1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 PM_READ_ONLY, /* metadata may not be changed */ 204 PM_FAIL, /* all I/O fails */ 205 }; 206 207 struct pool_features { 208 enum pool_mode mode; 209 210 bool zero_new_blocks:1; 211 bool discard_enabled:1; 212 bool discard_passdown:1; 213 bool error_if_no_space:1; 214 }; 215 216 struct thin_c; 217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 220 221 #define CELL_SORT_ARRAY_SIZE 8192 222 223 struct pool { 224 struct list_head list; 225 struct dm_target *ti; /* Only set if a pool target is bound */ 226 227 struct mapped_device *pool_md; 228 struct block_device *md_dev; 229 struct dm_pool_metadata *pmd; 230 231 dm_block_t low_water_blocks; 232 uint32_t sectors_per_block; 233 int sectors_per_block_shift; 234 235 struct pool_features pf; 236 bool low_water_triggered:1; /* A dm event has been sent */ 237 bool suspended:1; 238 bool out_of_data_space:1; 239 240 struct dm_bio_prison *prison; 241 struct dm_kcopyd_client *copier; 242 243 struct workqueue_struct *wq; 244 struct throttle throttle; 245 struct work_struct worker; 246 struct delayed_work waker; 247 struct delayed_work no_space_timeout; 248 249 unsigned long last_commit_jiffies; 250 unsigned ref_count; 251 252 spinlock_t lock; 253 struct bio_list deferred_flush_bios; 254 struct list_head prepared_mappings; 255 struct list_head prepared_discards; 256 struct list_head active_thins; 257 258 struct dm_deferred_set *shared_read_ds; 259 struct dm_deferred_set *all_io_ds; 260 261 struct dm_thin_new_mapping *next_mapping; 262 mempool_t *mapping_pool; 263 264 process_bio_fn process_bio; 265 process_bio_fn process_discard; 266 267 process_cell_fn process_cell; 268 process_cell_fn process_discard_cell; 269 270 process_mapping_fn process_prepared_mapping; 271 process_mapping_fn process_prepared_discard; 272 273 struct dm_bio_prison_cell **cell_sort_array; 274 }; 275 276 static enum pool_mode get_pool_mode(struct pool *pool); 277 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 278 279 /* 280 * Target context for a pool. 281 */ 282 struct pool_c { 283 struct dm_target *ti; 284 struct pool *pool; 285 struct dm_dev *data_dev; 286 struct dm_dev *metadata_dev; 287 struct dm_target_callbacks callbacks; 288 289 dm_block_t low_water_blocks; 290 struct pool_features requested_pf; /* Features requested during table load */ 291 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 292 }; 293 294 /* 295 * Target context for a thin. 296 */ 297 struct thin_c { 298 struct list_head list; 299 struct dm_dev *pool_dev; 300 struct dm_dev *origin_dev; 301 sector_t origin_size; 302 dm_thin_id dev_id; 303 304 struct pool *pool; 305 struct dm_thin_device *td; 306 struct mapped_device *thin_md; 307 308 bool requeue_mode:1; 309 spinlock_t lock; 310 struct list_head deferred_cells; 311 struct bio_list deferred_bio_list; 312 struct bio_list retry_on_resume_list; 313 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 314 315 /* 316 * Ensures the thin is not destroyed until the worker has finished 317 * iterating the active_thins list. 318 */ 319 atomic_t refcount; 320 struct completion can_destroy; 321 }; 322 323 /*----------------------------------------------------------------*/ 324 325 static bool block_size_is_power_of_two(struct pool *pool) 326 { 327 return pool->sectors_per_block_shift >= 0; 328 } 329 330 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 331 { 332 return block_size_is_power_of_two(pool) ? 333 (b << pool->sectors_per_block_shift) : 334 (b * pool->sectors_per_block); 335 } 336 337 /*----------------------------------------------------------------*/ 338 339 struct discard_op { 340 struct thin_c *tc; 341 struct blk_plug plug; 342 struct bio *parent_bio; 343 struct bio *bio; 344 }; 345 346 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 347 { 348 BUG_ON(!parent); 349 350 op->tc = tc; 351 blk_start_plug(&op->plug); 352 op->parent_bio = parent; 353 op->bio = NULL; 354 } 355 356 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 357 { 358 struct thin_c *tc = op->tc; 359 sector_t s = block_to_sectors(tc->pool, data_b); 360 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 361 362 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 363 GFP_NOWAIT, REQ_WRITE | REQ_DISCARD, &op->bio); 364 } 365 366 static void end_discard(struct discard_op *op, int r) 367 { 368 if (op->bio) { 369 /* 370 * Even if one of the calls to issue_discard failed, we 371 * need to wait for the chain to complete. 372 */ 373 bio_chain(op->bio, op->parent_bio); 374 submit_bio(REQ_WRITE | REQ_DISCARD, op->bio); 375 } 376 377 blk_finish_plug(&op->plug); 378 379 /* 380 * Even if r is set, there could be sub discards in flight that we 381 * need to wait for. 382 */ 383 if (r && !op->parent_bio->bi_error) 384 op->parent_bio->bi_error = r; 385 bio_endio(op->parent_bio); 386 } 387 388 /*----------------------------------------------------------------*/ 389 390 /* 391 * wake_worker() is used when new work is queued and when pool_resume is 392 * ready to continue deferred IO processing. 393 */ 394 static void wake_worker(struct pool *pool) 395 { 396 queue_work(pool->wq, &pool->worker); 397 } 398 399 /*----------------------------------------------------------------*/ 400 401 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 402 struct dm_bio_prison_cell **cell_result) 403 { 404 int r; 405 struct dm_bio_prison_cell *cell_prealloc; 406 407 /* 408 * Allocate a cell from the prison's mempool. 409 * This might block but it can't fail. 410 */ 411 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 412 413 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 414 if (r) 415 /* 416 * We reused an old cell; we can get rid of 417 * the new one. 418 */ 419 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 420 421 return r; 422 } 423 424 static void cell_release(struct pool *pool, 425 struct dm_bio_prison_cell *cell, 426 struct bio_list *bios) 427 { 428 dm_cell_release(pool->prison, cell, bios); 429 dm_bio_prison_free_cell(pool->prison, cell); 430 } 431 432 static void cell_visit_release(struct pool *pool, 433 void (*fn)(void *, struct dm_bio_prison_cell *), 434 void *context, 435 struct dm_bio_prison_cell *cell) 436 { 437 dm_cell_visit_release(pool->prison, fn, context, cell); 438 dm_bio_prison_free_cell(pool->prison, cell); 439 } 440 441 static void cell_release_no_holder(struct pool *pool, 442 struct dm_bio_prison_cell *cell, 443 struct bio_list *bios) 444 { 445 dm_cell_release_no_holder(pool->prison, cell, bios); 446 dm_bio_prison_free_cell(pool->prison, cell); 447 } 448 449 static void cell_error_with_code(struct pool *pool, 450 struct dm_bio_prison_cell *cell, int error_code) 451 { 452 dm_cell_error(pool->prison, cell, error_code); 453 dm_bio_prison_free_cell(pool->prison, cell); 454 } 455 456 static int get_pool_io_error_code(struct pool *pool) 457 { 458 return pool->out_of_data_space ? -ENOSPC : -EIO; 459 } 460 461 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 462 { 463 int error = get_pool_io_error_code(pool); 464 465 cell_error_with_code(pool, cell, error); 466 } 467 468 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 469 { 470 cell_error_with_code(pool, cell, 0); 471 } 472 473 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 474 { 475 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE); 476 } 477 478 /*----------------------------------------------------------------*/ 479 480 /* 481 * A global list of pools that uses a struct mapped_device as a key. 482 */ 483 static struct dm_thin_pool_table { 484 struct mutex mutex; 485 struct list_head pools; 486 } dm_thin_pool_table; 487 488 static void pool_table_init(void) 489 { 490 mutex_init(&dm_thin_pool_table.mutex); 491 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 492 } 493 494 static void __pool_table_insert(struct pool *pool) 495 { 496 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 497 list_add(&pool->list, &dm_thin_pool_table.pools); 498 } 499 500 static void __pool_table_remove(struct pool *pool) 501 { 502 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 503 list_del(&pool->list); 504 } 505 506 static struct pool *__pool_table_lookup(struct mapped_device *md) 507 { 508 struct pool *pool = NULL, *tmp; 509 510 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 511 512 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 513 if (tmp->pool_md == md) { 514 pool = tmp; 515 break; 516 } 517 } 518 519 return pool; 520 } 521 522 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 523 { 524 struct pool *pool = NULL, *tmp; 525 526 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 527 528 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 529 if (tmp->md_dev == md_dev) { 530 pool = tmp; 531 break; 532 } 533 } 534 535 return pool; 536 } 537 538 /*----------------------------------------------------------------*/ 539 540 struct dm_thin_endio_hook { 541 struct thin_c *tc; 542 struct dm_deferred_entry *shared_read_entry; 543 struct dm_deferred_entry *all_io_entry; 544 struct dm_thin_new_mapping *overwrite_mapping; 545 struct rb_node rb_node; 546 struct dm_bio_prison_cell *cell; 547 }; 548 549 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 550 { 551 bio_list_merge(bios, master); 552 bio_list_init(master); 553 } 554 555 static void error_bio_list(struct bio_list *bios, int error) 556 { 557 struct bio *bio; 558 559 while ((bio = bio_list_pop(bios))) { 560 bio->bi_error = error; 561 bio_endio(bio); 562 } 563 } 564 565 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error) 566 { 567 struct bio_list bios; 568 unsigned long flags; 569 570 bio_list_init(&bios); 571 572 spin_lock_irqsave(&tc->lock, flags); 573 __merge_bio_list(&bios, master); 574 spin_unlock_irqrestore(&tc->lock, flags); 575 576 error_bio_list(&bios, error); 577 } 578 579 static void requeue_deferred_cells(struct thin_c *tc) 580 { 581 struct pool *pool = tc->pool; 582 unsigned long flags; 583 struct list_head cells; 584 struct dm_bio_prison_cell *cell, *tmp; 585 586 INIT_LIST_HEAD(&cells); 587 588 spin_lock_irqsave(&tc->lock, flags); 589 list_splice_init(&tc->deferred_cells, &cells); 590 spin_unlock_irqrestore(&tc->lock, flags); 591 592 list_for_each_entry_safe(cell, tmp, &cells, user_list) 593 cell_requeue(pool, cell); 594 } 595 596 static void requeue_io(struct thin_c *tc) 597 { 598 struct bio_list bios; 599 unsigned long flags; 600 601 bio_list_init(&bios); 602 603 spin_lock_irqsave(&tc->lock, flags); 604 __merge_bio_list(&bios, &tc->deferred_bio_list); 605 __merge_bio_list(&bios, &tc->retry_on_resume_list); 606 spin_unlock_irqrestore(&tc->lock, flags); 607 608 error_bio_list(&bios, DM_ENDIO_REQUEUE); 609 requeue_deferred_cells(tc); 610 } 611 612 static void error_retry_list_with_code(struct pool *pool, int error) 613 { 614 struct thin_c *tc; 615 616 rcu_read_lock(); 617 list_for_each_entry_rcu(tc, &pool->active_thins, list) 618 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 619 rcu_read_unlock(); 620 } 621 622 static void error_retry_list(struct pool *pool) 623 { 624 int error = get_pool_io_error_code(pool); 625 626 error_retry_list_with_code(pool, error); 627 } 628 629 /* 630 * This section of code contains the logic for processing a thin device's IO. 631 * Much of the code depends on pool object resources (lists, workqueues, etc) 632 * but most is exclusively called from the thin target rather than the thin-pool 633 * target. 634 */ 635 636 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 637 { 638 struct pool *pool = tc->pool; 639 sector_t block_nr = bio->bi_iter.bi_sector; 640 641 if (block_size_is_power_of_two(pool)) 642 block_nr >>= pool->sectors_per_block_shift; 643 else 644 (void) sector_div(block_nr, pool->sectors_per_block); 645 646 return block_nr; 647 } 648 649 /* 650 * Returns the _complete_ blocks that this bio covers. 651 */ 652 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 653 dm_block_t *begin, dm_block_t *end) 654 { 655 struct pool *pool = tc->pool; 656 sector_t b = bio->bi_iter.bi_sector; 657 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 658 659 b += pool->sectors_per_block - 1ull; /* so we round up */ 660 661 if (block_size_is_power_of_two(pool)) { 662 b >>= pool->sectors_per_block_shift; 663 e >>= pool->sectors_per_block_shift; 664 } else { 665 (void) sector_div(b, pool->sectors_per_block); 666 (void) sector_div(e, pool->sectors_per_block); 667 } 668 669 if (e < b) 670 /* Can happen if the bio is within a single block. */ 671 e = b; 672 673 *begin = b; 674 *end = e; 675 } 676 677 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 678 { 679 struct pool *pool = tc->pool; 680 sector_t bi_sector = bio->bi_iter.bi_sector; 681 682 bio->bi_bdev = tc->pool_dev->bdev; 683 if (block_size_is_power_of_two(pool)) 684 bio->bi_iter.bi_sector = 685 (block << pool->sectors_per_block_shift) | 686 (bi_sector & (pool->sectors_per_block - 1)); 687 else 688 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 689 sector_div(bi_sector, pool->sectors_per_block); 690 } 691 692 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 693 { 694 bio->bi_bdev = tc->origin_dev->bdev; 695 } 696 697 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 698 { 699 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 700 dm_thin_changed_this_transaction(tc->td); 701 } 702 703 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 704 { 705 struct dm_thin_endio_hook *h; 706 707 if (bio->bi_rw & REQ_DISCARD) 708 return; 709 710 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 711 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 712 } 713 714 static void issue(struct thin_c *tc, struct bio *bio) 715 { 716 struct pool *pool = tc->pool; 717 unsigned long flags; 718 719 if (!bio_triggers_commit(tc, bio)) { 720 generic_make_request(bio); 721 return; 722 } 723 724 /* 725 * Complete bio with an error if earlier I/O caused changes to 726 * the metadata that can't be committed e.g, due to I/O errors 727 * on the metadata device. 728 */ 729 if (dm_thin_aborted_changes(tc->td)) { 730 bio_io_error(bio); 731 return; 732 } 733 734 /* 735 * Batch together any bios that trigger commits and then issue a 736 * single commit for them in process_deferred_bios(). 737 */ 738 spin_lock_irqsave(&pool->lock, flags); 739 bio_list_add(&pool->deferred_flush_bios, bio); 740 spin_unlock_irqrestore(&pool->lock, flags); 741 } 742 743 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 744 { 745 remap_to_origin(tc, bio); 746 issue(tc, bio); 747 } 748 749 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 750 dm_block_t block) 751 { 752 remap(tc, bio, block); 753 issue(tc, bio); 754 } 755 756 /*----------------------------------------------------------------*/ 757 758 /* 759 * Bio endio functions. 760 */ 761 struct dm_thin_new_mapping { 762 struct list_head list; 763 764 bool pass_discard:1; 765 bool maybe_shared:1; 766 767 /* 768 * Track quiescing, copying and zeroing preparation actions. When this 769 * counter hits zero the block is prepared and can be inserted into the 770 * btree. 771 */ 772 atomic_t prepare_actions; 773 774 int err; 775 struct thin_c *tc; 776 dm_block_t virt_begin, virt_end; 777 dm_block_t data_block; 778 struct dm_bio_prison_cell *cell; 779 780 /* 781 * If the bio covers the whole area of a block then we can avoid 782 * zeroing or copying. Instead this bio is hooked. The bio will 783 * still be in the cell, so care has to be taken to avoid issuing 784 * the bio twice. 785 */ 786 struct bio *bio; 787 bio_end_io_t *saved_bi_end_io; 788 }; 789 790 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 791 { 792 struct pool *pool = m->tc->pool; 793 794 if (atomic_dec_and_test(&m->prepare_actions)) { 795 list_add_tail(&m->list, &pool->prepared_mappings); 796 wake_worker(pool); 797 } 798 } 799 800 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 801 { 802 unsigned long flags; 803 struct pool *pool = m->tc->pool; 804 805 spin_lock_irqsave(&pool->lock, flags); 806 __complete_mapping_preparation(m); 807 spin_unlock_irqrestore(&pool->lock, flags); 808 } 809 810 static void copy_complete(int read_err, unsigned long write_err, void *context) 811 { 812 struct dm_thin_new_mapping *m = context; 813 814 m->err = read_err || write_err ? -EIO : 0; 815 complete_mapping_preparation(m); 816 } 817 818 static void overwrite_endio(struct bio *bio) 819 { 820 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 821 struct dm_thin_new_mapping *m = h->overwrite_mapping; 822 823 bio->bi_end_io = m->saved_bi_end_io; 824 825 m->err = bio->bi_error; 826 complete_mapping_preparation(m); 827 } 828 829 /*----------------------------------------------------------------*/ 830 831 /* 832 * Workqueue. 833 */ 834 835 /* 836 * Prepared mapping jobs. 837 */ 838 839 /* 840 * This sends the bios in the cell, except the original holder, back 841 * to the deferred_bios list. 842 */ 843 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 844 { 845 struct pool *pool = tc->pool; 846 unsigned long flags; 847 848 spin_lock_irqsave(&tc->lock, flags); 849 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 850 spin_unlock_irqrestore(&tc->lock, flags); 851 852 wake_worker(pool); 853 } 854 855 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 856 857 struct remap_info { 858 struct thin_c *tc; 859 struct bio_list defer_bios; 860 struct bio_list issue_bios; 861 }; 862 863 static void __inc_remap_and_issue_cell(void *context, 864 struct dm_bio_prison_cell *cell) 865 { 866 struct remap_info *info = context; 867 struct bio *bio; 868 869 while ((bio = bio_list_pop(&cell->bios))) { 870 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) 871 bio_list_add(&info->defer_bios, bio); 872 else { 873 inc_all_io_entry(info->tc->pool, bio); 874 875 /* 876 * We can't issue the bios with the bio prison lock 877 * held, so we add them to a list to issue on 878 * return from this function. 879 */ 880 bio_list_add(&info->issue_bios, bio); 881 } 882 } 883 } 884 885 static void inc_remap_and_issue_cell(struct thin_c *tc, 886 struct dm_bio_prison_cell *cell, 887 dm_block_t block) 888 { 889 struct bio *bio; 890 struct remap_info info; 891 892 info.tc = tc; 893 bio_list_init(&info.defer_bios); 894 bio_list_init(&info.issue_bios); 895 896 /* 897 * We have to be careful to inc any bios we're about to issue 898 * before the cell is released, and avoid a race with new bios 899 * being added to the cell. 900 */ 901 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 902 &info, cell); 903 904 while ((bio = bio_list_pop(&info.defer_bios))) 905 thin_defer_bio(tc, bio); 906 907 while ((bio = bio_list_pop(&info.issue_bios))) 908 remap_and_issue(info.tc, bio, block); 909 } 910 911 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 912 { 913 cell_error(m->tc->pool, m->cell); 914 list_del(&m->list); 915 mempool_free(m, m->tc->pool->mapping_pool); 916 } 917 918 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 919 { 920 struct thin_c *tc = m->tc; 921 struct pool *pool = tc->pool; 922 struct bio *bio = m->bio; 923 int r; 924 925 if (m->err) { 926 cell_error(pool, m->cell); 927 goto out; 928 } 929 930 /* 931 * Commit the prepared block into the mapping btree. 932 * Any I/O for this block arriving after this point will get 933 * remapped to it directly. 934 */ 935 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 936 if (r) { 937 metadata_operation_failed(pool, "dm_thin_insert_block", r); 938 cell_error(pool, m->cell); 939 goto out; 940 } 941 942 /* 943 * Release any bios held while the block was being provisioned. 944 * If we are processing a write bio that completely covers the block, 945 * we already processed it so can ignore it now when processing 946 * the bios in the cell. 947 */ 948 if (bio) { 949 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 950 bio_endio(bio); 951 } else { 952 inc_all_io_entry(tc->pool, m->cell->holder); 953 remap_and_issue(tc, m->cell->holder, m->data_block); 954 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 955 } 956 957 out: 958 list_del(&m->list); 959 mempool_free(m, pool->mapping_pool); 960 } 961 962 /*----------------------------------------------------------------*/ 963 964 static void free_discard_mapping(struct dm_thin_new_mapping *m) 965 { 966 struct thin_c *tc = m->tc; 967 if (m->cell) 968 cell_defer_no_holder(tc, m->cell); 969 mempool_free(m, tc->pool->mapping_pool); 970 } 971 972 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 973 { 974 bio_io_error(m->bio); 975 free_discard_mapping(m); 976 } 977 978 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 979 { 980 bio_endio(m->bio); 981 free_discard_mapping(m); 982 } 983 984 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 985 { 986 int r; 987 struct thin_c *tc = m->tc; 988 989 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 990 if (r) { 991 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 992 bio_io_error(m->bio); 993 } else 994 bio_endio(m->bio); 995 996 cell_defer_no_holder(tc, m->cell); 997 mempool_free(m, tc->pool->mapping_pool); 998 } 999 1000 /*----------------------------------------------------------------*/ 1001 1002 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m) 1003 { 1004 /* 1005 * We've already unmapped this range of blocks, but before we 1006 * passdown we have to check that these blocks are now unused. 1007 */ 1008 int r = 0; 1009 bool used = true; 1010 struct thin_c *tc = m->tc; 1011 struct pool *pool = tc->pool; 1012 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1013 struct discard_op op; 1014 1015 begin_discard(&op, tc, m->bio); 1016 while (b != end) { 1017 /* find start of unmapped run */ 1018 for (; b < end; b++) { 1019 r = dm_pool_block_is_used(pool->pmd, b, &used); 1020 if (r) 1021 goto out; 1022 1023 if (!used) 1024 break; 1025 } 1026 1027 if (b == end) 1028 break; 1029 1030 /* find end of run */ 1031 for (e = b + 1; e != end; e++) { 1032 r = dm_pool_block_is_used(pool->pmd, e, &used); 1033 if (r) 1034 goto out; 1035 1036 if (used) 1037 break; 1038 } 1039 1040 r = issue_discard(&op, b, e); 1041 if (r) 1042 goto out; 1043 1044 b = e; 1045 } 1046 out: 1047 end_discard(&op, r); 1048 } 1049 1050 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 1051 { 1052 int r; 1053 struct thin_c *tc = m->tc; 1054 struct pool *pool = tc->pool; 1055 1056 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1057 if (r) { 1058 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1059 bio_io_error(m->bio); 1060 1061 } else if (m->maybe_shared) { 1062 passdown_double_checking_shared_status(m); 1063 1064 } else { 1065 struct discard_op op; 1066 begin_discard(&op, tc, m->bio); 1067 r = issue_discard(&op, m->data_block, 1068 m->data_block + (m->virt_end - m->virt_begin)); 1069 end_discard(&op, r); 1070 } 1071 1072 cell_defer_no_holder(tc, m->cell); 1073 mempool_free(m, pool->mapping_pool); 1074 } 1075 1076 static void process_prepared(struct pool *pool, struct list_head *head, 1077 process_mapping_fn *fn) 1078 { 1079 unsigned long flags; 1080 struct list_head maps; 1081 struct dm_thin_new_mapping *m, *tmp; 1082 1083 INIT_LIST_HEAD(&maps); 1084 spin_lock_irqsave(&pool->lock, flags); 1085 list_splice_init(head, &maps); 1086 spin_unlock_irqrestore(&pool->lock, flags); 1087 1088 list_for_each_entry_safe(m, tmp, &maps, list) 1089 (*fn)(m); 1090 } 1091 1092 /* 1093 * Deferred bio jobs. 1094 */ 1095 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1096 { 1097 return bio->bi_iter.bi_size == 1098 (pool->sectors_per_block << SECTOR_SHIFT); 1099 } 1100 1101 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1102 { 1103 return (bio_data_dir(bio) == WRITE) && 1104 io_overlaps_block(pool, bio); 1105 } 1106 1107 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1108 bio_end_io_t *fn) 1109 { 1110 *save = bio->bi_end_io; 1111 bio->bi_end_io = fn; 1112 } 1113 1114 static int ensure_next_mapping(struct pool *pool) 1115 { 1116 if (pool->next_mapping) 1117 return 0; 1118 1119 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 1120 1121 return pool->next_mapping ? 0 : -ENOMEM; 1122 } 1123 1124 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1125 { 1126 struct dm_thin_new_mapping *m = pool->next_mapping; 1127 1128 BUG_ON(!pool->next_mapping); 1129 1130 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1131 INIT_LIST_HEAD(&m->list); 1132 m->bio = NULL; 1133 1134 pool->next_mapping = NULL; 1135 1136 return m; 1137 } 1138 1139 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1140 sector_t begin, sector_t end) 1141 { 1142 int r; 1143 struct dm_io_region to; 1144 1145 to.bdev = tc->pool_dev->bdev; 1146 to.sector = begin; 1147 to.count = end - begin; 1148 1149 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1150 if (r < 0) { 1151 DMERR_LIMIT("dm_kcopyd_zero() failed"); 1152 copy_complete(1, 1, m); 1153 } 1154 } 1155 1156 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1157 dm_block_t data_begin, 1158 struct dm_thin_new_mapping *m) 1159 { 1160 struct pool *pool = tc->pool; 1161 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1162 1163 h->overwrite_mapping = m; 1164 m->bio = bio; 1165 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1166 inc_all_io_entry(pool, bio); 1167 remap_and_issue(tc, bio, data_begin); 1168 } 1169 1170 /* 1171 * A partial copy also needs to zero the uncopied region. 1172 */ 1173 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1174 struct dm_dev *origin, dm_block_t data_origin, 1175 dm_block_t data_dest, 1176 struct dm_bio_prison_cell *cell, struct bio *bio, 1177 sector_t len) 1178 { 1179 int r; 1180 struct pool *pool = tc->pool; 1181 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1182 1183 m->tc = tc; 1184 m->virt_begin = virt_block; 1185 m->virt_end = virt_block + 1u; 1186 m->data_block = data_dest; 1187 m->cell = cell; 1188 1189 /* 1190 * quiesce action + copy action + an extra reference held for the 1191 * duration of this function (we may need to inc later for a 1192 * partial zero). 1193 */ 1194 atomic_set(&m->prepare_actions, 3); 1195 1196 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1197 complete_mapping_preparation(m); /* already quiesced */ 1198 1199 /* 1200 * IO to pool_dev remaps to the pool target's data_dev. 1201 * 1202 * If the whole block of data is being overwritten, we can issue the 1203 * bio immediately. Otherwise we use kcopyd to clone the data first. 1204 */ 1205 if (io_overwrites_block(pool, bio)) 1206 remap_and_issue_overwrite(tc, bio, data_dest, m); 1207 else { 1208 struct dm_io_region from, to; 1209 1210 from.bdev = origin->bdev; 1211 from.sector = data_origin * pool->sectors_per_block; 1212 from.count = len; 1213 1214 to.bdev = tc->pool_dev->bdev; 1215 to.sector = data_dest * pool->sectors_per_block; 1216 to.count = len; 1217 1218 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1219 0, copy_complete, m); 1220 if (r < 0) { 1221 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1222 copy_complete(1, 1, m); 1223 1224 /* 1225 * We allow the zero to be issued, to simplify the 1226 * error path. Otherwise we'd need to start 1227 * worrying about decrementing the prepare_actions 1228 * counter. 1229 */ 1230 } 1231 1232 /* 1233 * Do we need to zero a tail region? 1234 */ 1235 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1236 atomic_inc(&m->prepare_actions); 1237 ll_zero(tc, m, 1238 data_dest * pool->sectors_per_block + len, 1239 (data_dest + 1) * pool->sectors_per_block); 1240 } 1241 } 1242 1243 complete_mapping_preparation(m); /* drop our ref */ 1244 } 1245 1246 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1247 dm_block_t data_origin, dm_block_t data_dest, 1248 struct dm_bio_prison_cell *cell, struct bio *bio) 1249 { 1250 schedule_copy(tc, virt_block, tc->pool_dev, 1251 data_origin, data_dest, cell, bio, 1252 tc->pool->sectors_per_block); 1253 } 1254 1255 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1256 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1257 struct bio *bio) 1258 { 1259 struct pool *pool = tc->pool; 1260 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1261 1262 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1263 m->tc = tc; 1264 m->virt_begin = virt_block; 1265 m->virt_end = virt_block + 1u; 1266 m->data_block = data_block; 1267 m->cell = cell; 1268 1269 /* 1270 * If the whole block of data is being overwritten or we are not 1271 * zeroing pre-existing data, we can issue the bio immediately. 1272 * Otherwise we use kcopyd to zero the data first. 1273 */ 1274 if (pool->pf.zero_new_blocks) { 1275 if (io_overwrites_block(pool, bio)) 1276 remap_and_issue_overwrite(tc, bio, data_block, m); 1277 else 1278 ll_zero(tc, m, data_block * pool->sectors_per_block, 1279 (data_block + 1) * pool->sectors_per_block); 1280 } else 1281 process_prepared_mapping(m); 1282 } 1283 1284 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1285 dm_block_t data_dest, 1286 struct dm_bio_prison_cell *cell, struct bio *bio) 1287 { 1288 struct pool *pool = tc->pool; 1289 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1290 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1291 1292 if (virt_block_end <= tc->origin_size) 1293 schedule_copy(tc, virt_block, tc->origin_dev, 1294 virt_block, data_dest, cell, bio, 1295 pool->sectors_per_block); 1296 1297 else if (virt_block_begin < tc->origin_size) 1298 schedule_copy(tc, virt_block, tc->origin_dev, 1299 virt_block, data_dest, cell, bio, 1300 tc->origin_size - virt_block_begin); 1301 1302 else 1303 schedule_zero(tc, virt_block, data_dest, cell, bio); 1304 } 1305 1306 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1307 1308 static void check_for_space(struct pool *pool) 1309 { 1310 int r; 1311 dm_block_t nr_free; 1312 1313 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1314 return; 1315 1316 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1317 if (r) 1318 return; 1319 1320 if (nr_free) 1321 set_pool_mode(pool, PM_WRITE); 1322 } 1323 1324 /* 1325 * A non-zero return indicates read_only or fail_io mode. 1326 * Many callers don't care about the return value. 1327 */ 1328 static int commit(struct pool *pool) 1329 { 1330 int r; 1331 1332 if (get_pool_mode(pool) >= PM_READ_ONLY) 1333 return -EINVAL; 1334 1335 r = dm_pool_commit_metadata(pool->pmd); 1336 if (r) 1337 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1338 else 1339 check_for_space(pool); 1340 1341 return r; 1342 } 1343 1344 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1345 { 1346 unsigned long flags; 1347 1348 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1349 DMWARN("%s: reached low water mark for data device: sending event.", 1350 dm_device_name(pool->pool_md)); 1351 spin_lock_irqsave(&pool->lock, flags); 1352 pool->low_water_triggered = true; 1353 spin_unlock_irqrestore(&pool->lock, flags); 1354 dm_table_event(pool->ti->table); 1355 } 1356 } 1357 1358 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1359 { 1360 int r; 1361 dm_block_t free_blocks; 1362 struct pool *pool = tc->pool; 1363 1364 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1365 return -EINVAL; 1366 1367 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1368 if (r) { 1369 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1370 return r; 1371 } 1372 1373 check_low_water_mark(pool, free_blocks); 1374 1375 if (!free_blocks) { 1376 /* 1377 * Try to commit to see if that will free up some 1378 * more space. 1379 */ 1380 r = commit(pool); 1381 if (r) 1382 return r; 1383 1384 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1385 if (r) { 1386 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1387 return r; 1388 } 1389 1390 if (!free_blocks) { 1391 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1392 return -ENOSPC; 1393 } 1394 } 1395 1396 r = dm_pool_alloc_data_block(pool->pmd, result); 1397 if (r) { 1398 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1399 return r; 1400 } 1401 1402 return 0; 1403 } 1404 1405 /* 1406 * If we have run out of space, queue bios until the device is 1407 * resumed, presumably after having been reloaded with more space. 1408 */ 1409 static void retry_on_resume(struct bio *bio) 1410 { 1411 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1412 struct thin_c *tc = h->tc; 1413 unsigned long flags; 1414 1415 spin_lock_irqsave(&tc->lock, flags); 1416 bio_list_add(&tc->retry_on_resume_list, bio); 1417 spin_unlock_irqrestore(&tc->lock, flags); 1418 } 1419 1420 static int should_error_unserviceable_bio(struct pool *pool) 1421 { 1422 enum pool_mode m = get_pool_mode(pool); 1423 1424 switch (m) { 1425 case PM_WRITE: 1426 /* Shouldn't get here */ 1427 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1428 return -EIO; 1429 1430 case PM_OUT_OF_DATA_SPACE: 1431 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1432 1433 case PM_READ_ONLY: 1434 case PM_FAIL: 1435 return -EIO; 1436 default: 1437 /* Shouldn't get here */ 1438 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1439 return -EIO; 1440 } 1441 } 1442 1443 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1444 { 1445 int error = should_error_unserviceable_bio(pool); 1446 1447 if (error) { 1448 bio->bi_error = error; 1449 bio_endio(bio); 1450 } else 1451 retry_on_resume(bio); 1452 } 1453 1454 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1455 { 1456 struct bio *bio; 1457 struct bio_list bios; 1458 int error; 1459 1460 error = should_error_unserviceable_bio(pool); 1461 if (error) { 1462 cell_error_with_code(pool, cell, error); 1463 return; 1464 } 1465 1466 bio_list_init(&bios); 1467 cell_release(pool, cell, &bios); 1468 1469 while ((bio = bio_list_pop(&bios))) 1470 retry_on_resume(bio); 1471 } 1472 1473 static void process_discard_cell_no_passdown(struct thin_c *tc, 1474 struct dm_bio_prison_cell *virt_cell) 1475 { 1476 struct pool *pool = tc->pool; 1477 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1478 1479 /* 1480 * We don't need to lock the data blocks, since there's no 1481 * passdown. We only lock data blocks for allocation and breaking sharing. 1482 */ 1483 m->tc = tc; 1484 m->virt_begin = virt_cell->key.block_begin; 1485 m->virt_end = virt_cell->key.block_end; 1486 m->cell = virt_cell; 1487 m->bio = virt_cell->holder; 1488 1489 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1490 pool->process_prepared_discard(m); 1491 } 1492 1493 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1494 struct bio *bio) 1495 { 1496 struct pool *pool = tc->pool; 1497 1498 int r; 1499 bool maybe_shared; 1500 struct dm_cell_key data_key; 1501 struct dm_bio_prison_cell *data_cell; 1502 struct dm_thin_new_mapping *m; 1503 dm_block_t virt_begin, virt_end, data_begin; 1504 1505 while (begin != end) { 1506 r = ensure_next_mapping(pool); 1507 if (r) 1508 /* we did our best */ 1509 return; 1510 1511 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1512 &data_begin, &maybe_shared); 1513 if (r) 1514 /* 1515 * Silently fail, letting any mappings we've 1516 * created complete. 1517 */ 1518 break; 1519 1520 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1521 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1522 /* contention, we'll give up with this range */ 1523 begin = virt_end; 1524 continue; 1525 } 1526 1527 /* 1528 * IO may still be going to the destination block. We must 1529 * quiesce before we can do the removal. 1530 */ 1531 m = get_next_mapping(pool); 1532 m->tc = tc; 1533 m->maybe_shared = maybe_shared; 1534 m->virt_begin = virt_begin; 1535 m->virt_end = virt_end; 1536 m->data_block = data_begin; 1537 m->cell = data_cell; 1538 m->bio = bio; 1539 1540 /* 1541 * The parent bio must not complete before sub discard bios are 1542 * chained to it (see end_discard's bio_chain)! 1543 * 1544 * This per-mapping bi_remaining increment is paired with 1545 * the implicit decrement that occurs via bio_endio() in 1546 * end_discard(). 1547 */ 1548 bio_inc_remaining(bio); 1549 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1550 pool->process_prepared_discard(m); 1551 1552 begin = virt_end; 1553 } 1554 } 1555 1556 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1557 { 1558 struct bio *bio = virt_cell->holder; 1559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1560 1561 /* 1562 * The virt_cell will only get freed once the origin bio completes. 1563 * This means it will remain locked while all the individual 1564 * passdown bios are in flight. 1565 */ 1566 h->cell = virt_cell; 1567 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1568 1569 /* 1570 * We complete the bio now, knowing that the bi_remaining field 1571 * will prevent completion until the sub range discards have 1572 * completed. 1573 */ 1574 bio_endio(bio); 1575 } 1576 1577 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1578 { 1579 dm_block_t begin, end; 1580 struct dm_cell_key virt_key; 1581 struct dm_bio_prison_cell *virt_cell; 1582 1583 get_bio_block_range(tc, bio, &begin, &end); 1584 if (begin == end) { 1585 /* 1586 * The discard covers less than a block. 1587 */ 1588 bio_endio(bio); 1589 return; 1590 } 1591 1592 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1593 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1594 /* 1595 * Potential starvation issue: We're relying on the 1596 * fs/application being well behaved, and not trying to 1597 * send IO to a region at the same time as discarding it. 1598 * If they do this persistently then it's possible this 1599 * cell will never be granted. 1600 */ 1601 return; 1602 1603 tc->pool->process_discard_cell(tc, virt_cell); 1604 } 1605 1606 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1607 struct dm_cell_key *key, 1608 struct dm_thin_lookup_result *lookup_result, 1609 struct dm_bio_prison_cell *cell) 1610 { 1611 int r; 1612 dm_block_t data_block; 1613 struct pool *pool = tc->pool; 1614 1615 r = alloc_data_block(tc, &data_block); 1616 switch (r) { 1617 case 0: 1618 schedule_internal_copy(tc, block, lookup_result->block, 1619 data_block, cell, bio); 1620 break; 1621 1622 case -ENOSPC: 1623 retry_bios_on_resume(pool, cell); 1624 break; 1625 1626 default: 1627 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1628 __func__, r); 1629 cell_error(pool, cell); 1630 break; 1631 } 1632 } 1633 1634 static void __remap_and_issue_shared_cell(void *context, 1635 struct dm_bio_prison_cell *cell) 1636 { 1637 struct remap_info *info = context; 1638 struct bio *bio; 1639 1640 while ((bio = bio_list_pop(&cell->bios))) { 1641 if ((bio_data_dir(bio) == WRITE) || 1642 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))) 1643 bio_list_add(&info->defer_bios, bio); 1644 else { 1645 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1646 1647 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1648 inc_all_io_entry(info->tc->pool, bio); 1649 bio_list_add(&info->issue_bios, bio); 1650 } 1651 } 1652 } 1653 1654 static void remap_and_issue_shared_cell(struct thin_c *tc, 1655 struct dm_bio_prison_cell *cell, 1656 dm_block_t block) 1657 { 1658 struct bio *bio; 1659 struct remap_info info; 1660 1661 info.tc = tc; 1662 bio_list_init(&info.defer_bios); 1663 bio_list_init(&info.issue_bios); 1664 1665 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1666 &info, cell); 1667 1668 while ((bio = bio_list_pop(&info.defer_bios))) 1669 thin_defer_bio(tc, bio); 1670 1671 while ((bio = bio_list_pop(&info.issue_bios))) 1672 remap_and_issue(tc, bio, block); 1673 } 1674 1675 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1676 dm_block_t block, 1677 struct dm_thin_lookup_result *lookup_result, 1678 struct dm_bio_prison_cell *virt_cell) 1679 { 1680 struct dm_bio_prison_cell *data_cell; 1681 struct pool *pool = tc->pool; 1682 struct dm_cell_key key; 1683 1684 /* 1685 * If cell is already occupied, then sharing is already in the process 1686 * of being broken so we have nothing further to do here. 1687 */ 1688 build_data_key(tc->td, lookup_result->block, &key); 1689 if (bio_detain(pool, &key, bio, &data_cell)) { 1690 cell_defer_no_holder(tc, virt_cell); 1691 return; 1692 } 1693 1694 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1695 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1696 cell_defer_no_holder(tc, virt_cell); 1697 } else { 1698 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1699 1700 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1701 inc_all_io_entry(pool, bio); 1702 remap_and_issue(tc, bio, lookup_result->block); 1703 1704 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1705 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1706 } 1707 } 1708 1709 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1710 struct dm_bio_prison_cell *cell) 1711 { 1712 int r; 1713 dm_block_t data_block; 1714 struct pool *pool = tc->pool; 1715 1716 /* 1717 * Remap empty bios (flushes) immediately, without provisioning. 1718 */ 1719 if (!bio->bi_iter.bi_size) { 1720 inc_all_io_entry(pool, bio); 1721 cell_defer_no_holder(tc, cell); 1722 1723 remap_and_issue(tc, bio, 0); 1724 return; 1725 } 1726 1727 /* 1728 * Fill read bios with zeroes and complete them immediately. 1729 */ 1730 if (bio_data_dir(bio) == READ) { 1731 zero_fill_bio(bio); 1732 cell_defer_no_holder(tc, cell); 1733 bio_endio(bio); 1734 return; 1735 } 1736 1737 r = alloc_data_block(tc, &data_block); 1738 switch (r) { 1739 case 0: 1740 if (tc->origin_dev) 1741 schedule_external_copy(tc, block, data_block, cell, bio); 1742 else 1743 schedule_zero(tc, block, data_block, cell, bio); 1744 break; 1745 1746 case -ENOSPC: 1747 retry_bios_on_resume(pool, cell); 1748 break; 1749 1750 default: 1751 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1752 __func__, r); 1753 cell_error(pool, cell); 1754 break; 1755 } 1756 } 1757 1758 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1759 { 1760 int r; 1761 struct pool *pool = tc->pool; 1762 struct bio *bio = cell->holder; 1763 dm_block_t block = get_bio_block(tc, bio); 1764 struct dm_thin_lookup_result lookup_result; 1765 1766 if (tc->requeue_mode) { 1767 cell_requeue(pool, cell); 1768 return; 1769 } 1770 1771 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1772 switch (r) { 1773 case 0: 1774 if (lookup_result.shared) 1775 process_shared_bio(tc, bio, block, &lookup_result, cell); 1776 else { 1777 inc_all_io_entry(pool, bio); 1778 remap_and_issue(tc, bio, lookup_result.block); 1779 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1780 } 1781 break; 1782 1783 case -ENODATA: 1784 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1785 inc_all_io_entry(pool, bio); 1786 cell_defer_no_holder(tc, cell); 1787 1788 if (bio_end_sector(bio) <= tc->origin_size) 1789 remap_to_origin_and_issue(tc, bio); 1790 1791 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1792 zero_fill_bio(bio); 1793 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1794 remap_to_origin_and_issue(tc, bio); 1795 1796 } else { 1797 zero_fill_bio(bio); 1798 bio_endio(bio); 1799 } 1800 } else 1801 provision_block(tc, bio, block, cell); 1802 break; 1803 1804 default: 1805 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1806 __func__, r); 1807 cell_defer_no_holder(tc, cell); 1808 bio_io_error(bio); 1809 break; 1810 } 1811 } 1812 1813 static void process_bio(struct thin_c *tc, struct bio *bio) 1814 { 1815 struct pool *pool = tc->pool; 1816 dm_block_t block = get_bio_block(tc, bio); 1817 struct dm_bio_prison_cell *cell; 1818 struct dm_cell_key key; 1819 1820 /* 1821 * If cell is already occupied, then the block is already 1822 * being provisioned so we have nothing further to do here. 1823 */ 1824 build_virtual_key(tc->td, block, &key); 1825 if (bio_detain(pool, &key, bio, &cell)) 1826 return; 1827 1828 process_cell(tc, cell); 1829 } 1830 1831 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1832 struct dm_bio_prison_cell *cell) 1833 { 1834 int r; 1835 int rw = bio_data_dir(bio); 1836 dm_block_t block = get_bio_block(tc, bio); 1837 struct dm_thin_lookup_result lookup_result; 1838 1839 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1840 switch (r) { 1841 case 0: 1842 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1843 handle_unserviceable_bio(tc->pool, bio); 1844 if (cell) 1845 cell_defer_no_holder(tc, cell); 1846 } else { 1847 inc_all_io_entry(tc->pool, bio); 1848 remap_and_issue(tc, bio, lookup_result.block); 1849 if (cell) 1850 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1851 } 1852 break; 1853 1854 case -ENODATA: 1855 if (cell) 1856 cell_defer_no_holder(tc, cell); 1857 if (rw != READ) { 1858 handle_unserviceable_bio(tc->pool, bio); 1859 break; 1860 } 1861 1862 if (tc->origin_dev) { 1863 inc_all_io_entry(tc->pool, bio); 1864 remap_to_origin_and_issue(tc, bio); 1865 break; 1866 } 1867 1868 zero_fill_bio(bio); 1869 bio_endio(bio); 1870 break; 1871 1872 default: 1873 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1874 __func__, r); 1875 if (cell) 1876 cell_defer_no_holder(tc, cell); 1877 bio_io_error(bio); 1878 break; 1879 } 1880 } 1881 1882 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1883 { 1884 __process_bio_read_only(tc, bio, NULL); 1885 } 1886 1887 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1888 { 1889 __process_bio_read_only(tc, cell->holder, cell); 1890 } 1891 1892 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1893 { 1894 bio_endio(bio); 1895 } 1896 1897 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1898 { 1899 bio_io_error(bio); 1900 } 1901 1902 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1903 { 1904 cell_success(tc->pool, cell); 1905 } 1906 1907 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1908 { 1909 cell_error(tc->pool, cell); 1910 } 1911 1912 /* 1913 * FIXME: should we also commit due to size of transaction, measured in 1914 * metadata blocks? 1915 */ 1916 static int need_commit_due_to_time(struct pool *pool) 1917 { 1918 return !time_in_range(jiffies, pool->last_commit_jiffies, 1919 pool->last_commit_jiffies + COMMIT_PERIOD); 1920 } 1921 1922 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1923 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1924 1925 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1926 { 1927 struct rb_node **rbp, *parent; 1928 struct dm_thin_endio_hook *pbd; 1929 sector_t bi_sector = bio->bi_iter.bi_sector; 1930 1931 rbp = &tc->sort_bio_list.rb_node; 1932 parent = NULL; 1933 while (*rbp) { 1934 parent = *rbp; 1935 pbd = thin_pbd(parent); 1936 1937 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1938 rbp = &(*rbp)->rb_left; 1939 else 1940 rbp = &(*rbp)->rb_right; 1941 } 1942 1943 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1944 rb_link_node(&pbd->rb_node, parent, rbp); 1945 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1946 } 1947 1948 static void __extract_sorted_bios(struct thin_c *tc) 1949 { 1950 struct rb_node *node; 1951 struct dm_thin_endio_hook *pbd; 1952 struct bio *bio; 1953 1954 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1955 pbd = thin_pbd(node); 1956 bio = thin_bio(pbd); 1957 1958 bio_list_add(&tc->deferred_bio_list, bio); 1959 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1960 } 1961 1962 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1963 } 1964 1965 static void __sort_thin_deferred_bios(struct thin_c *tc) 1966 { 1967 struct bio *bio; 1968 struct bio_list bios; 1969 1970 bio_list_init(&bios); 1971 bio_list_merge(&bios, &tc->deferred_bio_list); 1972 bio_list_init(&tc->deferred_bio_list); 1973 1974 /* Sort deferred_bio_list using rb-tree */ 1975 while ((bio = bio_list_pop(&bios))) 1976 __thin_bio_rb_add(tc, bio); 1977 1978 /* 1979 * Transfer the sorted bios in sort_bio_list back to 1980 * deferred_bio_list to allow lockless submission of 1981 * all bios. 1982 */ 1983 __extract_sorted_bios(tc); 1984 } 1985 1986 static void process_thin_deferred_bios(struct thin_c *tc) 1987 { 1988 struct pool *pool = tc->pool; 1989 unsigned long flags; 1990 struct bio *bio; 1991 struct bio_list bios; 1992 struct blk_plug plug; 1993 unsigned count = 0; 1994 1995 if (tc->requeue_mode) { 1996 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE); 1997 return; 1998 } 1999 2000 bio_list_init(&bios); 2001 2002 spin_lock_irqsave(&tc->lock, flags); 2003 2004 if (bio_list_empty(&tc->deferred_bio_list)) { 2005 spin_unlock_irqrestore(&tc->lock, flags); 2006 return; 2007 } 2008 2009 __sort_thin_deferred_bios(tc); 2010 2011 bio_list_merge(&bios, &tc->deferred_bio_list); 2012 bio_list_init(&tc->deferred_bio_list); 2013 2014 spin_unlock_irqrestore(&tc->lock, flags); 2015 2016 blk_start_plug(&plug); 2017 while ((bio = bio_list_pop(&bios))) { 2018 /* 2019 * If we've got no free new_mapping structs, and processing 2020 * this bio might require one, we pause until there are some 2021 * prepared mappings to process. 2022 */ 2023 if (ensure_next_mapping(pool)) { 2024 spin_lock_irqsave(&tc->lock, flags); 2025 bio_list_add(&tc->deferred_bio_list, bio); 2026 bio_list_merge(&tc->deferred_bio_list, &bios); 2027 spin_unlock_irqrestore(&tc->lock, flags); 2028 break; 2029 } 2030 2031 if (bio->bi_rw & REQ_DISCARD) 2032 pool->process_discard(tc, bio); 2033 else 2034 pool->process_bio(tc, bio); 2035 2036 if ((count++ & 127) == 0) { 2037 throttle_work_update(&pool->throttle); 2038 dm_pool_issue_prefetches(pool->pmd); 2039 } 2040 } 2041 blk_finish_plug(&plug); 2042 } 2043 2044 static int cmp_cells(const void *lhs, const void *rhs) 2045 { 2046 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2047 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2048 2049 BUG_ON(!lhs_cell->holder); 2050 BUG_ON(!rhs_cell->holder); 2051 2052 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2053 return -1; 2054 2055 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2056 return 1; 2057 2058 return 0; 2059 } 2060 2061 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2062 { 2063 unsigned count = 0; 2064 struct dm_bio_prison_cell *cell, *tmp; 2065 2066 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2067 if (count >= CELL_SORT_ARRAY_SIZE) 2068 break; 2069 2070 pool->cell_sort_array[count++] = cell; 2071 list_del(&cell->user_list); 2072 } 2073 2074 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2075 2076 return count; 2077 } 2078 2079 static void process_thin_deferred_cells(struct thin_c *tc) 2080 { 2081 struct pool *pool = tc->pool; 2082 unsigned long flags; 2083 struct list_head cells; 2084 struct dm_bio_prison_cell *cell; 2085 unsigned i, j, count; 2086 2087 INIT_LIST_HEAD(&cells); 2088 2089 spin_lock_irqsave(&tc->lock, flags); 2090 list_splice_init(&tc->deferred_cells, &cells); 2091 spin_unlock_irqrestore(&tc->lock, flags); 2092 2093 if (list_empty(&cells)) 2094 return; 2095 2096 do { 2097 count = sort_cells(tc->pool, &cells); 2098 2099 for (i = 0; i < count; i++) { 2100 cell = pool->cell_sort_array[i]; 2101 BUG_ON(!cell->holder); 2102 2103 /* 2104 * If we've got no free new_mapping structs, and processing 2105 * this bio might require one, we pause until there are some 2106 * prepared mappings to process. 2107 */ 2108 if (ensure_next_mapping(pool)) { 2109 for (j = i; j < count; j++) 2110 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2111 2112 spin_lock_irqsave(&tc->lock, flags); 2113 list_splice(&cells, &tc->deferred_cells); 2114 spin_unlock_irqrestore(&tc->lock, flags); 2115 return; 2116 } 2117 2118 if (cell->holder->bi_rw & REQ_DISCARD) 2119 pool->process_discard_cell(tc, cell); 2120 else 2121 pool->process_cell(tc, cell); 2122 } 2123 } while (!list_empty(&cells)); 2124 } 2125 2126 static void thin_get(struct thin_c *tc); 2127 static void thin_put(struct thin_c *tc); 2128 2129 /* 2130 * We can't hold rcu_read_lock() around code that can block. So we 2131 * find a thin with the rcu lock held; bump a refcount; then drop 2132 * the lock. 2133 */ 2134 static struct thin_c *get_first_thin(struct pool *pool) 2135 { 2136 struct thin_c *tc = NULL; 2137 2138 rcu_read_lock(); 2139 if (!list_empty(&pool->active_thins)) { 2140 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2141 thin_get(tc); 2142 } 2143 rcu_read_unlock(); 2144 2145 return tc; 2146 } 2147 2148 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2149 { 2150 struct thin_c *old_tc = tc; 2151 2152 rcu_read_lock(); 2153 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2154 thin_get(tc); 2155 thin_put(old_tc); 2156 rcu_read_unlock(); 2157 return tc; 2158 } 2159 thin_put(old_tc); 2160 rcu_read_unlock(); 2161 2162 return NULL; 2163 } 2164 2165 static void process_deferred_bios(struct pool *pool) 2166 { 2167 unsigned long flags; 2168 struct bio *bio; 2169 struct bio_list bios; 2170 struct thin_c *tc; 2171 2172 tc = get_first_thin(pool); 2173 while (tc) { 2174 process_thin_deferred_cells(tc); 2175 process_thin_deferred_bios(tc); 2176 tc = get_next_thin(pool, tc); 2177 } 2178 2179 /* 2180 * If there are any deferred flush bios, we must commit 2181 * the metadata before issuing them. 2182 */ 2183 bio_list_init(&bios); 2184 spin_lock_irqsave(&pool->lock, flags); 2185 bio_list_merge(&bios, &pool->deferred_flush_bios); 2186 bio_list_init(&pool->deferred_flush_bios); 2187 spin_unlock_irqrestore(&pool->lock, flags); 2188 2189 if (bio_list_empty(&bios) && 2190 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2191 return; 2192 2193 if (commit(pool)) { 2194 while ((bio = bio_list_pop(&bios))) 2195 bio_io_error(bio); 2196 return; 2197 } 2198 pool->last_commit_jiffies = jiffies; 2199 2200 while ((bio = bio_list_pop(&bios))) 2201 generic_make_request(bio); 2202 } 2203 2204 static void do_worker(struct work_struct *ws) 2205 { 2206 struct pool *pool = container_of(ws, struct pool, worker); 2207 2208 throttle_work_start(&pool->throttle); 2209 dm_pool_issue_prefetches(pool->pmd); 2210 throttle_work_update(&pool->throttle); 2211 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2212 throttle_work_update(&pool->throttle); 2213 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2214 throttle_work_update(&pool->throttle); 2215 process_deferred_bios(pool); 2216 throttle_work_complete(&pool->throttle); 2217 } 2218 2219 /* 2220 * We want to commit periodically so that not too much 2221 * unwritten data builds up. 2222 */ 2223 static void do_waker(struct work_struct *ws) 2224 { 2225 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2226 wake_worker(pool); 2227 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2228 } 2229 2230 static void notify_of_pool_mode_change_to_oods(struct pool *pool); 2231 2232 /* 2233 * We're holding onto IO to allow userland time to react. After the 2234 * timeout either the pool will have been resized (and thus back in 2235 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2236 */ 2237 static void do_no_space_timeout(struct work_struct *ws) 2238 { 2239 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2240 no_space_timeout); 2241 2242 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2243 pool->pf.error_if_no_space = true; 2244 notify_of_pool_mode_change_to_oods(pool); 2245 error_retry_list_with_code(pool, -ENOSPC); 2246 } 2247 } 2248 2249 /*----------------------------------------------------------------*/ 2250 2251 struct pool_work { 2252 struct work_struct worker; 2253 struct completion complete; 2254 }; 2255 2256 static struct pool_work *to_pool_work(struct work_struct *ws) 2257 { 2258 return container_of(ws, struct pool_work, worker); 2259 } 2260 2261 static void pool_work_complete(struct pool_work *pw) 2262 { 2263 complete(&pw->complete); 2264 } 2265 2266 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2267 void (*fn)(struct work_struct *)) 2268 { 2269 INIT_WORK_ONSTACK(&pw->worker, fn); 2270 init_completion(&pw->complete); 2271 queue_work(pool->wq, &pw->worker); 2272 wait_for_completion(&pw->complete); 2273 } 2274 2275 /*----------------------------------------------------------------*/ 2276 2277 struct noflush_work { 2278 struct pool_work pw; 2279 struct thin_c *tc; 2280 }; 2281 2282 static struct noflush_work *to_noflush(struct work_struct *ws) 2283 { 2284 return container_of(to_pool_work(ws), struct noflush_work, pw); 2285 } 2286 2287 static void do_noflush_start(struct work_struct *ws) 2288 { 2289 struct noflush_work *w = to_noflush(ws); 2290 w->tc->requeue_mode = true; 2291 requeue_io(w->tc); 2292 pool_work_complete(&w->pw); 2293 } 2294 2295 static void do_noflush_stop(struct work_struct *ws) 2296 { 2297 struct noflush_work *w = to_noflush(ws); 2298 w->tc->requeue_mode = false; 2299 pool_work_complete(&w->pw); 2300 } 2301 2302 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2303 { 2304 struct noflush_work w; 2305 2306 w.tc = tc; 2307 pool_work_wait(&w.pw, tc->pool, fn); 2308 } 2309 2310 /*----------------------------------------------------------------*/ 2311 2312 static enum pool_mode get_pool_mode(struct pool *pool) 2313 { 2314 return pool->pf.mode; 2315 } 2316 2317 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2318 { 2319 dm_table_event(pool->ti->table); 2320 DMINFO("%s: switching pool to %s mode", 2321 dm_device_name(pool->pool_md), new_mode); 2322 } 2323 2324 static void notify_of_pool_mode_change_to_oods(struct pool *pool) 2325 { 2326 if (!pool->pf.error_if_no_space) 2327 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)"); 2328 else 2329 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)"); 2330 } 2331 2332 static bool passdown_enabled(struct pool_c *pt) 2333 { 2334 return pt->adjusted_pf.discard_passdown; 2335 } 2336 2337 static void set_discard_callbacks(struct pool *pool) 2338 { 2339 struct pool_c *pt = pool->ti->private; 2340 2341 if (passdown_enabled(pt)) { 2342 pool->process_discard_cell = process_discard_cell_passdown; 2343 pool->process_prepared_discard = process_prepared_discard_passdown; 2344 } else { 2345 pool->process_discard_cell = process_discard_cell_no_passdown; 2346 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2347 } 2348 } 2349 2350 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2351 { 2352 struct pool_c *pt = pool->ti->private; 2353 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2354 enum pool_mode old_mode = get_pool_mode(pool); 2355 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2356 2357 /* 2358 * Never allow the pool to transition to PM_WRITE mode if user 2359 * intervention is required to verify metadata and data consistency. 2360 */ 2361 if (new_mode == PM_WRITE && needs_check) { 2362 DMERR("%s: unable to switch pool to write mode until repaired.", 2363 dm_device_name(pool->pool_md)); 2364 if (old_mode != new_mode) 2365 new_mode = old_mode; 2366 else 2367 new_mode = PM_READ_ONLY; 2368 } 2369 /* 2370 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2371 * not going to recover without a thin_repair. So we never let the 2372 * pool move out of the old mode. 2373 */ 2374 if (old_mode == PM_FAIL) 2375 new_mode = old_mode; 2376 2377 switch (new_mode) { 2378 case PM_FAIL: 2379 if (old_mode != new_mode) 2380 notify_of_pool_mode_change(pool, "failure"); 2381 dm_pool_metadata_read_only(pool->pmd); 2382 pool->process_bio = process_bio_fail; 2383 pool->process_discard = process_bio_fail; 2384 pool->process_cell = process_cell_fail; 2385 pool->process_discard_cell = process_cell_fail; 2386 pool->process_prepared_mapping = process_prepared_mapping_fail; 2387 pool->process_prepared_discard = process_prepared_discard_fail; 2388 2389 error_retry_list(pool); 2390 break; 2391 2392 case PM_READ_ONLY: 2393 if (old_mode != new_mode) 2394 notify_of_pool_mode_change(pool, "read-only"); 2395 dm_pool_metadata_read_only(pool->pmd); 2396 pool->process_bio = process_bio_read_only; 2397 pool->process_discard = process_bio_success; 2398 pool->process_cell = process_cell_read_only; 2399 pool->process_discard_cell = process_cell_success; 2400 pool->process_prepared_mapping = process_prepared_mapping_fail; 2401 pool->process_prepared_discard = process_prepared_discard_success; 2402 2403 error_retry_list(pool); 2404 break; 2405 2406 case PM_OUT_OF_DATA_SPACE: 2407 /* 2408 * Ideally we'd never hit this state; the low water mark 2409 * would trigger userland to extend the pool before we 2410 * completely run out of data space. However, many small 2411 * IOs to unprovisioned space can consume data space at an 2412 * alarming rate. Adjust your low water mark if you're 2413 * frequently seeing this mode. 2414 */ 2415 if (old_mode != new_mode) 2416 notify_of_pool_mode_change_to_oods(pool); 2417 pool->out_of_data_space = true; 2418 pool->process_bio = process_bio_read_only; 2419 pool->process_discard = process_discard_bio; 2420 pool->process_cell = process_cell_read_only; 2421 pool->process_prepared_mapping = process_prepared_mapping; 2422 set_discard_callbacks(pool); 2423 2424 if (!pool->pf.error_if_no_space && no_space_timeout) 2425 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2426 break; 2427 2428 case PM_WRITE: 2429 if (old_mode != new_mode) 2430 notify_of_pool_mode_change(pool, "write"); 2431 pool->out_of_data_space = false; 2432 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2433 dm_pool_metadata_read_write(pool->pmd); 2434 pool->process_bio = process_bio; 2435 pool->process_discard = process_discard_bio; 2436 pool->process_cell = process_cell; 2437 pool->process_prepared_mapping = process_prepared_mapping; 2438 set_discard_callbacks(pool); 2439 break; 2440 } 2441 2442 pool->pf.mode = new_mode; 2443 /* 2444 * The pool mode may have changed, sync it so bind_control_target() 2445 * doesn't cause an unexpected mode transition on resume. 2446 */ 2447 pt->adjusted_pf.mode = new_mode; 2448 } 2449 2450 static void abort_transaction(struct pool *pool) 2451 { 2452 const char *dev_name = dm_device_name(pool->pool_md); 2453 2454 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2455 if (dm_pool_abort_metadata(pool->pmd)) { 2456 DMERR("%s: failed to abort metadata transaction", dev_name); 2457 set_pool_mode(pool, PM_FAIL); 2458 } 2459 2460 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2461 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2462 set_pool_mode(pool, PM_FAIL); 2463 } 2464 } 2465 2466 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2467 { 2468 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2469 dm_device_name(pool->pool_md), op, r); 2470 2471 abort_transaction(pool); 2472 set_pool_mode(pool, PM_READ_ONLY); 2473 } 2474 2475 /*----------------------------------------------------------------*/ 2476 2477 /* 2478 * Mapping functions. 2479 */ 2480 2481 /* 2482 * Called only while mapping a thin bio to hand it over to the workqueue. 2483 */ 2484 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2485 { 2486 unsigned long flags; 2487 struct pool *pool = tc->pool; 2488 2489 spin_lock_irqsave(&tc->lock, flags); 2490 bio_list_add(&tc->deferred_bio_list, bio); 2491 spin_unlock_irqrestore(&tc->lock, flags); 2492 2493 wake_worker(pool); 2494 } 2495 2496 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2497 { 2498 struct pool *pool = tc->pool; 2499 2500 throttle_lock(&pool->throttle); 2501 thin_defer_bio(tc, bio); 2502 throttle_unlock(&pool->throttle); 2503 } 2504 2505 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2506 { 2507 unsigned long flags; 2508 struct pool *pool = tc->pool; 2509 2510 throttle_lock(&pool->throttle); 2511 spin_lock_irqsave(&tc->lock, flags); 2512 list_add_tail(&cell->user_list, &tc->deferred_cells); 2513 spin_unlock_irqrestore(&tc->lock, flags); 2514 throttle_unlock(&pool->throttle); 2515 2516 wake_worker(pool); 2517 } 2518 2519 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2520 { 2521 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2522 2523 h->tc = tc; 2524 h->shared_read_entry = NULL; 2525 h->all_io_entry = NULL; 2526 h->overwrite_mapping = NULL; 2527 h->cell = NULL; 2528 } 2529 2530 /* 2531 * Non-blocking function called from the thin target's map function. 2532 */ 2533 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2534 { 2535 int r; 2536 struct thin_c *tc = ti->private; 2537 dm_block_t block = get_bio_block(tc, bio); 2538 struct dm_thin_device *td = tc->td; 2539 struct dm_thin_lookup_result result; 2540 struct dm_bio_prison_cell *virt_cell, *data_cell; 2541 struct dm_cell_key key; 2542 2543 thin_hook_bio(tc, bio); 2544 2545 if (tc->requeue_mode) { 2546 bio->bi_error = DM_ENDIO_REQUEUE; 2547 bio_endio(bio); 2548 return DM_MAPIO_SUBMITTED; 2549 } 2550 2551 if (get_pool_mode(tc->pool) == PM_FAIL) { 2552 bio_io_error(bio); 2553 return DM_MAPIO_SUBMITTED; 2554 } 2555 2556 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 2557 thin_defer_bio_with_throttle(tc, bio); 2558 return DM_MAPIO_SUBMITTED; 2559 } 2560 2561 /* 2562 * We must hold the virtual cell before doing the lookup, otherwise 2563 * there's a race with discard. 2564 */ 2565 build_virtual_key(tc->td, block, &key); 2566 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2567 return DM_MAPIO_SUBMITTED; 2568 2569 r = dm_thin_find_block(td, block, 0, &result); 2570 2571 /* 2572 * Note that we defer readahead too. 2573 */ 2574 switch (r) { 2575 case 0: 2576 if (unlikely(result.shared)) { 2577 /* 2578 * We have a race condition here between the 2579 * result.shared value returned by the lookup and 2580 * snapshot creation, which may cause new 2581 * sharing. 2582 * 2583 * To avoid this always quiesce the origin before 2584 * taking the snap. You want to do this anyway to 2585 * ensure a consistent application view 2586 * (i.e. lockfs). 2587 * 2588 * More distant ancestors are irrelevant. The 2589 * shared flag will be set in their case. 2590 */ 2591 thin_defer_cell(tc, virt_cell); 2592 return DM_MAPIO_SUBMITTED; 2593 } 2594 2595 build_data_key(tc->td, result.block, &key); 2596 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2597 cell_defer_no_holder(tc, virt_cell); 2598 return DM_MAPIO_SUBMITTED; 2599 } 2600 2601 inc_all_io_entry(tc->pool, bio); 2602 cell_defer_no_holder(tc, data_cell); 2603 cell_defer_no_holder(tc, virt_cell); 2604 2605 remap(tc, bio, result.block); 2606 return DM_MAPIO_REMAPPED; 2607 2608 case -ENODATA: 2609 case -EWOULDBLOCK: 2610 thin_defer_cell(tc, virt_cell); 2611 return DM_MAPIO_SUBMITTED; 2612 2613 default: 2614 /* 2615 * Must always call bio_io_error on failure. 2616 * dm_thin_find_block can fail with -EINVAL if the 2617 * pool is switched to fail-io mode. 2618 */ 2619 bio_io_error(bio); 2620 cell_defer_no_holder(tc, virt_cell); 2621 return DM_MAPIO_SUBMITTED; 2622 } 2623 } 2624 2625 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2626 { 2627 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2628 struct request_queue *q; 2629 2630 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2631 return 1; 2632 2633 q = bdev_get_queue(pt->data_dev->bdev); 2634 return bdi_congested(&q->backing_dev_info, bdi_bits); 2635 } 2636 2637 static void requeue_bios(struct pool *pool) 2638 { 2639 unsigned long flags; 2640 struct thin_c *tc; 2641 2642 rcu_read_lock(); 2643 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2644 spin_lock_irqsave(&tc->lock, flags); 2645 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2646 bio_list_init(&tc->retry_on_resume_list); 2647 spin_unlock_irqrestore(&tc->lock, flags); 2648 } 2649 rcu_read_unlock(); 2650 } 2651 2652 /*---------------------------------------------------------------- 2653 * Binding of control targets to a pool object 2654 *--------------------------------------------------------------*/ 2655 static bool data_dev_supports_discard(struct pool_c *pt) 2656 { 2657 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2658 2659 return q && blk_queue_discard(q); 2660 } 2661 2662 static bool is_factor(sector_t block_size, uint32_t n) 2663 { 2664 return !sector_div(block_size, n); 2665 } 2666 2667 /* 2668 * If discard_passdown was enabled verify that the data device 2669 * supports discards. Disable discard_passdown if not. 2670 */ 2671 static void disable_passdown_if_not_supported(struct pool_c *pt) 2672 { 2673 struct pool *pool = pt->pool; 2674 struct block_device *data_bdev = pt->data_dev->bdev; 2675 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2676 const char *reason = NULL; 2677 char buf[BDEVNAME_SIZE]; 2678 2679 if (!pt->adjusted_pf.discard_passdown) 2680 return; 2681 2682 if (!data_dev_supports_discard(pt)) 2683 reason = "discard unsupported"; 2684 2685 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2686 reason = "max discard sectors smaller than a block"; 2687 2688 if (reason) { 2689 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2690 pt->adjusted_pf.discard_passdown = false; 2691 } 2692 } 2693 2694 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2695 { 2696 struct pool_c *pt = ti->private; 2697 2698 /* 2699 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2700 */ 2701 enum pool_mode old_mode = get_pool_mode(pool); 2702 enum pool_mode new_mode = pt->adjusted_pf.mode; 2703 2704 /* 2705 * Don't change the pool's mode until set_pool_mode() below. 2706 * Otherwise the pool's process_* function pointers may 2707 * not match the desired pool mode. 2708 */ 2709 pt->adjusted_pf.mode = old_mode; 2710 2711 pool->ti = ti; 2712 pool->pf = pt->adjusted_pf; 2713 pool->low_water_blocks = pt->low_water_blocks; 2714 2715 set_pool_mode(pool, new_mode); 2716 2717 return 0; 2718 } 2719 2720 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2721 { 2722 if (pool->ti == ti) 2723 pool->ti = NULL; 2724 } 2725 2726 /*---------------------------------------------------------------- 2727 * Pool creation 2728 *--------------------------------------------------------------*/ 2729 /* Initialize pool features. */ 2730 static void pool_features_init(struct pool_features *pf) 2731 { 2732 pf->mode = PM_WRITE; 2733 pf->zero_new_blocks = true; 2734 pf->discard_enabled = true; 2735 pf->discard_passdown = true; 2736 pf->error_if_no_space = false; 2737 } 2738 2739 static void __pool_destroy(struct pool *pool) 2740 { 2741 __pool_table_remove(pool); 2742 2743 vfree(pool->cell_sort_array); 2744 if (dm_pool_metadata_close(pool->pmd) < 0) 2745 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2746 2747 dm_bio_prison_destroy(pool->prison); 2748 dm_kcopyd_client_destroy(pool->copier); 2749 2750 if (pool->wq) 2751 destroy_workqueue(pool->wq); 2752 2753 if (pool->next_mapping) 2754 mempool_free(pool->next_mapping, pool->mapping_pool); 2755 mempool_destroy(pool->mapping_pool); 2756 dm_deferred_set_destroy(pool->shared_read_ds); 2757 dm_deferred_set_destroy(pool->all_io_ds); 2758 kfree(pool); 2759 } 2760 2761 static struct kmem_cache *_new_mapping_cache; 2762 2763 static struct pool *pool_create(struct mapped_device *pool_md, 2764 struct block_device *metadata_dev, 2765 unsigned long block_size, 2766 int read_only, char **error) 2767 { 2768 int r; 2769 void *err_p; 2770 struct pool *pool; 2771 struct dm_pool_metadata *pmd; 2772 bool format_device = read_only ? false : true; 2773 2774 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2775 if (IS_ERR(pmd)) { 2776 *error = "Error creating metadata object"; 2777 return (struct pool *)pmd; 2778 } 2779 2780 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2781 if (!pool) { 2782 *error = "Error allocating memory for pool"; 2783 err_p = ERR_PTR(-ENOMEM); 2784 goto bad_pool; 2785 } 2786 2787 pool->pmd = pmd; 2788 pool->sectors_per_block = block_size; 2789 if (block_size & (block_size - 1)) 2790 pool->sectors_per_block_shift = -1; 2791 else 2792 pool->sectors_per_block_shift = __ffs(block_size); 2793 pool->low_water_blocks = 0; 2794 pool_features_init(&pool->pf); 2795 pool->prison = dm_bio_prison_create(); 2796 if (!pool->prison) { 2797 *error = "Error creating pool's bio prison"; 2798 err_p = ERR_PTR(-ENOMEM); 2799 goto bad_prison; 2800 } 2801 2802 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2803 if (IS_ERR(pool->copier)) { 2804 r = PTR_ERR(pool->copier); 2805 *error = "Error creating pool's kcopyd client"; 2806 err_p = ERR_PTR(r); 2807 goto bad_kcopyd_client; 2808 } 2809 2810 /* 2811 * Create singlethreaded workqueue that will service all devices 2812 * that use this metadata. 2813 */ 2814 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2815 if (!pool->wq) { 2816 *error = "Error creating pool's workqueue"; 2817 err_p = ERR_PTR(-ENOMEM); 2818 goto bad_wq; 2819 } 2820 2821 throttle_init(&pool->throttle); 2822 INIT_WORK(&pool->worker, do_worker); 2823 INIT_DELAYED_WORK(&pool->waker, do_waker); 2824 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2825 spin_lock_init(&pool->lock); 2826 bio_list_init(&pool->deferred_flush_bios); 2827 INIT_LIST_HEAD(&pool->prepared_mappings); 2828 INIT_LIST_HEAD(&pool->prepared_discards); 2829 INIT_LIST_HEAD(&pool->active_thins); 2830 pool->low_water_triggered = false; 2831 pool->suspended = true; 2832 pool->out_of_data_space = false; 2833 2834 pool->shared_read_ds = dm_deferred_set_create(); 2835 if (!pool->shared_read_ds) { 2836 *error = "Error creating pool's shared read deferred set"; 2837 err_p = ERR_PTR(-ENOMEM); 2838 goto bad_shared_read_ds; 2839 } 2840 2841 pool->all_io_ds = dm_deferred_set_create(); 2842 if (!pool->all_io_ds) { 2843 *error = "Error creating pool's all io deferred set"; 2844 err_p = ERR_PTR(-ENOMEM); 2845 goto bad_all_io_ds; 2846 } 2847 2848 pool->next_mapping = NULL; 2849 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2850 _new_mapping_cache); 2851 if (!pool->mapping_pool) { 2852 *error = "Error creating pool's mapping mempool"; 2853 err_p = ERR_PTR(-ENOMEM); 2854 goto bad_mapping_pool; 2855 } 2856 2857 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE); 2858 if (!pool->cell_sort_array) { 2859 *error = "Error allocating cell sort array"; 2860 err_p = ERR_PTR(-ENOMEM); 2861 goto bad_sort_array; 2862 } 2863 2864 pool->ref_count = 1; 2865 pool->last_commit_jiffies = jiffies; 2866 pool->pool_md = pool_md; 2867 pool->md_dev = metadata_dev; 2868 __pool_table_insert(pool); 2869 2870 return pool; 2871 2872 bad_sort_array: 2873 mempool_destroy(pool->mapping_pool); 2874 bad_mapping_pool: 2875 dm_deferred_set_destroy(pool->all_io_ds); 2876 bad_all_io_ds: 2877 dm_deferred_set_destroy(pool->shared_read_ds); 2878 bad_shared_read_ds: 2879 destroy_workqueue(pool->wq); 2880 bad_wq: 2881 dm_kcopyd_client_destroy(pool->copier); 2882 bad_kcopyd_client: 2883 dm_bio_prison_destroy(pool->prison); 2884 bad_prison: 2885 kfree(pool); 2886 bad_pool: 2887 if (dm_pool_metadata_close(pmd)) 2888 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2889 2890 return err_p; 2891 } 2892 2893 static void __pool_inc(struct pool *pool) 2894 { 2895 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2896 pool->ref_count++; 2897 } 2898 2899 static void __pool_dec(struct pool *pool) 2900 { 2901 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2902 BUG_ON(!pool->ref_count); 2903 if (!--pool->ref_count) 2904 __pool_destroy(pool); 2905 } 2906 2907 static struct pool *__pool_find(struct mapped_device *pool_md, 2908 struct block_device *metadata_dev, 2909 unsigned long block_size, int read_only, 2910 char **error, int *created) 2911 { 2912 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2913 2914 if (pool) { 2915 if (pool->pool_md != pool_md) { 2916 *error = "metadata device already in use by a pool"; 2917 return ERR_PTR(-EBUSY); 2918 } 2919 __pool_inc(pool); 2920 2921 } else { 2922 pool = __pool_table_lookup(pool_md); 2923 if (pool) { 2924 if (pool->md_dev != metadata_dev) { 2925 *error = "different pool cannot replace a pool"; 2926 return ERR_PTR(-EINVAL); 2927 } 2928 __pool_inc(pool); 2929 2930 } else { 2931 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2932 *created = 1; 2933 } 2934 } 2935 2936 return pool; 2937 } 2938 2939 /*---------------------------------------------------------------- 2940 * Pool target methods 2941 *--------------------------------------------------------------*/ 2942 static void pool_dtr(struct dm_target *ti) 2943 { 2944 struct pool_c *pt = ti->private; 2945 2946 mutex_lock(&dm_thin_pool_table.mutex); 2947 2948 unbind_control_target(pt->pool, ti); 2949 __pool_dec(pt->pool); 2950 dm_put_device(ti, pt->metadata_dev); 2951 dm_put_device(ti, pt->data_dev); 2952 kfree(pt); 2953 2954 mutex_unlock(&dm_thin_pool_table.mutex); 2955 } 2956 2957 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2958 struct dm_target *ti) 2959 { 2960 int r; 2961 unsigned argc; 2962 const char *arg_name; 2963 2964 static struct dm_arg _args[] = { 2965 {0, 4, "Invalid number of pool feature arguments"}, 2966 }; 2967 2968 /* 2969 * No feature arguments supplied. 2970 */ 2971 if (!as->argc) 2972 return 0; 2973 2974 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2975 if (r) 2976 return -EINVAL; 2977 2978 while (argc && !r) { 2979 arg_name = dm_shift_arg(as); 2980 argc--; 2981 2982 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2983 pf->zero_new_blocks = false; 2984 2985 else if (!strcasecmp(arg_name, "ignore_discard")) 2986 pf->discard_enabled = false; 2987 2988 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2989 pf->discard_passdown = false; 2990 2991 else if (!strcasecmp(arg_name, "read_only")) 2992 pf->mode = PM_READ_ONLY; 2993 2994 else if (!strcasecmp(arg_name, "error_if_no_space")) 2995 pf->error_if_no_space = true; 2996 2997 else { 2998 ti->error = "Unrecognised pool feature requested"; 2999 r = -EINVAL; 3000 break; 3001 } 3002 } 3003 3004 return r; 3005 } 3006 3007 static void metadata_low_callback(void *context) 3008 { 3009 struct pool *pool = context; 3010 3011 DMWARN("%s: reached low water mark for metadata device: sending event.", 3012 dm_device_name(pool->pool_md)); 3013 3014 dm_table_event(pool->ti->table); 3015 } 3016 3017 static sector_t get_dev_size(struct block_device *bdev) 3018 { 3019 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3020 } 3021 3022 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3023 { 3024 sector_t metadata_dev_size = get_dev_size(bdev); 3025 char buffer[BDEVNAME_SIZE]; 3026 3027 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3028 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3029 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3030 } 3031 3032 static sector_t get_metadata_dev_size(struct block_device *bdev) 3033 { 3034 sector_t metadata_dev_size = get_dev_size(bdev); 3035 3036 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3037 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3038 3039 return metadata_dev_size; 3040 } 3041 3042 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3043 { 3044 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3045 3046 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3047 3048 return metadata_dev_size; 3049 } 3050 3051 /* 3052 * When a metadata threshold is crossed a dm event is triggered, and 3053 * userland should respond by growing the metadata device. We could let 3054 * userland set the threshold, like we do with the data threshold, but I'm 3055 * not sure they know enough to do this well. 3056 */ 3057 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3058 { 3059 /* 3060 * 4M is ample for all ops with the possible exception of thin 3061 * device deletion which is harmless if it fails (just retry the 3062 * delete after you've grown the device). 3063 */ 3064 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3065 return min((dm_block_t)1024ULL /* 4M */, quarter); 3066 } 3067 3068 /* 3069 * thin-pool <metadata dev> <data dev> 3070 * <data block size (sectors)> 3071 * <low water mark (blocks)> 3072 * [<#feature args> [<arg>]*] 3073 * 3074 * Optional feature arguments are: 3075 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3076 * ignore_discard: disable discard 3077 * no_discard_passdown: don't pass discards down to the data device 3078 * read_only: Don't allow any changes to be made to the pool metadata. 3079 * error_if_no_space: error IOs, instead of queueing, if no space. 3080 */ 3081 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3082 { 3083 int r, pool_created = 0; 3084 struct pool_c *pt; 3085 struct pool *pool; 3086 struct pool_features pf; 3087 struct dm_arg_set as; 3088 struct dm_dev *data_dev; 3089 unsigned long block_size; 3090 dm_block_t low_water_blocks; 3091 struct dm_dev *metadata_dev; 3092 fmode_t metadata_mode; 3093 3094 /* 3095 * FIXME Remove validation from scope of lock. 3096 */ 3097 mutex_lock(&dm_thin_pool_table.mutex); 3098 3099 if (argc < 4) { 3100 ti->error = "Invalid argument count"; 3101 r = -EINVAL; 3102 goto out_unlock; 3103 } 3104 3105 as.argc = argc; 3106 as.argv = argv; 3107 3108 /* 3109 * Set default pool features. 3110 */ 3111 pool_features_init(&pf); 3112 3113 dm_consume_args(&as, 4); 3114 r = parse_pool_features(&as, &pf, ti); 3115 if (r) 3116 goto out_unlock; 3117 3118 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3119 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3120 if (r) { 3121 ti->error = "Error opening metadata block device"; 3122 goto out_unlock; 3123 } 3124 warn_if_metadata_device_too_big(metadata_dev->bdev); 3125 3126 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3127 if (r) { 3128 ti->error = "Error getting data device"; 3129 goto out_metadata; 3130 } 3131 3132 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3133 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3134 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3135 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3136 ti->error = "Invalid block size"; 3137 r = -EINVAL; 3138 goto out; 3139 } 3140 3141 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3142 ti->error = "Invalid low water mark"; 3143 r = -EINVAL; 3144 goto out; 3145 } 3146 3147 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3148 if (!pt) { 3149 r = -ENOMEM; 3150 goto out; 3151 } 3152 3153 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3154 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3155 if (IS_ERR(pool)) { 3156 r = PTR_ERR(pool); 3157 goto out_free_pt; 3158 } 3159 3160 /* 3161 * 'pool_created' reflects whether this is the first table load. 3162 * Top level discard support is not allowed to be changed after 3163 * initial load. This would require a pool reload to trigger thin 3164 * device changes. 3165 */ 3166 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3167 ti->error = "Discard support cannot be disabled once enabled"; 3168 r = -EINVAL; 3169 goto out_flags_changed; 3170 } 3171 3172 pt->pool = pool; 3173 pt->ti = ti; 3174 pt->metadata_dev = metadata_dev; 3175 pt->data_dev = data_dev; 3176 pt->low_water_blocks = low_water_blocks; 3177 pt->adjusted_pf = pt->requested_pf = pf; 3178 ti->num_flush_bios = 1; 3179 3180 /* 3181 * Only need to enable discards if the pool should pass 3182 * them down to the data device. The thin device's discard 3183 * processing will cause mappings to be removed from the btree. 3184 */ 3185 ti->discard_zeroes_data_unsupported = true; 3186 if (pf.discard_enabled && pf.discard_passdown) { 3187 ti->num_discard_bios = 1; 3188 3189 /* 3190 * Setting 'discards_supported' circumvents the normal 3191 * stacking of discard limits (this keeps the pool and 3192 * thin devices' discard limits consistent). 3193 */ 3194 ti->discards_supported = true; 3195 } 3196 ti->private = pt; 3197 3198 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3199 calc_metadata_threshold(pt), 3200 metadata_low_callback, 3201 pool); 3202 if (r) 3203 goto out_flags_changed; 3204 3205 pt->callbacks.congested_fn = pool_is_congested; 3206 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3207 3208 mutex_unlock(&dm_thin_pool_table.mutex); 3209 3210 return 0; 3211 3212 out_flags_changed: 3213 __pool_dec(pool); 3214 out_free_pt: 3215 kfree(pt); 3216 out: 3217 dm_put_device(ti, data_dev); 3218 out_metadata: 3219 dm_put_device(ti, metadata_dev); 3220 out_unlock: 3221 mutex_unlock(&dm_thin_pool_table.mutex); 3222 3223 return r; 3224 } 3225 3226 static int pool_map(struct dm_target *ti, struct bio *bio) 3227 { 3228 int r; 3229 struct pool_c *pt = ti->private; 3230 struct pool *pool = pt->pool; 3231 unsigned long flags; 3232 3233 /* 3234 * As this is a singleton target, ti->begin is always zero. 3235 */ 3236 spin_lock_irqsave(&pool->lock, flags); 3237 bio->bi_bdev = pt->data_dev->bdev; 3238 r = DM_MAPIO_REMAPPED; 3239 spin_unlock_irqrestore(&pool->lock, flags); 3240 3241 return r; 3242 } 3243 3244 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3245 { 3246 int r; 3247 struct pool_c *pt = ti->private; 3248 struct pool *pool = pt->pool; 3249 sector_t data_size = ti->len; 3250 dm_block_t sb_data_size; 3251 3252 *need_commit = false; 3253 3254 (void) sector_div(data_size, pool->sectors_per_block); 3255 3256 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3257 if (r) { 3258 DMERR("%s: failed to retrieve data device size", 3259 dm_device_name(pool->pool_md)); 3260 return r; 3261 } 3262 3263 if (data_size < sb_data_size) { 3264 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3265 dm_device_name(pool->pool_md), 3266 (unsigned long long)data_size, sb_data_size); 3267 return -EINVAL; 3268 3269 } else if (data_size > sb_data_size) { 3270 if (dm_pool_metadata_needs_check(pool->pmd)) { 3271 DMERR("%s: unable to grow the data device until repaired.", 3272 dm_device_name(pool->pool_md)); 3273 return 0; 3274 } 3275 3276 if (sb_data_size) 3277 DMINFO("%s: growing the data device from %llu to %llu blocks", 3278 dm_device_name(pool->pool_md), 3279 sb_data_size, (unsigned long long)data_size); 3280 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3281 if (r) { 3282 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3283 return r; 3284 } 3285 3286 *need_commit = true; 3287 } 3288 3289 return 0; 3290 } 3291 3292 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3293 { 3294 int r; 3295 struct pool_c *pt = ti->private; 3296 struct pool *pool = pt->pool; 3297 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3298 3299 *need_commit = false; 3300 3301 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3302 3303 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3304 if (r) { 3305 DMERR("%s: failed to retrieve metadata device size", 3306 dm_device_name(pool->pool_md)); 3307 return r; 3308 } 3309 3310 if (metadata_dev_size < sb_metadata_dev_size) { 3311 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3312 dm_device_name(pool->pool_md), 3313 metadata_dev_size, sb_metadata_dev_size); 3314 return -EINVAL; 3315 3316 } else if (metadata_dev_size > sb_metadata_dev_size) { 3317 if (dm_pool_metadata_needs_check(pool->pmd)) { 3318 DMERR("%s: unable to grow the metadata device until repaired.", 3319 dm_device_name(pool->pool_md)); 3320 return 0; 3321 } 3322 3323 warn_if_metadata_device_too_big(pool->md_dev); 3324 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3325 dm_device_name(pool->pool_md), 3326 sb_metadata_dev_size, metadata_dev_size); 3327 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3328 if (r) { 3329 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3330 return r; 3331 } 3332 3333 *need_commit = true; 3334 } 3335 3336 return 0; 3337 } 3338 3339 /* 3340 * Retrieves the number of blocks of the data device from 3341 * the superblock and compares it to the actual device size, 3342 * thus resizing the data device in case it has grown. 3343 * 3344 * This both copes with opening preallocated data devices in the ctr 3345 * being followed by a resume 3346 * -and- 3347 * calling the resume method individually after userspace has 3348 * grown the data device in reaction to a table event. 3349 */ 3350 static int pool_preresume(struct dm_target *ti) 3351 { 3352 int r; 3353 bool need_commit1, need_commit2; 3354 struct pool_c *pt = ti->private; 3355 struct pool *pool = pt->pool; 3356 3357 /* 3358 * Take control of the pool object. 3359 */ 3360 r = bind_control_target(pool, ti); 3361 if (r) 3362 return r; 3363 3364 r = maybe_resize_data_dev(ti, &need_commit1); 3365 if (r) 3366 return r; 3367 3368 r = maybe_resize_metadata_dev(ti, &need_commit2); 3369 if (r) 3370 return r; 3371 3372 if (need_commit1 || need_commit2) 3373 (void) commit(pool); 3374 3375 return 0; 3376 } 3377 3378 static void pool_suspend_active_thins(struct pool *pool) 3379 { 3380 struct thin_c *tc; 3381 3382 /* Suspend all active thin devices */ 3383 tc = get_first_thin(pool); 3384 while (tc) { 3385 dm_internal_suspend_noflush(tc->thin_md); 3386 tc = get_next_thin(pool, tc); 3387 } 3388 } 3389 3390 static void pool_resume_active_thins(struct pool *pool) 3391 { 3392 struct thin_c *tc; 3393 3394 /* Resume all active thin devices */ 3395 tc = get_first_thin(pool); 3396 while (tc) { 3397 dm_internal_resume(tc->thin_md); 3398 tc = get_next_thin(pool, tc); 3399 } 3400 } 3401 3402 static void pool_resume(struct dm_target *ti) 3403 { 3404 struct pool_c *pt = ti->private; 3405 struct pool *pool = pt->pool; 3406 unsigned long flags; 3407 3408 /* 3409 * Must requeue active_thins' bios and then resume 3410 * active_thins _before_ clearing 'suspend' flag. 3411 */ 3412 requeue_bios(pool); 3413 pool_resume_active_thins(pool); 3414 3415 spin_lock_irqsave(&pool->lock, flags); 3416 pool->low_water_triggered = false; 3417 pool->suspended = false; 3418 spin_unlock_irqrestore(&pool->lock, flags); 3419 3420 do_waker(&pool->waker.work); 3421 } 3422 3423 static void pool_presuspend(struct dm_target *ti) 3424 { 3425 struct pool_c *pt = ti->private; 3426 struct pool *pool = pt->pool; 3427 unsigned long flags; 3428 3429 spin_lock_irqsave(&pool->lock, flags); 3430 pool->suspended = true; 3431 spin_unlock_irqrestore(&pool->lock, flags); 3432 3433 pool_suspend_active_thins(pool); 3434 } 3435 3436 static void pool_presuspend_undo(struct dm_target *ti) 3437 { 3438 struct pool_c *pt = ti->private; 3439 struct pool *pool = pt->pool; 3440 unsigned long flags; 3441 3442 pool_resume_active_thins(pool); 3443 3444 spin_lock_irqsave(&pool->lock, flags); 3445 pool->suspended = false; 3446 spin_unlock_irqrestore(&pool->lock, flags); 3447 } 3448 3449 static void pool_postsuspend(struct dm_target *ti) 3450 { 3451 struct pool_c *pt = ti->private; 3452 struct pool *pool = pt->pool; 3453 3454 cancel_delayed_work_sync(&pool->waker); 3455 cancel_delayed_work_sync(&pool->no_space_timeout); 3456 flush_workqueue(pool->wq); 3457 (void) commit(pool); 3458 } 3459 3460 static int check_arg_count(unsigned argc, unsigned args_required) 3461 { 3462 if (argc != args_required) { 3463 DMWARN("Message received with %u arguments instead of %u.", 3464 argc, args_required); 3465 return -EINVAL; 3466 } 3467 3468 return 0; 3469 } 3470 3471 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3472 { 3473 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3474 *dev_id <= MAX_DEV_ID) 3475 return 0; 3476 3477 if (warning) 3478 DMWARN("Message received with invalid device id: %s", arg); 3479 3480 return -EINVAL; 3481 } 3482 3483 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3484 { 3485 dm_thin_id dev_id; 3486 int r; 3487 3488 r = check_arg_count(argc, 2); 3489 if (r) 3490 return r; 3491 3492 r = read_dev_id(argv[1], &dev_id, 1); 3493 if (r) 3494 return r; 3495 3496 r = dm_pool_create_thin(pool->pmd, dev_id); 3497 if (r) { 3498 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3499 argv[1]); 3500 return r; 3501 } 3502 3503 return 0; 3504 } 3505 3506 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3507 { 3508 dm_thin_id dev_id; 3509 dm_thin_id origin_dev_id; 3510 int r; 3511 3512 r = check_arg_count(argc, 3); 3513 if (r) 3514 return r; 3515 3516 r = read_dev_id(argv[1], &dev_id, 1); 3517 if (r) 3518 return r; 3519 3520 r = read_dev_id(argv[2], &origin_dev_id, 1); 3521 if (r) 3522 return r; 3523 3524 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3525 if (r) { 3526 DMWARN("Creation of new snapshot %s of device %s failed.", 3527 argv[1], argv[2]); 3528 return r; 3529 } 3530 3531 return 0; 3532 } 3533 3534 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3535 { 3536 dm_thin_id dev_id; 3537 int r; 3538 3539 r = check_arg_count(argc, 2); 3540 if (r) 3541 return r; 3542 3543 r = read_dev_id(argv[1], &dev_id, 1); 3544 if (r) 3545 return r; 3546 3547 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3548 if (r) 3549 DMWARN("Deletion of thin device %s failed.", argv[1]); 3550 3551 return r; 3552 } 3553 3554 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3555 { 3556 dm_thin_id old_id, new_id; 3557 int r; 3558 3559 r = check_arg_count(argc, 3); 3560 if (r) 3561 return r; 3562 3563 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3564 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3565 return -EINVAL; 3566 } 3567 3568 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3569 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3570 return -EINVAL; 3571 } 3572 3573 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3574 if (r) { 3575 DMWARN("Failed to change transaction id from %s to %s.", 3576 argv[1], argv[2]); 3577 return r; 3578 } 3579 3580 return 0; 3581 } 3582 3583 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3584 { 3585 int r; 3586 3587 r = check_arg_count(argc, 1); 3588 if (r) 3589 return r; 3590 3591 (void) commit(pool); 3592 3593 r = dm_pool_reserve_metadata_snap(pool->pmd); 3594 if (r) 3595 DMWARN("reserve_metadata_snap message failed."); 3596 3597 return r; 3598 } 3599 3600 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3601 { 3602 int r; 3603 3604 r = check_arg_count(argc, 1); 3605 if (r) 3606 return r; 3607 3608 r = dm_pool_release_metadata_snap(pool->pmd); 3609 if (r) 3610 DMWARN("release_metadata_snap message failed."); 3611 3612 return r; 3613 } 3614 3615 /* 3616 * Messages supported: 3617 * create_thin <dev_id> 3618 * create_snap <dev_id> <origin_id> 3619 * delete <dev_id> 3620 * set_transaction_id <current_trans_id> <new_trans_id> 3621 * reserve_metadata_snap 3622 * release_metadata_snap 3623 */ 3624 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3625 { 3626 int r = -EINVAL; 3627 struct pool_c *pt = ti->private; 3628 struct pool *pool = pt->pool; 3629 3630 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3631 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3632 dm_device_name(pool->pool_md)); 3633 return -EOPNOTSUPP; 3634 } 3635 3636 if (!strcasecmp(argv[0], "create_thin")) 3637 r = process_create_thin_mesg(argc, argv, pool); 3638 3639 else if (!strcasecmp(argv[0], "create_snap")) 3640 r = process_create_snap_mesg(argc, argv, pool); 3641 3642 else if (!strcasecmp(argv[0], "delete")) 3643 r = process_delete_mesg(argc, argv, pool); 3644 3645 else if (!strcasecmp(argv[0], "set_transaction_id")) 3646 r = process_set_transaction_id_mesg(argc, argv, pool); 3647 3648 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3649 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3650 3651 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3652 r = process_release_metadata_snap_mesg(argc, argv, pool); 3653 3654 else 3655 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3656 3657 if (!r) 3658 (void) commit(pool); 3659 3660 return r; 3661 } 3662 3663 static void emit_flags(struct pool_features *pf, char *result, 3664 unsigned sz, unsigned maxlen) 3665 { 3666 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3667 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3668 pf->error_if_no_space; 3669 DMEMIT("%u ", count); 3670 3671 if (!pf->zero_new_blocks) 3672 DMEMIT("skip_block_zeroing "); 3673 3674 if (!pf->discard_enabled) 3675 DMEMIT("ignore_discard "); 3676 3677 if (!pf->discard_passdown) 3678 DMEMIT("no_discard_passdown "); 3679 3680 if (pf->mode == PM_READ_ONLY) 3681 DMEMIT("read_only "); 3682 3683 if (pf->error_if_no_space) 3684 DMEMIT("error_if_no_space "); 3685 } 3686 3687 /* 3688 * Status line is: 3689 * <transaction id> <used metadata sectors>/<total metadata sectors> 3690 * <used data sectors>/<total data sectors> <held metadata root> 3691 * <pool mode> <discard config> <no space config> <needs_check> 3692 */ 3693 static void pool_status(struct dm_target *ti, status_type_t type, 3694 unsigned status_flags, char *result, unsigned maxlen) 3695 { 3696 int r; 3697 unsigned sz = 0; 3698 uint64_t transaction_id; 3699 dm_block_t nr_free_blocks_data; 3700 dm_block_t nr_free_blocks_metadata; 3701 dm_block_t nr_blocks_data; 3702 dm_block_t nr_blocks_metadata; 3703 dm_block_t held_root; 3704 char buf[BDEVNAME_SIZE]; 3705 char buf2[BDEVNAME_SIZE]; 3706 struct pool_c *pt = ti->private; 3707 struct pool *pool = pt->pool; 3708 3709 switch (type) { 3710 case STATUSTYPE_INFO: 3711 if (get_pool_mode(pool) == PM_FAIL) { 3712 DMEMIT("Fail"); 3713 break; 3714 } 3715 3716 /* Commit to ensure statistics aren't out-of-date */ 3717 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3718 (void) commit(pool); 3719 3720 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3721 if (r) { 3722 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3723 dm_device_name(pool->pool_md), r); 3724 goto err; 3725 } 3726 3727 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3728 if (r) { 3729 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3730 dm_device_name(pool->pool_md), r); 3731 goto err; 3732 } 3733 3734 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3735 if (r) { 3736 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3737 dm_device_name(pool->pool_md), r); 3738 goto err; 3739 } 3740 3741 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3742 if (r) { 3743 DMERR("%s: dm_pool_get_free_block_count returned %d", 3744 dm_device_name(pool->pool_md), r); 3745 goto err; 3746 } 3747 3748 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3749 if (r) { 3750 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3751 dm_device_name(pool->pool_md), r); 3752 goto err; 3753 } 3754 3755 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3756 if (r) { 3757 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3758 dm_device_name(pool->pool_md), r); 3759 goto err; 3760 } 3761 3762 DMEMIT("%llu %llu/%llu %llu/%llu ", 3763 (unsigned long long)transaction_id, 3764 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3765 (unsigned long long)nr_blocks_metadata, 3766 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3767 (unsigned long long)nr_blocks_data); 3768 3769 if (held_root) 3770 DMEMIT("%llu ", held_root); 3771 else 3772 DMEMIT("- "); 3773 3774 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3775 DMEMIT("out_of_data_space "); 3776 else if (pool->pf.mode == PM_READ_ONLY) 3777 DMEMIT("ro "); 3778 else 3779 DMEMIT("rw "); 3780 3781 if (!pool->pf.discard_enabled) 3782 DMEMIT("ignore_discard "); 3783 else if (pool->pf.discard_passdown) 3784 DMEMIT("discard_passdown "); 3785 else 3786 DMEMIT("no_discard_passdown "); 3787 3788 if (pool->pf.error_if_no_space) 3789 DMEMIT("error_if_no_space "); 3790 else 3791 DMEMIT("queue_if_no_space "); 3792 3793 if (dm_pool_metadata_needs_check(pool->pmd)) 3794 DMEMIT("needs_check "); 3795 else 3796 DMEMIT("- "); 3797 3798 break; 3799 3800 case STATUSTYPE_TABLE: 3801 DMEMIT("%s %s %lu %llu ", 3802 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3803 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3804 (unsigned long)pool->sectors_per_block, 3805 (unsigned long long)pt->low_water_blocks); 3806 emit_flags(&pt->requested_pf, result, sz, maxlen); 3807 break; 3808 } 3809 return; 3810 3811 err: 3812 DMEMIT("Error"); 3813 } 3814 3815 static int pool_iterate_devices(struct dm_target *ti, 3816 iterate_devices_callout_fn fn, void *data) 3817 { 3818 struct pool_c *pt = ti->private; 3819 3820 return fn(ti, pt->data_dev, 0, ti->len, data); 3821 } 3822 3823 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3824 { 3825 struct pool_c *pt = ti->private; 3826 struct pool *pool = pt->pool; 3827 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3828 3829 /* 3830 * If max_sectors is smaller than pool->sectors_per_block adjust it 3831 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3832 * This is especially beneficial when the pool's data device is a RAID 3833 * device that has a full stripe width that matches pool->sectors_per_block 3834 * -- because even though partial RAID stripe-sized IOs will be issued to a 3835 * single RAID stripe; when aggregated they will end on a full RAID stripe 3836 * boundary.. which avoids additional partial RAID stripe writes cascading 3837 */ 3838 if (limits->max_sectors < pool->sectors_per_block) { 3839 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3840 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3841 limits->max_sectors--; 3842 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3843 } 3844 } 3845 3846 /* 3847 * If the system-determined stacked limits are compatible with the 3848 * pool's blocksize (io_opt is a factor) do not override them. 3849 */ 3850 if (io_opt_sectors < pool->sectors_per_block || 3851 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3852 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3853 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3854 else 3855 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3856 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3857 } 3858 3859 /* 3860 * pt->adjusted_pf is a staging area for the actual features to use. 3861 * They get transferred to the live pool in bind_control_target() 3862 * called from pool_preresume(). 3863 */ 3864 if (!pt->adjusted_pf.discard_enabled) { 3865 /* 3866 * Must explicitly disallow stacking discard limits otherwise the 3867 * block layer will stack them if pool's data device has support. 3868 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3869 * user to see that, so make sure to set all discard limits to 0. 3870 */ 3871 limits->discard_granularity = 0; 3872 return; 3873 } 3874 3875 disable_passdown_if_not_supported(pt); 3876 3877 /* 3878 * The pool uses the same discard limits as the underlying data 3879 * device. DM core has already set this up. 3880 */ 3881 } 3882 3883 static struct target_type pool_target = { 3884 .name = "thin-pool", 3885 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3886 DM_TARGET_IMMUTABLE, 3887 .version = {1, 19, 0}, 3888 .module = THIS_MODULE, 3889 .ctr = pool_ctr, 3890 .dtr = pool_dtr, 3891 .map = pool_map, 3892 .presuspend = pool_presuspend, 3893 .presuspend_undo = pool_presuspend_undo, 3894 .postsuspend = pool_postsuspend, 3895 .preresume = pool_preresume, 3896 .resume = pool_resume, 3897 .message = pool_message, 3898 .status = pool_status, 3899 .iterate_devices = pool_iterate_devices, 3900 .io_hints = pool_io_hints, 3901 }; 3902 3903 /*---------------------------------------------------------------- 3904 * Thin target methods 3905 *--------------------------------------------------------------*/ 3906 static void thin_get(struct thin_c *tc) 3907 { 3908 atomic_inc(&tc->refcount); 3909 } 3910 3911 static void thin_put(struct thin_c *tc) 3912 { 3913 if (atomic_dec_and_test(&tc->refcount)) 3914 complete(&tc->can_destroy); 3915 } 3916 3917 static void thin_dtr(struct dm_target *ti) 3918 { 3919 struct thin_c *tc = ti->private; 3920 unsigned long flags; 3921 3922 spin_lock_irqsave(&tc->pool->lock, flags); 3923 list_del_rcu(&tc->list); 3924 spin_unlock_irqrestore(&tc->pool->lock, flags); 3925 synchronize_rcu(); 3926 3927 thin_put(tc); 3928 wait_for_completion(&tc->can_destroy); 3929 3930 mutex_lock(&dm_thin_pool_table.mutex); 3931 3932 __pool_dec(tc->pool); 3933 dm_pool_close_thin_device(tc->td); 3934 dm_put_device(ti, tc->pool_dev); 3935 if (tc->origin_dev) 3936 dm_put_device(ti, tc->origin_dev); 3937 kfree(tc); 3938 3939 mutex_unlock(&dm_thin_pool_table.mutex); 3940 } 3941 3942 /* 3943 * Thin target parameters: 3944 * 3945 * <pool_dev> <dev_id> [origin_dev] 3946 * 3947 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3948 * dev_id: the internal device identifier 3949 * origin_dev: a device external to the pool that should act as the origin 3950 * 3951 * If the pool device has discards disabled, they get disabled for the thin 3952 * device as well. 3953 */ 3954 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3955 { 3956 int r; 3957 struct thin_c *tc; 3958 struct dm_dev *pool_dev, *origin_dev; 3959 struct mapped_device *pool_md; 3960 unsigned long flags; 3961 3962 mutex_lock(&dm_thin_pool_table.mutex); 3963 3964 if (argc != 2 && argc != 3) { 3965 ti->error = "Invalid argument count"; 3966 r = -EINVAL; 3967 goto out_unlock; 3968 } 3969 3970 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3971 if (!tc) { 3972 ti->error = "Out of memory"; 3973 r = -ENOMEM; 3974 goto out_unlock; 3975 } 3976 tc->thin_md = dm_table_get_md(ti->table); 3977 spin_lock_init(&tc->lock); 3978 INIT_LIST_HEAD(&tc->deferred_cells); 3979 bio_list_init(&tc->deferred_bio_list); 3980 bio_list_init(&tc->retry_on_resume_list); 3981 tc->sort_bio_list = RB_ROOT; 3982 3983 if (argc == 3) { 3984 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3985 if (r) { 3986 ti->error = "Error opening origin device"; 3987 goto bad_origin_dev; 3988 } 3989 tc->origin_dev = origin_dev; 3990 } 3991 3992 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3993 if (r) { 3994 ti->error = "Error opening pool device"; 3995 goto bad_pool_dev; 3996 } 3997 tc->pool_dev = pool_dev; 3998 3999 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4000 ti->error = "Invalid device id"; 4001 r = -EINVAL; 4002 goto bad_common; 4003 } 4004 4005 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4006 if (!pool_md) { 4007 ti->error = "Couldn't get pool mapped device"; 4008 r = -EINVAL; 4009 goto bad_common; 4010 } 4011 4012 tc->pool = __pool_table_lookup(pool_md); 4013 if (!tc->pool) { 4014 ti->error = "Couldn't find pool object"; 4015 r = -EINVAL; 4016 goto bad_pool_lookup; 4017 } 4018 __pool_inc(tc->pool); 4019 4020 if (get_pool_mode(tc->pool) == PM_FAIL) { 4021 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4022 r = -EINVAL; 4023 goto bad_pool; 4024 } 4025 4026 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4027 if (r) { 4028 ti->error = "Couldn't open thin internal device"; 4029 goto bad_pool; 4030 } 4031 4032 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4033 if (r) 4034 goto bad; 4035 4036 ti->num_flush_bios = 1; 4037 ti->flush_supported = true; 4038 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4039 4040 /* In case the pool supports discards, pass them on. */ 4041 ti->discard_zeroes_data_unsupported = true; 4042 if (tc->pool->pf.discard_enabled) { 4043 ti->discards_supported = true; 4044 ti->num_discard_bios = 1; 4045 ti->split_discard_bios = false; 4046 } 4047 4048 mutex_unlock(&dm_thin_pool_table.mutex); 4049 4050 spin_lock_irqsave(&tc->pool->lock, flags); 4051 if (tc->pool->suspended) { 4052 spin_unlock_irqrestore(&tc->pool->lock, flags); 4053 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4054 ti->error = "Unable to activate thin device while pool is suspended"; 4055 r = -EINVAL; 4056 goto bad; 4057 } 4058 atomic_set(&tc->refcount, 1); 4059 init_completion(&tc->can_destroy); 4060 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4061 spin_unlock_irqrestore(&tc->pool->lock, flags); 4062 /* 4063 * This synchronize_rcu() call is needed here otherwise we risk a 4064 * wake_worker() call finding no bios to process (because the newly 4065 * added tc isn't yet visible). So this reduces latency since we 4066 * aren't then dependent on the periodic commit to wake_worker(). 4067 */ 4068 synchronize_rcu(); 4069 4070 dm_put(pool_md); 4071 4072 return 0; 4073 4074 bad: 4075 dm_pool_close_thin_device(tc->td); 4076 bad_pool: 4077 __pool_dec(tc->pool); 4078 bad_pool_lookup: 4079 dm_put(pool_md); 4080 bad_common: 4081 dm_put_device(ti, tc->pool_dev); 4082 bad_pool_dev: 4083 if (tc->origin_dev) 4084 dm_put_device(ti, tc->origin_dev); 4085 bad_origin_dev: 4086 kfree(tc); 4087 out_unlock: 4088 mutex_unlock(&dm_thin_pool_table.mutex); 4089 4090 return r; 4091 } 4092 4093 static int thin_map(struct dm_target *ti, struct bio *bio) 4094 { 4095 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4096 4097 return thin_bio_map(ti, bio); 4098 } 4099 4100 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 4101 { 4102 unsigned long flags; 4103 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4104 struct list_head work; 4105 struct dm_thin_new_mapping *m, *tmp; 4106 struct pool *pool = h->tc->pool; 4107 4108 if (h->shared_read_entry) { 4109 INIT_LIST_HEAD(&work); 4110 dm_deferred_entry_dec(h->shared_read_entry, &work); 4111 4112 spin_lock_irqsave(&pool->lock, flags); 4113 list_for_each_entry_safe(m, tmp, &work, list) { 4114 list_del(&m->list); 4115 __complete_mapping_preparation(m); 4116 } 4117 spin_unlock_irqrestore(&pool->lock, flags); 4118 } 4119 4120 if (h->all_io_entry) { 4121 INIT_LIST_HEAD(&work); 4122 dm_deferred_entry_dec(h->all_io_entry, &work); 4123 if (!list_empty(&work)) { 4124 spin_lock_irqsave(&pool->lock, flags); 4125 list_for_each_entry_safe(m, tmp, &work, list) 4126 list_add_tail(&m->list, &pool->prepared_discards); 4127 spin_unlock_irqrestore(&pool->lock, flags); 4128 wake_worker(pool); 4129 } 4130 } 4131 4132 if (h->cell) 4133 cell_defer_no_holder(h->tc, h->cell); 4134 4135 return 0; 4136 } 4137 4138 static void thin_presuspend(struct dm_target *ti) 4139 { 4140 struct thin_c *tc = ti->private; 4141 4142 if (dm_noflush_suspending(ti)) 4143 noflush_work(tc, do_noflush_start); 4144 } 4145 4146 static void thin_postsuspend(struct dm_target *ti) 4147 { 4148 struct thin_c *tc = ti->private; 4149 4150 /* 4151 * The dm_noflush_suspending flag has been cleared by now, so 4152 * unfortunately we must always run this. 4153 */ 4154 noflush_work(tc, do_noflush_stop); 4155 } 4156 4157 static int thin_preresume(struct dm_target *ti) 4158 { 4159 struct thin_c *tc = ti->private; 4160 4161 if (tc->origin_dev) 4162 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4163 4164 return 0; 4165 } 4166 4167 /* 4168 * <nr mapped sectors> <highest mapped sector> 4169 */ 4170 static void thin_status(struct dm_target *ti, status_type_t type, 4171 unsigned status_flags, char *result, unsigned maxlen) 4172 { 4173 int r; 4174 ssize_t sz = 0; 4175 dm_block_t mapped, highest; 4176 char buf[BDEVNAME_SIZE]; 4177 struct thin_c *tc = ti->private; 4178 4179 if (get_pool_mode(tc->pool) == PM_FAIL) { 4180 DMEMIT("Fail"); 4181 return; 4182 } 4183 4184 if (!tc->td) 4185 DMEMIT("-"); 4186 else { 4187 switch (type) { 4188 case STATUSTYPE_INFO: 4189 r = dm_thin_get_mapped_count(tc->td, &mapped); 4190 if (r) { 4191 DMERR("dm_thin_get_mapped_count returned %d", r); 4192 goto err; 4193 } 4194 4195 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4196 if (r < 0) { 4197 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4198 goto err; 4199 } 4200 4201 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4202 if (r) 4203 DMEMIT("%llu", ((highest + 1) * 4204 tc->pool->sectors_per_block) - 1); 4205 else 4206 DMEMIT("-"); 4207 break; 4208 4209 case STATUSTYPE_TABLE: 4210 DMEMIT("%s %lu", 4211 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4212 (unsigned long) tc->dev_id); 4213 if (tc->origin_dev) 4214 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4215 break; 4216 } 4217 } 4218 4219 return; 4220 4221 err: 4222 DMEMIT("Error"); 4223 } 4224 4225 static int thin_iterate_devices(struct dm_target *ti, 4226 iterate_devices_callout_fn fn, void *data) 4227 { 4228 sector_t blocks; 4229 struct thin_c *tc = ti->private; 4230 struct pool *pool = tc->pool; 4231 4232 /* 4233 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4234 * we follow a more convoluted path through to the pool's target. 4235 */ 4236 if (!pool->ti) 4237 return 0; /* nothing is bound */ 4238 4239 blocks = pool->ti->len; 4240 (void) sector_div(blocks, pool->sectors_per_block); 4241 if (blocks) 4242 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4243 4244 return 0; 4245 } 4246 4247 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4248 { 4249 struct thin_c *tc = ti->private; 4250 struct pool *pool = tc->pool; 4251 4252 if (!pool->pf.discard_enabled) 4253 return; 4254 4255 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4256 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4257 } 4258 4259 static struct target_type thin_target = { 4260 .name = "thin", 4261 .version = {1, 19, 0}, 4262 .module = THIS_MODULE, 4263 .ctr = thin_ctr, 4264 .dtr = thin_dtr, 4265 .map = thin_map, 4266 .end_io = thin_endio, 4267 .preresume = thin_preresume, 4268 .presuspend = thin_presuspend, 4269 .postsuspend = thin_postsuspend, 4270 .status = thin_status, 4271 .iterate_devices = thin_iterate_devices, 4272 .io_hints = thin_io_hints, 4273 }; 4274 4275 /*----------------------------------------------------------------*/ 4276 4277 static int __init dm_thin_init(void) 4278 { 4279 int r; 4280 4281 pool_table_init(); 4282 4283 r = dm_register_target(&thin_target); 4284 if (r) 4285 return r; 4286 4287 r = dm_register_target(&pool_target); 4288 if (r) 4289 goto bad_pool_target; 4290 4291 r = -ENOMEM; 4292 4293 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4294 if (!_new_mapping_cache) 4295 goto bad_new_mapping_cache; 4296 4297 return 0; 4298 4299 bad_new_mapping_cache: 4300 dm_unregister_target(&pool_target); 4301 bad_pool_target: 4302 dm_unregister_target(&thin_target); 4303 4304 return r; 4305 } 4306 4307 static void dm_thin_exit(void) 4308 { 4309 dm_unregister_target(&thin_target); 4310 dm_unregister_target(&pool_target); 4311 4312 kmem_cache_destroy(_new_mapping_cache); 4313 } 4314 4315 module_init(dm_thin_init); 4316 module_exit(dm_thin_exit); 4317 4318 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4319 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4320 4321 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4322 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4323 MODULE_LICENSE("GPL"); 4324