xref: /linux/drivers/md/dm-thin.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 	bool out_of_data_space:1;
239 
240 	struct dm_bio_prison *prison;
241 	struct dm_kcopyd_client *copier;
242 
243 	struct workqueue_struct *wq;
244 	struct throttle throttle;
245 	struct work_struct worker;
246 	struct delayed_work waker;
247 	struct delayed_work no_space_timeout;
248 
249 	unsigned long last_commit_jiffies;
250 	unsigned ref_count;
251 
252 	spinlock_t lock;
253 	struct bio_list deferred_flush_bios;
254 	struct list_head prepared_mappings;
255 	struct list_head prepared_discards;
256 	struct list_head active_thins;
257 
258 	struct dm_deferred_set *shared_read_ds;
259 	struct dm_deferred_set *all_io_ds;
260 
261 	struct dm_thin_new_mapping *next_mapping;
262 	mempool_t *mapping_pool;
263 
264 	process_bio_fn process_bio;
265 	process_bio_fn process_discard;
266 
267 	process_cell_fn process_cell;
268 	process_cell_fn process_discard_cell;
269 
270 	process_mapping_fn process_prepared_mapping;
271 	process_mapping_fn process_prepared_discard;
272 
273 	struct dm_bio_prison_cell **cell_sort_array;
274 };
275 
276 static enum pool_mode get_pool_mode(struct pool *pool);
277 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
278 
279 /*
280  * Target context for a pool.
281  */
282 struct pool_c {
283 	struct dm_target *ti;
284 	struct pool *pool;
285 	struct dm_dev *data_dev;
286 	struct dm_dev *metadata_dev;
287 	struct dm_target_callbacks callbacks;
288 
289 	dm_block_t low_water_blocks;
290 	struct pool_features requested_pf; /* Features requested during table load */
291 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
292 };
293 
294 /*
295  * Target context for a thin.
296  */
297 struct thin_c {
298 	struct list_head list;
299 	struct dm_dev *pool_dev;
300 	struct dm_dev *origin_dev;
301 	sector_t origin_size;
302 	dm_thin_id dev_id;
303 
304 	struct pool *pool;
305 	struct dm_thin_device *td;
306 	struct mapped_device *thin_md;
307 
308 	bool requeue_mode:1;
309 	spinlock_t lock;
310 	struct list_head deferred_cells;
311 	struct bio_list deferred_bio_list;
312 	struct bio_list retry_on_resume_list;
313 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
314 
315 	/*
316 	 * Ensures the thin is not destroyed until the worker has finished
317 	 * iterating the active_thins list.
318 	 */
319 	atomic_t refcount;
320 	struct completion can_destroy;
321 };
322 
323 /*----------------------------------------------------------------*/
324 
325 static bool block_size_is_power_of_two(struct pool *pool)
326 {
327 	return pool->sectors_per_block_shift >= 0;
328 }
329 
330 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
331 {
332 	return block_size_is_power_of_two(pool) ?
333 		(b << pool->sectors_per_block_shift) :
334 		(b * pool->sectors_per_block);
335 }
336 
337 /*----------------------------------------------------------------*/
338 
339 struct discard_op {
340 	struct thin_c *tc;
341 	struct blk_plug plug;
342 	struct bio *parent_bio;
343 	struct bio *bio;
344 };
345 
346 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
347 {
348 	BUG_ON(!parent);
349 
350 	op->tc = tc;
351 	blk_start_plug(&op->plug);
352 	op->parent_bio = parent;
353 	op->bio = NULL;
354 }
355 
356 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
357 {
358 	struct thin_c *tc = op->tc;
359 	sector_t s = block_to_sectors(tc->pool, data_b);
360 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
361 
362 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
363 				      GFP_NOWAIT, REQ_WRITE | REQ_DISCARD, &op->bio);
364 }
365 
366 static void end_discard(struct discard_op *op, int r)
367 {
368 	if (op->bio) {
369 		/*
370 		 * Even if one of the calls to issue_discard failed, we
371 		 * need to wait for the chain to complete.
372 		 */
373 		bio_chain(op->bio, op->parent_bio);
374 		submit_bio(REQ_WRITE | REQ_DISCARD, op->bio);
375 	}
376 
377 	blk_finish_plug(&op->plug);
378 
379 	/*
380 	 * Even if r is set, there could be sub discards in flight that we
381 	 * need to wait for.
382 	 */
383 	if (r && !op->parent_bio->bi_error)
384 		op->parent_bio->bi_error = r;
385 	bio_endio(op->parent_bio);
386 }
387 
388 /*----------------------------------------------------------------*/
389 
390 /*
391  * wake_worker() is used when new work is queued and when pool_resume is
392  * ready to continue deferred IO processing.
393  */
394 static void wake_worker(struct pool *pool)
395 {
396 	queue_work(pool->wq, &pool->worker);
397 }
398 
399 /*----------------------------------------------------------------*/
400 
401 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
402 		      struct dm_bio_prison_cell **cell_result)
403 {
404 	int r;
405 	struct dm_bio_prison_cell *cell_prealloc;
406 
407 	/*
408 	 * Allocate a cell from the prison's mempool.
409 	 * This might block but it can't fail.
410 	 */
411 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
412 
413 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
414 	if (r)
415 		/*
416 		 * We reused an old cell; we can get rid of
417 		 * the new one.
418 		 */
419 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
420 
421 	return r;
422 }
423 
424 static void cell_release(struct pool *pool,
425 			 struct dm_bio_prison_cell *cell,
426 			 struct bio_list *bios)
427 {
428 	dm_cell_release(pool->prison, cell, bios);
429 	dm_bio_prison_free_cell(pool->prison, cell);
430 }
431 
432 static void cell_visit_release(struct pool *pool,
433 			       void (*fn)(void *, struct dm_bio_prison_cell *),
434 			       void *context,
435 			       struct dm_bio_prison_cell *cell)
436 {
437 	dm_cell_visit_release(pool->prison, fn, context, cell);
438 	dm_bio_prison_free_cell(pool->prison, cell);
439 }
440 
441 static void cell_release_no_holder(struct pool *pool,
442 				   struct dm_bio_prison_cell *cell,
443 				   struct bio_list *bios)
444 {
445 	dm_cell_release_no_holder(pool->prison, cell, bios);
446 	dm_bio_prison_free_cell(pool->prison, cell);
447 }
448 
449 static void cell_error_with_code(struct pool *pool,
450 				 struct dm_bio_prison_cell *cell, int error_code)
451 {
452 	dm_cell_error(pool->prison, cell, error_code);
453 	dm_bio_prison_free_cell(pool->prison, cell);
454 }
455 
456 static int get_pool_io_error_code(struct pool *pool)
457 {
458 	return pool->out_of_data_space ? -ENOSPC : -EIO;
459 }
460 
461 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
462 {
463 	int error = get_pool_io_error_code(pool);
464 
465 	cell_error_with_code(pool, cell, error);
466 }
467 
468 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
469 {
470 	cell_error_with_code(pool, cell, 0);
471 }
472 
473 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
474 {
475 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
476 }
477 
478 /*----------------------------------------------------------------*/
479 
480 /*
481  * A global list of pools that uses a struct mapped_device as a key.
482  */
483 static struct dm_thin_pool_table {
484 	struct mutex mutex;
485 	struct list_head pools;
486 } dm_thin_pool_table;
487 
488 static void pool_table_init(void)
489 {
490 	mutex_init(&dm_thin_pool_table.mutex);
491 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
492 }
493 
494 static void __pool_table_insert(struct pool *pool)
495 {
496 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
497 	list_add(&pool->list, &dm_thin_pool_table.pools);
498 }
499 
500 static void __pool_table_remove(struct pool *pool)
501 {
502 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
503 	list_del(&pool->list);
504 }
505 
506 static struct pool *__pool_table_lookup(struct mapped_device *md)
507 {
508 	struct pool *pool = NULL, *tmp;
509 
510 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
511 
512 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
513 		if (tmp->pool_md == md) {
514 			pool = tmp;
515 			break;
516 		}
517 	}
518 
519 	return pool;
520 }
521 
522 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
523 {
524 	struct pool *pool = NULL, *tmp;
525 
526 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
527 
528 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
529 		if (tmp->md_dev == md_dev) {
530 			pool = tmp;
531 			break;
532 		}
533 	}
534 
535 	return pool;
536 }
537 
538 /*----------------------------------------------------------------*/
539 
540 struct dm_thin_endio_hook {
541 	struct thin_c *tc;
542 	struct dm_deferred_entry *shared_read_entry;
543 	struct dm_deferred_entry *all_io_entry;
544 	struct dm_thin_new_mapping *overwrite_mapping;
545 	struct rb_node rb_node;
546 	struct dm_bio_prison_cell *cell;
547 };
548 
549 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
550 {
551 	bio_list_merge(bios, master);
552 	bio_list_init(master);
553 }
554 
555 static void error_bio_list(struct bio_list *bios, int error)
556 {
557 	struct bio *bio;
558 
559 	while ((bio = bio_list_pop(bios))) {
560 		bio->bi_error = error;
561 		bio_endio(bio);
562 	}
563 }
564 
565 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
566 {
567 	struct bio_list bios;
568 	unsigned long flags;
569 
570 	bio_list_init(&bios);
571 
572 	spin_lock_irqsave(&tc->lock, flags);
573 	__merge_bio_list(&bios, master);
574 	spin_unlock_irqrestore(&tc->lock, flags);
575 
576 	error_bio_list(&bios, error);
577 }
578 
579 static void requeue_deferred_cells(struct thin_c *tc)
580 {
581 	struct pool *pool = tc->pool;
582 	unsigned long flags;
583 	struct list_head cells;
584 	struct dm_bio_prison_cell *cell, *tmp;
585 
586 	INIT_LIST_HEAD(&cells);
587 
588 	spin_lock_irqsave(&tc->lock, flags);
589 	list_splice_init(&tc->deferred_cells, &cells);
590 	spin_unlock_irqrestore(&tc->lock, flags);
591 
592 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
593 		cell_requeue(pool, cell);
594 }
595 
596 static void requeue_io(struct thin_c *tc)
597 {
598 	struct bio_list bios;
599 	unsigned long flags;
600 
601 	bio_list_init(&bios);
602 
603 	spin_lock_irqsave(&tc->lock, flags);
604 	__merge_bio_list(&bios, &tc->deferred_bio_list);
605 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
606 	spin_unlock_irqrestore(&tc->lock, flags);
607 
608 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
609 	requeue_deferred_cells(tc);
610 }
611 
612 static void error_retry_list_with_code(struct pool *pool, int error)
613 {
614 	struct thin_c *tc;
615 
616 	rcu_read_lock();
617 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
618 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
619 	rcu_read_unlock();
620 }
621 
622 static void error_retry_list(struct pool *pool)
623 {
624 	int error = get_pool_io_error_code(pool);
625 
626 	error_retry_list_with_code(pool, error);
627 }
628 
629 /*
630  * This section of code contains the logic for processing a thin device's IO.
631  * Much of the code depends on pool object resources (lists, workqueues, etc)
632  * but most is exclusively called from the thin target rather than the thin-pool
633  * target.
634  */
635 
636 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
637 {
638 	struct pool *pool = tc->pool;
639 	sector_t block_nr = bio->bi_iter.bi_sector;
640 
641 	if (block_size_is_power_of_two(pool))
642 		block_nr >>= pool->sectors_per_block_shift;
643 	else
644 		(void) sector_div(block_nr, pool->sectors_per_block);
645 
646 	return block_nr;
647 }
648 
649 /*
650  * Returns the _complete_ blocks that this bio covers.
651  */
652 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
653 				dm_block_t *begin, dm_block_t *end)
654 {
655 	struct pool *pool = tc->pool;
656 	sector_t b = bio->bi_iter.bi_sector;
657 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
658 
659 	b += pool->sectors_per_block - 1ull; /* so we round up */
660 
661 	if (block_size_is_power_of_two(pool)) {
662 		b >>= pool->sectors_per_block_shift;
663 		e >>= pool->sectors_per_block_shift;
664 	} else {
665 		(void) sector_div(b, pool->sectors_per_block);
666 		(void) sector_div(e, pool->sectors_per_block);
667 	}
668 
669 	if (e < b)
670 		/* Can happen if the bio is within a single block. */
671 		e = b;
672 
673 	*begin = b;
674 	*end = e;
675 }
676 
677 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
678 {
679 	struct pool *pool = tc->pool;
680 	sector_t bi_sector = bio->bi_iter.bi_sector;
681 
682 	bio->bi_bdev = tc->pool_dev->bdev;
683 	if (block_size_is_power_of_two(pool))
684 		bio->bi_iter.bi_sector =
685 			(block << pool->sectors_per_block_shift) |
686 			(bi_sector & (pool->sectors_per_block - 1));
687 	else
688 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
689 				 sector_div(bi_sector, pool->sectors_per_block);
690 }
691 
692 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
693 {
694 	bio->bi_bdev = tc->origin_dev->bdev;
695 }
696 
697 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
698 {
699 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
700 		dm_thin_changed_this_transaction(tc->td);
701 }
702 
703 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
704 {
705 	struct dm_thin_endio_hook *h;
706 
707 	if (bio->bi_rw & REQ_DISCARD)
708 		return;
709 
710 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
711 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
712 }
713 
714 static void issue(struct thin_c *tc, struct bio *bio)
715 {
716 	struct pool *pool = tc->pool;
717 	unsigned long flags;
718 
719 	if (!bio_triggers_commit(tc, bio)) {
720 		generic_make_request(bio);
721 		return;
722 	}
723 
724 	/*
725 	 * Complete bio with an error if earlier I/O caused changes to
726 	 * the metadata that can't be committed e.g, due to I/O errors
727 	 * on the metadata device.
728 	 */
729 	if (dm_thin_aborted_changes(tc->td)) {
730 		bio_io_error(bio);
731 		return;
732 	}
733 
734 	/*
735 	 * Batch together any bios that trigger commits and then issue a
736 	 * single commit for them in process_deferred_bios().
737 	 */
738 	spin_lock_irqsave(&pool->lock, flags);
739 	bio_list_add(&pool->deferred_flush_bios, bio);
740 	spin_unlock_irqrestore(&pool->lock, flags);
741 }
742 
743 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
744 {
745 	remap_to_origin(tc, bio);
746 	issue(tc, bio);
747 }
748 
749 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
750 			    dm_block_t block)
751 {
752 	remap(tc, bio, block);
753 	issue(tc, bio);
754 }
755 
756 /*----------------------------------------------------------------*/
757 
758 /*
759  * Bio endio functions.
760  */
761 struct dm_thin_new_mapping {
762 	struct list_head list;
763 
764 	bool pass_discard:1;
765 	bool maybe_shared:1;
766 
767 	/*
768 	 * Track quiescing, copying and zeroing preparation actions.  When this
769 	 * counter hits zero the block is prepared and can be inserted into the
770 	 * btree.
771 	 */
772 	atomic_t prepare_actions;
773 
774 	int err;
775 	struct thin_c *tc;
776 	dm_block_t virt_begin, virt_end;
777 	dm_block_t data_block;
778 	struct dm_bio_prison_cell *cell;
779 
780 	/*
781 	 * If the bio covers the whole area of a block then we can avoid
782 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
783 	 * still be in the cell, so care has to be taken to avoid issuing
784 	 * the bio twice.
785 	 */
786 	struct bio *bio;
787 	bio_end_io_t *saved_bi_end_io;
788 };
789 
790 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
791 {
792 	struct pool *pool = m->tc->pool;
793 
794 	if (atomic_dec_and_test(&m->prepare_actions)) {
795 		list_add_tail(&m->list, &pool->prepared_mappings);
796 		wake_worker(pool);
797 	}
798 }
799 
800 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
801 {
802 	unsigned long flags;
803 	struct pool *pool = m->tc->pool;
804 
805 	spin_lock_irqsave(&pool->lock, flags);
806 	__complete_mapping_preparation(m);
807 	spin_unlock_irqrestore(&pool->lock, flags);
808 }
809 
810 static void copy_complete(int read_err, unsigned long write_err, void *context)
811 {
812 	struct dm_thin_new_mapping *m = context;
813 
814 	m->err = read_err || write_err ? -EIO : 0;
815 	complete_mapping_preparation(m);
816 }
817 
818 static void overwrite_endio(struct bio *bio)
819 {
820 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
821 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
822 
823 	bio->bi_end_io = m->saved_bi_end_io;
824 
825 	m->err = bio->bi_error;
826 	complete_mapping_preparation(m);
827 }
828 
829 /*----------------------------------------------------------------*/
830 
831 /*
832  * Workqueue.
833  */
834 
835 /*
836  * Prepared mapping jobs.
837  */
838 
839 /*
840  * This sends the bios in the cell, except the original holder, back
841  * to the deferred_bios list.
842  */
843 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
844 {
845 	struct pool *pool = tc->pool;
846 	unsigned long flags;
847 
848 	spin_lock_irqsave(&tc->lock, flags);
849 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
850 	spin_unlock_irqrestore(&tc->lock, flags);
851 
852 	wake_worker(pool);
853 }
854 
855 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
856 
857 struct remap_info {
858 	struct thin_c *tc;
859 	struct bio_list defer_bios;
860 	struct bio_list issue_bios;
861 };
862 
863 static void __inc_remap_and_issue_cell(void *context,
864 				       struct dm_bio_prison_cell *cell)
865 {
866 	struct remap_info *info = context;
867 	struct bio *bio;
868 
869 	while ((bio = bio_list_pop(&cell->bios))) {
870 		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
871 			bio_list_add(&info->defer_bios, bio);
872 		else {
873 			inc_all_io_entry(info->tc->pool, bio);
874 
875 			/*
876 			 * We can't issue the bios with the bio prison lock
877 			 * held, so we add them to a list to issue on
878 			 * return from this function.
879 			 */
880 			bio_list_add(&info->issue_bios, bio);
881 		}
882 	}
883 }
884 
885 static void inc_remap_and_issue_cell(struct thin_c *tc,
886 				     struct dm_bio_prison_cell *cell,
887 				     dm_block_t block)
888 {
889 	struct bio *bio;
890 	struct remap_info info;
891 
892 	info.tc = tc;
893 	bio_list_init(&info.defer_bios);
894 	bio_list_init(&info.issue_bios);
895 
896 	/*
897 	 * We have to be careful to inc any bios we're about to issue
898 	 * before the cell is released, and avoid a race with new bios
899 	 * being added to the cell.
900 	 */
901 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
902 			   &info, cell);
903 
904 	while ((bio = bio_list_pop(&info.defer_bios)))
905 		thin_defer_bio(tc, bio);
906 
907 	while ((bio = bio_list_pop(&info.issue_bios)))
908 		remap_and_issue(info.tc, bio, block);
909 }
910 
911 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
912 {
913 	cell_error(m->tc->pool, m->cell);
914 	list_del(&m->list);
915 	mempool_free(m, m->tc->pool->mapping_pool);
916 }
917 
918 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
919 {
920 	struct thin_c *tc = m->tc;
921 	struct pool *pool = tc->pool;
922 	struct bio *bio = m->bio;
923 	int r;
924 
925 	if (m->err) {
926 		cell_error(pool, m->cell);
927 		goto out;
928 	}
929 
930 	/*
931 	 * Commit the prepared block into the mapping btree.
932 	 * Any I/O for this block arriving after this point will get
933 	 * remapped to it directly.
934 	 */
935 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
936 	if (r) {
937 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
938 		cell_error(pool, m->cell);
939 		goto out;
940 	}
941 
942 	/*
943 	 * Release any bios held while the block was being provisioned.
944 	 * If we are processing a write bio that completely covers the block,
945 	 * we already processed it so can ignore it now when processing
946 	 * the bios in the cell.
947 	 */
948 	if (bio) {
949 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
950 		bio_endio(bio);
951 	} else {
952 		inc_all_io_entry(tc->pool, m->cell->holder);
953 		remap_and_issue(tc, m->cell->holder, m->data_block);
954 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
955 	}
956 
957 out:
958 	list_del(&m->list);
959 	mempool_free(m, pool->mapping_pool);
960 }
961 
962 /*----------------------------------------------------------------*/
963 
964 static void free_discard_mapping(struct dm_thin_new_mapping *m)
965 {
966 	struct thin_c *tc = m->tc;
967 	if (m->cell)
968 		cell_defer_no_holder(tc, m->cell);
969 	mempool_free(m, tc->pool->mapping_pool);
970 }
971 
972 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
973 {
974 	bio_io_error(m->bio);
975 	free_discard_mapping(m);
976 }
977 
978 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
979 {
980 	bio_endio(m->bio);
981 	free_discard_mapping(m);
982 }
983 
984 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
985 {
986 	int r;
987 	struct thin_c *tc = m->tc;
988 
989 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
990 	if (r) {
991 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
992 		bio_io_error(m->bio);
993 	} else
994 		bio_endio(m->bio);
995 
996 	cell_defer_no_holder(tc, m->cell);
997 	mempool_free(m, tc->pool->mapping_pool);
998 }
999 
1000 /*----------------------------------------------------------------*/
1001 
1002 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1003 {
1004 	/*
1005 	 * We've already unmapped this range of blocks, but before we
1006 	 * passdown we have to check that these blocks are now unused.
1007 	 */
1008 	int r = 0;
1009 	bool used = true;
1010 	struct thin_c *tc = m->tc;
1011 	struct pool *pool = tc->pool;
1012 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1013 	struct discard_op op;
1014 
1015 	begin_discard(&op, tc, m->bio);
1016 	while (b != end) {
1017 		/* find start of unmapped run */
1018 		for (; b < end; b++) {
1019 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1020 			if (r)
1021 				goto out;
1022 
1023 			if (!used)
1024 				break;
1025 		}
1026 
1027 		if (b == end)
1028 			break;
1029 
1030 		/* find end of run */
1031 		for (e = b + 1; e != end; e++) {
1032 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1033 			if (r)
1034 				goto out;
1035 
1036 			if (used)
1037 				break;
1038 		}
1039 
1040 		r = issue_discard(&op, b, e);
1041 		if (r)
1042 			goto out;
1043 
1044 		b = e;
1045 	}
1046 out:
1047 	end_discard(&op, r);
1048 }
1049 
1050 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1051 {
1052 	int r;
1053 	struct thin_c *tc = m->tc;
1054 	struct pool *pool = tc->pool;
1055 
1056 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1057 	if (r) {
1058 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1059 		bio_io_error(m->bio);
1060 
1061 	} else if (m->maybe_shared) {
1062 		passdown_double_checking_shared_status(m);
1063 
1064 	} else {
1065 		struct discard_op op;
1066 		begin_discard(&op, tc, m->bio);
1067 		r = issue_discard(&op, m->data_block,
1068 				  m->data_block + (m->virt_end - m->virt_begin));
1069 		end_discard(&op, r);
1070 	}
1071 
1072 	cell_defer_no_holder(tc, m->cell);
1073 	mempool_free(m, pool->mapping_pool);
1074 }
1075 
1076 static void process_prepared(struct pool *pool, struct list_head *head,
1077 			     process_mapping_fn *fn)
1078 {
1079 	unsigned long flags;
1080 	struct list_head maps;
1081 	struct dm_thin_new_mapping *m, *tmp;
1082 
1083 	INIT_LIST_HEAD(&maps);
1084 	spin_lock_irqsave(&pool->lock, flags);
1085 	list_splice_init(head, &maps);
1086 	spin_unlock_irqrestore(&pool->lock, flags);
1087 
1088 	list_for_each_entry_safe(m, tmp, &maps, list)
1089 		(*fn)(m);
1090 }
1091 
1092 /*
1093  * Deferred bio jobs.
1094  */
1095 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1096 {
1097 	return bio->bi_iter.bi_size ==
1098 		(pool->sectors_per_block << SECTOR_SHIFT);
1099 }
1100 
1101 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1102 {
1103 	return (bio_data_dir(bio) == WRITE) &&
1104 		io_overlaps_block(pool, bio);
1105 }
1106 
1107 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1108 			       bio_end_io_t *fn)
1109 {
1110 	*save = bio->bi_end_io;
1111 	bio->bi_end_io = fn;
1112 }
1113 
1114 static int ensure_next_mapping(struct pool *pool)
1115 {
1116 	if (pool->next_mapping)
1117 		return 0;
1118 
1119 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1120 
1121 	return pool->next_mapping ? 0 : -ENOMEM;
1122 }
1123 
1124 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1125 {
1126 	struct dm_thin_new_mapping *m = pool->next_mapping;
1127 
1128 	BUG_ON(!pool->next_mapping);
1129 
1130 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1131 	INIT_LIST_HEAD(&m->list);
1132 	m->bio = NULL;
1133 
1134 	pool->next_mapping = NULL;
1135 
1136 	return m;
1137 }
1138 
1139 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1140 		    sector_t begin, sector_t end)
1141 {
1142 	int r;
1143 	struct dm_io_region to;
1144 
1145 	to.bdev = tc->pool_dev->bdev;
1146 	to.sector = begin;
1147 	to.count = end - begin;
1148 
1149 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1150 	if (r < 0) {
1151 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1152 		copy_complete(1, 1, m);
1153 	}
1154 }
1155 
1156 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1157 				      dm_block_t data_begin,
1158 				      struct dm_thin_new_mapping *m)
1159 {
1160 	struct pool *pool = tc->pool;
1161 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1162 
1163 	h->overwrite_mapping = m;
1164 	m->bio = bio;
1165 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1166 	inc_all_io_entry(pool, bio);
1167 	remap_and_issue(tc, bio, data_begin);
1168 }
1169 
1170 /*
1171  * A partial copy also needs to zero the uncopied region.
1172  */
1173 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1174 			  struct dm_dev *origin, dm_block_t data_origin,
1175 			  dm_block_t data_dest,
1176 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1177 			  sector_t len)
1178 {
1179 	int r;
1180 	struct pool *pool = tc->pool;
1181 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1182 
1183 	m->tc = tc;
1184 	m->virt_begin = virt_block;
1185 	m->virt_end = virt_block + 1u;
1186 	m->data_block = data_dest;
1187 	m->cell = cell;
1188 
1189 	/*
1190 	 * quiesce action + copy action + an extra reference held for the
1191 	 * duration of this function (we may need to inc later for a
1192 	 * partial zero).
1193 	 */
1194 	atomic_set(&m->prepare_actions, 3);
1195 
1196 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1197 		complete_mapping_preparation(m); /* already quiesced */
1198 
1199 	/*
1200 	 * IO to pool_dev remaps to the pool target's data_dev.
1201 	 *
1202 	 * If the whole block of data is being overwritten, we can issue the
1203 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1204 	 */
1205 	if (io_overwrites_block(pool, bio))
1206 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1207 	else {
1208 		struct dm_io_region from, to;
1209 
1210 		from.bdev = origin->bdev;
1211 		from.sector = data_origin * pool->sectors_per_block;
1212 		from.count = len;
1213 
1214 		to.bdev = tc->pool_dev->bdev;
1215 		to.sector = data_dest * pool->sectors_per_block;
1216 		to.count = len;
1217 
1218 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1219 				   0, copy_complete, m);
1220 		if (r < 0) {
1221 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1222 			copy_complete(1, 1, m);
1223 
1224 			/*
1225 			 * We allow the zero to be issued, to simplify the
1226 			 * error path.  Otherwise we'd need to start
1227 			 * worrying about decrementing the prepare_actions
1228 			 * counter.
1229 			 */
1230 		}
1231 
1232 		/*
1233 		 * Do we need to zero a tail region?
1234 		 */
1235 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1236 			atomic_inc(&m->prepare_actions);
1237 			ll_zero(tc, m,
1238 				data_dest * pool->sectors_per_block + len,
1239 				(data_dest + 1) * pool->sectors_per_block);
1240 		}
1241 	}
1242 
1243 	complete_mapping_preparation(m); /* drop our ref */
1244 }
1245 
1246 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1247 				   dm_block_t data_origin, dm_block_t data_dest,
1248 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1249 {
1250 	schedule_copy(tc, virt_block, tc->pool_dev,
1251 		      data_origin, data_dest, cell, bio,
1252 		      tc->pool->sectors_per_block);
1253 }
1254 
1255 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1256 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1257 			  struct bio *bio)
1258 {
1259 	struct pool *pool = tc->pool;
1260 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1261 
1262 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1263 	m->tc = tc;
1264 	m->virt_begin = virt_block;
1265 	m->virt_end = virt_block + 1u;
1266 	m->data_block = data_block;
1267 	m->cell = cell;
1268 
1269 	/*
1270 	 * If the whole block of data is being overwritten or we are not
1271 	 * zeroing pre-existing data, we can issue the bio immediately.
1272 	 * Otherwise we use kcopyd to zero the data first.
1273 	 */
1274 	if (pool->pf.zero_new_blocks) {
1275 		if (io_overwrites_block(pool, bio))
1276 			remap_and_issue_overwrite(tc, bio, data_block, m);
1277 		else
1278 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1279 				(data_block + 1) * pool->sectors_per_block);
1280 	} else
1281 		process_prepared_mapping(m);
1282 }
1283 
1284 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1285 				   dm_block_t data_dest,
1286 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1287 {
1288 	struct pool *pool = tc->pool;
1289 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1290 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1291 
1292 	if (virt_block_end <= tc->origin_size)
1293 		schedule_copy(tc, virt_block, tc->origin_dev,
1294 			      virt_block, data_dest, cell, bio,
1295 			      pool->sectors_per_block);
1296 
1297 	else if (virt_block_begin < tc->origin_size)
1298 		schedule_copy(tc, virt_block, tc->origin_dev,
1299 			      virt_block, data_dest, cell, bio,
1300 			      tc->origin_size - virt_block_begin);
1301 
1302 	else
1303 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1304 }
1305 
1306 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1307 
1308 static void check_for_space(struct pool *pool)
1309 {
1310 	int r;
1311 	dm_block_t nr_free;
1312 
1313 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1314 		return;
1315 
1316 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1317 	if (r)
1318 		return;
1319 
1320 	if (nr_free)
1321 		set_pool_mode(pool, PM_WRITE);
1322 }
1323 
1324 /*
1325  * A non-zero return indicates read_only or fail_io mode.
1326  * Many callers don't care about the return value.
1327  */
1328 static int commit(struct pool *pool)
1329 {
1330 	int r;
1331 
1332 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1333 		return -EINVAL;
1334 
1335 	r = dm_pool_commit_metadata(pool->pmd);
1336 	if (r)
1337 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1338 	else
1339 		check_for_space(pool);
1340 
1341 	return r;
1342 }
1343 
1344 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1345 {
1346 	unsigned long flags;
1347 
1348 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1349 		DMWARN("%s: reached low water mark for data device: sending event.",
1350 		       dm_device_name(pool->pool_md));
1351 		spin_lock_irqsave(&pool->lock, flags);
1352 		pool->low_water_triggered = true;
1353 		spin_unlock_irqrestore(&pool->lock, flags);
1354 		dm_table_event(pool->ti->table);
1355 	}
1356 }
1357 
1358 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1359 {
1360 	int r;
1361 	dm_block_t free_blocks;
1362 	struct pool *pool = tc->pool;
1363 
1364 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1365 		return -EINVAL;
1366 
1367 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1368 	if (r) {
1369 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1370 		return r;
1371 	}
1372 
1373 	check_low_water_mark(pool, free_blocks);
1374 
1375 	if (!free_blocks) {
1376 		/*
1377 		 * Try to commit to see if that will free up some
1378 		 * more space.
1379 		 */
1380 		r = commit(pool);
1381 		if (r)
1382 			return r;
1383 
1384 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1385 		if (r) {
1386 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1387 			return r;
1388 		}
1389 
1390 		if (!free_blocks) {
1391 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1392 			return -ENOSPC;
1393 		}
1394 	}
1395 
1396 	r = dm_pool_alloc_data_block(pool->pmd, result);
1397 	if (r) {
1398 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1399 		return r;
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * If we have run out of space, queue bios until the device is
1407  * resumed, presumably after having been reloaded with more space.
1408  */
1409 static void retry_on_resume(struct bio *bio)
1410 {
1411 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1412 	struct thin_c *tc = h->tc;
1413 	unsigned long flags;
1414 
1415 	spin_lock_irqsave(&tc->lock, flags);
1416 	bio_list_add(&tc->retry_on_resume_list, bio);
1417 	spin_unlock_irqrestore(&tc->lock, flags);
1418 }
1419 
1420 static int should_error_unserviceable_bio(struct pool *pool)
1421 {
1422 	enum pool_mode m = get_pool_mode(pool);
1423 
1424 	switch (m) {
1425 	case PM_WRITE:
1426 		/* Shouldn't get here */
1427 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1428 		return -EIO;
1429 
1430 	case PM_OUT_OF_DATA_SPACE:
1431 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1432 
1433 	case PM_READ_ONLY:
1434 	case PM_FAIL:
1435 		return -EIO;
1436 	default:
1437 		/* Shouldn't get here */
1438 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1439 		return -EIO;
1440 	}
1441 }
1442 
1443 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1444 {
1445 	int error = should_error_unserviceable_bio(pool);
1446 
1447 	if (error) {
1448 		bio->bi_error = error;
1449 		bio_endio(bio);
1450 	} else
1451 		retry_on_resume(bio);
1452 }
1453 
1454 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1455 {
1456 	struct bio *bio;
1457 	struct bio_list bios;
1458 	int error;
1459 
1460 	error = should_error_unserviceable_bio(pool);
1461 	if (error) {
1462 		cell_error_with_code(pool, cell, error);
1463 		return;
1464 	}
1465 
1466 	bio_list_init(&bios);
1467 	cell_release(pool, cell, &bios);
1468 
1469 	while ((bio = bio_list_pop(&bios)))
1470 		retry_on_resume(bio);
1471 }
1472 
1473 static void process_discard_cell_no_passdown(struct thin_c *tc,
1474 					     struct dm_bio_prison_cell *virt_cell)
1475 {
1476 	struct pool *pool = tc->pool;
1477 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1478 
1479 	/*
1480 	 * We don't need to lock the data blocks, since there's no
1481 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1482 	 */
1483 	m->tc = tc;
1484 	m->virt_begin = virt_cell->key.block_begin;
1485 	m->virt_end = virt_cell->key.block_end;
1486 	m->cell = virt_cell;
1487 	m->bio = virt_cell->holder;
1488 
1489 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1490 		pool->process_prepared_discard(m);
1491 }
1492 
1493 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1494 				 struct bio *bio)
1495 {
1496 	struct pool *pool = tc->pool;
1497 
1498 	int r;
1499 	bool maybe_shared;
1500 	struct dm_cell_key data_key;
1501 	struct dm_bio_prison_cell *data_cell;
1502 	struct dm_thin_new_mapping *m;
1503 	dm_block_t virt_begin, virt_end, data_begin;
1504 
1505 	while (begin != end) {
1506 		r = ensure_next_mapping(pool);
1507 		if (r)
1508 			/* we did our best */
1509 			return;
1510 
1511 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1512 					      &data_begin, &maybe_shared);
1513 		if (r)
1514 			/*
1515 			 * Silently fail, letting any mappings we've
1516 			 * created complete.
1517 			 */
1518 			break;
1519 
1520 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1521 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1522 			/* contention, we'll give up with this range */
1523 			begin = virt_end;
1524 			continue;
1525 		}
1526 
1527 		/*
1528 		 * IO may still be going to the destination block.  We must
1529 		 * quiesce before we can do the removal.
1530 		 */
1531 		m = get_next_mapping(pool);
1532 		m->tc = tc;
1533 		m->maybe_shared = maybe_shared;
1534 		m->virt_begin = virt_begin;
1535 		m->virt_end = virt_end;
1536 		m->data_block = data_begin;
1537 		m->cell = data_cell;
1538 		m->bio = bio;
1539 
1540 		/*
1541 		 * The parent bio must not complete before sub discard bios are
1542 		 * chained to it (see end_discard's bio_chain)!
1543 		 *
1544 		 * This per-mapping bi_remaining increment is paired with
1545 		 * the implicit decrement that occurs via bio_endio() in
1546 		 * end_discard().
1547 		 */
1548 		bio_inc_remaining(bio);
1549 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1550 			pool->process_prepared_discard(m);
1551 
1552 		begin = virt_end;
1553 	}
1554 }
1555 
1556 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1557 {
1558 	struct bio *bio = virt_cell->holder;
1559 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1560 
1561 	/*
1562 	 * The virt_cell will only get freed once the origin bio completes.
1563 	 * This means it will remain locked while all the individual
1564 	 * passdown bios are in flight.
1565 	 */
1566 	h->cell = virt_cell;
1567 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1568 
1569 	/*
1570 	 * We complete the bio now, knowing that the bi_remaining field
1571 	 * will prevent completion until the sub range discards have
1572 	 * completed.
1573 	 */
1574 	bio_endio(bio);
1575 }
1576 
1577 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1578 {
1579 	dm_block_t begin, end;
1580 	struct dm_cell_key virt_key;
1581 	struct dm_bio_prison_cell *virt_cell;
1582 
1583 	get_bio_block_range(tc, bio, &begin, &end);
1584 	if (begin == end) {
1585 		/*
1586 		 * The discard covers less than a block.
1587 		 */
1588 		bio_endio(bio);
1589 		return;
1590 	}
1591 
1592 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1593 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1594 		/*
1595 		 * Potential starvation issue: We're relying on the
1596 		 * fs/application being well behaved, and not trying to
1597 		 * send IO to a region at the same time as discarding it.
1598 		 * If they do this persistently then it's possible this
1599 		 * cell will never be granted.
1600 		 */
1601 		return;
1602 
1603 	tc->pool->process_discard_cell(tc, virt_cell);
1604 }
1605 
1606 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1607 			  struct dm_cell_key *key,
1608 			  struct dm_thin_lookup_result *lookup_result,
1609 			  struct dm_bio_prison_cell *cell)
1610 {
1611 	int r;
1612 	dm_block_t data_block;
1613 	struct pool *pool = tc->pool;
1614 
1615 	r = alloc_data_block(tc, &data_block);
1616 	switch (r) {
1617 	case 0:
1618 		schedule_internal_copy(tc, block, lookup_result->block,
1619 				       data_block, cell, bio);
1620 		break;
1621 
1622 	case -ENOSPC:
1623 		retry_bios_on_resume(pool, cell);
1624 		break;
1625 
1626 	default:
1627 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1628 			    __func__, r);
1629 		cell_error(pool, cell);
1630 		break;
1631 	}
1632 }
1633 
1634 static void __remap_and_issue_shared_cell(void *context,
1635 					  struct dm_bio_prison_cell *cell)
1636 {
1637 	struct remap_info *info = context;
1638 	struct bio *bio;
1639 
1640 	while ((bio = bio_list_pop(&cell->bios))) {
1641 		if ((bio_data_dir(bio) == WRITE) ||
1642 		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1643 			bio_list_add(&info->defer_bios, bio);
1644 		else {
1645 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1646 
1647 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1648 			inc_all_io_entry(info->tc->pool, bio);
1649 			bio_list_add(&info->issue_bios, bio);
1650 		}
1651 	}
1652 }
1653 
1654 static void remap_and_issue_shared_cell(struct thin_c *tc,
1655 					struct dm_bio_prison_cell *cell,
1656 					dm_block_t block)
1657 {
1658 	struct bio *bio;
1659 	struct remap_info info;
1660 
1661 	info.tc = tc;
1662 	bio_list_init(&info.defer_bios);
1663 	bio_list_init(&info.issue_bios);
1664 
1665 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1666 			   &info, cell);
1667 
1668 	while ((bio = bio_list_pop(&info.defer_bios)))
1669 		thin_defer_bio(tc, bio);
1670 
1671 	while ((bio = bio_list_pop(&info.issue_bios)))
1672 		remap_and_issue(tc, bio, block);
1673 }
1674 
1675 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1676 			       dm_block_t block,
1677 			       struct dm_thin_lookup_result *lookup_result,
1678 			       struct dm_bio_prison_cell *virt_cell)
1679 {
1680 	struct dm_bio_prison_cell *data_cell;
1681 	struct pool *pool = tc->pool;
1682 	struct dm_cell_key key;
1683 
1684 	/*
1685 	 * If cell is already occupied, then sharing is already in the process
1686 	 * of being broken so we have nothing further to do here.
1687 	 */
1688 	build_data_key(tc->td, lookup_result->block, &key);
1689 	if (bio_detain(pool, &key, bio, &data_cell)) {
1690 		cell_defer_no_holder(tc, virt_cell);
1691 		return;
1692 	}
1693 
1694 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1695 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1696 		cell_defer_no_holder(tc, virt_cell);
1697 	} else {
1698 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1699 
1700 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1701 		inc_all_io_entry(pool, bio);
1702 		remap_and_issue(tc, bio, lookup_result->block);
1703 
1704 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1705 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1706 	}
1707 }
1708 
1709 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1710 			    struct dm_bio_prison_cell *cell)
1711 {
1712 	int r;
1713 	dm_block_t data_block;
1714 	struct pool *pool = tc->pool;
1715 
1716 	/*
1717 	 * Remap empty bios (flushes) immediately, without provisioning.
1718 	 */
1719 	if (!bio->bi_iter.bi_size) {
1720 		inc_all_io_entry(pool, bio);
1721 		cell_defer_no_holder(tc, cell);
1722 
1723 		remap_and_issue(tc, bio, 0);
1724 		return;
1725 	}
1726 
1727 	/*
1728 	 * Fill read bios with zeroes and complete them immediately.
1729 	 */
1730 	if (bio_data_dir(bio) == READ) {
1731 		zero_fill_bio(bio);
1732 		cell_defer_no_holder(tc, cell);
1733 		bio_endio(bio);
1734 		return;
1735 	}
1736 
1737 	r = alloc_data_block(tc, &data_block);
1738 	switch (r) {
1739 	case 0:
1740 		if (tc->origin_dev)
1741 			schedule_external_copy(tc, block, data_block, cell, bio);
1742 		else
1743 			schedule_zero(tc, block, data_block, cell, bio);
1744 		break;
1745 
1746 	case -ENOSPC:
1747 		retry_bios_on_resume(pool, cell);
1748 		break;
1749 
1750 	default:
1751 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1752 			    __func__, r);
1753 		cell_error(pool, cell);
1754 		break;
1755 	}
1756 }
1757 
1758 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1759 {
1760 	int r;
1761 	struct pool *pool = tc->pool;
1762 	struct bio *bio = cell->holder;
1763 	dm_block_t block = get_bio_block(tc, bio);
1764 	struct dm_thin_lookup_result lookup_result;
1765 
1766 	if (tc->requeue_mode) {
1767 		cell_requeue(pool, cell);
1768 		return;
1769 	}
1770 
1771 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1772 	switch (r) {
1773 	case 0:
1774 		if (lookup_result.shared)
1775 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1776 		else {
1777 			inc_all_io_entry(pool, bio);
1778 			remap_and_issue(tc, bio, lookup_result.block);
1779 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1780 		}
1781 		break;
1782 
1783 	case -ENODATA:
1784 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1785 			inc_all_io_entry(pool, bio);
1786 			cell_defer_no_holder(tc, cell);
1787 
1788 			if (bio_end_sector(bio) <= tc->origin_size)
1789 				remap_to_origin_and_issue(tc, bio);
1790 
1791 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1792 				zero_fill_bio(bio);
1793 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1794 				remap_to_origin_and_issue(tc, bio);
1795 
1796 			} else {
1797 				zero_fill_bio(bio);
1798 				bio_endio(bio);
1799 			}
1800 		} else
1801 			provision_block(tc, bio, block, cell);
1802 		break;
1803 
1804 	default:
1805 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1806 			    __func__, r);
1807 		cell_defer_no_holder(tc, cell);
1808 		bio_io_error(bio);
1809 		break;
1810 	}
1811 }
1812 
1813 static void process_bio(struct thin_c *tc, struct bio *bio)
1814 {
1815 	struct pool *pool = tc->pool;
1816 	dm_block_t block = get_bio_block(tc, bio);
1817 	struct dm_bio_prison_cell *cell;
1818 	struct dm_cell_key key;
1819 
1820 	/*
1821 	 * If cell is already occupied, then the block is already
1822 	 * being provisioned so we have nothing further to do here.
1823 	 */
1824 	build_virtual_key(tc->td, block, &key);
1825 	if (bio_detain(pool, &key, bio, &cell))
1826 		return;
1827 
1828 	process_cell(tc, cell);
1829 }
1830 
1831 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1832 				    struct dm_bio_prison_cell *cell)
1833 {
1834 	int r;
1835 	int rw = bio_data_dir(bio);
1836 	dm_block_t block = get_bio_block(tc, bio);
1837 	struct dm_thin_lookup_result lookup_result;
1838 
1839 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1840 	switch (r) {
1841 	case 0:
1842 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1843 			handle_unserviceable_bio(tc->pool, bio);
1844 			if (cell)
1845 				cell_defer_no_holder(tc, cell);
1846 		} else {
1847 			inc_all_io_entry(tc->pool, bio);
1848 			remap_and_issue(tc, bio, lookup_result.block);
1849 			if (cell)
1850 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1851 		}
1852 		break;
1853 
1854 	case -ENODATA:
1855 		if (cell)
1856 			cell_defer_no_holder(tc, cell);
1857 		if (rw != READ) {
1858 			handle_unserviceable_bio(tc->pool, bio);
1859 			break;
1860 		}
1861 
1862 		if (tc->origin_dev) {
1863 			inc_all_io_entry(tc->pool, bio);
1864 			remap_to_origin_and_issue(tc, bio);
1865 			break;
1866 		}
1867 
1868 		zero_fill_bio(bio);
1869 		bio_endio(bio);
1870 		break;
1871 
1872 	default:
1873 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1874 			    __func__, r);
1875 		if (cell)
1876 			cell_defer_no_holder(tc, cell);
1877 		bio_io_error(bio);
1878 		break;
1879 	}
1880 }
1881 
1882 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1883 {
1884 	__process_bio_read_only(tc, bio, NULL);
1885 }
1886 
1887 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1888 {
1889 	__process_bio_read_only(tc, cell->holder, cell);
1890 }
1891 
1892 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1893 {
1894 	bio_endio(bio);
1895 }
1896 
1897 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1898 {
1899 	bio_io_error(bio);
1900 }
1901 
1902 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1903 {
1904 	cell_success(tc->pool, cell);
1905 }
1906 
1907 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1908 {
1909 	cell_error(tc->pool, cell);
1910 }
1911 
1912 /*
1913  * FIXME: should we also commit due to size of transaction, measured in
1914  * metadata blocks?
1915  */
1916 static int need_commit_due_to_time(struct pool *pool)
1917 {
1918 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1919 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1920 }
1921 
1922 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1923 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1924 
1925 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1926 {
1927 	struct rb_node **rbp, *parent;
1928 	struct dm_thin_endio_hook *pbd;
1929 	sector_t bi_sector = bio->bi_iter.bi_sector;
1930 
1931 	rbp = &tc->sort_bio_list.rb_node;
1932 	parent = NULL;
1933 	while (*rbp) {
1934 		parent = *rbp;
1935 		pbd = thin_pbd(parent);
1936 
1937 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1938 			rbp = &(*rbp)->rb_left;
1939 		else
1940 			rbp = &(*rbp)->rb_right;
1941 	}
1942 
1943 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1944 	rb_link_node(&pbd->rb_node, parent, rbp);
1945 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1946 }
1947 
1948 static void __extract_sorted_bios(struct thin_c *tc)
1949 {
1950 	struct rb_node *node;
1951 	struct dm_thin_endio_hook *pbd;
1952 	struct bio *bio;
1953 
1954 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1955 		pbd = thin_pbd(node);
1956 		bio = thin_bio(pbd);
1957 
1958 		bio_list_add(&tc->deferred_bio_list, bio);
1959 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1960 	}
1961 
1962 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1963 }
1964 
1965 static void __sort_thin_deferred_bios(struct thin_c *tc)
1966 {
1967 	struct bio *bio;
1968 	struct bio_list bios;
1969 
1970 	bio_list_init(&bios);
1971 	bio_list_merge(&bios, &tc->deferred_bio_list);
1972 	bio_list_init(&tc->deferred_bio_list);
1973 
1974 	/* Sort deferred_bio_list using rb-tree */
1975 	while ((bio = bio_list_pop(&bios)))
1976 		__thin_bio_rb_add(tc, bio);
1977 
1978 	/*
1979 	 * Transfer the sorted bios in sort_bio_list back to
1980 	 * deferred_bio_list to allow lockless submission of
1981 	 * all bios.
1982 	 */
1983 	__extract_sorted_bios(tc);
1984 }
1985 
1986 static void process_thin_deferred_bios(struct thin_c *tc)
1987 {
1988 	struct pool *pool = tc->pool;
1989 	unsigned long flags;
1990 	struct bio *bio;
1991 	struct bio_list bios;
1992 	struct blk_plug plug;
1993 	unsigned count = 0;
1994 
1995 	if (tc->requeue_mode) {
1996 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1997 		return;
1998 	}
1999 
2000 	bio_list_init(&bios);
2001 
2002 	spin_lock_irqsave(&tc->lock, flags);
2003 
2004 	if (bio_list_empty(&tc->deferred_bio_list)) {
2005 		spin_unlock_irqrestore(&tc->lock, flags);
2006 		return;
2007 	}
2008 
2009 	__sort_thin_deferred_bios(tc);
2010 
2011 	bio_list_merge(&bios, &tc->deferred_bio_list);
2012 	bio_list_init(&tc->deferred_bio_list);
2013 
2014 	spin_unlock_irqrestore(&tc->lock, flags);
2015 
2016 	blk_start_plug(&plug);
2017 	while ((bio = bio_list_pop(&bios))) {
2018 		/*
2019 		 * If we've got no free new_mapping structs, and processing
2020 		 * this bio might require one, we pause until there are some
2021 		 * prepared mappings to process.
2022 		 */
2023 		if (ensure_next_mapping(pool)) {
2024 			spin_lock_irqsave(&tc->lock, flags);
2025 			bio_list_add(&tc->deferred_bio_list, bio);
2026 			bio_list_merge(&tc->deferred_bio_list, &bios);
2027 			spin_unlock_irqrestore(&tc->lock, flags);
2028 			break;
2029 		}
2030 
2031 		if (bio->bi_rw & REQ_DISCARD)
2032 			pool->process_discard(tc, bio);
2033 		else
2034 			pool->process_bio(tc, bio);
2035 
2036 		if ((count++ & 127) == 0) {
2037 			throttle_work_update(&pool->throttle);
2038 			dm_pool_issue_prefetches(pool->pmd);
2039 		}
2040 	}
2041 	blk_finish_plug(&plug);
2042 }
2043 
2044 static int cmp_cells(const void *lhs, const void *rhs)
2045 {
2046 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2047 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2048 
2049 	BUG_ON(!lhs_cell->holder);
2050 	BUG_ON(!rhs_cell->holder);
2051 
2052 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2053 		return -1;
2054 
2055 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2056 		return 1;
2057 
2058 	return 0;
2059 }
2060 
2061 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2062 {
2063 	unsigned count = 0;
2064 	struct dm_bio_prison_cell *cell, *tmp;
2065 
2066 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2067 		if (count >= CELL_SORT_ARRAY_SIZE)
2068 			break;
2069 
2070 		pool->cell_sort_array[count++] = cell;
2071 		list_del(&cell->user_list);
2072 	}
2073 
2074 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2075 
2076 	return count;
2077 }
2078 
2079 static void process_thin_deferred_cells(struct thin_c *tc)
2080 {
2081 	struct pool *pool = tc->pool;
2082 	unsigned long flags;
2083 	struct list_head cells;
2084 	struct dm_bio_prison_cell *cell;
2085 	unsigned i, j, count;
2086 
2087 	INIT_LIST_HEAD(&cells);
2088 
2089 	spin_lock_irqsave(&tc->lock, flags);
2090 	list_splice_init(&tc->deferred_cells, &cells);
2091 	spin_unlock_irqrestore(&tc->lock, flags);
2092 
2093 	if (list_empty(&cells))
2094 		return;
2095 
2096 	do {
2097 		count = sort_cells(tc->pool, &cells);
2098 
2099 		for (i = 0; i < count; i++) {
2100 			cell = pool->cell_sort_array[i];
2101 			BUG_ON(!cell->holder);
2102 
2103 			/*
2104 			 * If we've got no free new_mapping structs, and processing
2105 			 * this bio might require one, we pause until there are some
2106 			 * prepared mappings to process.
2107 			 */
2108 			if (ensure_next_mapping(pool)) {
2109 				for (j = i; j < count; j++)
2110 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2111 
2112 				spin_lock_irqsave(&tc->lock, flags);
2113 				list_splice(&cells, &tc->deferred_cells);
2114 				spin_unlock_irqrestore(&tc->lock, flags);
2115 				return;
2116 			}
2117 
2118 			if (cell->holder->bi_rw & REQ_DISCARD)
2119 				pool->process_discard_cell(tc, cell);
2120 			else
2121 				pool->process_cell(tc, cell);
2122 		}
2123 	} while (!list_empty(&cells));
2124 }
2125 
2126 static void thin_get(struct thin_c *tc);
2127 static void thin_put(struct thin_c *tc);
2128 
2129 /*
2130  * We can't hold rcu_read_lock() around code that can block.  So we
2131  * find a thin with the rcu lock held; bump a refcount; then drop
2132  * the lock.
2133  */
2134 static struct thin_c *get_first_thin(struct pool *pool)
2135 {
2136 	struct thin_c *tc = NULL;
2137 
2138 	rcu_read_lock();
2139 	if (!list_empty(&pool->active_thins)) {
2140 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2141 		thin_get(tc);
2142 	}
2143 	rcu_read_unlock();
2144 
2145 	return tc;
2146 }
2147 
2148 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2149 {
2150 	struct thin_c *old_tc = tc;
2151 
2152 	rcu_read_lock();
2153 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2154 		thin_get(tc);
2155 		thin_put(old_tc);
2156 		rcu_read_unlock();
2157 		return tc;
2158 	}
2159 	thin_put(old_tc);
2160 	rcu_read_unlock();
2161 
2162 	return NULL;
2163 }
2164 
2165 static void process_deferred_bios(struct pool *pool)
2166 {
2167 	unsigned long flags;
2168 	struct bio *bio;
2169 	struct bio_list bios;
2170 	struct thin_c *tc;
2171 
2172 	tc = get_first_thin(pool);
2173 	while (tc) {
2174 		process_thin_deferred_cells(tc);
2175 		process_thin_deferred_bios(tc);
2176 		tc = get_next_thin(pool, tc);
2177 	}
2178 
2179 	/*
2180 	 * If there are any deferred flush bios, we must commit
2181 	 * the metadata before issuing them.
2182 	 */
2183 	bio_list_init(&bios);
2184 	spin_lock_irqsave(&pool->lock, flags);
2185 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2186 	bio_list_init(&pool->deferred_flush_bios);
2187 	spin_unlock_irqrestore(&pool->lock, flags);
2188 
2189 	if (bio_list_empty(&bios) &&
2190 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2191 		return;
2192 
2193 	if (commit(pool)) {
2194 		while ((bio = bio_list_pop(&bios)))
2195 			bio_io_error(bio);
2196 		return;
2197 	}
2198 	pool->last_commit_jiffies = jiffies;
2199 
2200 	while ((bio = bio_list_pop(&bios)))
2201 		generic_make_request(bio);
2202 }
2203 
2204 static void do_worker(struct work_struct *ws)
2205 {
2206 	struct pool *pool = container_of(ws, struct pool, worker);
2207 
2208 	throttle_work_start(&pool->throttle);
2209 	dm_pool_issue_prefetches(pool->pmd);
2210 	throttle_work_update(&pool->throttle);
2211 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2212 	throttle_work_update(&pool->throttle);
2213 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2214 	throttle_work_update(&pool->throttle);
2215 	process_deferred_bios(pool);
2216 	throttle_work_complete(&pool->throttle);
2217 }
2218 
2219 /*
2220  * We want to commit periodically so that not too much
2221  * unwritten data builds up.
2222  */
2223 static void do_waker(struct work_struct *ws)
2224 {
2225 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2226 	wake_worker(pool);
2227 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2228 }
2229 
2230 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2231 
2232 /*
2233  * We're holding onto IO to allow userland time to react.  After the
2234  * timeout either the pool will have been resized (and thus back in
2235  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2236  */
2237 static void do_no_space_timeout(struct work_struct *ws)
2238 {
2239 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2240 					 no_space_timeout);
2241 
2242 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2243 		pool->pf.error_if_no_space = true;
2244 		notify_of_pool_mode_change_to_oods(pool);
2245 		error_retry_list_with_code(pool, -ENOSPC);
2246 	}
2247 }
2248 
2249 /*----------------------------------------------------------------*/
2250 
2251 struct pool_work {
2252 	struct work_struct worker;
2253 	struct completion complete;
2254 };
2255 
2256 static struct pool_work *to_pool_work(struct work_struct *ws)
2257 {
2258 	return container_of(ws, struct pool_work, worker);
2259 }
2260 
2261 static void pool_work_complete(struct pool_work *pw)
2262 {
2263 	complete(&pw->complete);
2264 }
2265 
2266 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2267 			   void (*fn)(struct work_struct *))
2268 {
2269 	INIT_WORK_ONSTACK(&pw->worker, fn);
2270 	init_completion(&pw->complete);
2271 	queue_work(pool->wq, &pw->worker);
2272 	wait_for_completion(&pw->complete);
2273 }
2274 
2275 /*----------------------------------------------------------------*/
2276 
2277 struct noflush_work {
2278 	struct pool_work pw;
2279 	struct thin_c *tc;
2280 };
2281 
2282 static struct noflush_work *to_noflush(struct work_struct *ws)
2283 {
2284 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2285 }
2286 
2287 static void do_noflush_start(struct work_struct *ws)
2288 {
2289 	struct noflush_work *w = to_noflush(ws);
2290 	w->tc->requeue_mode = true;
2291 	requeue_io(w->tc);
2292 	pool_work_complete(&w->pw);
2293 }
2294 
2295 static void do_noflush_stop(struct work_struct *ws)
2296 {
2297 	struct noflush_work *w = to_noflush(ws);
2298 	w->tc->requeue_mode = false;
2299 	pool_work_complete(&w->pw);
2300 }
2301 
2302 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2303 {
2304 	struct noflush_work w;
2305 
2306 	w.tc = tc;
2307 	pool_work_wait(&w.pw, tc->pool, fn);
2308 }
2309 
2310 /*----------------------------------------------------------------*/
2311 
2312 static enum pool_mode get_pool_mode(struct pool *pool)
2313 {
2314 	return pool->pf.mode;
2315 }
2316 
2317 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2318 {
2319 	dm_table_event(pool->ti->table);
2320 	DMINFO("%s: switching pool to %s mode",
2321 	       dm_device_name(pool->pool_md), new_mode);
2322 }
2323 
2324 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2325 {
2326 	if (!pool->pf.error_if_no_space)
2327 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2328 	else
2329 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2330 }
2331 
2332 static bool passdown_enabled(struct pool_c *pt)
2333 {
2334 	return pt->adjusted_pf.discard_passdown;
2335 }
2336 
2337 static void set_discard_callbacks(struct pool *pool)
2338 {
2339 	struct pool_c *pt = pool->ti->private;
2340 
2341 	if (passdown_enabled(pt)) {
2342 		pool->process_discard_cell = process_discard_cell_passdown;
2343 		pool->process_prepared_discard = process_prepared_discard_passdown;
2344 	} else {
2345 		pool->process_discard_cell = process_discard_cell_no_passdown;
2346 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2347 	}
2348 }
2349 
2350 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2351 {
2352 	struct pool_c *pt = pool->ti->private;
2353 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2354 	enum pool_mode old_mode = get_pool_mode(pool);
2355 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2356 
2357 	/*
2358 	 * Never allow the pool to transition to PM_WRITE mode if user
2359 	 * intervention is required to verify metadata and data consistency.
2360 	 */
2361 	if (new_mode == PM_WRITE && needs_check) {
2362 		DMERR("%s: unable to switch pool to write mode until repaired.",
2363 		      dm_device_name(pool->pool_md));
2364 		if (old_mode != new_mode)
2365 			new_mode = old_mode;
2366 		else
2367 			new_mode = PM_READ_ONLY;
2368 	}
2369 	/*
2370 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2371 	 * not going to recover without a thin_repair.	So we never let the
2372 	 * pool move out of the old mode.
2373 	 */
2374 	if (old_mode == PM_FAIL)
2375 		new_mode = old_mode;
2376 
2377 	switch (new_mode) {
2378 	case PM_FAIL:
2379 		if (old_mode != new_mode)
2380 			notify_of_pool_mode_change(pool, "failure");
2381 		dm_pool_metadata_read_only(pool->pmd);
2382 		pool->process_bio = process_bio_fail;
2383 		pool->process_discard = process_bio_fail;
2384 		pool->process_cell = process_cell_fail;
2385 		pool->process_discard_cell = process_cell_fail;
2386 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2387 		pool->process_prepared_discard = process_prepared_discard_fail;
2388 
2389 		error_retry_list(pool);
2390 		break;
2391 
2392 	case PM_READ_ONLY:
2393 		if (old_mode != new_mode)
2394 			notify_of_pool_mode_change(pool, "read-only");
2395 		dm_pool_metadata_read_only(pool->pmd);
2396 		pool->process_bio = process_bio_read_only;
2397 		pool->process_discard = process_bio_success;
2398 		pool->process_cell = process_cell_read_only;
2399 		pool->process_discard_cell = process_cell_success;
2400 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2401 		pool->process_prepared_discard = process_prepared_discard_success;
2402 
2403 		error_retry_list(pool);
2404 		break;
2405 
2406 	case PM_OUT_OF_DATA_SPACE:
2407 		/*
2408 		 * Ideally we'd never hit this state; the low water mark
2409 		 * would trigger userland to extend the pool before we
2410 		 * completely run out of data space.  However, many small
2411 		 * IOs to unprovisioned space can consume data space at an
2412 		 * alarming rate.  Adjust your low water mark if you're
2413 		 * frequently seeing this mode.
2414 		 */
2415 		if (old_mode != new_mode)
2416 			notify_of_pool_mode_change_to_oods(pool);
2417 		pool->out_of_data_space = true;
2418 		pool->process_bio = process_bio_read_only;
2419 		pool->process_discard = process_discard_bio;
2420 		pool->process_cell = process_cell_read_only;
2421 		pool->process_prepared_mapping = process_prepared_mapping;
2422 		set_discard_callbacks(pool);
2423 
2424 		if (!pool->pf.error_if_no_space && no_space_timeout)
2425 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2426 		break;
2427 
2428 	case PM_WRITE:
2429 		if (old_mode != new_mode)
2430 			notify_of_pool_mode_change(pool, "write");
2431 		pool->out_of_data_space = false;
2432 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2433 		dm_pool_metadata_read_write(pool->pmd);
2434 		pool->process_bio = process_bio;
2435 		pool->process_discard = process_discard_bio;
2436 		pool->process_cell = process_cell;
2437 		pool->process_prepared_mapping = process_prepared_mapping;
2438 		set_discard_callbacks(pool);
2439 		break;
2440 	}
2441 
2442 	pool->pf.mode = new_mode;
2443 	/*
2444 	 * The pool mode may have changed, sync it so bind_control_target()
2445 	 * doesn't cause an unexpected mode transition on resume.
2446 	 */
2447 	pt->adjusted_pf.mode = new_mode;
2448 }
2449 
2450 static void abort_transaction(struct pool *pool)
2451 {
2452 	const char *dev_name = dm_device_name(pool->pool_md);
2453 
2454 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2455 	if (dm_pool_abort_metadata(pool->pmd)) {
2456 		DMERR("%s: failed to abort metadata transaction", dev_name);
2457 		set_pool_mode(pool, PM_FAIL);
2458 	}
2459 
2460 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2461 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2462 		set_pool_mode(pool, PM_FAIL);
2463 	}
2464 }
2465 
2466 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2467 {
2468 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2469 		    dm_device_name(pool->pool_md), op, r);
2470 
2471 	abort_transaction(pool);
2472 	set_pool_mode(pool, PM_READ_ONLY);
2473 }
2474 
2475 /*----------------------------------------------------------------*/
2476 
2477 /*
2478  * Mapping functions.
2479  */
2480 
2481 /*
2482  * Called only while mapping a thin bio to hand it over to the workqueue.
2483  */
2484 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2485 {
2486 	unsigned long flags;
2487 	struct pool *pool = tc->pool;
2488 
2489 	spin_lock_irqsave(&tc->lock, flags);
2490 	bio_list_add(&tc->deferred_bio_list, bio);
2491 	spin_unlock_irqrestore(&tc->lock, flags);
2492 
2493 	wake_worker(pool);
2494 }
2495 
2496 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2497 {
2498 	struct pool *pool = tc->pool;
2499 
2500 	throttle_lock(&pool->throttle);
2501 	thin_defer_bio(tc, bio);
2502 	throttle_unlock(&pool->throttle);
2503 }
2504 
2505 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2506 {
2507 	unsigned long flags;
2508 	struct pool *pool = tc->pool;
2509 
2510 	throttle_lock(&pool->throttle);
2511 	spin_lock_irqsave(&tc->lock, flags);
2512 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2513 	spin_unlock_irqrestore(&tc->lock, flags);
2514 	throttle_unlock(&pool->throttle);
2515 
2516 	wake_worker(pool);
2517 }
2518 
2519 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2520 {
2521 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2522 
2523 	h->tc = tc;
2524 	h->shared_read_entry = NULL;
2525 	h->all_io_entry = NULL;
2526 	h->overwrite_mapping = NULL;
2527 	h->cell = NULL;
2528 }
2529 
2530 /*
2531  * Non-blocking function called from the thin target's map function.
2532  */
2533 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2534 {
2535 	int r;
2536 	struct thin_c *tc = ti->private;
2537 	dm_block_t block = get_bio_block(tc, bio);
2538 	struct dm_thin_device *td = tc->td;
2539 	struct dm_thin_lookup_result result;
2540 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2541 	struct dm_cell_key key;
2542 
2543 	thin_hook_bio(tc, bio);
2544 
2545 	if (tc->requeue_mode) {
2546 		bio->bi_error = DM_ENDIO_REQUEUE;
2547 		bio_endio(bio);
2548 		return DM_MAPIO_SUBMITTED;
2549 	}
2550 
2551 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2552 		bio_io_error(bio);
2553 		return DM_MAPIO_SUBMITTED;
2554 	}
2555 
2556 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2557 		thin_defer_bio_with_throttle(tc, bio);
2558 		return DM_MAPIO_SUBMITTED;
2559 	}
2560 
2561 	/*
2562 	 * We must hold the virtual cell before doing the lookup, otherwise
2563 	 * there's a race with discard.
2564 	 */
2565 	build_virtual_key(tc->td, block, &key);
2566 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2567 		return DM_MAPIO_SUBMITTED;
2568 
2569 	r = dm_thin_find_block(td, block, 0, &result);
2570 
2571 	/*
2572 	 * Note that we defer readahead too.
2573 	 */
2574 	switch (r) {
2575 	case 0:
2576 		if (unlikely(result.shared)) {
2577 			/*
2578 			 * We have a race condition here between the
2579 			 * result.shared value returned by the lookup and
2580 			 * snapshot creation, which may cause new
2581 			 * sharing.
2582 			 *
2583 			 * To avoid this always quiesce the origin before
2584 			 * taking the snap.  You want to do this anyway to
2585 			 * ensure a consistent application view
2586 			 * (i.e. lockfs).
2587 			 *
2588 			 * More distant ancestors are irrelevant. The
2589 			 * shared flag will be set in their case.
2590 			 */
2591 			thin_defer_cell(tc, virt_cell);
2592 			return DM_MAPIO_SUBMITTED;
2593 		}
2594 
2595 		build_data_key(tc->td, result.block, &key);
2596 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2597 			cell_defer_no_holder(tc, virt_cell);
2598 			return DM_MAPIO_SUBMITTED;
2599 		}
2600 
2601 		inc_all_io_entry(tc->pool, bio);
2602 		cell_defer_no_holder(tc, data_cell);
2603 		cell_defer_no_holder(tc, virt_cell);
2604 
2605 		remap(tc, bio, result.block);
2606 		return DM_MAPIO_REMAPPED;
2607 
2608 	case -ENODATA:
2609 	case -EWOULDBLOCK:
2610 		thin_defer_cell(tc, virt_cell);
2611 		return DM_MAPIO_SUBMITTED;
2612 
2613 	default:
2614 		/*
2615 		 * Must always call bio_io_error on failure.
2616 		 * dm_thin_find_block can fail with -EINVAL if the
2617 		 * pool is switched to fail-io mode.
2618 		 */
2619 		bio_io_error(bio);
2620 		cell_defer_no_holder(tc, virt_cell);
2621 		return DM_MAPIO_SUBMITTED;
2622 	}
2623 }
2624 
2625 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2626 {
2627 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2628 	struct request_queue *q;
2629 
2630 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2631 		return 1;
2632 
2633 	q = bdev_get_queue(pt->data_dev->bdev);
2634 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2635 }
2636 
2637 static void requeue_bios(struct pool *pool)
2638 {
2639 	unsigned long flags;
2640 	struct thin_c *tc;
2641 
2642 	rcu_read_lock();
2643 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2644 		spin_lock_irqsave(&tc->lock, flags);
2645 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2646 		bio_list_init(&tc->retry_on_resume_list);
2647 		spin_unlock_irqrestore(&tc->lock, flags);
2648 	}
2649 	rcu_read_unlock();
2650 }
2651 
2652 /*----------------------------------------------------------------
2653  * Binding of control targets to a pool object
2654  *--------------------------------------------------------------*/
2655 static bool data_dev_supports_discard(struct pool_c *pt)
2656 {
2657 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2658 
2659 	return q && blk_queue_discard(q);
2660 }
2661 
2662 static bool is_factor(sector_t block_size, uint32_t n)
2663 {
2664 	return !sector_div(block_size, n);
2665 }
2666 
2667 /*
2668  * If discard_passdown was enabled verify that the data device
2669  * supports discards.  Disable discard_passdown if not.
2670  */
2671 static void disable_passdown_if_not_supported(struct pool_c *pt)
2672 {
2673 	struct pool *pool = pt->pool;
2674 	struct block_device *data_bdev = pt->data_dev->bdev;
2675 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2676 	const char *reason = NULL;
2677 	char buf[BDEVNAME_SIZE];
2678 
2679 	if (!pt->adjusted_pf.discard_passdown)
2680 		return;
2681 
2682 	if (!data_dev_supports_discard(pt))
2683 		reason = "discard unsupported";
2684 
2685 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2686 		reason = "max discard sectors smaller than a block";
2687 
2688 	if (reason) {
2689 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2690 		pt->adjusted_pf.discard_passdown = false;
2691 	}
2692 }
2693 
2694 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2695 {
2696 	struct pool_c *pt = ti->private;
2697 
2698 	/*
2699 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2700 	 */
2701 	enum pool_mode old_mode = get_pool_mode(pool);
2702 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2703 
2704 	/*
2705 	 * Don't change the pool's mode until set_pool_mode() below.
2706 	 * Otherwise the pool's process_* function pointers may
2707 	 * not match the desired pool mode.
2708 	 */
2709 	pt->adjusted_pf.mode = old_mode;
2710 
2711 	pool->ti = ti;
2712 	pool->pf = pt->adjusted_pf;
2713 	pool->low_water_blocks = pt->low_water_blocks;
2714 
2715 	set_pool_mode(pool, new_mode);
2716 
2717 	return 0;
2718 }
2719 
2720 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2721 {
2722 	if (pool->ti == ti)
2723 		pool->ti = NULL;
2724 }
2725 
2726 /*----------------------------------------------------------------
2727  * Pool creation
2728  *--------------------------------------------------------------*/
2729 /* Initialize pool features. */
2730 static void pool_features_init(struct pool_features *pf)
2731 {
2732 	pf->mode = PM_WRITE;
2733 	pf->zero_new_blocks = true;
2734 	pf->discard_enabled = true;
2735 	pf->discard_passdown = true;
2736 	pf->error_if_no_space = false;
2737 }
2738 
2739 static void __pool_destroy(struct pool *pool)
2740 {
2741 	__pool_table_remove(pool);
2742 
2743 	vfree(pool->cell_sort_array);
2744 	if (dm_pool_metadata_close(pool->pmd) < 0)
2745 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2746 
2747 	dm_bio_prison_destroy(pool->prison);
2748 	dm_kcopyd_client_destroy(pool->copier);
2749 
2750 	if (pool->wq)
2751 		destroy_workqueue(pool->wq);
2752 
2753 	if (pool->next_mapping)
2754 		mempool_free(pool->next_mapping, pool->mapping_pool);
2755 	mempool_destroy(pool->mapping_pool);
2756 	dm_deferred_set_destroy(pool->shared_read_ds);
2757 	dm_deferred_set_destroy(pool->all_io_ds);
2758 	kfree(pool);
2759 }
2760 
2761 static struct kmem_cache *_new_mapping_cache;
2762 
2763 static struct pool *pool_create(struct mapped_device *pool_md,
2764 				struct block_device *metadata_dev,
2765 				unsigned long block_size,
2766 				int read_only, char **error)
2767 {
2768 	int r;
2769 	void *err_p;
2770 	struct pool *pool;
2771 	struct dm_pool_metadata *pmd;
2772 	bool format_device = read_only ? false : true;
2773 
2774 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2775 	if (IS_ERR(pmd)) {
2776 		*error = "Error creating metadata object";
2777 		return (struct pool *)pmd;
2778 	}
2779 
2780 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2781 	if (!pool) {
2782 		*error = "Error allocating memory for pool";
2783 		err_p = ERR_PTR(-ENOMEM);
2784 		goto bad_pool;
2785 	}
2786 
2787 	pool->pmd = pmd;
2788 	pool->sectors_per_block = block_size;
2789 	if (block_size & (block_size - 1))
2790 		pool->sectors_per_block_shift = -1;
2791 	else
2792 		pool->sectors_per_block_shift = __ffs(block_size);
2793 	pool->low_water_blocks = 0;
2794 	pool_features_init(&pool->pf);
2795 	pool->prison = dm_bio_prison_create();
2796 	if (!pool->prison) {
2797 		*error = "Error creating pool's bio prison";
2798 		err_p = ERR_PTR(-ENOMEM);
2799 		goto bad_prison;
2800 	}
2801 
2802 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2803 	if (IS_ERR(pool->copier)) {
2804 		r = PTR_ERR(pool->copier);
2805 		*error = "Error creating pool's kcopyd client";
2806 		err_p = ERR_PTR(r);
2807 		goto bad_kcopyd_client;
2808 	}
2809 
2810 	/*
2811 	 * Create singlethreaded workqueue that will service all devices
2812 	 * that use this metadata.
2813 	 */
2814 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2815 	if (!pool->wq) {
2816 		*error = "Error creating pool's workqueue";
2817 		err_p = ERR_PTR(-ENOMEM);
2818 		goto bad_wq;
2819 	}
2820 
2821 	throttle_init(&pool->throttle);
2822 	INIT_WORK(&pool->worker, do_worker);
2823 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2824 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2825 	spin_lock_init(&pool->lock);
2826 	bio_list_init(&pool->deferred_flush_bios);
2827 	INIT_LIST_HEAD(&pool->prepared_mappings);
2828 	INIT_LIST_HEAD(&pool->prepared_discards);
2829 	INIT_LIST_HEAD(&pool->active_thins);
2830 	pool->low_water_triggered = false;
2831 	pool->suspended = true;
2832 	pool->out_of_data_space = false;
2833 
2834 	pool->shared_read_ds = dm_deferred_set_create();
2835 	if (!pool->shared_read_ds) {
2836 		*error = "Error creating pool's shared read deferred set";
2837 		err_p = ERR_PTR(-ENOMEM);
2838 		goto bad_shared_read_ds;
2839 	}
2840 
2841 	pool->all_io_ds = dm_deferred_set_create();
2842 	if (!pool->all_io_ds) {
2843 		*error = "Error creating pool's all io deferred set";
2844 		err_p = ERR_PTR(-ENOMEM);
2845 		goto bad_all_io_ds;
2846 	}
2847 
2848 	pool->next_mapping = NULL;
2849 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2850 						      _new_mapping_cache);
2851 	if (!pool->mapping_pool) {
2852 		*error = "Error creating pool's mapping mempool";
2853 		err_p = ERR_PTR(-ENOMEM);
2854 		goto bad_mapping_pool;
2855 	}
2856 
2857 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2858 	if (!pool->cell_sort_array) {
2859 		*error = "Error allocating cell sort array";
2860 		err_p = ERR_PTR(-ENOMEM);
2861 		goto bad_sort_array;
2862 	}
2863 
2864 	pool->ref_count = 1;
2865 	pool->last_commit_jiffies = jiffies;
2866 	pool->pool_md = pool_md;
2867 	pool->md_dev = metadata_dev;
2868 	__pool_table_insert(pool);
2869 
2870 	return pool;
2871 
2872 bad_sort_array:
2873 	mempool_destroy(pool->mapping_pool);
2874 bad_mapping_pool:
2875 	dm_deferred_set_destroy(pool->all_io_ds);
2876 bad_all_io_ds:
2877 	dm_deferred_set_destroy(pool->shared_read_ds);
2878 bad_shared_read_ds:
2879 	destroy_workqueue(pool->wq);
2880 bad_wq:
2881 	dm_kcopyd_client_destroy(pool->copier);
2882 bad_kcopyd_client:
2883 	dm_bio_prison_destroy(pool->prison);
2884 bad_prison:
2885 	kfree(pool);
2886 bad_pool:
2887 	if (dm_pool_metadata_close(pmd))
2888 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2889 
2890 	return err_p;
2891 }
2892 
2893 static void __pool_inc(struct pool *pool)
2894 {
2895 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2896 	pool->ref_count++;
2897 }
2898 
2899 static void __pool_dec(struct pool *pool)
2900 {
2901 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2902 	BUG_ON(!pool->ref_count);
2903 	if (!--pool->ref_count)
2904 		__pool_destroy(pool);
2905 }
2906 
2907 static struct pool *__pool_find(struct mapped_device *pool_md,
2908 				struct block_device *metadata_dev,
2909 				unsigned long block_size, int read_only,
2910 				char **error, int *created)
2911 {
2912 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2913 
2914 	if (pool) {
2915 		if (pool->pool_md != pool_md) {
2916 			*error = "metadata device already in use by a pool";
2917 			return ERR_PTR(-EBUSY);
2918 		}
2919 		__pool_inc(pool);
2920 
2921 	} else {
2922 		pool = __pool_table_lookup(pool_md);
2923 		if (pool) {
2924 			if (pool->md_dev != metadata_dev) {
2925 				*error = "different pool cannot replace a pool";
2926 				return ERR_PTR(-EINVAL);
2927 			}
2928 			__pool_inc(pool);
2929 
2930 		} else {
2931 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2932 			*created = 1;
2933 		}
2934 	}
2935 
2936 	return pool;
2937 }
2938 
2939 /*----------------------------------------------------------------
2940  * Pool target methods
2941  *--------------------------------------------------------------*/
2942 static void pool_dtr(struct dm_target *ti)
2943 {
2944 	struct pool_c *pt = ti->private;
2945 
2946 	mutex_lock(&dm_thin_pool_table.mutex);
2947 
2948 	unbind_control_target(pt->pool, ti);
2949 	__pool_dec(pt->pool);
2950 	dm_put_device(ti, pt->metadata_dev);
2951 	dm_put_device(ti, pt->data_dev);
2952 	kfree(pt);
2953 
2954 	mutex_unlock(&dm_thin_pool_table.mutex);
2955 }
2956 
2957 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2958 			       struct dm_target *ti)
2959 {
2960 	int r;
2961 	unsigned argc;
2962 	const char *arg_name;
2963 
2964 	static struct dm_arg _args[] = {
2965 		{0, 4, "Invalid number of pool feature arguments"},
2966 	};
2967 
2968 	/*
2969 	 * No feature arguments supplied.
2970 	 */
2971 	if (!as->argc)
2972 		return 0;
2973 
2974 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2975 	if (r)
2976 		return -EINVAL;
2977 
2978 	while (argc && !r) {
2979 		arg_name = dm_shift_arg(as);
2980 		argc--;
2981 
2982 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2983 			pf->zero_new_blocks = false;
2984 
2985 		else if (!strcasecmp(arg_name, "ignore_discard"))
2986 			pf->discard_enabled = false;
2987 
2988 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2989 			pf->discard_passdown = false;
2990 
2991 		else if (!strcasecmp(arg_name, "read_only"))
2992 			pf->mode = PM_READ_ONLY;
2993 
2994 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2995 			pf->error_if_no_space = true;
2996 
2997 		else {
2998 			ti->error = "Unrecognised pool feature requested";
2999 			r = -EINVAL;
3000 			break;
3001 		}
3002 	}
3003 
3004 	return r;
3005 }
3006 
3007 static void metadata_low_callback(void *context)
3008 {
3009 	struct pool *pool = context;
3010 
3011 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3012 	       dm_device_name(pool->pool_md));
3013 
3014 	dm_table_event(pool->ti->table);
3015 }
3016 
3017 static sector_t get_dev_size(struct block_device *bdev)
3018 {
3019 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3020 }
3021 
3022 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3023 {
3024 	sector_t metadata_dev_size = get_dev_size(bdev);
3025 	char buffer[BDEVNAME_SIZE];
3026 
3027 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3028 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3029 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3030 }
3031 
3032 static sector_t get_metadata_dev_size(struct block_device *bdev)
3033 {
3034 	sector_t metadata_dev_size = get_dev_size(bdev);
3035 
3036 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3037 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3038 
3039 	return metadata_dev_size;
3040 }
3041 
3042 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3043 {
3044 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3045 
3046 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3047 
3048 	return metadata_dev_size;
3049 }
3050 
3051 /*
3052  * When a metadata threshold is crossed a dm event is triggered, and
3053  * userland should respond by growing the metadata device.  We could let
3054  * userland set the threshold, like we do with the data threshold, but I'm
3055  * not sure they know enough to do this well.
3056  */
3057 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3058 {
3059 	/*
3060 	 * 4M is ample for all ops with the possible exception of thin
3061 	 * device deletion which is harmless if it fails (just retry the
3062 	 * delete after you've grown the device).
3063 	 */
3064 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3065 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3066 }
3067 
3068 /*
3069  * thin-pool <metadata dev> <data dev>
3070  *	     <data block size (sectors)>
3071  *	     <low water mark (blocks)>
3072  *	     [<#feature args> [<arg>]*]
3073  *
3074  * Optional feature arguments are:
3075  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3076  *	     ignore_discard: disable discard
3077  *	     no_discard_passdown: don't pass discards down to the data device
3078  *	     read_only: Don't allow any changes to be made to the pool metadata.
3079  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3080  */
3081 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3082 {
3083 	int r, pool_created = 0;
3084 	struct pool_c *pt;
3085 	struct pool *pool;
3086 	struct pool_features pf;
3087 	struct dm_arg_set as;
3088 	struct dm_dev *data_dev;
3089 	unsigned long block_size;
3090 	dm_block_t low_water_blocks;
3091 	struct dm_dev *metadata_dev;
3092 	fmode_t metadata_mode;
3093 
3094 	/*
3095 	 * FIXME Remove validation from scope of lock.
3096 	 */
3097 	mutex_lock(&dm_thin_pool_table.mutex);
3098 
3099 	if (argc < 4) {
3100 		ti->error = "Invalid argument count";
3101 		r = -EINVAL;
3102 		goto out_unlock;
3103 	}
3104 
3105 	as.argc = argc;
3106 	as.argv = argv;
3107 
3108 	/*
3109 	 * Set default pool features.
3110 	 */
3111 	pool_features_init(&pf);
3112 
3113 	dm_consume_args(&as, 4);
3114 	r = parse_pool_features(&as, &pf, ti);
3115 	if (r)
3116 		goto out_unlock;
3117 
3118 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3119 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3120 	if (r) {
3121 		ti->error = "Error opening metadata block device";
3122 		goto out_unlock;
3123 	}
3124 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3125 
3126 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3127 	if (r) {
3128 		ti->error = "Error getting data device";
3129 		goto out_metadata;
3130 	}
3131 
3132 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3133 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3134 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3135 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3136 		ti->error = "Invalid block size";
3137 		r = -EINVAL;
3138 		goto out;
3139 	}
3140 
3141 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3142 		ti->error = "Invalid low water mark";
3143 		r = -EINVAL;
3144 		goto out;
3145 	}
3146 
3147 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3148 	if (!pt) {
3149 		r = -ENOMEM;
3150 		goto out;
3151 	}
3152 
3153 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3154 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3155 	if (IS_ERR(pool)) {
3156 		r = PTR_ERR(pool);
3157 		goto out_free_pt;
3158 	}
3159 
3160 	/*
3161 	 * 'pool_created' reflects whether this is the first table load.
3162 	 * Top level discard support is not allowed to be changed after
3163 	 * initial load.  This would require a pool reload to trigger thin
3164 	 * device changes.
3165 	 */
3166 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3167 		ti->error = "Discard support cannot be disabled once enabled";
3168 		r = -EINVAL;
3169 		goto out_flags_changed;
3170 	}
3171 
3172 	pt->pool = pool;
3173 	pt->ti = ti;
3174 	pt->metadata_dev = metadata_dev;
3175 	pt->data_dev = data_dev;
3176 	pt->low_water_blocks = low_water_blocks;
3177 	pt->adjusted_pf = pt->requested_pf = pf;
3178 	ti->num_flush_bios = 1;
3179 
3180 	/*
3181 	 * Only need to enable discards if the pool should pass
3182 	 * them down to the data device.  The thin device's discard
3183 	 * processing will cause mappings to be removed from the btree.
3184 	 */
3185 	ti->discard_zeroes_data_unsupported = true;
3186 	if (pf.discard_enabled && pf.discard_passdown) {
3187 		ti->num_discard_bios = 1;
3188 
3189 		/*
3190 		 * Setting 'discards_supported' circumvents the normal
3191 		 * stacking of discard limits (this keeps the pool and
3192 		 * thin devices' discard limits consistent).
3193 		 */
3194 		ti->discards_supported = true;
3195 	}
3196 	ti->private = pt;
3197 
3198 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3199 						calc_metadata_threshold(pt),
3200 						metadata_low_callback,
3201 						pool);
3202 	if (r)
3203 		goto out_flags_changed;
3204 
3205 	pt->callbacks.congested_fn = pool_is_congested;
3206 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3207 
3208 	mutex_unlock(&dm_thin_pool_table.mutex);
3209 
3210 	return 0;
3211 
3212 out_flags_changed:
3213 	__pool_dec(pool);
3214 out_free_pt:
3215 	kfree(pt);
3216 out:
3217 	dm_put_device(ti, data_dev);
3218 out_metadata:
3219 	dm_put_device(ti, metadata_dev);
3220 out_unlock:
3221 	mutex_unlock(&dm_thin_pool_table.mutex);
3222 
3223 	return r;
3224 }
3225 
3226 static int pool_map(struct dm_target *ti, struct bio *bio)
3227 {
3228 	int r;
3229 	struct pool_c *pt = ti->private;
3230 	struct pool *pool = pt->pool;
3231 	unsigned long flags;
3232 
3233 	/*
3234 	 * As this is a singleton target, ti->begin is always zero.
3235 	 */
3236 	spin_lock_irqsave(&pool->lock, flags);
3237 	bio->bi_bdev = pt->data_dev->bdev;
3238 	r = DM_MAPIO_REMAPPED;
3239 	spin_unlock_irqrestore(&pool->lock, flags);
3240 
3241 	return r;
3242 }
3243 
3244 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3245 {
3246 	int r;
3247 	struct pool_c *pt = ti->private;
3248 	struct pool *pool = pt->pool;
3249 	sector_t data_size = ti->len;
3250 	dm_block_t sb_data_size;
3251 
3252 	*need_commit = false;
3253 
3254 	(void) sector_div(data_size, pool->sectors_per_block);
3255 
3256 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3257 	if (r) {
3258 		DMERR("%s: failed to retrieve data device size",
3259 		      dm_device_name(pool->pool_md));
3260 		return r;
3261 	}
3262 
3263 	if (data_size < sb_data_size) {
3264 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3265 		      dm_device_name(pool->pool_md),
3266 		      (unsigned long long)data_size, sb_data_size);
3267 		return -EINVAL;
3268 
3269 	} else if (data_size > sb_data_size) {
3270 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3271 			DMERR("%s: unable to grow the data device until repaired.",
3272 			      dm_device_name(pool->pool_md));
3273 			return 0;
3274 		}
3275 
3276 		if (sb_data_size)
3277 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3278 			       dm_device_name(pool->pool_md),
3279 			       sb_data_size, (unsigned long long)data_size);
3280 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3281 		if (r) {
3282 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3283 			return r;
3284 		}
3285 
3286 		*need_commit = true;
3287 	}
3288 
3289 	return 0;
3290 }
3291 
3292 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3293 {
3294 	int r;
3295 	struct pool_c *pt = ti->private;
3296 	struct pool *pool = pt->pool;
3297 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3298 
3299 	*need_commit = false;
3300 
3301 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3302 
3303 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3304 	if (r) {
3305 		DMERR("%s: failed to retrieve metadata device size",
3306 		      dm_device_name(pool->pool_md));
3307 		return r;
3308 	}
3309 
3310 	if (metadata_dev_size < sb_metadata_dev_size) {
3311 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3312 		      dm_device_name(pool->pool_md),
3313 		      metadata_dev_size, sb_metadata_dev_size);
3314 		return -EINVAL;
3315 
3316 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3317 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3318 			DMERR("%s: unable to grow the metadata device until repaired.",
3319 			      dm_device_name(pool->pool_md));
3320 			return 0;
3321 		}
3322 
3323 		warn_if_metadata_device_too_big(pool->md_dev);
3324 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3325 		       dm_device_name(pool->pool_md),
3326 		       sb_metadata_dev_size, metadata_dev_size);
3327 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3328 		if (r) {
3329 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3330 			return r;
3331 		}
3332 
3333 		*need_commit = true;
3334 	}
3335 
3336 	return 0;
3337 }
3338 
3339 /*
3340  * Retrieves the number of blocks of the data device from
3341  * the superblock and compares it to the actual device size,
3342  * thus resizing the data device in case it has grown.
3343  *
3344  * This both copes with opening preallocated data devices in the ctr
3345  * being followed by a resume
3346  * -and-
3347  * calling the resume method individually after userspace has
3348  * grown the data device in reaction to a table event.
3349  */
3350 static int pool_preresume(struct dm_target *ti)
3351 {
3352 	int r;
3353 	bool need_commit1, need_commit2;
3354 	struct pool_c *pt = ti->private;
3355 	struct pool *pool = pt->pool;
3356 
3357 	/*
3358 	 * Take control of the pool object.
3359 	 */
3360 	r = bind_control_target(pool, ti);
3361 	if (r)
3362 		return r;
3363 
3364 	r = maybe_resize_data_dev(ti, &need_commit1);
3365 	if (r)
3366 		return r;
3367 
3368 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3369 	if (r)
3370 		return r;
3371 
3372 	if (need_commit1 || need_commit2)
3373 		(void) commit(pool);
3374 
3375 	return 0;
3376 }
3377 
3378 static void pool_suspend_active_thins(struct pool *pool)
3379 {
3380 	struct thin_c *tc;
3381 
3382 	/* Suspend all active thin devices */
3383 	tc = get_first_thin(pool);
3384 	while (tc) {
3385 		dm_internal_suspend_noflush(tc->thin_md);
3386 		tc = get_next_thin(pool, tc);
3387 	}
3388 }
3389 
3390 static void pool_resume_active_thins(struct pool *pool)
3391 {
3392 	struct thin_c *tc;
3393 
3394 	/* Resume all active thin devices */
3395 	tc = get_first_thin(pool);
3396 	while (tc) {
3397 		dm_internal_resume(tc->thin_md);
3398 		tc = get_next_thin(pool, tc);
3399 	}
3400 }
3401 
3402 static void pool_resume(struct dm_target *ti)
3403 {
3404 	struct pool_c *pt = ti->private;
3405 	struct pool *pool = pt->pool;
3406 	unsigned long flags;
3407 
3408 	/*
3409 	 * Must requeue active_thins' bios and then resume
3410 	 * active_thins _before_ clearing 'suspend' flag.
3411 	 */
3412 	requeue_bios(pool);
3413 	pool_resume_active_thins(pool);
3414 
3415 	spin_lock_irqsave(&pool->lock, flags);
3416 	pool->low_water_triggered = false;
3417 	pool->suspended = false;
3418 	spin_unlock_irqrestore(&pool->lock, flags);
3419 
3420 	do_waker(&pool->waker.work);
3421 }
3422 
3423 static void pool_presuspend(struct dm_target *ti)
3424 {
3425 	struct pool_c *pt = ti->private;
3426 	struct pool *pool = pt->pool;
3427 	unsigned long flags;
3428 
3429 	spin_lock_irqsave(&pool->lock, flags);
3430 	pool->suspended = true;
3431 	spin_unlock_irqrestore(&pool->lock, flags);
3432 
3433 	pool_suspend_active_thins(pool);
3434 }
3435 
3436 static void pool_presuspend_undo(struct dm_target *ti)
3437 {
3438 	struct pool_c *pt = ti->private;
3439 	struct pool *pool = pt->pool;
3440 	unsigned long flags;
3441 
3442 	pool_resume_active_thins(pool);
3443 
3444 	spin_lock_irqsave(&pool->lock, flags);
3445 	pool->suspended = false;
3446 	spin_unlock_irqrestore(&pool->lock, flags);
3447 }
3448 
3449 static void pool_postsuspend(struct dm_target *ti)
3450 {
3451 	struct pool_c *pt = ti->private;
3452 	struct pool *pool = pt->pool;
3453 
3454 	cancel_delayed_work_sync(&pool->waker);
3455 	cancel_delayed_work_sync(&pool->no_space_timeout);
3456 	flush_workqueue(pool->wq);
3457 	(void) commit(pool);
3458 }
3459 
3460 static int check_arg_count(unsigned argc, unsigned args_required)
3461 {
3462 	if (argc != args_required) {
3463 		DMWARN("Message received with %u arguments instead of %u.",
3464 		       argc, args_required);
3465 		return -EINVAL;
3466 	}
3467 
3468 	return 0;
3469 }
3470 
3471 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3472 {
3473 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3474 	    *dev_id <= MAX_DEV_ID)
3475 		return 0;
3476 
3477 	if (warning)
3478 		DMWARN("Message received with invalid device id: %s", arg);
3479 
3480 	return -EINVAL;
3481 }
3482 
3483 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3484 {
3485 	dm_thin_id dev_id;
3486 	int r;
3487 
3488 	r = check_arg_count(argc, 2);
3489 	if (r)
3490 		return r;
3491 
3492 	r = read_dev_id(argv[1], &dev_id, 1);
3493 	if (r)
3494 		return r;
3495 
3496 	r = dm_pool_create_thin(pool->pmd, dev_id);
3497 	if (r) {
3498 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3499 		       argv[1]);
3500 		return r;
3501 	}
3502 
3503 	return 0;
3504 }
3505 
3506 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3507 {
3508 	dm_thin_id dev_id;
3509 	dm_thin_id origin_dev_id;
3510 	int r;
3511 
3512 	r = check_arg_count(argc, 3);
3513 	if (r)
3514 		return r;
3515 
3516 	r = read_dev_id(argv[1], &dev_id, 1);
3517 	if (r)
3518 		return r;
3519 
3520 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3521 	if (r)
3522 		return r;
3523 
3524 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3525 	if (r) {
3526 		DMWARN("Creation of new snapshot %s of device %s failed.",
3527 		       argv[1], argv[2]);
3528 		return r;
3529 	}
3530 
3531 	return 0;
3532 }
3533 
3534 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3535 {
3536 	dm_thin_id dev_id;
3537 	int r;
3538 
3539 	r = check_arg_count(argc, 2);
3540 	if (r)
3541 		return r;
3542 
3543 	r = read_dev_id(argv[1], &dev_id, 1);
3544 	if (r)
3545 		return r;
3546 
3547 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3548 	if (r)
3549 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3550 
3551 	return r;
3552 }
3553 
3554 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3555 {
3556 	dm_thin_id old_id, new_id;
3557 	int r;
3558 
3559 	r = check_arg_count(argc, 3);
3560 	if (r)
3561 		return r;
3562 
3563 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3564 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3565 		return -EINVAL;
3566 	}
3567 
3568 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3569 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3570 		return -EINVAL;
3571 	}
3572 
3573 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3574 	if (r) {
3575 		DMWARN("Failed to change transaction id from %s to %s.",
3576 		       argv[1], argv[2]);
3577 		return r;
3578 	}
3579 
3580 	return 0;
3581 }
3582 
3583 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3584 {
3585 	int r;
3586 
3587 	r = check_arg_count(argc, 1);
3588 	if (r)
3589 		return r;
3590 
3591 	(void) commit(pool);
3592 
3593 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3594 	if (r)
3595 		DMWARN("reserve_metadata_snap message failed.");
3596 
3597 	return r;
3598 }
3599 
3600 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3601 {
3602 	int r;
3603 
3604 	r = check_arg_count(argc, 1);
3605 	if (r)
3606 		return r;
3607 
3608 	r = dm_pool_release_metadata_snap(pool->pmd);
3609 	if (r)
3610 		DMWARN("release_metadata_snap message failed.");
3611 
3612 	return r;
3613 }
3614 
3615 /*
3616  * Messages supported:
3617  *   create_thin	<dev_id>
3618  *   create_snap	<dev_id> <origin_id>
3619  *   delete		<dev_id>
3620  *   set_transaction_id <current_trans_id> <new_trans_id>
3621  *   reserve_metadata_snap
3622  *   release_metadata_snap
3623  */
3624 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3625 {
3626 	int r = -EINVAL;
3627 	struct pool_c *pt = ti->private;
3628 	struct pool *pool = pt->pool;
3629 
3630 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3631 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3632 		      dm_device_name(pool->pool_md));
3633 		return -EOPNOTSUPP;
3634 	}
3635 
3636 	if (!strcasecmp(argv[0], "create_thin"))
3637 		r = process_create_thin_mesg(argc, argv, pool);
3638 
3639 	else if (!strcasecmp(argv[0], "create_snap"))
3640 		r = process_create_snap_mesg(argc, argv, pool);
3641 
3642 	else if (!strcasecmp(argv[0], "delete"))
3643 		r = process_delete_mesg(argc, argv, pool);
3644 
3645 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3646 		r = process_set_transaction_id_mesg(argc, argv, pool);
3647 
3648 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3649 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3650 
3651 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3652 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3653 
3654 	else
3655 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3656 
3657 	if (!r)
3658 		(void) commit(pool);
3659 
3660 	return r;
3661 }
3662 
3663 static void emit_flags(struct pool_features *pf, char *result,
3664 		       unsigned sz, unsigned maxlen)
3665 {
3666 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3667 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3668 		pf->error_if_no_space;
3669 	DMEMIT("%u ", count);
3670 
3671 	if (!pf->zero_new_blocks)
3672 		DMEMIT("skip_block_zeroing ");
3673 
3674 	if (!pf->discard_enabled)
3675 		DMEMIT("ignore_discard ");
3676 
3677 	if (!pf->discard_passdown)
3678 		DMEMIT("no_discard_passdown ");
3679 
3680 	if (pf->mode == PM_READ_ONLY)
3681 		DMEMIT("read_only ");
3682 
3683 	if (pf->error_if_no_space)
3684 		DMEMIT("error_if_no_space ");
3685 }
3686 
3687 /*
3688  * Status line is:
3689  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3690  *    <used data sectors>/<total data sectors> <held metadata root>
3691  *    <pool mode> <discard config> <no space config> <needs_check>
3692  */
3693 static void pool_status(struct dm_target *ti, status_type_t type,
3694 			unsigned status_flags, char *result, unsigned maxlen)
3695 {
3696 	int r;
3697 	unsigned sz = 0;
3698 	uint64_t transaction_id;
3699 	dm_block_t nr_free_blocks_data;
3700 	dm_block_t nr_free_blocks_metadata;
3701 	dm_block_t nr_blocks_data;
3702 	dm_block_t nr_blocks_metadata;
3703 	dm_block_t held_root;
3704 	char buf[BDEVNAME_SIZE];
3705 	char buf2[BDEVNAME_SIZE];
3706 	struct pool_c *pt = ti->private;
3707 	struct pool *pool = pt->pool;
3708 
3709 	switch (type) {
3710 	case STATUSTYPE_INFO:
3711 		if (get_pool_mode(pool) == PM_FAIL) {
3712 			DMEMIT("Fail");
3713 			break;
3714 		}
3715 
3716 		/* Commit to ensure statistics aren't out-of-date */
3717 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3718 			(void) commit(pool);
3719 
3720 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3721 		if (r) {
3722 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3723 			      dm_device_name(pool->pool_md), r);
3724 			goto err;
3725 		}
3726 
3727 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3728 		if (r) {
3729 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3730 			      dm_device_name(pool->pool_md), r);
3731 			goto err;
3732 		}
3733 
3734 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3735 		if (r) {
3736 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3737 			      dm_device_name(pool->pool_md), r);
3738 			goto err;
3739 		}
3740 
3741 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3742 		if (r) {
3743 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3744 			      dm_device_name(pool->pool_md), r);
3745 			goto err;
3746 		}
3747 
3748 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3749 		if (r) {
3750 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3751 			      dm_device_name(pool->pool_md), r);
3752 			goto err;
3753 		}
3754 
3755 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3756 		if (r) {
3757 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3758 			      dm_device_name(pool->pool_md), r);
3759 			goto err;
3760 		}
3761 
3762 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3763 		       (unsigned long long)transaction_id,
3764 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3765 		       (unsigned long long)nr_blocks_metadata,
3766 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3767 		       (unsigned long long)nr_blocks_data);
3768 
3769 		if (held_root)
3770 			DMEMIT("%llu ", held_root);
3771 		else
3772 			DMEMIT("- ");
3773 
3774 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3775 			DMEMIT("out_of_data_space ");
3776 		else if (pool->pf.mode == PM_READ_ONLY)
3777 			DMEMIT("ro ");
3778 		else
3779 			DMEMIT("rw ");
3780 
3781 		if (!pool->pf.discard_enabled)
3782 			DMEMIT("ignore_discard ");
3783 		else if (pool->pf.discard_passdown)
3784 			DMEMIT("discard_passdown ");
3785 		else
3786 			DMEMIT("no_discard_passdown ");
3787 
3788 		if (pool->pf.error_if_no_space)
3789 			DMEMIT("error_if_no_space ");
3790 		else
3791 			DMEMIT("queue_if_no_space ");
3792 
3793 		if (dm_pool_metadata_needs_check(pool->pmd))
3794 			DMEMIT("needs_check ");
3795 		else
3796 			DMEMIT("- ");
3797 
3798 		break;
3799 
3800 	case STATUSTYPE_TABLE:
3801 		DMEMIT("%s %s %lu %llu ",
3802 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3803 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3804 		       (unsigned long)pool->sectors_per_block,
3805 		       (unsigned long long)pt->low_water_blocks);
3806 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3807 		break;
3808 	}
3809 	return;
3810 
3811 err:
3812 	DMEMIT("Error");
3813 }
3814 
3815 static int pool_iterate_devices(struct dm_target *ti,
3816 				iterate_devices_callout_fn fn, void *data)
3817 {
3818 	struct pool_c *pt = ti->private;
3819 
3820 	return fn(ti, pt->data_dev, 0, ti->len, data);
3821 }
3822 
3823 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3824 {
3825 	struct pool_c *pt = ti->private;
3826 	struct pool *pool = pt->pool;
3827 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3828 
3829 	/*
3830 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3831 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3832 	 * This is especially beneficial when the pool's data device is a RAID
3833 	 * device that has a full stripe width that matches pool->sectors_per_block
3834 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3835 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3836 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3837 	 */
3838 	if (limits->max_sectors < pool->sectors_per_block) {
3839 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3840 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3841 				limits->max_sectors--;
3842 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3843 		}
3844 	}
3845 
3846 	/*
3847 	 * If the system-determined stacked limits are compatible with the
3848 	 * pool's blocksize (io_opt is a factor) do not override them.
3849 	 */
3850 	if (io_opt_sectors < pool->sectors_per_block ||
3851 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3852 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3853 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3854 		else
3855 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3856 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3857 	}
3858 
3859 	/*
3860 	 * pt->adjusted_pf is a staging area for the actual features to use.
3861 	 * They get transferred to the live pool in bind_control_target()
3862 	 * called from pool_preresume().
3863 	 */
3864 	if (!pt->adjusted_pf.discard_enabled) {
3865 		/*
3866 		 * Must explicitly disallow stacking discard limits otherwise the
3867 		 * block layer will stack them if pool's data device has support.
3868 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3869 		 * user to see that, so make sure to set all discard limits to 0.
3870 		 */
3871 		limits->discard_granularity = 0;
3872 		return;
3873 	}
3874 
3875 	disable_passdown_if_not_supported(pt);
3876 
3877 	/*
3878 	 * The pool uses the same discard limits as the underlying data
3879 	 * device.  DM core has already set this up.
3880 	 */
3881 }
3882 
3883 static struct target_type pool_target = {
3884 	.name = "thin-pool",
3885 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3886 		    DM_TARGET_IMMUTABLE,
3887 	.version = {1, 19, 0},
3888 	.module = THIS_MODULE,
3889 	.ctr = pool_ctr,
3890 	.dtr = pool_dtr,
3891 	.map = pool_map,
3892 	.presuspend = pool_presuspend,
3893 	.presuspend_undo = pool_presuspend_undo,
3894 	.postsuspend = pool_postsuspend,
3895 	.preresume = pool_preresume,
3896 	.resume = pool_resume,
3897 	.message = pool_message,
3898 	.status = pool_status,
3899 	.iterate_devices = pool_iterate_devices,
3900 	.io_hints = pool_io_hints,
3901 };
3902 
3903 /*----------------------------------------------------------------
3904  * Thin target methods
3905  *--------------------------------------------------------------*/
3906 static void thin_get(struct thin_c *tc)
3907 {
3908 	atomic_inc(&tc->refcount);
3909 }
3910 
3911 static void thin_put(struct thin_c *tc)
3912 {
3913 	if (atomic_dec_and_test(&tc->refcount))
3914 		complete(&tc->can_destroy);
3915 }
3916 
3917 static void thin_dtr(struct dm_target *ti)
3918 {
3919 	struct thin_c *tc = ti->private;
3920 	unsigned long flags;
3921 
3922 	spin_lock_irqsave(&tc->pool->lock, flags);
3923 	list_del_rcu(&tc->list);
3924 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3925 	synchronize_rcu();
3926 
3927 	thin_put(tc);
3928 	wait_for_completion(&tc->can_destroy);
3929 
3930 	mutex_lock(&dm_thin_pool_table.mutex);
3931 
3932 	__pool_dec(tc->pool);
3933 	dm_pool_close_thin_device(tc->td);
3934 	dm_put_device(ti, tc->pool_dev);
3935 	if (tc->origin_dev)
3936 		dm_put_device(ti, tc->origin_dev);
3937 	kfree(tc);
3938 
3939 	mutex_unlock(&dm_thin_pool_table.mutex);
3940 }
3941 
3942 /*
3943  * Thin target parameters:
3944  *
3945  * <pool_dev> <dev_id> [origin_dev]
3946  *
3947  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3948  * dev_id: the internal device identifier
3949  * origin_dev: a device external to the pool that should act as the origin
3950  *
3951  * If the pool device has discards disabled, they get disabled for the thin
3952  * device as well.
3953  */
3954 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3955 {
3956 	int r;
3957 	struct thin_c *tc;
3958 	struct dm_dev *pool_dev, *origin_dev;
3959 	struct mapped_device *pool_md;
3960 	unsigned long flags;
3961 
3962 	mutex_lock(&dm_thin_pool_table.mutex);
3963 
3964 	if (argc != 2 && argc != 3) {
3965 		ti->error = "Invalid argument count";
3966 		r = -EINVAL;
3967 		goto out_unlock;
3968 	}
3969 
3970 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3971 	if (!tc) {
3972 		ti->error = "Out of memory";
3973 		r = -ENOMEM;
3974 		goto out_unlock;
3975 	}
3976 	tc->thin_md = dm_table_get_md(ti->table);
3977 	spin_lock_init(&tc->lock);
3978 	INIT_LIST_HEAD(&tc->deferred_cells);
3979 	bio_list_init(&tc->deferred_bio_list);
3980 	bio_list_init(&tc->retry_on_resume_list);
3981 	tc->sort_bio_list = RB_ROOT;
3982 
3983 	if (argc == 3) {
3984 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3985 		if (r) {
3986 			ti->error = "Error opening origin device";
3987 			goto bad_origin_dev;
3988 		}
3989 		tc->origin_dev = origin_dev;
3990 	}
3991 
3992 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3993 	if (r) {
3994 		ti->error = "Error opening pool device";
3995 		goto bad_pool_dev;
3996 	}
3997 	tc->pool_dev = pool_dev;
3998 
3999 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4000 		ti->error = "Invalid device id";
4001 		r = -EINVAL;
4002 		goto bad_common;
4003 	}
4004 
4005 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4006 	if (!pool_md) {
4007 		ti->error = "Couldn't get pool mapped device";
4008 		r = -EINVAL;
4009 		goto bad_common;
4010 	}
4011 
4012 	tc->pool = __pool_table_lookup(pool_md);
4013 	if (!tc->pool) {
4014 		ti->error = "Couldn't find pool object";
4015 		r = -EINVAL;
4016 		goto bad_pool_lookup;
4017 	}
4018 	__pool_inc(tc->pool);
4019 
4020 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4021 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4022 		r = -EINVAL;
4023 		goto bad_pool;
4024 	}
4025 
4026 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4027 	if (r) {
4028 		ti->error = "Couldn't open thin internal device";
4029 		goto bad_pool;
4030 	}
4031 
4032 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4033 	if (r)
4034 		goto bad;
4035 
4036 	ti->num_flush_bios = 1;
4037 	ti->flush_supported = true;
4038 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4039 
4040 	/* In case the pool supports discards, pass them on. */
4041 	ti->discard_zeroes_data_unsupported = true;
4042 	if (tc->pool->pf.discard_enabled) {
4043 		ti->discards_supported = true;
4044 		ti->num_discard_bios = 1;
4045 		ti->split_discard_bios = false;
4046 	}
4047 
4048 	mutex_unlock(&dm_thin_pool_table.mutex);
4049 
4050 	spin_lock_irqsave(&tc->pool->lock, flags);
4051 	if (tc->pool->suspended) {
4052 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4053 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4054 		ti->error = "Unable to activate thin device while pool is suspended";
4055 		r = -EINVAL;
4056 		goto bad;
4057 	}
4058 	atomic_set(&tc->refcount, 1);
4059 	init_completion(&tc->can_destroy);
4060 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4061 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4062 	/*
4063 	 * This synchronize_rcu() call is needed here otherwise we risk a
4064 	 * wake_worker() call finding no bios to process (because the newly
4065 	 * added tc isn't yet visible).  So this reduces latency since we
4066 	 * aren't then dependent on the periodic commit to wake_worker().
4067 	 */
4068 	synchronize_rcu();
4069 
4070 	dm_put(pool_md);
4071 
4072 	return 0;
4073 
4074 bad:
4075 	dm_pool_close_thin_device(tc->td);
4076 bad_pool:
4077 	__pool_dec(tc->pool);
4078 bad_pool_lookup:
4079 	dm_put(pool_md);
4080 bad_common:
4081 	dm_put_device(ti, tc->pool_dev);
4082 bad_pool_dev:
4083 	if (tc->origin_dev)
4084 		dm_put_device(ti, tc->origin_dev);
4085 bad_origin_dev:
4086 	kfree(tc);
4087 out_unlock:
4088 	mutex_unlock(&dm_thin_pool_table.mutex);
4089 
4090 	return r;
4091 }
4092 
4093 static int thin_map(struct dm_target *ti, struct bio *bio)
4094 {
4095 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4096 
4097 	return thin_bio_map(ti, bio);
4098 }
4099 
4100 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4101 {
4102 	unsigned long flags;
4103 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4104 	struct list_head work;
4105 	struct dm_thin_new_mapping *m, *tmp;
4106 	struct pool *pool = h->tc->pool;
4107 
4108 	if (h->shared_read_entry) {
4109 		INIT_LIST_HEAD(&work);
4110 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4111 
4112 		spin_lock_irqsave(&pool->lock, flags);
4113 		list_for_each_entry_safe(m, tmp, &work, list) {
4114 			list_del(&m->list);
4115 			__complete_mapping_preparation(m);
4116 		}
4117 		spin_unlock_irqrestore(&pool->lock, flags);
4118 	}
4119 
4120 	if (h->all_io_entry) {
4121 		INIT_LIST_HEAD(&work);
4122 		dm_deferred_entry_dec(h->all_io_entry, &work);
4123 		if (!list_empty(&work)) {
4124 			spin_lock_irqsave(&pool->lock, flags);
4125 			list_for_each_entry_safe(m, tmp, &work, list)
4126 				list_add_tail(&m->list, &pool->prepared_discards);
4127 			spin_unlock_irqrestore(&pool->lock, flags);
4128 			wake_worker(pool);
4129 		}
4130 	}
4131 
4132 	if (h->cell)
4133 		cell_defer_no_holder(h->tc, h->cell);
4134 
4135 	return 0;
4136 }
4137 
4138 static void thin_presuspend(struct dm_target *ti)
4139 {
4140 	struct thin_c *tc = ti->private;
4141 
4142 	if (dm_noflush_suspending(ti))
4143 		noflush_work(tc, do_noflush_start);
4144 }
4145 
4146 static void thin_postsuspend(struct dm_target *ti)
4147 {
4148 	struct thin_c *tc = ti->private;
4149 
4150 	/*
4151 	 * The dm_noflush_suspending flag has been cleared by now, so
4152 	 * unfortunately we must always run this.
4153 	 */
4154 	noflush_work(tc, do_noflush_stop);
4155 }
4156 
4157 static int thin_preresume(struct dm_target *ti)
4158 {
4159 	struct thin_c *tc = ti->private;
4160 
4161 	if (tc->origin_dev)
4162 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4163 
4164 	return 0;
4165 }
4166 
4167 /*
4168  * <nr mapped sectors> <highest mapped sector>
4169  */
4170 static void thin_status(struct dm_target *ti, status_type_t type,
4171 			unsigned status_flags, char *result, unsigned maxlen)
4172 {
4173 	int r;
4174 	ssize_t sz = 0;
4175 	dm_block_t mapped, highest;
4176 	char buf[BDEVNAME_SIZE];
4177 	struct thin_c *tc = ti->private;
4178 
4179 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4180 		DMEMIT("Fail");
4181 		return;
4182 	}
4183 
4184 	if (!tc->td)
4185 		DMEMIT("-");
4186 	else {
4187 		switch (type) {
4188 		case STATUSTYPE_INFO:
4189 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4190 			if (r) {
4191 				DMERR("dm_thin_get_mapped_count returned %d", r);
4192 				goto err;
4193 			}
4194 
4195 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4196 			if (r < 0) {
4197 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4198 				goto err;
4199 			}
4200 
4201 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4202 			if (r)
4203 				DMEMIT("%llu", ((highest + 1) *
4204 						tc->pool->sectors_per_block) - 1);
4205 			else
4206 				DMEMIT("-");
4207 			break;
4208 
4209 		case STATUSTYPE_TABLE:
4210 			DMEMIT("%s %lu",
4211 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4212 			       (unsigned long) tc->dev_id);
4213 			if (tc->origin_dev)
4214 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4215 			break;
4216 		}
4217 	}
4218 
4219 	return;
4220 
4221 err:
4222 	DMEMIT("Error");
4223 }
4224 
4225 static int thin_iterate_devices(struct dm_target *ti,
4226 				iterate_devices_callout_fn fn, void *data)
4227 {
4228 	sector_t blocks;
4229 	struct thin_c *tc = ti->private;
4230 	struct pool *pool = tc->pool;
4231 
4232 	/*
4233 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4234 	 * we follow a more convoluted path through to the pool's target.
4235 	 */
4236 	if (!pool->ti)
4237 		return 0;	/* nothing is bound */
4238 
4239 	blocks = pool->ti->len;
4240 	(void) sector_div(blocks, pool->sectors_per_block);
4241 	if (blocks)
4242 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4243 
4244 	return 0;
4245 }
4246 
4247 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4248 {
4249 	struct thin_c *tc = ti->private;
4250 	struct pool *pool = tc->pool;
4251 
4252 	if (!pool->pf.discard_enabled)
4253 		return;
4254 
4255 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4256 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4257 }
4258 
4259 static struct target_type thin_target = {
4260 	.name = "thin",
4261 	.version = {1, 19, 0},
4262 	.module	= THIS_MODULE,
4263 	.ctr = thin_ctr,
4264 	.dtr = thin_dtr,
4265 	.map = thin_map,
4266 	.end_io = thin_endio,
4267 	.preresume = thin_preresume,
4268 	.presuspend = thin_presuspend,
4269 	.postsuspend = thin_postsuspend,
4270 	.status = thin_status,
4271 	.iterate_devices = thin_iterate_devices,
4272 	.io_hints = thin_io_hints,
4273 };
4274 
4275 /*----------------------------------------------------------------*/
4276 
4277 static int __init dm_thin_init(void)
4278 {
4279 	int r;
4280 
4281 	pool_table_init();
4282 
4283 	r = dm_register_target(&thin_target);
4284 	if (r)
4285 		return r;
4286 
4287 	r = dm_register_target(&pool_target);
4288 	if (r)
4289 		goto bad_pool_target;
4290 
4291 	r = -ENOMEM;
4292 
4293 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4294 	if (!_new_mapping_cache)
4295 		goto bad_new_mapping_cache;
4296 
4297 	return 0;
4298 
4299 bad_new_mapping_cache:
4300 	dm_unregister_target(&pool_target);
4301 bad_pool_target:
4302 	dm_unregister_target(&thin_target);
4303 
4304 	return r;
4305 }
4306 
4307 static void dm_thin_exit(void)
4308 {
4309 	dm_unregister_target(&thin_target);
4310 	dm_unregister_target(&pool_target);
4311 
4312 	kmem_cache_destroy(_new_mapping_cache);
4313 }
4314 
4315 module_init(dm_thin_init);
4316 module_exit(dm_thin_exit);
4317 
4318 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4319 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4320 
4321 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4322 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4323 MODULE_LICENSE("GPL");
4324