760 3761 r = check_arg_count(argc, 3); 3762 if (r) 3763 return r; 3764 3765 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3766 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3767 return -EINVAL; 3768 } 3769 3770 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3771 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3772 return -EINVAL; 3773 } 3774 3775 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3776 if (r) { 3777 DMWARN("Failed to change transaction id from %s to %s.", 3778 argv[1], argv[2]); 3779 return r; 3780 } 3781 3782 return 0; 3783 } 3784 3785 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3786 { 3787 int r; 3788 3789 r = check_arg_count(argc, 1); 3790 if (r) 3791 return r; 3792 3793 (void) commit(pool); 3794 3795 r = dm_pool_reserve_metadata_snap(pool->pmd); 3796 if (r) 3797 DMWARN("reserve_metadata_snap message failed."); 3798 3799 return r; 3800 } 3801 3802 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3803 { 3804 int r; 3805 3806 r = check_arg_count(argc, 1); 3807 if (r) 3808 return r; 3809 3810 r = dm_pool_release_metadata_snap(pool->pmd); 3811 if (r) 3812 DMWARN("release_metadata_snap message failed."); 3813 3814 return r; 3815 } 3816 3817 /* 3818 * Messages supported: 3819 * create_thin <dev_id> 3820 * create_snap <dev_id> <origin_id> 3821 * delete <dev_id> 3822 * set_transaction_id <current_trans_id> <new_trans_id> 3823 * reserve_metadata_snap 3824 * release_metadata_snap 3825 */ 3826 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv, 3827 char *result, unsigned int maxlen) 3828 { 3829 int r = -EINVAL; 3830 struct pool_c *pt = ti->private; 3831 struct pool *pool = pt->pool; 3832 3833 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3834 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3835 dm_device_name(pool->pool_md)); 3836 return -EOPNOTSUPP; 3837 } 3838 3839 if (!strcasecmp(argv[0], "create_thin")) 3840 r = process_create_thin_mesg(argc, argv, pool); 3841 3842 else if (!strcasecmp(argv[0], "create_snap")) 3843 r = process_create_snap_mesg(argc, argv, pool); 3844 3845 else if (!strcasecmp(argv[0], "delete")) 3846 r = process_delete_mesg(argc, argv, pool); 3847 3848 else if (!strcasecmp(argv[0], "set_transaction_id")) 3849 r = process_set_transaction_id_mesg(argc, argv, pool); 3850 3851 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3852 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3853 3854 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3855 r = process_release_metadata_snap_mesg(argc, argv, pool); 3856 3857 else 3858 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3859 3860 if (!r) 3861 (void) commit(pool); 3862 3863 return r; 3864 } 3865 3866 static void emit_flags(struct pool_features *pf, char *result, 3867 unsigned int sz, unsigned int maxlen) 3868 { 3869 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled + 3870 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3871 pf->error_if_no_space; 3872 DMEMIT("%u ", count); 3873 3874 if (!pf->zero_new_blocks) 3875 DMEMIT("skip_block_zeroing "); 3876 3877 if (!pf->discard_enabled) 3878 DMEMIT("ignore_discard "); 3879 3880 if (!pf->discard_passdown) 3881 DMEMIT("no_discard_passdown "); 3882 3883 if (pf->mode == PM_READ_ONLY) 3884 DMEMIT("read_only "); 3885 3886 if (pf->error_if_no_space) 3887 DMEMIT("error_if_no_space "); 3888 } 3889 3890 /* 3891 * Status line is: 3892 * <transaction id> <used metadata sectors>/<total metadata sectors> 3893 * <used data sectors>/<total data sectors> <held metadata root> 3894 * <pool mode> <discard config> <no space config> <needs_check> 3895 */ 3896 static void pool_status(struct dm_target *ti, status_type_t type, 3897 unsigned int status_flags, char *result, unsigned int maxlen) 3898 { 3899 int r; 3900 unsigned int sz = 0; 3901 uint64_t transaction_id; 3902 dm_block_t nr_free_blocks_data; 3903 dm_block_t nr_free_blocks_metadata; 3904 dm_block_t nr_blocks_data; 3905 dm_block_t nr_blocks_metadata; 3906 dm_block_t held_root; 3907 enum pool_mode mode; 3908 char buf[BDEVNAME_SIZE]; 3909 char buf2[BDEVNAME_SIZE]; 3910 struct pool_c *pt = ti->private; 3911 struct pool *pool = pt->pool; 3912 3913 switch (type) { 3914 case STATUSTYPE_INFO: 3915 if (get_pool_mode(pool) == PM_FAIL) { 3916 DMEMIT("Fail"); 3917 break; 3918 } 3919 3920 /* Commit to ensure statistics aren't out-of-date */ 3921 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3922 (void) commit(pool); 3923 3924 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3925 if (r) { 3926 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3927 dm_device_name(pool->pool_md), r); 3928 goto err; 3929 } 3930 3931 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3932 if (r) { 3933 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3934 dm_device_name(pool->pool_md), r); 3935 goto err; 3936 } 3937 3938 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3939 if (r) { 3940 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3941 dm_device_name(pool->pool_md), r); 3942 goto err; 3943 } 3944 3945 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3946 if (r) { 3947 DMERR("%s: dm_pool_get_free_block_count returned %d", 3948 dm_device_name(pool->pool_md), r); 3949 goto err; 3950 } 3951 3952 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3953 if (r) { 3954 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3955 dm_device_name(pool->pool_md), r); 3956 goto err; 3957 } 3958 3959 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3960 if (r) { 3961 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3962 dm_device_name(pool->pool_md), r); 3963 goto err; 3964 } 3965 3966 DMEMIT("%llu %llu/%llu %llu/%llu ", 3967 (unsigned long long)transaction_id, 3968 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3969 (unsigned long long)nr_blocks_metadata, 3970 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3971 (unsigned long long)nr_blocks_data); 3972 3973 if (held_root) 3974 DMEMIT("%llu ", held_root); 3975 else 3976 DMEMIT("- "); 3977 3978 mode = get_pool_mode(pool); 3979 if (mode == PM_OUT_OF_DATA_SPACE) 3980 DMEMIT("out_of_data_space "); 3981 else if (is_read_only_pool_mode(mode)) 3982 DMEMIT("ro "); 3983 else 3984 DMEMIT("rw "); 3985 3986 if (!pool->pf.discard_enabled) 3987 DMEMIT("ignore_discard "); 3988 else if (pool->pf.discard_passdown) 3989 DMEMIT("discard_passdown "); 3990 else 3991 DMEMIT("no_discard_passdown "); 3992 3993 if (pool->pf.error_if_no_space) 3994 DMEMIT("error_if_no_space "); 3995 else 3996 DMEMIT("queue_if_no_space "); 3997 3998 if (dm_pool_metadata_needs_check(pool->pmd)) 3999 DMEMIT("needs_check "); 4000 else 4001 DMEMIT("- "); 4002 4003 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4004 4005 break; 4006 4007 case STATUSTYPE_TABLE: 4008 DMEMIT("%s %s %lu %llu ", 4009 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4010 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4011 (unsigned long)pool->sectors_per_block, 4012 (unsigned long long)pt->low_water_blocks); 4013 emit_flags(&pt->requested_pf, result, sz, maxlen); 4014 break; 4015 4016 case STATUSTYPE_IMA: 4017 *result = '\0'; 4018 break; 4019 } 4020 return; 4021 4022 err: 4023 DMEMIT("Error"); 4024 } 4025 4026 static int pool_iterate_devices(struct dm_target *ti, 4027 iterate_devices_callout_fn fn, void *data) 4028 { 4029 struct pool_c *pt = ti->private; 4030 4031 return fn(ti, pt->data_dev, 0, ti->len, data); 4032 } 4033 4034 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4035 { 4036 struct pool_c *pt = ti->private; 4037 struct pool *pool = pt->pool; 4038 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4039 4040 /* 4041 * If max_sectors is smaller than pool->sectors_per_block adjust it 4042 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4043 * This is especially beneficial when the pool's data device is a RAID 4044 * device that has a full stripe width that matches pool->sectors_per_block 4045 * -- because even though partial RAID stripe-sized IOs will be issued to a 4046 * single RAID stripe; when aggregated they will end on a full RAID stripe 4047 * boundary.. which avoids additional partial RAID stripe writes cascading 4048 */ 4049 if (limits->max_sectors < pool->sectors_per_block) { 4050 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4051 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4052 limits->max_sectors--; 4053 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4054 } 4055 } 4056 4057 /* 4058 * If the system-determined stacked limits are compatible with the 4059 * pool's blocksize (io_opt is a factor) do not override them. 4060 */ 4061 if (io_opt_sectors < pool->sectors_per_block || 4062 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4063 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4064 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4065 else 4066 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4067 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4068 } 4069 4070 /* 4071 * pt->adjusted_pf is a staging area for the actual features to use. 4072 * They get transferred to the live pool in bind_control_target() 4073 * called from pool_preresume(). 4074 */ 4075 if (!pt->adjusted_pf.discard_enabled) { 4076 /* 4077 * Must explicitly disallow stacking discard limits otherwise the 4078 * block layer will stack them if pool's data device has support. 4079 */ 4080 limits->discard_granularity = 0; 4081 return; 4082 } 4083 4084 disable_passdown_if_not_supported(pt); 4085 4086 /* 4087 * The pool uses the same discard limits as the underlying data 4088 * device. DM core has already set this up. 4089 */ 4090 } 4091 4092 static struct target_type pool_target = { 4093 .name = "thin-pool", 4094 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4095 DM_TARGET_IMMUTABLE, 4096 .version = {1, 22, 0}, 4097 .module = THIS_MODULE, 4098 .ctr = pool_ctr, 4099 .dtr = pool_dtr, 4100 .map = pool_map, 4101 .presuspend = pool_presuspend, 4102 .presuspend_undo = pool_presuspend_undo, 4103 .postsuspend = pool_postsuspend, 4104 .preresume = pool_preresume, 4105 .resume = pool_resume, 4106 .message = pool_message, 4107 .status = pool_status, 4108 .iterate_devices = pool_iterate_devices, 4109 .io_hints = pool_io_hints, 4110 }; 4111 4112 /* 4113 *-------------------------------------------------------------- 4114 * Thin target methods 4115 *-------------------------------------------------------------- 4116 */ 4117 static void thin_get(struct thin_c *tc) 4118 { 4119 refcount_inc(&tc->refcount); 4120 } 4121 4122 static void thin_put(struct thin_c *tc) 4123 { 4124 if (refcount_dec_and_test(&tc->refcount)) 4125 complete(&tc->can_destroy); 4126 } 4127 4128 static void thin_dtr(struct dm_target *ti) 4129 { 4130 struct thin_c *tc = ti->private; 4131 4132 spin_lock_irq(&tc->pool->lock); 4133 list_del_rcu(&tc->list); 4134 spin_unlock_irq(&tc->pool->lock); 4135 synchronize_rcu(); 4136 4137 thin_put(tc); 4138 wait_for_completion(&tc->can_destroy); 4139 4140 mutex_lock(&dm_thin_pool_table.mutex); 4141 4142 __pool_dec(tc->pool); 4143 dm_pool_close_thin_device(tc->td); 4144 dm_put_device(ti, tc->pool_dev); 4145 if (tc->origin_dev) 4146 dm_put_device(ti, tc->origin_dev); 4147 kfree(tc); 4148 4149 mutex_unlock(&dm_thin_pool_table.mutex); 4150 } 4151 4152 /* 4153 * Thin target parameters: 4154 * 4155 * <pool_dev> <dev_id> [origin_dev] 4156 * 4157 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4158 * dev_id: the internal device identifier 4159 * origin_dev: a device external to the pool that should act as the origin 4160 * 4161 * If the pool device has discards disabled, they get disabled for the thin 4162 * device as well. 4163 */ 4164 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4165 { 4166 int r; 4167 struct thin_c *tc; 4168 struct dm_dev *pool_dev, *origin_dev; 4169 struct mapped_device *pool_md; 4170 4171 mutex_lock(&dm_thin_pool_table.mutex); 4172 4173 if (argc != 2 && argc != 3) { 4174 ti->error = "Invalid argument count"; 4175 r = -EINVAL; 4176 goto out_unlock; 4177 } 4178 4179 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4180 if (!tc) { 4181 ti->error = "Out of memory"; 4182 r = -ENOMEM; 4183 goto out_unlock; 4184 } 4185 tc->thin_md = dm_table_get_md(ti->table); 4186 spin_lock_init(&tc->lock); 4187 INIT_LIST_HEAD(&tc->deferred_cells); 4188 bio_list_init(&tc->deferred_bio_list); 4189 bio_list_init(&tc->retry_on_resume_list); 4190 tc->sort_bio_list = RB_ROOT; 4191 4192 if (argc == 3) { 4193 if (!strcmp(argv[0], argv[2])) { 4194 ti->error = "Error setting origin device"; 4195 r = -EINVAL; 4196 goto bad_origin_dev; 4197 } 4198 4199 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4200 if (r) { 4201 ti->error = "Error opening origin device"; 4202 goto bad_origin_dev; 4203 } 4204 tc->origin_dev = origin_dev; 4205 } 4206 4207 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4208 if (r) { 4209 ti->error = "Error opening pool device"; 4210 goto bad_pool_dev; 4211 } 4212 tc->pool_dev = pool_dev; 4213 4214 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4215 ti->error = "Invalid device id"; 4216 r = -EINVAL; 4217 goto bad_common; 4218 } 4219 4220 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4221 if (!pool_md) { 4222 ti->error = "Couldn't get pool mapped device"; 4223 r = -EINVAL; 4224 goto bad_common; 4225 } 4226 4227 tc->pool = __pool_table_lookup(pool_md); 4228 if (!tc->pool) { 4229 ti->error = "Couldn't find pool object"; 4230 r = -EINVAL; 4231 goto bad_pool_lookup; 4232 } 4233 __pool_inc(tc->pool); 4234 4235 if (get_pool_mode(tc->pool) == PM_FAIL) { 4236 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4237 r = -EINVAL; 4238 goto bad_pool; 4239 } 4240 4241 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4242 if (r) { 4243 ti->error = "Couldn't open thin internal device"; 4244 goto bad_pool; 4245 } 4246 4247 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4248 if (r) 4249 goto bad; 4250 4251 ti->num_flush_bios = 1; 4252 ti->flush_supported = true; 4253 ti->accounts_remapped_io = true; 4254 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4255 4256 /* In case the pool supports discards, pass them on. */ 4257 if (tc->pool->pf.discard_enabled) { 4258 ti->discards_supported = true; 4259 ti->num_discard_bios = 1; 4260 } 4261 4262 mutex_unlock(&dm_thin_pool_table.mutex); 4263 4264 spin_lock_irq(&tc->pool->lock); 4265 if (tc->pool->suspended) { 4266 spin_unlock_irq(&tc->pool->lock); 4267 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4268 ti->error = "Unable to activate thin device while pool is suspended"; 4269 r = -EINVAL; 4270 goto bad; 4271 } 4272 refcount_set(&tc->refcount, 1); 4273 init_completion(&tc->can_destroy); 4274 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4275 spin_unlock_irq(&tc->pool->lock); 4276 /* 4277 * This synchronize_rcu() call is needed here otherwise we risk a 4278 * wake_worker() call finding no bios to process (because the newly 4279 * added tc isn't yet visible). So this reduces latency since we 4280 * aren't then dependent on the periodic commit to wake_worker(). 4281 */ 4282 synchronize_rcu(); 4283 4284 dm_put(pool_md); 4285 4286 return 0; 4287 4288 bad: 4289 dm_pool_close_thin_device(tc->td); 4290 bad_pool: 4291 __pool_dec(tc->pool); 4292 bad_pool_lookup: 4293 dm_put(pool_md); 4294 bad_common: 4295 dm_put_device(ti, tc->pool_dev); 4296 bad_pool_dev: 4297 if (tc->origin_dev) 4298 dm_put_device(ti, tc->origin_dev); 4299 bad_origin_dev: 4300 kfree(tc); 4301 out_unlock: 4302 mutex_unlock(&dm_thin_pool_table.mutex); 4303 4304 return r; 4305 } 4306 4307 static int thin_map(struct dm_target *ti, struct bio *bio) 4308 { 4309 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4310 4311 return thin_bio_map(ti, bio); 4312 } 4313 4314 static int thin_endio(struct dm_target *ti, struct bio *bio, 4315 blk_status_t *err) 4316 { 4317 unsigned long flags; 4318 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4319 struct list_head work; 4320 struct dm_thin_new_mapping *m, *tmp; 4321 struct pool *pool = h->tc->pool; 4322 4323 if (h->shared_read_entry) { 4324 INIT_LIST_HEAD(&work); 4325 dm_deferred_entry_dec(h->shared_read_entry, &work); 4326 4327 spin_lock_irqsave(&pool->lock, flags); 4328 list_for_each_entry_safe(m, tmp, &work, list) { 4329 list_del(&m->list); 4330 __complete_mapping_preparation(m); 4331 } 4332 spin_unlock_irqrestore(&pool->lock, flags); 4333 } 4334 4335 if (h->all_io_entry) { 4336 INIT_LIST_HEAD(&work); 4337 dm_deferred_entry_dec(h->all_io_entry, &work); 4338 if (!list_empty(&work)) { 4339 spin_lock_irqsave(&pool->lock, flags); 4340 list_for_each_entry_safe(m, tmp, &work, list) 4341 list_add_tail(&m->list, &pool->prepared_discards); 4342 spin_unlock_irqrestore(&pool->lock, flags); 4343 wake_worker(pool); 4344 } 4345 } 4346 4347 if (h->cell) 4348 cell_defer_no_holder(h->tc, h->cell); 4349 4350 return DM_ENDIO_DONE; 4351 } 4352 4353 static void thin_presuspend(struct dm_target *ti) 4354 { 4355 struct thin_c *tc = ti->private; 4356 4357 if (dm_noflush_suspending(ti)) 4358 noflush_work(tc, do_noflush_start); 4359 } 4360 4361 static void thin_postsuspend(struct dm_target *ti) 4362 { 4363 struct thin_c *tc = ti->private; 4364 4365 /* 4366 * The dm_noflush_suspending flag has been cleared by now, so 4367 * unfortunately we must always run this. 4368 */ 4369 noflush_work(tc, do_noflush_stop); 4370 } 4371 4372 static int thin_preresume(struct dm_target *ti) 4373 { 4374 struct thin_c *tc = ti->private; 4375 4376 if (tc->origin_dev) 4377 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4378 4379 return 0; 4380 } 4381 4382 /* 4383 * <nr mapped sectors> <highest mapped sector> 4384 */ 4385 static void thin_status(struct dm_target *ti, status_type_t type, 4386 unsigned int status_flags, char *result, unsigned int maxlen) 4387 { 4388 int r; 4389 ssize_t sz = 0; 4390 dm_block_t mapped, highest; 4391 char buf[BDEVNAME_SIZE]; 4392 struct thin_c *tc = ti->private; 4393 4394 if (get_pool_mode(tc->pool) == PM_FAIL) { 4395 DMEMIT("Fail"); 4396 return; 4397 } 4398 4399 if (!tc->td) 4400 DMEMIT("-"); 4401 else { 4402 switch (type) { 4403 case STATUSTYPE_INFO: 4404 r = dm_thin_get_mapped_count(tc->td, &mapped); 4405 if (r) { 4406 DMERR("dm_thin_get_mapped_count returned %d", r); 4407 goto err; 4408 } 4409 4410 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4411 if (r < 0) { 4412 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4413 goto err; 4414 } 4415 4416 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4417 if (r) 4418 DMEMIT("%llu", ((highest + 1) * 4419 tc->pool->sectors_per_block) - 1); 4420 else 4421 DMEMIT("-"); 4422 break; 4423 4424 case STATUSTYPE_TABLE: 4425 DMEMIT("%s %lu", 4426 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4427 (unsigned long) tc->dev_id); 4428 if (tc->origin_dev) 4429 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4430 break; 4431 4432 case STATUSTYPE_IMA: 4433 *result = '\0'; 4434 break; 4435 } 4436 } 4437 4438 return; 4439 4440 err: 4441 DMEMIT("Error"); 4442 } 4443 4444 static int thin_iterate_devices(struct dm_target *ti, 4445 iterate_devices_callout_fn fn, void *data) 4446 { 4447 sector_t blocks; 4448 struct thin_c *tc = ti->private; 4449 struct pool *pool = tc->pool; 4450 4451 /* 4452 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4453 * we follow a more convoluted path through to the pool's target. 4454 */ 4455 if (!pool->ti) 4456 return 0; /* nothing is bound */ 4457 4458 blocks = pool->ti->len; 4459 (void) sector_div(blocks, pool->sectors_per_block); 4460 if (blocks) 4461 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4462 4463 return 0; 4464 } 4465 4466 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4467 { 4468 struct thin_c *tc = ti->private; 4469 struct pool *pool = tc->pool; 4470 4471 if (!pool->pf.discard_enabled) 4472 return; 4473 4474 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4475 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4476 } 4477 4478 static struct target_type thin_target = { 4479 .name = "thin", 4480 .version = {1, 22, 0}, 4481 .module = THIS_MODULE, 4482 .ctr = thin_ctr, 4483 .dtr = thin_dtr, 4484 .map = thin_map, 4485 .end_io = thin_endio, 4486 .preresume = thin_preresume, 4487 .presuspend = thin_presuspend, 4488 .postsuspend = thin_postsuspend, 4489 .status = thin_status, 4490 .iterate_devices = thin_iterate_devices, 4491 .io_hints = thin_io_hints, 4492 }; 4493 4494 /*----------------------------------------------------------------*/ 4495 4496 static int __init dm_thin_init(void) 4497 { 4498 int r = -ENOMEM; 4499 4500 pool_table_init(); 4501 4502 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4503 if (!_new_mapping_cache) 4504 return r; 4505 4506 r = dm_register_target(&thin_target); 4507 if (r) 4508 goto bad_new_mapping_cache; 4509 4510 r = dm_register_target(&pool_target); 4511 if (r) 4512 goto bad_thin_target; 4513 4514 return 0; 4515 4516 bad_thin_target: 4517 dm_unregister_target(&thin_target); 4518 bad_new_mapping_cache: 4519 kmem_cache_destroy(_new_mapping_cache); 4520 4521 return r; 4522 } 4523 4524 static void dm_thin_exit(void) 4525 { 4526 dm_unregister_target(&thin_target); 4527 dm_unregister_target(&pool_target); 4528 4529 kmem_cache_destroy(_new_mapping_cache); 4530 4531 pool_table_exit(); 4532 } 4533 4534 module_init(dm_thin_init); 4535 module_exit(dm_thin_exit); 4536 4537 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644); 4538 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4539 4540 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4541 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4542 MODULE_LICENSE("GPL"); 4543