1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011-2012 Red Hat UK. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-thin-metadata.h" 9 #include "dm-bio-prison-v1.h" 10 #include "dm.h" 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/jiffies.h> 16 #include <linux/log2.h> 17 #include <linux/list.h> 18 #include <linux/rculist.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sort.h> 24 #include <linux/rbtree.h> 25 26 #define DM_MSG_PREFIX "thin" 27 28 /* 29 * Tunable constants 30 */ 31 #define ENDIO_HOOK_POOL_SIZE 1024 32 #define MAPPING_POOL_SIZE 1024 33 #define COMMIT_PERIOD HZ 34 #define NO_SPACE_TIMEOUT_SECS 60 35 36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 37 38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 39 "A percentage of time allocated for copy on write"); 40 41 /* 42 * The block size of the device holding pool data must be 43 * between 64KB and 1GB. 44 */ 45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 47 48 /* 49 * Device id is restricted to 24 bits. 50 */ 51 #define MAX_DEV_ID ((1 << 24) - 1) 52 53 /* 54 * How do we handle breaking sharing of data blocks? 55 * ================================================= 56 * 57 * We use a standard copy-on-write btree to store the mappings for the 58 * devices (note I'm talking about copy-on-write of the metadata here, not 59 * the data). When you take an internal snapshot you clone the root node 60 * of the origin btree. After this there is no concept of an origin or a 61 * snapshot. They are just two device trees that happen to point to the 62 * same data blocks. 63 * 64 * When we get a write in we decide if it's to a shared data block using 65 * some timestamp magic. If it is, we have to break sharing. 66 * 67 * Let's say we write to a shared block in what was the origin. The 68 * steps are: 69 * 70 * i) plug io further to this physical block. (see bio_prison code). 71 * 72 * ii) quiesce any read io to that shared data block. Obviously 73 * including all devices that share this block. (see dm_deferred_set code) 74 * 75 * iii) copy the data block to a newly allocate block. This step can be 76 * missed out if the io covers the block. (schedule_copy). 77 * 78 * iv) insert the new mapping into the origin's btree 79 * (process_prepared_mapping). This act of inserting breaks some 80 * sharing of btree nodes between the two devices. Breaking sharing only 81 * effects the btree of that specific device. Btrees for the other 82 * devices that share the block never change. The btree for the origin 83 * device as it was after the last commit is untouched, ie. we're using 84 * persistent data structures in the functional programming sense. 85 * 86 * v) unplug io to this physical block, including the io that triggered 87 * the breaking of sharing. 88 * 89 * Steps (ii) and (iii) occur in parallel. 90 * 91 * The metadata _doesn't_ need to be committed before the io continues. We 92 * get away with this because the io is always written to a _new_ block. 93 * If there's a crash, then: 94 * 95 * - The origin mapping will point to the old origin block (the shared 96 * one). This will contain the data as it was before the io that triggered 97 * the breaking of sharing came in. 98 * 99 * - The snap mapping still points to the old block. As it would after 100 * the commit. 101 * 102 * The downside of this scheme is the timestamp magic isn't perfect, and 103 * will continue to think that data block in the snapshot device is shared 104 * even after the write to the origin has broken sharing. I suspect data 105 * blocks will typically be shared by many different devices, so we're 106 * breaking sharing n + 1 times, rather than n, where n is the number of 107 * devices that reference this data block. At the moment I think the 108 * benefits far, far outweigh the disadvantages. 109 */ 110 111 /*----------------------------------------------------------------*/ 112 113 /* 114 * Key building. 115 */ 116 enum lock_space { 117 VIRTUAL, 118 PHYSICAL 119 }; 120 121 static bool build_key(struct dm_thin_device *td, enum lock_space ls, 122 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 123 { 124 key->virtual = (ls == VIRTUAL); 125 key->dev = dm_thin_dev_id(td); 126 key->block_begin = b; 127 key->block_end = e; 128 129 return dm_cell_key_has_valid_range(key); 130 } 131 132 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 133 struct dm_cell_key *key) 134 { 135 (void) build_key(td, PHYSICAL, b, b + 1llu, key); 136 } 137 138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 139 struct dm_cell_key *key) 140 { 141 (void) build_key(td, VIRTUAL, b, b + 1llu, key); 142 } 143 144 /*----------------------------------------------------------------*/ 145 146 #define THROTTLE_THRESHOLD (1 * HZ) 147 148 struct throttle { 149 struct rw_semaphore lock; 150 unsigned long threshold; 151 bool throttle_applied; 152 }; 153 154 static void throttle_init(struct throttle *t) 155 { 156 init_rwsem(&t->lock); 157 t->throttle_applied = false; 158 } 159 160 static void throttle_work_start(struct throttle *t) 161 { 162 t->threshold = jiffies + THROTTLE_THRESHOLD; 163 } 164 165 static void throttle_work_update(struct throttle *t) 166 { 167 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) { 168 down_write(&t->lock); 169 t->throttle_applied = true; 170 } 171 } 172 173 static void throttle_work_complete(struct throttle *t) 174 { 175 if (t->throttle_applied) { 176 t->throttle_applied = false; 177 up_write(&t->lock); 178 } 179 } 180 181 static void throttle_lock(struct throttle *t) 182 { 183 down_read(&t->lock); 184 } 185 186 static void throttle_unlock(struct throttle *t) 187 { 188 up_read(&t->lock); 189 } 190 191 /*----------------------------------------------------------------*/ 192 193 /* 194 * A pool device ties together a metadata device and a data device. It 195 * also provides the interface for creating and destroying internal 196 * devices. 197 */ 198 struct dm_thin_new_mapping; 199 200 /* 201 * The pool runs in various modes. Ordered in degraded order for comparisons. 202 */ 203 enum pool_mode { 204 PM_WRITE, /* metadata may be changed */ 205 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 206 207 /* 208 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 209 */ 210 PM_OUT_OF_METADATA_SPACE, 211 PM_READ_ONLY, /* metadata may not be changed */ 212 213 PM_FAIL, /* all I/O fails */ 214 }; 215 216 struct pool_features { 217 enum pool_mode mode; 218 219 bool zero_new_blocks:1; 220 bool discard_enabled:1; 221 bool discard_passdown:1; 222 bool error_if_no_space:1; 223 }; 224 225 struct thin_c; 226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 229 230 #define CELL_SORT_ARRAY_SIZE 8192 231 232 struct pool { 233 struct list_head list; 234 struct dm_target *ti; /* Only set if a pool target is bound */ 235 236 struct mapped_device *pool_md; 237 struct block_device *data_dev; 238 struct block_device *md_dev; 239 struct dm_pool_metadata *pmd; 240 241 dm_block_t low_water_blocks; 242 uint32_t sectors_per_block; 243 int sectors_per_block_shift; 244 245 struct pool_features pf; 246 bool low_water_triggered:1; /* A dm event has been sent */ 247 bool suspended:1; 248 bool out_of_data_space:1; 249 250 struct dm_bio_prison *prison; 251 struct dm_kcopyd_client *copier; 252 253 struct work_struct worker; 254 struct workqueue_struct *wq; 255 struct throttle throttle; 256 struct delayed_work waker; 257 struct delayed_work no_space_timeout; 258 259 unsigned long last_commit_jiffies; 260 unsigned int ref_count; 261 262 spinlock_t lock; 263 struct bio_list deferred_flush_bios; 264 struct bio_list deferred_flush_completions; 265 struct list_head prepared_mappings; 266 struct list_head prepared_discards; 267 struct list_head prepared_discards_pt2; 268 struct list_head active_thins; 269 270 struct dm_deferred_set *shared_read_ds; 271 struct dm_deferred_set *all_io_ds; 272 273 struct dm_thin_new_mapping *next_mapping; 274 275 process_bio_fn process_bio; 276 process_bio_fn process_discard; 277 278 process_cell_fn process_cell; 279 process_cell_fn process_discard_cell; 280 281 process_mapping_fn process_prepared_mapping; 282 process_mapping_fn process_prepared_discard; 283 process_mapping_fn process_prepared_discard_pt2; 284 285 struct dm_bio_prison_cell **cell_sort_array; 286 287 mempool_t mapping_pool; 288 }; 289 290 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 291 292 static enum pool_mode get_pool_mode(struct pool *pool) 293 { 294 return pool->pf.mode; 295 } 296 297 static void notify_of_pool_mode_change(struct pool *pool) 298 { 299 static const char *descs[] = { 300 "write", 301 "out-of-data-space", 302 "read-only", 303 "read-only", 304 "fail" 305 }; 306 const char *extra_desc = NULL; 307 enum pool_mode mode = get_pool_mode(pool); 308 309 if (mode == PM_OUT_OF_DATA_SPACE) { 310 if (!pool->pf.error_if_no_space) 311 extra_desc = " (queue IO)"; 312 else 313 extra_desc = " (error IO)"; 314 } 315 316 dm_table_event(pool->ti->table); 317 DMINFO("%s: switching pool to %s%s mode", 318 dm_device_name(pool->pool_md), 319 descs[(int)mode], extra_desc ? : ""); 320 } 321 322 /* 323 * Target context for a pool. 324 */ 325 struct pool_c { 326 struct dm_target *ti; 327 struct pool *pool; 328 struct dm_dev *data_dev; 329 struct dm_dev *metadata_dev; 330 331 dm_block_t low_water_blocks; 332 struct pool_features requested_pf; /* Features requested during table load */ 333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 334 }; 335 336 /* 337 * Target context for a thin. 338 */ 339 struct thin_c { 340 struct list_head list; 341 struct dm_dev *pool_dev; 342 struct dm_dev *origin_dev; 343 sector_t origin_size; 344 dm_thin_id dev_id; 345 346 struct pool *pool; 347 struct dm_thin_device *td; 348 struct mapped_device *thin_md; 349 350 bool requeue_mode:1; 351 spinlock_t lock; 352 struct list_head deferred_cells; 353 struct bio_list deferred_bio_list; 354 struct bio_list retry_on_resume_list; 355 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 356 357 /* 358 * Ensures the thin is not destroyed until the worker has finished 359 * iterating the active_thins list. 360 */ 361 refcount_t refcount; 362 struct completion can_destroy; 363 }; 364 365 /*----------------------------------------------------------------*/ 366 367 static bool block_size_is_power_of_two(struct pool *pool) 368 { 369 return pool->sectors_per_block_shift >= 0; 370 } 371 372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 373 { 374 return block_size_is_power_of_two(pool) ? 375 (b << pool->sectors_per_block_shift) : 376 (b * pool->sectors_per_block); 377 } 378 379 /*----------------------------------------------------------------*/ 380 381 struct discard_op { 382 struct thin_c *tc; 383 struct blk_plug plug; 384 struct bio *parent_bio; 385 struct bio *bio; 386 }; 387 388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 389 { 390 BUG_ON(!parent); 391 392 op->tc = tc; 393 blk_start_plug(&op->plug); 394 op->parent_bio = parent; 395 op->bio = NULL; 396 } 397 398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 399 { 400 struct thin_c *tc = op->tc; 401 sector_t s = block_to_sectors(tc->pool, data_b); 402 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 403 404 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio); 405 } 406 407 static void end_discard(struct discard_op *op, int r) 408 { 409 if (op->bio) { 410 /* 411 * Even if one of the calls to issue_discard failed, we 412 * need to wait for the chain to complete. 413 */ 414 bio_chain(op->bio, op->parent_bio); 415 op->bio->bi_opf = REQ_OP_DISCARD; 416 submit_bio(op->bio); 417 } 418 419 blk_finish_plug(&op->plug); 420 421 /* 422 * Even if r is set, there could be sub discards in flight that we 423 * need to wait for. 424 */ 425 if (r && !op->parent_bio->bi_status) 426 op->parent_bio->bi_status = errno_to_blk_status(r); 427 bio_endio(op->parent_bio); 428 } 429 430 /*----------------------------------------------------------------*/ 431 432 /* 433 * wake_worker() is used when new work is queued and when pool_resume is 434 * ready to continue deferred IO processing. 435 */ 436 static void wake_worker(struct pool *pool) 437 { 438 queue_work(pool->wq, &pool->worker); 439 } 440 441 /*----------------------------------------------------------------*/ 442 443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 444 struct dm_bio_prison_cell **cell_result) 445 { 446 int r; 447 struct dm_bio_prison_cell *cell_prealloc; 448 449 /* 450 * Allocate a cell from the prison's mempool. 451 * This might block but it can't fail. 452 */ 453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 454 455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 456 if (r) 457 /* 458 * We reused an old cell; we can get rid of 459 * the new one. 460 */ 461 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 462 463 return r; 464 } 465 466 static void cell_release(struct pool *pool, 467 struct dm_bio_prison_cell *cell, 468 struct bio_list *bios) 469 { 470 dm_cell_release(pool->prison, cell, bios); 471 dm_bio_prison_free_cell(pool->prison, cell); 472 } 473 474 static void cell_visit_release(struct pool *pool, 475 void (*fn)(void *, struct dm_bio_prison_cell *), 476 void *context, 477 struct dm_bio_prison_cell *cell) 478 { 479 dm_cell_visit_release(pool->prison, fn, context, cell); 480 dm_bio_prison_free_cell(pool->prison, cell); 481 } 482 483 static void cell_release_no_holder(struct pool *pool, 484 struct dm_bio_prison_cell *cell, 485 struct bio_list *bios) 486 { 487 dm_cell_release_no_holder(pool->prison, cell, bios); 488 dm_bio_prison_free_cell(pool->prison, cell); 489 } 490 491 static void cell_error_with_code(struct pool *pool, 492 struct dm_bio_prison_cell *cell, blk_status_t error_code) 493 { 494 dm_cell_error(pool->prison, cell, error_code); 495 dm_bio_prison_free_cell(pool->prison, cell); 496 } 497 498 static blk_status_t get_pool_io_error_code(struct pool *pool) 499 { 500 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 501 } 502 503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 504 { 505 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 506 } 507 508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 509 { 510 cell_error_with_code(pool, cell, 0); 511 } 512 513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 514 { 515 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 516 } 517 518 /*----------------------------------------------------------------*/ 519 520 /* 521 * A global list of pools that uses a struct mapped_device as a key. 522 */ 523 static struct dm_thin_pool_table { 524 struct mutex mutex; 525 struct list_head pools; 526 } dm_thin_pool_table; 527 528 static void pool_table_init(void) 529 { 530 mutex_init(&dm_thin_pool_table.mutex); 531 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 532 } 533 534 static void pool_table_exit(void) 535 { 536 mutex_destroy(&dm_thin_pool_table.mutex); 537 } 538 539 static void __pool_table_insert(struct pool *pool) 540 { 541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 542 list_add(&pool->list, &dm_thin_pool_table.pools); 543 } 544 545 static void __pool_table_remove(struct pool *pool) 546 { 547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 548 list_del(&pool->list); 549 } 550 551 static struct pool *__pool_table_lookup(struct mapped_device *md) 552 { 553 struct pool *pool = NULL, *tmp; 554 555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 556 557 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 558 if (tmp->pool_md == md) { 559 pool = tmp; 560 break; 561 } 562 } 563 564 return pool; 565 } 566 567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 568 { 569 struct pool *pool = NULL, *tmp; 570 571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 572 573 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 574 if (tmp->md_dev == md_dev) { 575 pool = tmp; 576 break; 577 } 578 } 579 580 return pool; 581 } 582 583 /*----------------------------------------------------------------*/ 584 585 struct dm_thin_endio_hook { 586 struct thin_c *tc; 587 struct dm_deferred_entry *shared_read_entry; 588 struct dm_deferred_entry *all_io_entry; 589 struct dm_thin_new_mapping *overwrite_mapping; 590 struct rb_node rb_node; 591 struct dm_bio_prison_cell *cell; 592 }; 593 594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 595 { 596 bio_list_merge(bios, master); 597 bio_list_init(master); 598 } 599 600 static void error_bio_list(struct bio_list *bios, blk_status_t error) 601 { 602 struct bio *bio; 603 604 while ((bio = bio_list_pop(bios))) { 605 bio->bi_status = error; 606 bio_endio(bio); 607 } 608 } 609 610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 611 blk_status_t error) 612 { 613 struct bio_list bios; 614 615 bio_list_init(&bios); 616 617 spin_lock_irq(&tc->lock); 618 __merge_bio_list(&bios, master); 619 spin_unlock_irq(&tc->lock); 620 621 error_bio_list(&bios, error); 622 } 623 624 static void requeue_deferred_cells(struct thin_c *tc) 625 { 626 struct pool *pool = tc->pool; 627 struct list_head cells; 628 struct dm_bio_prison_cell *cell, *tmp; 629 630 INIT_LIST_HEAD(&cells); 631 632 spin_lock_irq(&tc->lock); 633 list_splice_init(&tc->deferred_cells, &cells); 634 spin_unlock_irq(&tc->lock); 635 636 list_for_each_entry_safe(cell, tmp, &cells, user_list) 637 cell_requeue(pool, cell); 638 } 639 640 static void requeue_io(struct thin_c *tc) 641 { 642 struct bio_list bios; 643 644 bio_list_init(&bios); 645 646 spin_lock_irq(&tc->lock); 647 __merge_bio_list(&bios, &tc->deferred_bio_list); 648 __merge_bio_list(&bios, &tc->retry_on_resume_list); 649 spin_unlock_irq(&tc->lock); 650 651 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 652 requeue_deferred_cells(tc); 653 } 654 655 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 656 { 657 struct thin_c *tc; 658 659 rcu_read_lock(); 660 list_for_each_entry_rcu(tc, &pool->active_thins, list) 661 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 662 rcu_read_unlock(); 663 } 664 665 static void error_retry_list(struct pool *pool) 666 { 667 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 668 } 669 670 /* 671 * This section of code contains the logic for processing a thin device's IO. 672 * Much of the code depends on pool object resources (lists, workqueues, etc) 673 * but most is exclusively called from the thin target rather than the thin-pool 674 * target. 675 */ 676 677 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 678 { 679 struct pool *pool = tc->pool; 680 sector_t block_nr = bio->bi_iter.bi_sector; 681 682 if (block_size_is_power_of_two(pool)) 683 block_nr >>= pool->sectors_per_block_shift; 684 else 685 (void) sector_div(block_nr, pool->sectors_per_block); 686 687 return block_nr; 688 } 689 690 /* 691 * Returns the _complete_ blocks that this bio covers. 692 */ 693 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 694 dm_block_t *begin, dm_block_t *end) 695 { 696 struct pool *pool = tc->pool; 697 sector_t b = bio->bi_iter.bi_sector; 698 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 699 700 b += pool->sectors_per_block - 1ull; /* so we round up */ 701 702 if (block_size_is_power_of_two(pool)) { 703 b >>= pool->sectors_per_block_shift; 704 e >>= pool->sectors_per_block_shift; 705 } else { 706 (void) sector_div(b, pool->sectors_per_block); 707 (void) sector_div(e, pool->sectors_per_block); 708 } 709 710 if (e < b) 711 /* Can happen if the bio is within a single block. */ 712 e = b; 713 714 *begin = b; 715 *end = e; 716 } 717 718 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 719 { 720 struct pool *pool = tc->pool; 721 sector_t bi_sector = bio->bi_iter.bi_sector; 722 723 bio_set_dev(bio, tc->pool_dev->bdev); 724 if (block_size_is_power_of_two(pool)) 725 bio->bi_iter.bi_sector = 726 (block << pool->sectors_per_block_shift) | 727 (bi_sector & (pool->sectors_per_block - 1)); 728 else 729 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 730 sector_div(bi_sector, pool->sectors_per_block); 731 } 732 733 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 734 { 735 bio_set_dev(bio, tc->origin_dev->bdev); 736 } 737 738 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 739 { 740 return op_is_flush(bio->bi_opf) && 741 dm_thin_changed_this_transaction(tc->td); 742 } 743 744 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 745 { 746 struct dm_thin_endio_hook *h; 747 748 if (bio_op(bio) == REQ_OP_DISCARD) 749 return; 750 751 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 752 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 753 } 754 755 static void issue(struct thin_c *tc, struct bio *bio) 756 { 757 struct pool *pool = tc->pool; 758 759 if (!bio_triggers_commit(tc, bio)) { 760 dm_submit_bio_remap(bio, NULL); 761 return; 762 } 763 764 /* 765 * Complete bio with an error if earlier I/O caused changes to 766 * the metadata that can't be committed e.g, due to I/O errors 767 * on the metadata device. 768 */ 769 if (dm_thin_aborted_changes(tc->td)) { 770 bio_io_error(bio); 771 return; 772 } 773 774 /* 775 * Batch together any bios that trigger commits and then issue a 776 * single commit for them in process_deferred_bios(). 777 */ 778 spin_lock_irq(&pool->lock); 779 bio_list_add(&pool->deferred_flush_bios, bio); 780 spin_unlock_irq(&pool->lock); 781 } 782 783 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 784 { 785 remap_to_origin(tc, bio); 786 issue(tc, bio); 787 } 788 789 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 790 dm_block_t block) 791 { 792 remap(tc, bio, block); 793 issue(tc, bio); 794 } 795 796 /*----------------------------------------------------------------*/ 797 798 /* 799 * Bio endio functions. 800 */ 801 struct dm_thin_new_mapping { 802 struct list_head list; 803 804 bool pass_discard:1; 805 bool maybe_shared:1; 806 807 /* 808 * Track quiescing, copying and zeroing preparation actions. When this 809 * counter hits zero the block is prepared and can be inserted into the 810 * btree. 811 */ 812 atomic_t prepare_actions; 813 814 blk_status_t status; 815 struct thin_c *tc; 816 dm_block_t virt_begin, virt_end; 817 dm_block_t data_block; 818 struct dm_bio_prison_cell *cell; 819 820 /* 821 * If the bio covers the whole area of a block then we can avoid 822 * zeroing or copying. Instead this bio is hooked. The bio will 823 * still be in the cell, so care has to be taken to avoid issuing 824 * the bio twice. 825 */ 826 struct bio *bio; 827 bio_end_io_t *saved_bi_end_io; 828 }; 829 830 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 831 { 832 struct pool *pool = m->tc->pool; 833 834 if (atomic_dec_and_test(&m->prepare_actions)) { 835 list_add_tail(&m->list, &pool->prepared_mappings); 836 wake_worker(pool); 837 } 838 } 839 840 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 841 { 842 unsigned long flags; 843 struct pool *pool = m->tc->pool; 844 845 spin_lock_irqsave(&pool->lock, flags); 846 __complete_mapping_preparation(m); 847 spin_unlock_irqrestore(&pool->lock, flags); 848 } 849 850 static void copy_complete(int read_err, unsigned long write_err, void *context) 851 { 852 struct dm_thin_new_mapping *m = context; 853 854 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 855 complete_mapping_preparation(m); 856 } 857 858 static void overwrite_endio(struct bio *bio) 859 { 860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 861 struct dm_thin_new_mapping *m = h->overwrite_mapping; 862 863 bio->bi_end_io = m->saved_bi_end_io; 864 865 m->status = bio->bi_status; 866 complete_mapping_preparation(m); 867 } 868 869 /*----------------------------------------------------------------*/ 870 871 /* 872 * Workqueue. 873 */ 874 875 /* 876 * Prepared mapping jobs. 877 */ 878 879 /* 880 * This sends the bios in the cell, except the original holder, back 881 * to the deferred_bios list. 882 */ 883 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 884 { 885 struct pool *pool = tc->pool; 886 unsigned long flags; 887 struct bio_list bios; 888 889 bio_list_init(&bios); 890 cell_release_no_holder(pool, cell, &bios); 891 892 if (!bio_list_empty(&bios)) { 893 spin_lock_irqsave(&tc->lock, flags); 894 bio_list_merge(&tc->deferred_bio_list, &bios); 895 spin_unlock_irqrestore(&tc->lock, flags); 896 wake_worker(pool); 897 } 898 } 899 900 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 901 902 struct remap_info { 903 struct thin_c *tc; 904 struct bio_list defer_bios; 905 struct bio_list issue_bios; 906 }; 907 908 static void __inc_remap_and_issue_cell(void *context, 909 struct dm_bio_prison_cell *cell) 910 { 911 struct remap_info *info = context; 912 struct bio *bio; 913 914 while ((bio = bio_list_pop(&cell->bios))) { 915 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 916 bio_list_add(&info->defer_bios, bio); 917 else { 918 inc_all_io_entry(info->tc->pool, bio); 919 920 /* 921 * We can't issue the bios with the bio prison lock 922 * held, so we add them to a list to issue on 923 * return from this function. 924 */ 925 bio_list_add(&info->issue_bios, bio); 926 } 927 } 928 } 929 930 static void inc_remap_and_issue_cell(struct thin_c *tc, 931 struct dm_bio_prison_cell *cell, 932 dm_block_t block) 933 { 934 struct bio *bio; 935 struct remap_info info; 936 937 info.tc = tc; 938 bio_list_init(&info.defer_bios); 939 bio_list_init(&info.issue_bios); 940 941 /* 942 * We have to be careful to inc any bios we're about to issue 943 * before the cell is released, and avoid a race with new bios 944 * being added to the cell. 945 */ 946 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 947 &info, cell); 948 949 while ((bio = bio_list_pop(&info.defer_bios))) 950 thin_defer_bio(tc, bio); 951 952 while ((bio = bio_list_pop(&info.issue_bios))) 953 remap_and_issue(info.tc, bio, block); 954 } 955 956 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 957 { 958 cell_error(m->tc->pool, m->cell); 959 list_del(&m->list); 960 mempool_free(m, &m->tc->pool->mapping_pool); 961 } 962 963 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 964 { 965 struct pool *pool = tc->pool; 966 967 /* 968 * If the bio has the REQ_FUA flag set we must commit the metadata 969 * before signaling its completion. 970 */ 971 if (!bio_triggers_commit(tc, bio)) { 972 bio_endio(bio); 973 return; 974 } 975 976 /* 977 * Complete bio with an error if earlier I/O caused changes to the 978 * metadata that can't be committed, e.g, due to I/O errors on the 979 * metadata device. 980 */ 981 if (dm_thin_aborted_changes(tc->td)) { 982 bio_io_error(bio); 983 return; 984 } 985 986 /* 987 * Batch together any bios that trigger commits and then issue a 988 * single commit for them in process_deferred_bios(). 989 */ 990 spin_lock_irq(&pool->lock); 991 bio_list_add(&pool->deferred_flush_completions, bio); 992 spin_unlock_irq(&pool->lock); 993 } 994 995 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 996 { 997 struct thin_c *tc = m->tc; 998 struct pool *pool = tc->pool; 999 struct bio *bio = m->bio; 1000 int r; 1001 1002 if (m->status) { 1003 cell_error(pool, m->cell); 1004 goto out; 1005 } 1006 1007 /* 1008 * Commit the prepared block into the mapping btree. 1009 * Any I/O for this block arriving after this point will get 1010 * remapped to it directly. 1011 */ 1012 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1013 if (r) { 1014 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1015 cell_error(pool, m->cell); 1016 goto out; 1017 } 1018 1019 /* 1020 * Release any bios held while the block was being provisioned. 1021 * If we are processing a write bio that completely covers the block, 1022 * we already processed it so can ignore it now when processing 1023 * the bios in the cell. 1024 */ 1025 if (bio) { 1026 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1027 complete_overwrite_bio(tc, bio); 1028 } else { 1029 inc_all_io_entry(tc->pool, m->cell->holder); 1030 remap_and_issue(tc, m->cell->holder, m->data_block); 1031 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1032 } 1033 1034 out: 1035 list_del(&m->list); 1036 mempool_free(m, &pool->mapping_pool); 1037 } 1038 1039 /*----------------------------------------------------------------*/ 1040 1041 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1042 { 1043 struct thin_c *tc = m->tc; 1044 1045 if (m->cell) 1046 cell_defer_no_holder(tc, m->cell); 1047 mempool_free(m, &tc->pool->mapping_pool); 1048 } 1049 1050 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1051 { 1052 bio_io_error(m->bio); 1053 free_discard_mapping(m); 1054 } 1055 1056 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1057 { 1058 bio_endio(m->bio); 1059 free_discard_mapping(m); 1060 } 1061 1062 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1063 { 1064 int r; 1065 struct thin_c *tc = m->tc; 1066 1067 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1068 if (r) { 1069 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1070 bio_io_error(m->bio); 1071 } else 1072 bio_endio(m->bio); 1073 1074 cell_defer_no_holder(tc, m->cell); 1075 mempool_free(m, &tc->pool->mapping_pool); 1076 } 1077 1078 /*----------------------------------------------------------------*/ 1079 1080 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1081 struct bio *discard_parent) 1082 { 1083 /* 1084 * We've already unmapped this range of blocks, but before we 1085 * passdown we have to check that these blocks are now unused. 1086 */ 1087 int r = 0; 1088 bool shared = true; 1089 struct thin_c *tc = m->tc; 1090 struct pool *pool = tc->pool; 1091 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1092 struct discard_op op; 1093 1094 begin_discard(&op, tc, discard_parent); 1095 while (b != end) { 1096 /* find start of unmapped run */ 1097 for (; b < end; b++) { 1098 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1099 if (r) 1100 goto out; 1101 1102 if (!shared) 1103 break; 1104 } 1105 1106 if (b == end) 1107 break; 1108 1109 /* find end of run */ 1110 for (e = b + 1; e != end; e++) { 1111 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1112 if (r) 1113 goto out; 1114 1115 if (shared) 1116 break; 1117 } 1118 1119 r = issue_discard(&op, b, e); 1120 if (r) 1121 goto out; 1122 1123 b = e; 1124 } 1125 out: 1126 end_discard(&op, r); 1127 } 1128 1129 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1130 { 1131 unsigned long flags; 1132 struct pool *pool = m->tc->pool; 1133 1134 spin_lock_irqsave(&pool->lock, flags); 1135 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1136 spin_unlock_irqrestore(&pool->lock, flags); 1137 wake_worker(pool); 1138 } 1139 1140 static void passdown_endio(struct bio *bio) 1141 { 1142 /* 1143 * It doesn't matter if the passdown discard failed, we still want 1144 * to unmap (we ignore err). 1145 */ 1146 queue_passdown_pt2(bio->bi_private); 1147 bio_put(bio); 1148 } 1149 1150 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1151 { 1152 int r; 1153 struct thin_c *tc = m->tc; 1154 struct pool *pool = tc->pool; 1155 struct bio *discard_parent; 1156 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1157 1158 /* 1159 * Only this thread allocates blocks, so we can be sure that the 1160 * newly unmapped blocks will not be allocated before the end of 1161 * the function. 1162 */ 1163 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1164 if (r) { 1165 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1166 bio_io_error(m->bio); 1167 cell_defer_no_holder(tc, m->cell); 1168 mempool_free(m, &pool->mapping_pool); 1169 return; 1170 } 1171 1172 /* 1173 * Increment the unmapped blocks. This prevents a race between the 1174 * passdown io and reallocation of freed blocks. 1175 */ 1176 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1177 if (r) { 1178 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1179 bio_io_error(m->bio); 1180 cell_defer_no_holder(tc, m->cell); 1181 mempool_free(m, &pool->mapping_pool); 1182 return; 1183 } 1184 1185 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO); 1186 discard_parent->bi_end_io = passdown_endio; 1187 discard_parent->bi_private = m; 1188 if (m->maybe_shared) 1189 passdown_double_checking_shared_status(m, discard_parent); 1190 else { 1191 struct discard_op op; 1192 1193 begin_discard(&op, tc, discard_parent); 1194 r = issue_discard(&op, m->data_block, data_end); 1195 end_discard(&op, r); 1196 } 1197 } 1198 1199 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1200 { 1201 int r; 1202 struct thin_c *tc = m->tc; 1203 struct pool *pool = tc->pool; 1204 1205 /* 1206 * The passdown has completed, so now we can decrement all those 1207 * unmapped blocks. 1208 */ 1209 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1210 m->data_block + (m->virt_end - m->virt_begin)); 1211 if (r) { 1212 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1213 bio_io_error(m->bio); 1214 } else 1215 bio_endio(m->bio); 1216 1217 cell_defer_no_holder(tc, m->cell); 1218 mempool_free(m, &pool->mapping_pool); 1219 } 1220 1221 static void process_prepared(struct pool *pool, struct list_head *head, 1222 process_mapping_fn *fn) 1223 { 1224 struct list_head maps; 1225 struct dm_thin_new_mapping *m, *tmp; 1226 1227 INIT_LIST_HEAD(&maps); 1228 spin_lock_irq(&pool->lock); 1229 list_splice_init(head, &maps); 1230 spin_unlock_irq(&pool->lock); 1231 1232 list_for_each_entry_safe(m, tmp, &maps, list) 1233 (*fn)(m); 1234 } 1235 1236 /* 1237 * Deferred bio jobs. 1238 */ 1239 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1240 { 1241 return bio->bi_iter.bi_size == 1242 (pool->sectors_per_block << SECTOR_SHIFT); 1243 } 1244 1245 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1246 { 1247 return (bio_data_dir(bio) == WRITE) && 1248 io_overlaps_block(pool, bio); 1249 } 1250 1251 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1252 bio_end_io_t *fn) 1253 { 1254 *save = bio->bi_end_io; 1255 bio->bi_end_io = fn; 1256 } 1257 1258 static int ensure_next_mapping(struct pool *pool) 1259 { 1260 if (pool->next_mapping) 1261 return 0; 1262 1263 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1264 1265 return pool->next_mapping ? 0 : -ENOMEM; 1266 } 1267 1268 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1269 { 1270 struct dm_thin_new_mapping *m = pool->next_mapping; 1271 1272 BUG_ON(!pool->next_mapping); 1273 1274 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1275 INIT_LIST_HEAD(&m->list); 1276 m->bio = NULL; 1277 1278 pool->next_mapping = NULL; 1279 1280 return m; 1281 } 1282 1283 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1284 sector_t begin, sector_t end) 1285 { 1286 struct dm_io_region to; 1287 1288 to.bdev = tc->pool_dev->bdev; 1289 to.sector = begin; 1290 to.count = end - begin; 1291 1292 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1293 } 1294 1295 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1296 dm_block_t data_begin, 1297 struct dm_thin_new_mapping *m) 1298 { 1299 struct pool *pool = tc->pool; 1300 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1301 1302 h->overwrite_mapping = m; 1303 m->bio = bio; 1304 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1305 inc_all_io_entry(pool, bio); 1306 remap_and_issue(tc, bio, data_begin); 1307 } 1308 1309 /* 1310 * A partial copy also needs to zero the uncopied region. 1311 */ 1312 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1313 struct dm_dev *origin, dm_block_t data_origin, 1314 dm_block_t data_dest, 1315 struct dm_bio_prison_cell *cell, struct bio *bio, 1316 sector_t len) 1317 { 1318 struct pool *pool = tc->pool; 1319 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1320 1321 m->tc = tc; 1322 m->virt_begin = virt_block; 1323 m->virt_end = virt_block + 1u; 1324 m->data_block = data_dest; 1325 m->cell = cell; 1326 1327 /* 1328 * quiesce action + copy action + an extra reference held for the 1329 * duration of this function (we may need to inc later for a 1330 * partial zero). 1331 */ 1332 atomic_set(&m->prepare_actions, 3); 1333 1334 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1335 complete_mapping_preparation(m); /* already quiesced */ 1336 1337 /* 1338 * IO to pool_dev remaps to the pool target's data_dev. 1339 * 1340 * If the whole block of data is being overwritten, we can issue the 1341 * bio immediately. Otherwise we use kcopyd to clone the data first. 1342 */ 1343 if (io_overwrites_block(pool, bio)) 1344 remap_and_issue_overwrite(tc, bio, data_dest, m); 1345 else { 1346 struct dm_io_region from, to; 1347 1348 from.bdev = origin->bdev; 1349 from.sector = data_origin * pool->sectors_per_block; 1350 from.count = len; 1351 1352 to.bdev = tc->pool_dev->bdev; 1353 to.sector = data_dest * pool->sectors_per_block; 1354 to.count = len; 1355 1356 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1357 0, copy_complete, m); 1358 1359 /* 1360 * Do we need to zero a tail region? 1361 */ 1362 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1363 atomic_inc(&m->prepare_actions); 1364 ll_zero(tc, m, 1365 data_dest * pool->sectors_per_block + len, 1366 (data_dest + 1) * pool->sectors_per_block); 1367 } 1368 } 1369 1370 complete_mapping_preparation(m); /* drop our ref */ 1371 } 1372 1373 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1374 dm_block_t data_origin, dm_block_t data_dest, 1375 struct dm_bio_prison_cell *cell, struct bio *bio) 1376 { 1377 schedule_copy(tc, virt_block, tc->pool_dev, 1378 data_origin, data_dest, cell, bio, 1379 tc->pool->sectors_per_block); 1380 } 1381 1382 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1383 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1384 struct bio *bio) 1385 { 1386 struct pool *pool = tc->pool; 1387 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1388 1389 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1390 m->tc = tc; 1391 m->virt_begin = virt_block; 1392 m->virt_end = virt_block + 1u; 1393 m->data_block = data_block; 1394 m->cell = cell; 1395 1396 /* 1397 * If the whole block of data is being overwritten or we are not 1398 * zeroing pre-existing data, we can issue the bio immediately. 1399 * Otherwise we use kcopyd to zero the data first. 1400 */ 1401 if (pool->pf.zero_new_blocks) { 1402 if (io_overwrites_block(pool, bio)) 1403 remap_and_issue_overwrite(tc, bio, data_block, m); 1404 else 1405 ll_zero(tc, m, data_block * pool->sectors_per_block, 1406 (data_block + 1) * pool->sectors_per_block); 1407 } else 1408 process_prepared_mapping(m); 1409 } 1410 1411 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1412 dm_block_t data_dest, 1413 struct dm_bio_prison_cell *cell, struct bio *bio) 1414 { 1415 struct pool *pool = tc->pool; 1416 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1417 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1418 1419 if (virt_block_end <= tc->origin_size) 1420 schedule_copy(tc, virt_block, tc->origin_dev, 1421 virt_block, data_dest, cell, bio, 1422 pool->sectors_per_block); 1423 1424 else if (virt_block_begin < tc->origin_size) 1425 schedule_copy(tc, virt_block, tc->origin_dev, 1426 virt_block, data_dest, cell, bio, 1427 tc->origin_size - virt_block_begin); 1428 1429 else 1430 schedule_zero(tc, virt_block, data_dest, cell, bio); 1431 } 1432 1433 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1434 1435 static void requeue_bios(struct pool *pool); 1436 1437 static bool is_read_only_pool_mode(enum pool_mode mode) 1438 { 1439 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1440 } 1441 1442 static bool is_read_only(struct pool *pool) 1443 { 1444 return is_read_only_pool_mode(get_pool_mode(pool)); 1445 } 1446 1447 static void check_for_metadata_space(struct pool *pool) 1448 { 1449 int r; 1450 const char *ooms_reason = NULL; 1451 dm_block_t nr_free; 1452 1453 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1454 if (r) 1455 ooms_reason = "Could not get free metadata blocks"; 1456 else if (!nr_free) 1457 ooms_reason = "No free metadata blocks"; 1458 1459 if (ooms_reason && !is_read_only(pool)) { 1460 DMERR("%s", ooms_reason); 1461 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1462 } 1463 } 1464 1465 static void check_for_data_space(struct pool *pool) 1466 { 1467 int r; 1468 dm_block_t nr_free; 1469 1470 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1471 return; 1472 1473 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1474 if (r) 1475 return; 1476 1477 if (nr_free) { 1478 set_pool_mode(pool, PM_WRITE); 1479 requeue_bios(pool); 1480 } 1481 } 1482 1483 /* 1484 * A non-zero return indicates read_only or fail_io mode. 1485 * Many callers don't care about the return value. 1486 */ 1487 static int commit(struct pool *pool) 1488 { 1489 int r; 1490 1491 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1492 return -EINVAL; 1493 1494 r = dm_pool_commit_metadata(pool->pmd); 1495 if (r) 1496 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1497 else { 1498 check_for_metadata_space(pool); 1499 check_for_data_space(pool); 1500 } 1501 1502 return r; 1503 } 1504 1505 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1506 { 1507 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1508 DMWARN("%s: reached low water mark for data device: sending event.", 1509 dm_device_name(pool->pool_md)); 1510 spin_lock_irq(&pool->lock); 1511 pool->low_water_triggered = true; 1512 spin_unlock_irq(&pool->lock); 1513 dm_table_event(pool->ti->table); 1514 } 1515 } 1516 1517 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1518 { 1519 int r; 1520 dm_block_t free_blocks; 1521 struct pool *pool = tc->pool; 1522 1523 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1524 return -EINVAL; 1525 1526 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1527 if (r) { 1528 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1529 return r; 1530 } 1531 1532 check_low_water_mark(pool, free_blocks); 1533 1534 if (!free_blocks) { 1535 /* 1536 * Try to commit to see if that will free up some 1537 * more space. 1538 */ 1539 r = commit(pool); 1540 if (r) 1541 return r; 1542 1543 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1544 if (r) { 1545 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1546 return r; 1547 } 1548 1549 if (!free_blocks) { 1550 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1551 return -ENOSPC; 1552 } 1553 } 1554 1555 r = dm_pool_alloc_data_block(pool->pmd, result); 1556 if (r) { 1557 if (r == -ENOSPC) 1558 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1559 else 1560 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1561 return r; 1562 } 1563 1564 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1565 if (r) { 1566 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1567 return r; 1568 } 1569 1570 if (!free_blocks) { 1571 /* Let's commit before we use up the metadata reserve. */ 1572 r = commit(pool); 1573 if (r) 1574 return r; 1575 } 1576 1577 return 0; 1578 } 1579 1580 /* 1581 * If we have run out of space, queue bios until the device is 1582 * resumed, presumably after having been reloaded with more space. 1583 */ 1584 static void retry_on_resume(struct bio *bio) 1585 { 1586 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1587 struct thin_c *tc = h->tc; 1588 1589 spin_lock_irq(&tc->lock); 1590 bio_list_add(&tc->retry_on_resume_list, bio); 1591 spin_unlock_irq(&tc->lock); 1592 } 1593 1594 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1595 { 1596 enum pool_mode m = get_pool_mode(pool); 1597 1598 switch (m) { 1599 case PM_WRITE: 1600 /* Shouldn't get here */ 1601 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1602 return BLK_STS_IOERR; 1603 1604 case PM_OUT_OF_DATA_SPACE: 1605 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1606 1607 case PM_OUT_OF_METADATA_SPACE: 1608 case PM_READ_ONLY: 1609 case PM_FAIL: 1610 return BLK_STS_IOERR; 1611 default: 1612 /* Shouldn't get here */ 1613 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1614 return BLK_STS_IOERR; 1615 } 1616 } 1617 1618 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1619 { 1620 blk_status_t error = should_error_unserviceable_bio(pool); 1621 1622 if (error) { 1623 bio->bi_status = error; 1624 bio_endio(bio); 1625 } else 1626 retry_on_resume(bio); 1627 } 1628 1629 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1630 { 1631 struct bio *bio; 1632 struct bio_list bios; 1633 blk_status_t error; 1634 1635 error = should_error_unserviceable_bio(pool); 1636 if (error) { 1637 cell_error_with_code(pool, cell, error); 1638 return; 1639 } 1640 1641 bio_list_init(&bios); 1642 cell_release(pool, cell, &bios); 1643 1644 while ((bio = bio_list_pop(&bios))) 1645 retry_on_resume(bio); 1646 } 1647 1648 static void process_discard_cell_no_passdown(struct thin_c *tc, 1649 struct dm_bio_prison_cell *virt_cell) 1650 { 1651 struct pool *pool = tc->pool; 1652 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1653 1654 /* 1655 * We don't need to lock the data blocks, since there's no 1656 * passdown. We only lock data blocks for allocation and breaking sharing. 1657 */ 1658 m->tc = tc; 1659 m->virt_begin = virt_cell->key.block_begin; 1660 m->virt_end = virt_cell->key.block_end; 1661 m->cell = virt_cell; 1662 m->bio = virt_cell->holder; 1663 1664 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1665 pool->process_prepared_discard(m); 1666 } 1667 1668 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1669 struct bio *bio) 1670 { 1671 struct pool *pool = tc->pool; 1672 1673 int r; 1674 bool maybe_shared; 1675 struct dm_cell_key data_key; 1676 struct dm_bio_prison_cell *data_cell; 1677 struct dm_thin_new_mapping *m; 1678 dm_block_t virt_begin, virt_end, data_begin, data_end; 1679 dm_block_t len, next_boundary; 1680 1681 while (begin != end) { 1682 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1683 &data_begin, &maybe_shared); 1684 if (r) { 1685 /* 1686 * Silently fail, letting any mappings we've 1687 * created complete. 1688 */ 1689 break; 1690 } 1691 1692 data_end = data_begin + (virt_end - virt_begin); 1693 1694 /* 1695 * Make sure the data region obeys the bio prison restrictions. 1696 */ 1697 while (data_begin < data_end) { 1698 r = ensure_next_mapping(pool); 1699 if (r) 1700 return; /* we did our best */ 1701 1702 next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1) 1703 << BIO_PRISON_MAX_RANGE_SHIFT; 1704 len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin); 1705 1706 /* This key is certainly within range given the above splitting */ 1707 (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key); 1708 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1709 /* contention, we'll give up with this range */ 1710 data_begin += len; 1711 continue; 1712 } 1713 1714 /* 1715 * IO may still be going to the destination block. We must 1716 * quiesce before we can do the removal. 1717 */ 1718 m = get_next_mapping(pool); 1719 m->tc = tc; 1720 m->maybe_shared = maybe_shared; 1721 m->virt_begin = virt_begin; 1722 m->virt_end = virt_begin + len; 1723 m->data_block = data_begin; 1724 m->cell = data_cell; 1725 m->bio = bio; 1726 1727 /* 1728 * The parent bio must not complete before sub discard bios are 1729 * chained to it (see end_discard's bio_chain)! 1730 * 1731 * This per-mapping bi_remaining increment is paired with 1732 * the implicit decrement that occurs via bio_endio() in 1733 * end_discard(). 1734 */ 1735 bio_inc_remaining(bio); 1736 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1737 pool->process_prepared_discard(m); 1738 1739 virt_begin += len; 1740 data_begin += len; 1741 } 1742 1743 begin = virt_end; 1744 } 1745 } 1746 1747 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1748 { 1749 struct bio *bio = virt_cell->holder; 1750 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1751 1752 /* 1753 * The virt_cell will only get freed once the origin bio completes. 1754 * This means it will remain locked while all the individual 1755 * passdown bios are in flight. 1756 */ 1757 h->cell = virt_cell; 1758 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1759 1760 /* 1761 * We complete the bio now, knowing that the bi_remaining field 1762 * will prevent completion until the sub range discards have 1763 * completed. 1764 */ 1765 bio_endio(bio); 1766 } 1767 1768 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1769 { 1770 dm_block_t begin, end; 1771 struct dm_cell_key virt_key; 1772 struct dm_bio_prison_cell *virt_cell; 1773 1774 get_bio_block_range(tc, bio, &begin, &end); 1775 if (begin == end) { 1776 /* 1777 * The discard covers less than a block. 1778 */ 1779 bio_endio(bio); 1780 return; 1781 } 1782 1783 if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) { 1784 DMERR_LIMIT("Discard doesn't respect bio prison limits"); 1785 bio_endio(bio); 1786 return; 1787 } 1788 1789 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) { 1790 /* 1791 * Potential starvation issue: We're relying on the 1792 * fs/application being well behaved, and not trying to 1793 * send IO to a region at the same time as discarding it. 1794 * If they do this persistently then it's possible this 1795 * cell will never be granted. 1796 */ 1797 return; 1798 } 1799 1800 tc->pool->process_discard_cell(tc, virt_cell); 1801 } 1802 1803 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1804 struct dm_cell_key *key, 1805 struct dm_thin_lookup_result *lookup_result, 1806 struct dm_bio_prison_cell *cell) 1807 { 1808 int r; 1809 dm_block_t data_block; 1810 struct pool *pool = tc->pool; 1811 1812 r = alloc_data_block(tc, &data_block); 1813 switch (r) { 1814 case 0: 1815 schedule_internal_copy(tc, block, lookup_result->block, 1816 data_block, cell, bio); 1817 break; 1818 1819 case -ENOSPC: 1820 retry_bios_on_resume(pool, cell); 1821 break; 1822 1823 default: 1824 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1825 __func__, r); 1826 cell_error(pool, cell); 1827 break; 1828 } 1829 } 1830 1831 static void __remap_and_issue_shared_cell(void *context, 1832 struct dm_bio_prison_cell *cell) 1833 { 1834 struct remap_info *info = context; 1835 struct bio *bio; 1836 1837 while ((bio = bio_list_pop(&cell->bios))) { 1838 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1839 bio_op(bio) == REQ_OP_DISCARD) 1840 bio_list_add(&info->defer_bios, bio); 1841 else { 1842 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1843 1844 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1845 inc_all_io_entry(info->tc->pool, bio); 1846 bio_list_add(&info->issue_bios, bio); 1847 } 1848 } 1849 } 1850 1851 static void remap_and_issue_shared_cell(struct thin_c *tc, 1852 struct dm_bio_prison_cell *cell, 1853 dm_block_t block) 1854 { 1855 struct bio *bio; 1856 struct remap_info info; 1857 1858 info.tc = tc; 1859 bio_list_init(&info.defer_bios); 1860 bio_list_init(&info.issue_bios); 1861 1862 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1863 &info, cell); 1864 1865 while ((bio = bio_list_pop(&info.defer_bios))) 1866 thin_defer_bio(tc, bio); 1867 1868 while ((bio = bio_list_pop(&info.issue_bios))) 1869 remap_and_issue(tc, bio, block); 1870 } 1871 1872 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1873 dm_block_t block, 1874 struct dm_thin_lookup_result *lookup_result, 1875 struct dm_bio_prison_cell *virt_cell) 1876 { 1877 struct dm_bio_prison_cell *data_cell; 1878 struct pool *pool = tc->pool; 1879 struct dm_cell_key key; 1880 1881 /* 1882 * If cell is already occupied, then sharing is already in the process 1883 * of being broken so we have nothing further to do here. 1884 */ 1885 build_data_key(tc->td, lookup_result->block, &key); 1886 if (bio_detain(pool, &key, bio, &data_cell)) { 1887 cell_defer_no_holder(tc, virt_cell); 1888 return; 1889 } 1890 1891 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1892 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1893 cell_defer_no_holder(tc, virt_cell); 1894 } else { 1895 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1896 1897 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1898 inc_all_io_entry(pool, bio); 1899 remap_and_issue(tc, bio, lookup_result->block); 1900 1901 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1902 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1903 } 1904 } 1905 1906 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1907 struct dm_bio_prison_cell *cell) 1908 { 1909 int r; 1910 dm_block_t data_block; 1911 struct pool *pool = tc->pool; 1912 1913 /* 1914 * Remap empty bios (flushes) immediately, without provisioning. 1915 */ 1916 if (!bio->bi_iter.bi_size) { 1917 inc_all_io_entry(pool, bio); 1918 cell_defer_no_holder(tc, cell); 1919 1920 remap_and_issue(tc, bio, 0); 1921 return; 1922 } 1923 1924 /* 1925 * Fill read bios with zeroes and complete them immediately. 1926 */ 1927 if (bio_data_dir(bio) == READ) { 1928 zero_fill_bio(bio); 1929 cell_defer_no_holder(tc, cell); 1930 bio_endio(bio); 1931 return; 1932 } 1933 1934 r = alloc_data_block(tc, &data_block); 1935 switch (r) { 1936 case 0: 1937 if (tc->origin_dev) 1938 schedule_external_copy(tc, block, data_block, cell, bio); 1939 else 1940 schedule_zero(tc, block, data_block, cell, bio); 1941 break; 1942 1943 case -ENOSPC: 1944 retry_bios_on_resume(pool, cell); 1945 break; 1946 1947 default: 1948 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1949 __func__, r); 1950 cell_error(pool, cell); 1951 break; 1952 } 1953 } 1954 1955 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1956 { 1957 int r; 1958 struct pool *pool = tc->pool; 1959 struct bio *bio = cell->holder; 1960 dm_block_t block = get_bio_block(tc, bio); 1961 struct dm_thin_lookup_result lookup_result; 1962 1963 if (tc->requeue_mode) { 1964 cell_requeue(pool, cell); 1965 return; 1966 } 1967 1968 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1969 switch (r) { 1970 case 0: 1971 if (lookup_result.shared) 1972 process_shared_bio(tc, bio, block, &lookup_result, cell); 1973 else { 1974 inc_all_io_entry(pool, bio); 1975 remap_and_issue(tc, bio, lookup_result.block); 1976 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1977 } 1978 break; 1979 1980 case -ENODATA: 1981 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1982 inc_all_io_entry(pool, bio); 1983 cell_defer_no_holder(tc, cell); 1984 1985 if (bio_end_sector(bio) <= tc->origin_size) 1986 remap_to_origin_and_issue(tc, bio); 1987 1988 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1989 zero_fill_bio(bio); 1990 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1991 remap_to_origin_and_issue(tc, bio); 1992 1993 } else { 1994 zero_fill_bio(bio); 1995 bio_endio(bio); 1996 } 1997 } else 1998 provision_block(tc, bio, block, cell); 1999 break; 2000 2001 default: 2002 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2003 __func__, r); 2004 cell_defer_no_holder(tc, cell); 2005 bio_io_error(bio); 2006 break; 2007 } 2008 } 2009 2010 static void process_bio(struct thin_c *tc, struct bio *bio) 2011 { 2012 struct pool *pool = tc->pool; 2013 dm_block_t block = get_bio_block(tc, bio); 2014 struct dm_bio_prison_cell *cell; 2015 struct dm_cell_key key; 2016 2017 /* 2018 * If cell is already occupied, then the block is already 2019 * being provisioned so we have nothing further to do here. 2020 */ 2021 build_virtual_key(tc->td, block, &key); 2022 if (bio_detain(pool, &key, bio, &cell)) 2023 return; 2024 2025 process_cell(tc, cell); 2026 } 2027 2028 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2029 struct dm_bio_prison_cell *cell) 2030 { 2031 int r; 2032 int rw = bio_data_dir(bio); 2033 dm_block_t block = get_bio_block(tc, bio); 2034 struct dm_thin_lookup_result lookup_result; 2035 2036 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2037 switch (r) { 2038 case 0: 2039 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2040 handle_unserviceable_bio(tc->pool, bio); 2041 if (cell) 2042 cell_defer_no_holder(tc, cell); 2043 } else { 2044 inc_all_io_entry(tc->pool, bio); 2045 remap_and_issue(tc, bio, lookup_result.block); 2046 if (cell) 2047 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2048 } 2049 break; 2050 2051 case -ENODATA: 2052 if (cell) 2053 cell_defer_no_holder(tc, cell); 2054 if (rw != READ) { 2055 handle_unserviceable_bio(tc->pool, bio); 2056 break; 2057 } 2058 2059 if (tc->origin_dev) { 2060 inc_all_io_entry(tc->pool, bio); 2061 remap_to_origin_and_issue(tc, bio); 2062 break; 2063 } 2064 2065 zero_fill_bio(bio); 2066 bio_endio(bio); 2067 break; 2068 2069 default: 2070 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2071 __func__, r); 2072 if (cell) 2073 cell_defer_no_holder(tc, cell); 2074 bio_io_error(bio); 2075 break; 2076 } 2077 } 2078 2079 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2080 { 2081 __process_bio_read_only(tc, bio, NULL); 2082 } 2083 2084 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2085 { 2086 __process_bio_read_only(tc, cell->holder, cell); 2087 } 2088 2089 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2090 { 2091 bio_endio(bio); 2092 } 2093 2094 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2095 { 2096 bio_io_error(bio); 2097 } 2098 2099 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2100 { 2101 cell_success(tc->pool, cell); 2102 } 2103 2104 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2105 { 2106 cell_error(tc->pool, cell); 2107 } 2108 2109 /* 2110 * FIXME: should we also commit due to size of transaction, measured in 2111 * metadata blocks? 2112 */ 2113 static int need_commit_due_to_time(struct pool *pool) 2114 { 2115 return !time_in_range(jiffies, pool->last_commit_jiffies, 2116 pool->last_commit_jiffies + COMMIT_PERIOD); 2117 } 2118 2119 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2120 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2121 2122 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2123 { 2124 struct rb_node **rbp, *parent; 2125 struct dm_thin_endio_hook *pbd; 2126 sector_t bi_sector = bio->bi_iter.bi_sector; 2127 2128 rbp = &tc->sort_bio_list.rb_node; 2129 parent = NULL; 2130 while (*rbp) { 2131 parent = *rbp; 2132 pbd = thin_pbd(parent); 2133 2134 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2135 rbp = &(*rbp)->rb_left; 2136 else 2137 rbp = &(*rbp)->rb_right; 2138 } 2139 2140 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2141 rb_link_node(&pbd->rb_node, parent, rbp); 2142 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2143 } 2144 2145 static void __extract_sorted_bios(struct thin_c *tc) 2146 { 2147 struct rb_node *node; 2148 struct dm_thin_endio_hook *pbd; 2149 struct bio *bio; 2150 2151 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2152 pbd = thin_pbd(node); 2153 bio = thin_bio(pbd); 2154 2155 bio_list_add(&tc->deferred_bio_list, bio); 2156 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2157 } 2158 2159 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2160 } 2161 2162 static void __sort_thin_deferred_bios(struct thin_c *tc) 2163 { 2164 struct bio *bio; 2165 struct bio_list bios; 2166 2167 bio_list_init(&bios); 2168 bio_list_merge(&bios, &tc->deferred_bio_list); 2169 bio_list_init(&tc->deferred_bio_list); 2170 2171 /* Sort deferred_bio_list using rb-tree */ 2172 while ((bio = bio_list_pop(&bios))) 2173 __thin_bio_rb_add(tc, bio); 2174 2175 /* 2176 * Transfer the sorted bios in sort_bio_list back to 2177 * deferred_bio_list to allow lockless submission of 2178 * all bios. 2179 */ 2180 __extract_sorted_bios(tc); 2181 } 2182 2183 static void process_thin_deferred_bios(struct thin_c *tc) 2184 { 2185 struct pool *pool = tc->pool; 2186 struct bio *bio; 2187 struct bio_list bios; 2188 struct blk_plug plug; 2189 unsigned int count = 0; 2190 2191 if (tc->requeue_mode) { 2192 error_thin_bio_list(tc, &tc->deferred_bio_list, 2193 BLK_STS_DM_REQUEUE); 2194 return; 2195 } 2196 2197 bio_list_init(&bios); 2198 2199 spin_lock_irq(&tc->lock); 2200 2201 if (bio_list_empty(&tc->deferred_bio_list)) { 2202 spin_unlock_irq(&tc->lock); 2203 return; 2204 } 2205 2206 __sort_thin_deferred_bios(tc); 2207 2208 bio_list_merge(&bios, &tc->deferred_bio_list); 2209 bio_list_init(&tc->deferred_bio_list); 2210 2211 spin_unlock_irq(&tc->lock); 2212 2213 blk_start_plug(&plug); 2214 while ((bio = bio_list_pop(&bios))) { 2215 /* 2216 * If we've got no free new_mapping structs, and processing 2217 * this bio might require one, we pause until there are some 2218 * prepared mappings to process. 2219 */ 2220 if (ensure_next_mapping(pool)) { 2221 spin_lock_irq(&tc->lock); 2222 bio_list_add(&tc->deferred_bio_list, bio); 2223 bio_list_merge(&tc->deferred_bio_list, &bios); 2224 spin_unlock_irq(&tc->lock); 2225 break; 2226 } 2227 2228 if (bio_op(bio) == REQ_OP_DISCARD) 2229 pool->process_discard(tc, bio); 2230 else 2231 pool->process_bio(tc, bio); 2232 2233 if ((count++ & 127) == 0) { 2234 throttle_work_update(&pool->throttle); 2235 dm_pool_issue_prefetches(pool->pmd); 2236 } 2237 cond_resched(); 2238 } 2239 blk_finish_plug(&plug); 2240 } 2241 2242 static int cmp_cells(const void *lhs, const void *rhs) 2243 { 2244 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2245 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2246 2247 BUG_ON(!lhs_cell->holder); 2248 BUG_ON(!rhs_cell->holder); 2249 2250 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2251 return -1; 2252 2253 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2254 return 1; 2255 2256 return 0; 2257 } 2258 2259 static unsigned int sort_cells(struct pool *pool, struct list_head *cells) 2260 { 2261 unsigned int count = 0; 2262 struct dm_bio_prison_cell *cell, *tmp; 2263 2264 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2265 if (count >= CELL_SORT_ARRAY_SIZE) 2266 break; 2267 2268 pool->cell_sort_array[count++] = cell; 2269 list_del(&cell->user_list); 2270 } 2271 2272 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2273 2274 return count; 2275 } 2276 2277 static void process_thin_deferred_cells(struct thin_c *tc) 2278 { 2279 struct pool *pool = tc->pool; 2280 struct list_head cells; 2281 struct dm_bio_prison_cell *cell; 2282 unsigned int i, j, count; 2283 2284 INIT_LIST_HEAD(&cells); 2285 2286 spin_lock_irq(&tc->lock); 2287 list_splice_init(&tc->deferred_cells, &cells); 2288 spin_unlock_irq(&tc->lock); 2289 2290 if (list_empty(&cells)) 2291 return; 2292 2293 do { 2294 count = sort_cells(tc->pool, &cells); 2295 2296 for (i = 0; i < count; i++) { 2297 cell = pool->cell_sort_array[i]; 2298 BUG_ON(!cell->holder); 2299 2300 /* 2301 * If we've got no free new_mapping structs, and processing 2302 * this bio might require one, we pause until there are some 2303 * prepared mappings to process. 2304 */ 2305 if (ensure_next_mapping(pool)) { 2306 for (j = i; j < count; j++) 2307 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2308 2309 spin_lock_irq(&tc->lock); 2310 list_splice(&cells, &tc->deferred_cells); 2311 spin_unlock_irq(&tc->lock); 2312 return; 2313 } 2314 2315 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2316 pool->process_discard_cell(tc, cell); 2317 else 2318 pool->process_cell(tc, cell); 2319 } 2320 cond_resched(); 2321 } while (!list_empty(&cells)); 2322 } 2323 2324 static void thin_get(struct thin_c *tc); 2325 static void thin_put(struct thin_c *tc); 2326 2327 /* 2328 * We can't hold rcu_read_lock() around code that can block. So we 2329 * find a thin with the rcu lock held; bump a refcount; then drop 2330 * the lock. 2331 */ 2332 static struct thin_c *get_first_thin(struct pool *pool) 2333 { 2334 struct thin_c *tc = NULL; 2335 2336 rcu_read_lock(); 2337 if (!list_empty(&pool->active_thins)) { 2338 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2339 thin_get(tc); 2340 } 2341 rcu_read_unlock(); 2342 2343 return tc; 2344 } 2345 2346 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2347 { 2348 struct thin_c *old_tc = tc; 2349 2350 rcu_read_lock(); 2351 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2352 thin_get(tc); 2353 thin_put(old_tc); 2354 rcu_read_unlock(); 2355 return tc; 2356 } 2357 thin_put(old_tc); 2358 rcu_read_unlock(); 2359 2360 return NULL; 2361 } 2362 2363 static void process_deferred_bios(struct pool *pool) 2364 { 2365 struct bio *bio; 2366 struct bio_list bios, bio_completions; 2367 struct thin_c *tc; 2368 2369 tc = get_first_thin(pool); 2370 while (tc) { 2371 process_thin_deferred_cells(tc); 2372 process_thin_deferred_bios(tc); 2373 tc = get_next_thin(pool, tc); 2374 } 2375 2376 /* 2377 * If there are any deferred flush bios, we must commit the metadata 2378 * before issuing them or signaling their completion. 2379 */ 2380 bio_list_init(&bios); 2381 bio_list_init(&bio_completions); 2382 2383 spin_lock_irq(&pool->lock); 2384 bio_list_merge(&bios, &pool->deferred_flush_bios); 2385 bio_list_init(&pool->deferred_flush_bios); 2386 2387 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2388 bio_list_init(&pool->deferred_flush_completions); 2389 spin_unlock_irq(&pool->lock); 2390 2391 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2392 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2393 return; 2394 2395 if (commit(pool)) { 2396 bio_list_merge(&bios, &bio_completions); 2397 2398 while ((bio = bio_list_pop(&bios))) 2399 bio_io_error(bio); 2400 return; 2401 } 2402 pool->last_commit_jiffies = jiffies; 2403 2404 while ((bio = bio_list_pop(&bio_completions))) 2405 bio_endio(bio); 2406 2407 while ((bio = bio_list_pop(&bios))) { 2408 /* 2409 * The data device was flushed as part of metadata commit, 2410 * so complete redundant flushes immediately. 2411 */ 2412 if (bio->bi_opf & REQ_PREFLUSH) 2413 bio_endio(bio); 2414 else 2415 dm_submit_bio_remap(bio, NULL); 2416 } 2417 } 2418 2419 static void do_worker(struct work_struct *ws) 2420 { 2421 struct pool *pool = container_of(ws, struct pool, worker); 2422 2423 throttle_work_start(&pool->throttle); 2424 dm_pool_issue_prefetches(pool->pmd); 2425 throttle_work_update(&pool->throttle); 2426 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2427 throttle_work_update(&pool->throttle); 2428 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2429 throttle_work_update(&pool->throttle); 2430 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2431 throttle_work_update(&pool->throttle); 2432 process_deferred_bios(pool); 2433 throttle_work_complete(&pool->throttle); 2434 } 2435 2436 /* 2437 * We want to commit periodically so that not too much 2438 * unwritten data builds up. 2439 */ 2440 static void do_waker(struct work_struct *ws) 2441 { 2442 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2443 2444 wake_worker(pool); 2445 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2446 } 2447 2448 /* 2449 * We're holding onto IO to allow userland time to react. After the 2450 * timeout either the pool will have been resized (and thus back in 2451 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2452 */ 2453 static void do_no_space_timeout(struct work_struct *ws) 2454 { 2455 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2456 no_space_timeout); 2457 2458 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2459 pool->pf.error_if_no_space = true; 2460 notify_of_pool_mode_change(pool); 2461 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2462 } 2463 } 2464 2465 /*----------------------------------------------------------------*/ 2466 2467 struct pool_work { 2468 struct work_struct worker; 2469 struct completion complete; 2470 }; 2471 2472 static struct pool_work *to_pool_work(struct work_struct *ws) 2473 { 2474 return container_of(ws, struct pool_work, worker); 2475 } 2476 2477 static void pool_work_complete(struct pool_work *pw) 2478 { 2479 complete(&pw->complete); 2480 } 2481 2482 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2483 void (*fn)(struct work_struct *)) 2484 { 2485 INIT_WORK_ONSTACK(&pw->worker, fn); 2486 init_completion(&pw->complete); 2487 queue_work(pool->wq, &pw->worker); 2488 wait_for_completion(&pw->complete); 2489 } 2490 2491 /*----------------------------------------------------------------*/ 2492 2493 struct noflush_work { 2494 struct pool_work pw; 2495 struct thin_c *tc; 2496 }; 2497 2498 static struct noflush_work *to_noflush(struct work_struct *ws) 2499 { 2500 return container_of(to_pool_work(ws), struct noflush_work, pw); 2501 } 2502 2503 static void do_noflush_start(struct work_struct *ws) 2504 { 2505 struct noflush_work *w = to_noflush(ws); 2506 2507 w->tc->requeue_mode = true; 2508 requeue_io(w->tc); 2509 pool_work_complete(&w->pw); 2510 } 2511 2512 static void do_noflush_stop(struct work_struct *ws) 2513 { 2514 struct noflush_work *w = to_noflush(ws); 2515 2516 w->tc->requeue_mode = false; 2517 pool_work_complete(&w->pw); 2518 } 2519 2520 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2521 { 2522 struct noflush_work w; 2523 2524 w.tc = tc; 2525 pool_work_wait(&w.pw, tc->pool, fn); 2526 } 2527 2528 /*----------------------------------------------------------------*/ 2529 2530 static void set_discard_callbacks(struct pool *pool) 2531 { 2532 struct pool_c *pt = pool->ti->private; 2533 2534 if (pt->adjusted_pf.discard_passdown) { 2535 pool->process_discard_cell = process_discard_cell_passdown; 2536 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2537 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2538 } else { 2539 pool->process_discard_cell = process_discard_cell_no_passdown; 2540 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2541 } 2542 } 2543 2544 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2545 { 2546 struct pool_c *pt = pool->ti->private; 2547 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2548 enum pool_mode old_mode = get_pool_mode(pool); 2549 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2550 2551 /* 2552 * Never allow the pool to transition to PM_WRITE mode if user 2553 * intervention is required to verify metadata and data consistency. 2554 */ 2555 if (new_mode == PM_WRITE && needs_check) { 2556 DMERR("%s: unable to switch pool to write mode until repaired.", 2557 dm_device_name(pool->pool_md)); 2558 if (old_mode != new_mode) 2559 new_mode = old_mode; 2560 else 2561 new_mode = PM_READ_ONLY; 2562 } 2563 /* 2564 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2565 * not going to recover without a thin_repair. So we never let the 2566 * pool move out of the old mode. 2567 */ 2568 if (old_mode == PM_FAIL) 2569 new_mode = old_mode; 2570 2571 switch (new_mode) { 2572 case PM_FAIL: 2573 dm_pool_metadata_read_only(pool->pmd); 2574 pool->process_bio = process_bio_fail; 2575 pool->process_discard = process_bio_fail; 2576 pool->process_cell = process_cell_fail; 2577 pool->process_discard_cell = process_cell_fail; 2578 pool->process_prepared_mapping = process_prepared_mapping_fail; 2579 pool->process_prepared_discard = process_prepared_discard_fail; 2580 2581 error_retry_list(pool); 2582 break; 2583 2584 case PM_OUT_OF_METADATA_SPACE: 2585 case PM_READ_ONLY: 2586 dm_pool_metadata_read_only(pool->pmd); 2587 pool->process_bio = process_bio_read_only; 2588 pool->process_discard = process_bio_success; 2589 pool->process_cell = process_cell_read_only; 2590 pool->process_discard_cell = process_cell_success; 2591 pool->process_prepared_mapping = process_prepared_mapping_fail; 2592 pool->process_prepared_discard = process_prepared_discard_success; 2593 2594 error_retry_list(pool); 2595 break; 2596 2597 case PM_OUT_OF_DATA_SPACE: 2598 /* 2599 * Ideally we'd never hit this state; the low water mark 2600 * would trigger userland to extend the pool before we 2601 * completely run out of data space. However, many small 2602 * IOs to unprovisioned space can consume data space at an 2603 * alarming rate. Adjust your low water mark if you're 2604 * frequently seeing this mode. 2605 */ 2606 pool->out_of_data_space = true; 2607 pool->process_bio = process_bio_read_only; 2608 pool->process_discard = process_discard_bio; 2609 pool->process_cell = process_cell_read_only; 2610 pool->process_prepared_mapping = process_prepared_mapping; 2611 set_discard_callbacks(pool); 2612 2613 if (!pool->pf.error_if_no_space && no_space_timeout) 2614 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2615 break; 2616 2617 case PM_WRITE: 2618 if (old_mode == PM_OUT_OF_DATA_SPACE) 2619 cancel_delayed_work_sync(&pool->no_space_timeout); 2620 pool->out_of_data_space = false; 2621 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2622 dm_pool_metadata_read_write(pool->pmd); 2623 pool->process_bio = process_bio; 2624 pool->process_discard = process_discard_bio; 2625 pool->process_cell = process_cell; 2626 pool->process_prepared_mapping = process_prepared_mapping; 2627 set_discard_callbacks(pool); 2628 break; 2629 } 2630 2631 pool->pf.mode = new_mode; 2632 /* 2633 * The pool mode may have changed, sync it so bind_control_target() 2634 * doesn't cause an unexpected mode transition on resume. 2635 */ 2636 pt->adjusted_pf.mode = new_mode; 2637 2638 if (old_mode != new_mode) 2639 notify_of_pool_mode_change(pool); 2640 } 2641 2642 static void abort_transaction(struct pool *pool) 2643 { 2644 const char *dev_name = dm_device_name(pool->pool_md); 2645 2646 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2647 if (dm_pool_abort_metadata(pool->pmd)) { 2648 DMERR("%s: failed to abort metadata transaction", dev_name); 2649 set_pool_mode(pool, PM_FAIL); 2650 } 2651 2652 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2653 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2654 set_pool_mode(pool, PM_FAIL); 2655 } 2656 } 2657 2658 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2659 { 2660 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2661 dm_device_name(pool->pool_md), op, r); 2662 2663 abort_transaction(pool); 2664 set_pool_mode(pool, PM_READ_ONLY); 2665 } 2666 2667 /*----------------------------------------------------------------*/ 2668 2669 /* 2670 * Mapping functions. 2671 */ 2672 2673 /* 2674 * Called only while mapping a thin bio to hand it over to the workqueue. 2675 */ 2676 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2677 { 2678 struct pool *pool = tc->pool; 2679 2680 spin_lock_irq(&tc->lock); 2681 bio_list_add(&tc->deferred_bio_list, bio); 2682 spin_unlock_irq(&tc->lock); 2683 2684 wake_worker(pool); 2685 } 2686 2687 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2688 { 2689 struct pool *pool = tc->pool; 2690 2691 throttle_lock(&pool->throttle); 2692 thin_defer_bio(tc, bio); 2693 throttle_unlock(&pool->throttle); 2694 } 2695 2696 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2697 { 2698 struct pool *pool = tc->pool; 2699 2700 throttle_lock(&pool->throttle); 2701 spin_lock_irq(&tc->lock); 2702 list_add_tail(&cell->user_list, &tc->deferred_cells); 2703 spin_unlock_irq(&tc->lock); 2704 throttle_unlock(&pool->throttle); 2705 2706 wake_worker(pool); 2707 } 2708 2709 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2710 { 2711 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2712 2713 h->tc = tc; 2714 h->shared_read_entry = NULL; 2715 h->all_io_entry = NULL; 2716 h->overwrite_mapping = NULL; 2717 h->cell = NULL; 2718 } 2719 2720 /* 2721 * Non-blocking function called from the thin target's map function. 2722 */ 2723 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2724 { 2725 int r; 2726 struct thin_c *tc = ti->private; 2727 dm_block_t block = get_bio_block(tc, bio); 2728 struct dm_thin_device *td = tc->td; 2729 struct dm_thin_lookup_result result; 2730 struct dm_bio_prison_cell *virt_cell, *data_cell; 2731 struct dm_cell_key key; 2732 2733 thin_hook_bio(tc, bio); 2734 2735 if (tc->requeue_mode) { 2736 bio->bi_status = BLK_STS_DM_REQUEUE; 2737 bio_endio(bio); 2738 return DM_MAPIO_SUBMITTED; 2739 } 2740 2741 if (get_pool_mode(tc->pool) == PM_FAIL) { 2742 bio_io_error(bio); 2743 return DM_MAPIO_SUBMITTED; 2744 } 2745 2746 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2747 thin_defer_bio_with_throttle(tc, bio); 2748 return DM_MAPIO_SUBMITTED; 2749 } 2750 2751 /* 2752 * We must hold the virtual cell before doing the lookup, otherwise 2753 * there's a race with discard. 2754 */ 2755 build_virtual_key(tc->td, block, &key); 2756 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2757 return DM_MAPIO_SUBMITTED; 2758 2759 r = dm_thin_find_block(td, block, 0, &result); 2760 2761 /* 2762 * Note that we defer readahead too. 2763 */ 2764 switch (r) { 2765 case 0: 2766 if (unlikely(result.shared)) { 2767 /* 2768 * We have a race condition here between the 2769 * result.shared value returned by the lookup and 2770 * snapshot creation, which may cause new 2771 * sharing. 2772 * 2773 * To avoid this always quiesce the origin before 2774 * taking the snap. You want to do this anyway to 2775 * ensure a consistent application view 2776 * (i.e. lockfs). 2777 * 2778 * More distant ancestors are irrelevant. The 2779 * shared flag will be set in their case. 2780 */ 2781 thin_defer_cell(tc, virt_cell); 2782 return DM_MAPIO_SUBMITTED; 2783 } 2784 2785 build_data_key(tc->td, result.block, &key); 2786 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2787 cell_defer_no_holder(tc, virt_cell); 2788 return DM_MAPIO_SUBMITTED; 2789 } 2790 2791 inc_all_io_entry(tc->pool, bio); 2792 cell_defer_no_holder(tc, data_cell); 2793 cell_defer_no_holder(tc, virt_cell); 2794 2795 remap(tc, bio, result.block); 2796 return DM_MAPIO_REMAPPED; 2797 2798 case -ENODATA: 2799 case -EWOULDBLOCK: 2800 thin_defer_cell(tc, virt_cell); 2801 return DM_MAPIO_SUBMITTED; 2802 2803 default: 2804 /* 2805 * Must always call bio_io_error on failure. 2806 * dm_thin_find_block can fail with -EINVAL if the 2807 * pool is switched to fail-io mode. 2808 */ 2809 bio_io_error(bio); 2810 cell_defer_no_holder(tc, virt_cell); 2811 return DM_MAPIO_SUBMITTED; 2812 } 2813 } 2814 2815 static void requeue_bios(struct pool *pool) 2816 { 2817 struct thin_c *tc; 2818 2819 rcu_read_lock(); 2820 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2821 spin_lock_irq(&tc->lock); 2822 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2823 bio_list_init(&tc->retry_on_resume_list); 2824 spin_unlock_irq(&tc->lock); 2825 } 2826 rcu_read_unlock(); 2827 } 2828 2829 /* 2830 *-------------------------------------------------------------- 2831 * Binding of control targets to a pool object 2832 *-------------------------------------------------------------- 2833 */ 2834 static bool is_factor(sector_t block_size, uint32_t n) 2835 { 2836 return !sector_div(block_size, n); 2837 } 2838 2839 /* 2840 * If discard_passdown was enabled verify that the data device 2841 * supports discards. Disable discard_passdown if not. 2842 */ 2843 static void disable_discard_passdown_if_not_supported(struct pool_c *pt) 2844 { 2845 struct pool *pool = pt->pool; 2846 struct block_device *data_bdev = pt->data_dev->bdev; 2847 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2848 const char *reason = NULL; 2849 2850 if (!pt->adjusted_pf.discard_passdown) 2851 return; 2852 2853 if (!bdev_max_discard_sectors(pt->data_dev->bdev)) 2854 reason = "discard unsupported"; 2855 2856 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2857 reason = "max discard sectors smaller than a block"; 2858 2859 if (reason) { 2860 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason); 2861 pt->adjusted_pf.discard_passdown = false; 2862 } 2863 } 2864 2865 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2866 { 2867 struct pool_c *pt = ti->private; 2868 2869 /* 2870 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2871 */ 2872 enum pool_mode old_mode = get_pool_mode(pool); 2873 enum pool_mode new_mode = pt->adjusted_pf.mode; 2874 2875 /* 2876 * Don't change the pool's mode until set_pool_mode() below. 2877 * Otherwise the pool's process_* function pointers may 2878 * not match the desired pool mode. 2879 */ 2880 pt->adjusted_pf.mode = old_mode; 2881 2882 pool->ti = ti; 2883 pool->pf = pt->adjusted_pf; 2884 pool->low_water_blocks = pt->low_water_blocks; 2885 2886 set_pool_mode(pool, new_mode); 2887 2888 return 0; 2889 } 2890 2891 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2892 { 2893 if (pool->ti == ti) 2894 pool->ti = NULL; 2895 } 2896 2897 /* 2898 *-------------------------------------------------------------- 2899 * Pool creation 2900 *-------------------------------------------------------------- 2901 */ 2902 /* Initialize pool features. */ 2903 static void pool_features_init(struct pool_features *pf) 2904 { 2905 pf->mode = PM_WRITE; 2906 pf->zero_new_blocks = true; 2907 pf->discard_enabled = true; 2908 pf->discard_passdown = true; 2909 pf->error_if_no_space = false; 2910 } 2911 2912 static void __pool_destroy(struct pool *pool) 2913 { 2914 __pool_table_remove(pool); 2915 2916 vfree(pool->cell_sort_array); 2917 if (dm_pool_metadata_close(pool->pmd) < 0) 2918 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2919 2920 dm_bio_prison_destroy(pool->prison); 2921 dm_kcopyd_client_destroy(pool->copier); 2922 2923 cancel_delayed_work_sync(&pool->waker); 2924 cancel_delayed_work_sync(&pool->no_space_timeout); 2925 if (pool->wq) 2926 destroy_workqueue(pool->wq); 2927 2928 if (pool->next_mapping) 2929 mempool_free(pool->next_mapping, &pool->mapping_pool); 2930 mempool_exit(&pool->mapping_pool); 2931 dm_deferred_set_destroy(pool->shared_read_ds); 2932 dm_deferred_set_destroy(pool->all_io_ds); 2933 kfree(pool); 2934 } 2935 2936 static struct kmem_cache *_new_mapping_cache; 2937 2938 static struct pool *pool_create(struct mapped_device *pool_md, 2939 struct block_device *metadata_dev, 2940 struct block_device *data_dev, 2941 unsigned long block_size, 2942 int read_only, char **error) 2943 { 2944 int r; 2945 void *err_p; 2946 struct pool *pool; 2947 struct dm_pool_metadata *pmd; 2948 bool format_device = read_only ? false : true; 2949 2950 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2951 if (IS_ERR(pmd)) { 2952 *error = "Error creating metadata object"; 2953 return (struct pool *)pmd; 2954 } 2955 2956 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2957 if (!pool) { 2958 *error = "Error allocating memory for pool"; 2959 err_p = ERR_PTR(-ENOMEM); 2960 goto bad_pool; 2961 } 2962 2963 pool->pmd = pmd; 2964 pool->sectors_per_block = block_size; 2965 if (block_size & (block_size - 1)) 2966 pool->sectors_per_block_shift = -1; 2967 else 2968 pool->sectors_per_block_shift = __ffs(block_size); 2969 pool->low_water_blocks = 0; 2970 pool_features_init(&pool->pf); 2971 pool->prison = dm_bio_prison_create(); 2972 if (!pool->prison) { 2973 *error = "Error creating pool's bio prison"; 2974 err_p = ERR_PTR(-ENOMEM); 2975 goto bad_prison; 2976 } 2977 2978 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2979 if (IS_ERR(pool->copier)) { 2980 r = PTR_ERR(pool->copier); 2981 *error = "Error creating pool's kcopyd client"; 2982 err_p = ERR_PTR(r); 2983 goto bad_kcopyd_client; 2984 } 2985 2986 /* 2987 * Create singlethreaded workqueue that will service all devices 2988 * that use this metadata. 2989 */ 2990 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2991 if (!pool->wq) { 2992 *error = "Error creating pool's workqueue"; 2993 err_p = ERR_PTR(-ENOMEM); 2994 goto bad_wq; 2995 } 2996 2997 throttle_init(&pool->throttle); 2998 INIT_WORK(&pool->worker, do_worker); 2999 INIT_DELAYED_WORK(&pool->waker, do_waker); 3000 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 3001 spin_lock_init(&pool->lock); 3002 bio_list_init(&pool->deferred_flush_bios); 3003 bio_list_init(&pool->deferred_flush_completions); 3004 INIT_LIST_HEAD(&pool->prepared_mappings); 3005 INIT_LIST_HEAD(&pool->prepared_discards); 3006 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 3007 INIT_LIST_HEAD(&pool->active_thins); 3008 pool->low_water_triggered = false; 3009 pool->suspended = true; 3010 pool->out_of_data_space = false; 3011 3012 pool->shared_read_ds = dm_deferred_set_create(); 3013 if (!pool->shared_read_ds) { 3014 *error = "Error creating pool's shared read deferred set"; 3015 err_p = ERR_PTR(-ENOMEM); 3016 goto bad_shared_read_ds; 3017 } 3018 3019 pool->all_io_ds = dm_deferred_set_create(); 3020 if (!pool->all_io_ds) { 3021 *error = "Error creating pool's all io deferred set"; 3022 err_p = ERR_PTR(-ENOMEM); 3023 goto bad_all_io_ds; 3024 } 3025 3026 pool->next_mapping = NULL; 3027 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3028 _new_mapping_cache); 3029 if (r) { 3030 *error = "Error creating pool's mapping mempool"; 3031 err_p = ERR_PTR(r); 3032 goto bad_mapping_pool; 3033 } 3034 3035 pool->cell_sort_array = 3036 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3037 sizeof(*pool->cell_sort_array))); 3038 if (!pool->cell_sort_array) { 3039 *error = "Error allocating cell sort array"; 3040 err_p = ERR_PTR(-ENOMEM); 3041 goto bad_sort_array; 3042 } 3043 3044 pool->ref_count = 1; 3045 pool->last_commit_jiffies = jiffies; 3046 pool->pool_md = pool_md; 3047 pool->md_dev = metadata_dev; 3048 pool->data_dev = data_dev; 3049 __pool_table_insert(pool); 3050 3051 return pool; 3052 3053 bad_sort_array: 3054 mempool_exit(&pool->mapping_pool); 3055 bad_mapping_pool: 3056 dm_deferred_set_destroy(pool->all_io_ds); 3057 bad_all_io_ds: 3058 dm_deferred_set_destroy(pool->shared_read_ds); 3059 bad_shared_read_ds: 3060 destroy_workqueue(pool->wq); 3061 bad_wq: 3062 dm_kcopyd_client_destroy(pool->copier); 3063 bad_kcopyd_client: 3064 dm_bio_prison_destroy(pool->prison); 3065 bad_prison: 3066 kfree(pool); 3067 bad_pool: 3068 if (dm_pool_metadata_close(pmd)) 3069 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3070 3071 return err_p; 3072 } 3073 3074 static void __pool_inc(struct pool *pool) 3075 { 3076 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3077 pool->ref_count++; 3078 } 3079 3080 static void __pool_dec(struct pool *pool) 3081 { 3082 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3083 BUG_ON(!pool->ref_count); 3084 if (!--pool->ref_count) 3085 __pool_destroy(pool); 3086 } 3087 3088 static struct pool *__pool_find(struct mapped_device *pool_md, 3089 struct block_device *metadata_dev, 3090 struct block_device *data_dev, 3091 unsigned long block_size, int read_only, 3092 char **error, int *created) 3093 { 3094 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3095 3096 if (pool) { 3097 if (pool->pool_md != pool_md) { 3098 *error = "metadata device already in use by a pool"; 3099 return ERR_PTR(-EBUSY); 3100 } 3101 if (pool->data_dev != data_dev) { 3102 *error = "data device already in use by a pool"; 3103 return ERR_PTR(-EBUSY); 3104 } 3105 __pool_inc(pool); 3106 3107 } else { 3108 pool = __pool_table_lookup(pool_md); 3109 if (pool) { 3110 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3111 *error = "different pool cannot replace a pool"; 3112 return ERR_PTR(-EINVAL); 3113 } 3114 __pool_inc(pool); 3115 3116 } else { 3117 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3118 *created = 1; 3119 } 3120 } 3121 3122 return pool; 3123 } 3124 3125 /* 3126 *-------------------------------------------------------------- 3127 * Pool target methods 3128 *-------------------------------------------------------------- 3129 */ 3130 static void pool_dtr(struct dm_target *ti) 3131 { 3132 struct pool_c *pt = ti->private; 3133 3134 mutex_lock(&dm_thin_pool_table.mutex); 3135 3136 unbind_control_target(pt->pool, ti); 3137 __pool_dec(pt->pool); 3138 dm_put_device(ti, pt->metadata_dev); 3139 dm_put_device(ti, pt->data_dev); 3140 kfree(pt); 3141 3142 mutex_unlock(&dm_thin_pool_table.mutex); 3143 } 3144 3145 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3146 struct dm_target *ti) 3147 { 3148 int r; 3149 unsigned int argc; 3150 const char *arg_name; 3151 3152 static const struct dm_arg _args[] = { 3153 {0, 4, "Invalid number of pool feature arguments"}, 3154 }; 3155 3156 /* 3157 * No feature arguments supplied. 3158 */ 3159 if (!as->argc) 3160 return 0; 3161 3162 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3163 if (r) 3164 return -EINVAL; 3165 3166 while (argc && !r) { 3167 arg_name = dm_shift_arg(as); 3168 argc--; 3169 3170 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3171 pf->zero_new_blocks = false; 3172 3173 else if (!strcasecmp(arg_name, "ignore_discard")) 3174 pf->discard_enabled = false; 3175 3176 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3177 pf->discard_passdown = false; 3178 3179 else if (!strcasecmp(arg_name, "read_only")) 3180 pf->mode = PM_READ_ONLY; 3181 3182 else if (!strcasecmp(arg_name, "error_if_no_space")) 3183 pf->error_if_no_space = true; 3184 3185 else { 3186 ti->error = "Unrecognised pool feature requested"; 3187 r = -EINVAL; 3188 break; 3189 } 3190 } 3191 3192 return r; 3193 } 3194 3195 static void metadata_low_callback(void *context) 3196 { 3197 struct pool *pool = context; 3198 3199 DMWARN("%s: reached low water mark for metadata device: sending event.", 3200 dm_device_name(pool->pool_md)); 3201 3202 dm_table_event(pool->ti->table); 3203 } 3204 3205 /* 3206 * We need to flush the data device **before** committing the metadata. 3207 * 3208 * This ensures that the data blocks of any newly inserted mappings are 3209 * properly written to non-volatile storage and won't be lost in case of a 3210 * crash. 3211 * 3212 * Failure to do so can result in data corruption in the case of internal or 3213 * external snapshots and in the case of newly provisioned blocks, when block 3214 * zeroing is enabled. 3215 */ 3216 static int metadata_pre_commit_callback(void *context) 3217 { 3218 struct pool *pool = context; 3219 3220 return blkdev_issue_flush(pool->data_dev); 3221 } 3222 3223 static sector_t get_dev_size(struct block_device *bdev) 3224 { 3225 return bdev_nr_sectors(bdev); 3226 } 3227 3228 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3229 { 3230 sector_t metadata_dev_size = get_dev_size(bdev); 3231 3232 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3233 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 3234 bdev, THIN_METADATA_MAX_SECTORS); 3235 } 3236 3237 static sector_t get_metadata_dev_size(struct block_device *bdev) 3238 { 3239 sector_t metadata_dev_size = get_dev_size(bdev); 3240 3241 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3242 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3243 3244 return metadata_dev_size; 3245 } 3246 3247 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3248 { 3249 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3250 3251 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3252 3253 return metadata_dev_size; 3254 } 3255 3256 /* 3257 * When a metadata threshold is crossed a dm event is triggered, and 3258 * userland should respond by growing the metadata device. We could let 3259 * userland set the threshold, like we do with the data threshold, but I'm 3260 * not sure they know enough to do this well. 3261 */ 3262 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3263 { 3264 /* 3265 * 4M is ample for all ops with the possible exception of thin 3266 * device deletion which is harmless if it fails (just retry the 3267 * delete after you've grown the device). 3268 */ 3269 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3270 3271 return min((dm_block_t)1024ULL /* 4M */, quarter); 3272 } 3273 3274 /* 3275 * thin-pool <metadata dev> <data dev> 3276 * <data block size (sectors)> 3277 * <low water mark (blocks)> 3278 * [<#feature args> [<arg>]*] 3279 * 3280 * Optional feature arguments are: 3281 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3282 * ignore_discard: disable discard 3283 * no_discard_passdown: don't pass discards down to the data device 3284 * read_only: Don't allow any changes to be made to the pool metadata. 3285 * error_if_no_space: error IOs, instead of queueing, if no space. 3286 */ 3287 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3288 { 3289 int r, pool_created = 0; 3290 struct pool_c *pt; 3291 struct pool *pool; 3292 struct pool_features pf; 3293 struct dm_arg_set as; 3294 struct dm_dev *data_dev; 3295 unsigned long block_size; 3296 dm_block_t low_water_blocks; 3297 struct dm_dev *metadata_dev; 3298 blk_mode_t metadata_mode; 3299 3300 /* 3301 * FIXME Remove validation from scope of lock. 3302 */ 3303 mutex_lock(&dm_thin_pool_table.mutex); 3304 3305 if (argc < 4) { 3306 ti->error = "Invalid argument count"; 3307 r = -EINVAL; 3308 goto out_unlock; 3309 } 3310 3311 as.argc = argc; 3312 as.argv = argv; 3313 3314 /* make sure metadata and data are different devices */ 3315 if (!strcmp(argv[0], argv[1])) { 3316 ti->error = "Error setting metadata or data device"; 3317 r = -EINVAL; 3318 goto out_unlock; 3319 } 3320 3321 /* 3322 * Set default pool features. 3323 */ 3324 pool_features_init(&pf); 3325 3326 dm_consume_args(&as, 4); 3327 r = parse_pool_features(&as, &pf, ti); 3328 if (r) 3329 goto out_unlock; 3330 3331 metadata_mode = BLK_OPEN_READ | 3332 ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE); 3333 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3334 if (r) { 3335 ti->error = "Error opening metadata block device"; 3336 goto out_unlock; 3337 } 3338 warn_if_metadata_device_too_big(metadata_dev->bdev); 3339 3340 r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev); 3341 if (r) { 3342 ti->error = "Error getting data device"; 3343 goto out_metadata; 3344 } 3345 3346 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3347 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3348 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3349 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3350 ti->error = "Invalid block size"; 3351 r = -EINVAL; 3352 goto out; 3353 } 3354 3355 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3356 ti->error = "Invalid low water mark"; 3357 r = -EINVAL; 3358 goto out; 3359 } 3360 3361 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3362 if (!pt) { 3363 r = -ENOMEM; 3364 goto out; 3365 } 3366 3367 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3368 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3369 if (IS_ERR(pool)) { 3370 r = PTR_ERR(pool); 3371 goto out_free_pt; 3372 } 3373 3374 /* 3375 * 'pool_created' reflects whether this is the first table load. 3376 * Top level discard support is not allowed to be changed after 3377 * initial load. This would require a pool reload to trigger thin 3378 * device changes. 3379 */ 3380 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3381 ti->error = "Discard support cannot be disabled once enabled"; 3382 r = -EINVAL; 3383 goto out_flags_changed; 3384 } 3385 3386 pt->pool = pool; 3387 pt->ti = ti; 3388 pt->metadata_dev = metadata_dev; 3389 pt->data_dev = data_dev; 3390 pt->low_water_blocks = low_water_blocks; 3391 pt->adjusted_pf = pt->requested_pf = pf; 3392 ti->num_flush_bios = 1; 3393 ti->limit_swap_bios = true; 3394 3395 /* 3396 * Only need to enable discards if the pool should pass 3397 * them down to the data device. The thin device's discard 3398 * processing will cause mappings to be removed from the btree. 3399 */ 3400 if (pf.discard_enabled && pf.discard_passdown) { 3401 ti->num_discard_bios = 1; 3402 /* 3403 * Setting 'discards_supported' circumvents the normal 3404 * stacking of discard limits (this keeps the pool and 3405 * thin devices' discard limits consistent). 3406 */ 3407 ti->discards_supported = true; 3408 ti->max_discard_granularity = true; 3409 } 3410 ti->private = pt; 3411 3412 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3413 calc_metadata_threshold(pt), 3414 metadata_low_callback, 3415 pool); 3416 if (r) { 3417 ti->error = "Error registering metadata threshold"; 3418 goto out_flags_changed; 3419 } 3420 3421 dm_pool_register_pre_commit_callback(pool->pmd, 3422 metadata_pre_commit_callback, pool); 3423 3424 mutex_unlock(&dm_thin_pool_table.mutex); 3425 3426 return 0; 3427 3428 out_flags_changed: 3429 __pool_dec(pool); 3430 out_free_pt: 3431 kfree(pt); 3432 out: 3433 dm_put_device(ti, data_dev); 3434 out_metadata: 3435 dm_put_device(ti, metadata_dev); 3436 out_unlock: 3437 mutex_unlock(&dm_thin_pool_table.mutex); 3438 3439 return r; 3440 } 3441 3442 static int pool_map(struct dm_target *ti, struct bio *bio) 3443 { 3444 struct pool_c *pt = ti->private; 3445 struct pool *pool = pt->pool; 3446 3447 /* 3448 * As this is a singleton target, ti->begin is always zero. 3449 */ 3450 spin_lock_irq(&pool->lock); 3451 bio_set_dev(bio, pt->data_dev->bdev); 3452 spin_unlock_irq(&pool->lock); 3453 3454 return DM_MAPIO_REMAPPED; 3455 } 3456 3457 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3458 { 3459 int r; 3460 struct pool_c *pt = ti->private; 3461 struct pool *pool = pt->pool; 3462 sector_t data_size = ti->len; 3463 dm_block_t sb_data_size; 3464 3465 *need_commit = false; 3466 3467 (void) sector_div(data_size, pool->sectors_per_block); 3468 3469 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3470 if (r) { 3471 DMERR("%s: failed to retrieve data device size", 3472 dm_device_name(pool->pool_md)); 3473 return r; 3474 } 3475 3476 if (data_size < sb_data_size) { 3477 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3478 dm_device_name(pool->pool_md), 3479 (unsigned long long)data_size, sb_data_size); 3480 return -EINVAL; 3481 3482 } else if (data_size > sb_data_size) { 3483 if (dm_pool_metadata_needs_check(pool->pmd)) { 3484 DMERR("%s: unable to grow the data device until repaired.", 3485 dm_device_name(pool->pool_md)); 3486 return 0; 3487 } 3488 3489 if (sb_data_size) 3490 DMINFO("%s: growing the data device from %llu to %llu blocks", 3491 dm_device_name(pool->pool_md), 3492 sb_data_size, (unsigned long long)data_size); 3493 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3494 if (r) { 3495 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3496 return r; 3497 } 3498 3499 *need_commit = true; 3500 } 3501 3502 return 0; 3503 } 3504 3505 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3506 { 3507 int r; 3508 struct pool_c *pt = ti->private; 3509 struct pool *pool = pt->pool; 3510 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3511 3512 *need_commit = false; 3513 3514 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3515 3516 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3517 if (r) { 3518 DMERR("%s: failed to retrieve metadata device size", 3519 dm_device_name(pool->pool_md)); 3520 return r; 3521 } 3522 3523 if (metadata_dev_size < sb_metadata_dev_size) { 3524 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3525 dm_device_name(pool->pool_md), 3526 metadata_dev_size, sb_metadata_dev_size); 3527 return -EINVAL; 3528 3529 } else if (metadata_dev_size > sb_metadata_dev_size) { 3530 if (dm_pool_metadata_needs_check(pool->pmd)) { 3531 DMERR("%s: unable to grow the metadata device until repaired.", 3532 dm_device_name(pool->pool_md)); 3533 return 0; 3534 } 3535 3536 warn_if_metadata_device_too_big(pool->md_dev); 3537 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3538 dm_device_name(pool->pool_md), 3539 sb_metadata_dev_size, metadata_dev_size); 3540 3541 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3542 set_pool_mode(pool, PM_WRITE); 3543 3544 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3545 if (r) { 3546 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3547 return r; 3548 } 3549 3550 *need_commit = true; 3551 } 3552 3553 return 0; 3554 } 3555 3556 /* 3557 * Retrieves the number of blocks of the data device from 3558 * the superblock and compares it to the actual device size, 3559 * thus resizing the data device in case it has grown. 3560 * 3561 * This both copes with opening preallocated data devices in the ctr 3562 * being followed by a resume 3563 * -and- 3564 * calling the resume method individually after userspace has 3565 * grown the data device in reaction to a table event. 3566 */ 3567 static int pool_preresume(struct dm_target *ti) 3568 { 3569 int r; 3570 bool need_commit1, need_commit2; 3571 struct pool_c *pt = ti->private; 3572 struct pool *pool = pt->pool; 3573 3574 /* 3575 * Take control of the pool object. 3576 */ 3577 r = bind_control_target(pool, ti); 3578 if (r) 3579 goto out; 3580 3581 r = maybe_resize_data_dev(ti, &need_commit1); 3582 if (r) 3583 goto out; 3584 3585 r = maybe_resize_metadata_dev(ti, &need_commit2); 3586 if (r) 3587 goto out; 3588 3589 if (need_commit1 || need_commit2) 3590 (void) commit(pool); 3591 out: 3592 /* 3593 * When a thin-pool is PM_FAIL, it cannot be rebuilt if 3594 * bio is in deferred list. Therefore need to return 0 3595 * to allow pool_resume() to flush IO. 3596 */ 3597 if (r && get_pool_mode(pool) == PM_FAIL) 3598 r = 0; 3599 3600 return r; 3601 } 3602 3603 static void pool_suspend_active_thins(struct pool *pool) 3604 { 3605 struct thin_c *tc; 3606 3607 /* Suspend all active thin devices */ 3608 tc = get_first_thin(pool); 3609 while (tc) { 3610 dm_internal_suspend_noflush(tc->thin_md); 3611 tc = get_next_thin(pool, tc); 3612 } 3613 } 3614 3615 static void pool_resume_active_thins(struct pool *pool) 3616 { 3617 struct thin_c *tc; 3618 3619 /* Resume all active thin devices */ 3620 tc = get_first_thin(pool); 3621 while (tc) { 3622 dm_internal_resume(tc->thin_md); 3623 tc = get_next_thin(pool, tc); 3624 } 3625 } 3626 3627 static void pool_resume(struct dm_target *ti) 3628 { 3629 struct pool_c *pt = ti->private; 3630 struct pool *pool = pt->pool; 3631 3632 /* 3633 * Must requeue active_thins' bios and then resume 3634 * active_thins _before_ clearing 'suspend' flag. 3635 */ 3636 requeue_bios(pool); 3637 pool_resume_active_thins(pool); 3638 3639 spin_lock_irq(&pool->lock); 3640 pool->low_water_triggered = false; 3641 pool->suspended = false; 3642 spin_unlock_irq(&pool->lock); 3643 3644 do_waker(&pool->waker.work); 3645 } 3646 3647 static void pool_presuspend(struct dm_target *ti) 3648 { 3649 struct pool_c *pt = ti->private; 3650 struct pool *pool = pt->pool; 3651 3652 spin_lock_irq(&pool->lock); 3653 pool->suspended = true; 3654 spin_unlock_irq(&pool->lock); 3655 3656 pool_suspend_active_thins(pool); 3657 } 3658 3659 static void pool_presuspend_undo(struct dm_target *ti) 3660 { 3661 struct pool_c *pt = ti->private; 3662 struct pool *pool = pt->pool; 3663 3664 pool_resume_active_thins(pool); 3665 3666 spin_lock_irq(&pool->lock); 3667 pool->suspended = false; 3668 spin_unlock_irq(&pool->lock); 3669 } 3670 3671 static void pool_postsuspend(struct dm_target *ti) 3672 { 3673 struct pool_c *pt = ti->private; 3674 struct pool *pool = pt->pool; 3675 3676 cancel_delayed_work_sync(&pool->waker); 3677 cancel_delayed_work_sync(&pool->no_space_timeout); 3678 flush_workqueue(pool->wq); 3679 (void) commit(pool); 3680 } 3681 3682 static int check_arg_count(unsigned int argc, unsigned int args_required) 3683 { 3684 if (argc != args_required) { 3685 DMWARN("Message received with %u arguments instead of %u.", 3686 argc, args_required); 3687 return -EINVAL; 3688 } 3689 3690 return 0; 3691 } 3692 3693 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3694 { 3695 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3696 *dev_id <= MAX_DEV_ID) 3697 return 0; 3698 3699 if (warning) 3700 DMWARN("Message received with invalid device id: %s", arg); 3701 3702 return -EINVAL; 3703 } 3704 3705 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool) 3706 { 3707 dm_thin_id dev_id; 3708 int r; 3709 3710 r = check_arg_count(argc, 2); 3711 if (r) 3712 return r; 3713 3714 r = read_dev_id(argv[1], &dev_id, 1); 3715 if (r) 3716 return r; 3717 3718 r = dm_pool_create_thin(pool->pmd, dev_id); 3719 if (r) { 3720 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3721 argv[1]); 3722 return r; 3723 } 3724 3725 return 0; 3726 } 3727 3728 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3729 { 3730 dm_thin_id dev_id; 3731 dm_thin_id origin_dev_id; 3732 int r; 3733 3734 r = check_arg_count(argc, 3); 3735 if (r) 3736 return r; 3737 3738 r = read_dev_id(argv[1], &dev_id, 1); 3739 if (r) 3740 return r; 3741 3742 r = read_dev_id(argv[2], &origin_dev_id, 1); 3743 if (r) 3744 return r; 3745 3746 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3747 if (r) { 3748 DMWARN("Creation of new snapshot %s of device %s failed.", 3749 argv[1], argv[2]); 3750 return r; 3751 } 3752 3753 return 0; 3754 } 3755 3756 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool) 3757 { 3758 dm_thin_id dev_id; 3759 int r; 3760 3761 r = check_arg_count(argc, 2); 3762 if (r) 3763 return r; 3764 3765 r = read_dev_id(argv[1], &dev_id, 1); 3766 if (r) 3767 return r; 3768 3769 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3770 if (r) 3771 DMWARN("Deletion of thin device %s failed.", argv[1]); 3772 3773 return r; 3774 } 3775 3776 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool) 3777 { 3778 dm_thin_id old_id, new_id; 3779 int r; 3780 3781 r = check_arg_count(argc, 3); 3782 if (r) 3783 return r; 3784 3785 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3786 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3787 return -EINVAL; 3788 } 3789 3790 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3791 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3792 return -EINVAL; 3793 } 3794 3795 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3796 if (r) { 3797 DMWARN("Failed to change transaction id from %s to %s.", 3798 argv[1], argv[2]); 3799 return r; 3800 } 3801 3802 return 0; 3803 } 3804 3805 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3806 { 3807 int r; 3808 3809 r = check_arg_count(argc, 1); 3810 if (r) 3811 return r; 3812 3813 (void) commit(pool); 3814 3815 r = dm_pool_reserve_metadata_snap(pool->pmd); 3816 if (r) 3817 DMWARN("reserve_metadata_snap message failed."); 3818 3819 return r; 3820 } 3821 3822 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3823 { 3824 int r; 3825 3826 r = check_arg_count(argc, 1); 3827 if (r) 3828 return r; 3829 3830 r = dm_pool_release_metadata_snap(pool->pmd); 3831 if (r) 3832 DMWARN("release_metadata_snap message failed."); 3833 3834 return r; 3835 } 3836 3837 /* 3838 * Messages supported: 3839 * create_thin <dev_id> 3840 * create_snap <dev_id> <origin_id> 3841 * delete <dev_id> 3842 * set_transaction_id <current_trans_id> <new_trans_id> 3843 * reserve_metadata_snap 3844 * release_metadata_snap 3845 */ 3846 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv, 3847 char *result, unsigned int maxlen) 3848 { 3849 int r = -EINVAL; 3850 struct pool_c *pt = ti->private; 3851 struct pool *pool = pt->pool; 3852 3853 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3854 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3855 dm_device_name(pool->pool_md)); 3856 return -EOPNOTSUPP; 3857 } 3858 3859 if (!strcasecmp(argv[0], "create_thin")) 3860 r = process_create_thin_mesg(argc, argv, pool); 3861 3862 else if (!strcasecmp(argv[0], "create_snap")) 3863 r = process_create_snap_mesg(argc, argv, pool); 3864 3865 else if (!strcasecmp(argv[0], "delete")) 3866 r = process_delete_mesg(argc, argv, pool); 3867 3868 else if (!strcasecmp(argv[0], "set_transaction_id")) 3869 r = process_set_transaction_id_mesg(argc, argv, pool); 3870 3871 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3872 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3873 3874 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3875 r = process_release_metadata_snap_mesg(argc, argv, pool); 3876 3877 else 3878 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3879 3880 if (!r) 3881 (void) commit(pool); 3882 3883 return r; 3884 } 3885 3886 static void emit_flags(struct pool_features *pf, char *result, 3887 unsigned int sz, unsigned int maxlen) 3888 { 3889 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled + 3890 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3891 pf->error_if_no_space; 3892 DMEMIT("%u ", count); 3893 3894 if (!pf->zero_new_blocks) 3895 DMEMIT("skip_block_zeroing "); 3896 3897 if (!pf->discard_enabled) 3898 DMEMIT("ignore_discard "); 3899 3900 if (!pf->discard_passdown) 3901 DMEMIT("no_discard_passdown "); 3902 3903 if (pf->mode == PM_READ_ONLY) 3904 DMEMIT("read_only "); 3905 3906 if (pf->error_if_no_space) 3907 DMEMIT("error_if_no_space "); 3908 } 3909 3910 /* 3911 * Status line is: 3912 * <transaction id> <used metadata sectors>/<total metadata sectors> 3913 * <used data sectors>/<total data sectors> <held metadata root> 3914 * <pool mode> <discard config> <no space config> <needs_check> 3915 */ 3916 static void pool_status(struct dm_target *ti, status_type_t type, 3917 unsigned int status_flags, char *result, unsigned int maxlen) 3918 { 3919 int r; 3920 unsigned int sz = 0; 3921 uint64_t transaction_id; 3922 dm_block_t nr_free_blocks_data; 3923 dm_block_t nr_free_blocks_metadata; 3924 dm_block_t nr_blocks_data; 3925 dm_block_t nr_blocks_metadata; 3926 dm_block_t held_root; 3927 enum pool_mode mode; 3928 char buf[BDEVNAME_SIZE]; 3929 char buf2[BDEVNAME_SIZE]; 3930 struct pool_c *pt = ti->private; 3931 struct pool *pool = pt->pool; 3932 3933 switch (type) { 3934 case STATUSTYPE_INFO: 3935 if (get_pool_mode(pool) == PM_FAIL) { 3936 DMEMIT("Fail"); 3937 break; 3938 } 3939 3940 /* Commit to ensure statistics aren't out-of-date */ 3941 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3942 (void) commit(pool); 3943 3944 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3945 if (r) { 3946 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3947 dm_device_name(pool->pool_md), r); 3948 goto err; 3949 } 3950 3951 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3952 if (r) { 3953 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3954 dm_device_name(pool->pool_md), r); 3955 goto err; 3956 } 3957 3958 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3959 if (r) { 3960 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3961 dm_device_name(pool->pool_md), r); 3962 goto err; 3963 } 3964 3965 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3966 if (r) { 3967 DMERR("%s: dm_pool_get_free_block_count returned %d", 3968 dm_device_name(pool->pool_md), r); 3969 goto err; 3970 } 3971 3972 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3973 if (r) { 3974 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3975 dm_device_name(pool->pool_md), r); 3976 goto err; 3977 } 3978 3979 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3980 if (r) { 3981 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3982 dm_device_name(pool->pool_md), r); 3983 goto err; 3984 } 3985 3986 DMEMIT("%llu %llu/%llu %llu/%llu ", 3987 (unsigned long long)transaction_id, 3988 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3989 (unsigned long long)nr_blocks_metadata, 3990 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3991 (unsigned long long)nr_blocks_data); 3992 3993 if (held_root) 3994 DMEMIT("%llu ", held_root); 3995 else 3996 DMEMIT("- "); 3997 3998 mode = get_pool_mode(pool); 3999 if (mode == PM_OUT_OF_DATA_SPACE) 4000 DMEMIT("out_of_data_space "); 4001 else if (is_read_only_pool_mode(mode)) 4002 DMEMIT("ro "); 4003 else 4004 DMEMIT("rw "); 4005 4006 if (!pool->pf.discard_enabled) 4007 DMEMIT("ignore_discard "); 4008 else if (pool->pf.discard_passdown) 4009 DMEMIT("discard_passdown "); 4010 else 4011 DMEMIT("no_discard_passdown "); 4012 4013 if (pool->pf.error_if_no_space) 4014 DMEMIT("error_if_no_space "); 4015 else 4016 DMEMIT("queue_if_no_space "); 4017 4018 if (dm_pool_metadata_needs_check(pool->pmd)) 4019 DMEMIT("needs_check "); 4020 else 4021 DMEMIT("- "); 4022 4023 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4024 4025 break; 4026 4027 case STATUSTYPE_TABLE: 4028 DMEMIT("%s %s %lu %llu ", 4029 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4030 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4031 (unsigned long)pool->sectors_per_block, 4032 (unsigned long long)pt->low_water_blocks); 4033 emit_flags(&pt->requested_pf, result, sz, maxlen); 4034 break; 4035 4036 case STATUSTYPE_IMA: 4037 *result = '\0'; 4038 break; 4039 } 4040 return; 4041 4042 err: 4043 DMEMIT("Error"); 4044 } 4045 4046 static int pool_iterate_devices(struct dm_target *ti, 4047 iterate_devices_callout_fn fn, void *data) 4048 { 4049 struct pool_c *pt = ti->private; 4050 4051 return fn(ti, pt->data_dev, 0, ti->len, data); 4052 } 4053 4054 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4055 { 4056 struct pool_c *pt = ti->private; 4057 struct pool *pool = pt->pool; 4058 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4059 4060 /* 4061 * If max_sectors is smaller than pool->sectors_per_block adjust it 4062 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4063 * This is especially beneficial when the pool's data device is a RAID 4064 * device that has a full stripe width that matches pool->sectors_per_block 4065 * -- because even though partial RAID stripe-sized IOs will be issued to a 4066 * single RAID stripe; when aggregated they will end on a full RAID stripe 4067 * boundary.. which avoids additional partial RAID stripe writes cascading 4068 */ 4069 if (limits->max_sectors < pool->sectors_per_block) { 4070 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4071 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4072 limits->max_sectors--; 4073 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4074 } 4075 } 4076 4077 /* 4078 * If the system-determined stacked limits are compatible with the 4079 * pool's blocksize (io_opt is a factor) do not override them. 4080 */ 4081 if (io_opt_sectors < pool->sectors_per_block || 4082 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4083 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4084 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4085 else 4086 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4087 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4088 } 4089 4090 /* 4091 * pt->adjusted_pf is a staging area for the actual features to use. 4092 * They get transferred to the live pool in bind_control_target() 4093 * called from pool_preresume(). 4094 */ 4095 4096 if (pt->adjusted_pf.discard_enabled) { 4097 disable_discard_passdown_if_not_supported(pt); 4098 if (!pt->adjusted_pf.discard_passdown) 4099 limits->max_discard_sectors = 0; 4100 /* 4101 * The pool uses the same discard limits as the underlying data 4102 * device. DM core has already set this up. 4103 */ 4104 } else { 4105 /* 4106 * Must explicitly disallow stacking discard limits otherwise the 4107 * block layer will stack them if pool's data device has support. 4108 */ 4109 limits->discard_granularity = 0; 4110 } 4111 } 4112 4113 static struct target_type pool_target = { 4114 .name = "thin-pool", 4115 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4116 DM_TARGET_IMMUTABLE, 4117 .version = {1, 23, 0}, 4118 .module = THIS_MODULE, 4119 .ctr = pool_ctr, 4120 .dtr = pool_dtr, 4121 .map = pool_map, 4122 .presuspend = pool_presuspend, 4123 .presuspend_undo = pool_presuspend_undo, 4124 .postsuspend = pool_postsuspend, 4125 .preresume = pool_preresume, 4126 .resume = pool_resume, 4127 .message = pool_message, 4128 .status = pool_status, 4129 .iterate_devices = pool_iterate_devices, 4130 .io_hints = pool_io_hints, 4131 }; 4132 4133 /* 4134 *-------------------------------------------------------------- 4135 * Thin target methods 4136 *-------------------------------------------------------------- 4137 */ 4138 static void thin_get(struct thin_c *tc) 4139 { 4140 refcount_inc(&tc->refcount); 4141 } 4142 4143 static void thin_put(struct thin_c *tc) 4144 { 4145 if (refcount_dec_and_test(&tc->refcount)) 4146 complete(&tc->can_destroy); 4147 } 4148 4149 static void thin_dtr(struct dm_target *ti) 4150 { 4151 struct thin_c *tc = ti->private; 4152 4153 spin_lock_irq(&tc->pool->lock); 4154 list_del_rcu(&tc->list); 4155 spin_unlock_irq(&tc->pool->lock); 4156 synchronize_rcu(); 4157 4158 thin_put(tc); 4159 wait_for_completion(&tc->can_destroy); 4160 4161 mutex_lock(&dm_thin_pool_table.mutex); 4162 4163 __pool_dec(tc->pool); 4164 dm_pool_close_thin_device(tc->td); 4165 dm_put_device(ti, tc->pool_dev); 4166 if (tc->origin_dev) 4167 dm_put_device(ti, tc->origin_dev); 4168 kfree(tc); 4169 4170 mutex_unlock(&dm_thin_pool_table.mutex); 4171 } 4172 4173 /* 4174 * Thin target parameters: 4175 * 4176 * <pool_dev> <dev_id> [origin_dev] 4177 * 4178 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4179 * dev_id: the internal device identifier 4180 * origin_dev: a device external to the pool that should act as the origin 4181 * 4182 * If the pool device has discards disabled, they get disabled for the thin 4183 * device as well. 4184 */ 4185 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4186 { 4187 int r; 4188 struct thin_c *tc; 4189 struct dm_dev *pool_dev, *origin_dev; 4190 struct mapped_device *pool_md; 4191 4192 mutex_lock(&dm_thin_pool_table.mutex); 4193 4194 if (argc != 2 && argc != 3) { 4195 ti->error = "Invalid argument count"; 4196 r = -EINVAL; 4197 goto out_unlock; 4198 } 4199 4200 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4201 if (!tc) { 4202 ti->error = "Out of memory"; 4203 r = -ENOMEM; 4204 goto out_unlock; 4205 } 4206 tc->thin_md = dm_table_get_md(ti->table); 4207 spin_lock_init(&tc->lock); 4208 INIT_LIST_HEAD(&tc->deferred_cells); 4209 bio_list_init(&tc->deferred_bio_list); 4210 bio_list_init(&tc->retry_on_resume_list); 4211 tc->sort_bio_list = RB_ROOT; 4212 4213 if (argc == 3) { 4214 if (!strcmp(argv[0], argv[2])) { 4215 ti->error = "Error setting origin device"; 4216 r = -EINVAL; 4217 goto bad_origin_dev; 4218 } 4219 4220 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev); 4221 if (r) { 4222 ti->error = "Error opening origin device"; 4223 goto bad_origin_dev; 4224 } 4225 tc->origin_dev = origin_dev; 4226 } 4227 4228 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4229 if (r) { 4230 ti->error = "Error opening pool device"; 4231 goto bad_pool_dev; 4232 } 4233 tc->pool_dev = pool_dev; 4234 4235 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4236 ti->error = "Invalid device id"; 4237 r = -EINVAL; 4238 goto bad_common; 4239 } 4240 4241 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4242 if (!pool_md) { 4243 ti->error = "Couldn't get pool mapped device"; 4244 r = -EINVAL; 4245 goto bad_common; 4246 } 4247 4248 tc->pool = __pool_table_lookup(pool_md); 4249 if (!tc->pool) { 4250 ti->error = "Couldn't find pool object"; 4251 r = -EINVAL; 4252 goto bad_pool_lookup; 4253 } 4254 __pool_inc(tc->pool); 4255 4256 if (get_pool_mode(tc->pool) == PM_FAIL) { 4257 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4258 r = -EINVAL; 4259 goto bad_pool; 4260 } 4261 4262 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4263 if (r) { 4264 ti->error = "Couldn't open thin internal device"; 4265 goto bad_pool; 4266 } 4267 4268 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4269 if (r) 4270 goto bad; 4271 4272 ti->num_flush_bios = 1; 4273 ti->limit_swap_bios = true; 4274 ti->flush_supported = true; 4275 ti->accounts_remapped_io = true; 4276 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4277 4278 /* In case the pool supports discards, pass them on. */ 4279 if (tc->pool->pf.discard_enabled) { 4280 ti->discards_supported = true; 4281 ti->num_discard_bios = 1; 4282 ti->max_discard_granularity = true; 4283 } 4284 4285 mutex_unlock(&dm_thin_pool_table.mutex); 4286 4287 spin_lock_irq(&tc->pool->lock); 4288 if (tc->pool->suspended) { 4289 spin_unlock_irq(&tc->pool->lock); 4290 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4291 ti->error = "Unable to activate thin device while pool is suspended"; 4292 r = -EINVAL; 4293 goto bad; 4294 } 4295 refcount_set(&tc->refcount, 1); 4296 init_completion(&tc->can_destroy); 4297 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4298 spin_unlock_irq(&tc->pool->lock); 4299 /* 4300 * This synchronize_rcu() call is needed here otherwise we risk a 4301 * wake_worker() call finding no bios to process (because the newly 4302 * added tc isn't yet visible). So this reduces latency since we 4303 * aren't then dependent on the periodic commit to wake_worker(). 4304 */ 4305 synchronize_rcu(); 4306 4307 dm_put(pool_md); 4308 4309 return 0; 4310 4311 bad: 4312 dm_pool_close_thin_device(tc->td); 4313 bad_pool: 4314 __pool_dec(tc->pool); 4315 bad_pool_lookup: 4316 dm_put(pool_md); 4317 bad_common: 4318 dm_put_device(ti, tc->pool_dev); 4319 bad_pool_dev: 4320 if (tc->origin_dev) 4321 dm_put_device(ti, tc->origin_dev); 4322 bad_origin_dev: 4323 kfree(tc); 4324 out_unlock: 4325 mutex_unlock(&dm_thin_pool_table.mutex); 4326 4327 return r; 4328 } 4329 4330 static int thin_map(struct dm_target *ti, struct bio *bio) 4331 { 4332 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4333 4334 return thin_bio_map(ti, bio); 4335 } 4336 4337 static int thin_endio(struct dm_target *ti, struct bio *bio, 4338 blk_status_t *err) 4339 { 4340 unsigned long flags; 4341 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4342 struct list_head work; 4343 struct dm_thin_new_mapping *m, *tmp; 4344 struct pool *pool = h->tc->pool; 4345 4346 if (h->shared_read_entry) { 4347 INIT_LIST_HEAD(&work); 4348 dm_deferred_entry_dec(h->shared_read_entry, &work); 4349 4350 spin_lock_irqsave(&pool->lock, flags); 4351 list_for_each_entry_safe(m, tmp, &work, list) { 4352 list_del(&m->list); 4353 __complete_mapping_preparation(m); 4354 } 4355 spin_unlock_irqrestore(&pool->lock, flags); 4356 } 4357 4358 if (h->all_io_entry) { 4359 INIT_LIST_HEAD(&work); 4360 dm_deferred_entry_dec(h->all_io_entry, &work); 4361 if (!list_empty(&work)) { 4362 spin_lock_irqsave(&pool->lock, flags); 4363 list_for_each_entry_safe(m, tmp, &work, list) 4364 list_add_tail(&m->list, &pool->prepared_discards); 4365 spin_unlock_irqrestore(&pool->lock, flags); 4366 wake_worker(pool); 4367 } 4368 } 4369 4370 if (h->cell) 4371 cell_defer_no_holder(h->tc, h->cell); 4372 4373 return DM_ENDIO_DONE; 4374 } 4375 4376 static void thin_presuspend(struct dm_target *ti) 4377 { 4378 struct thin_c *tc = ti->private; 4379 4380 if (dm_noflush_suspending(ti)) 4381 noflush_work(tc, do_noflush_start); 4382 } 4383 4384 static void thin_postsuspend(struct dm_target *ti) 4385 { 4386 struct thin_c *tc = ti->private; 4387 4388 /* 4389 * The dm_noflush_suspending flag has been cleared by now, so 4390 * unfortunately we must always run this. 4391 */ 4392 noflush_work(tc, do_noflush_stop); 4393 } 4394 4395 static int thin_preresume(struct dm_target *ti) 4396 { 4397 struct thin_c *tc = ti->private; 4398 4399 if (tc->origin_dev) 4400 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4401 4402 return 0; 4403 } 4404 4405 /* 4406 * <nr mapped sectors> <highest mapped sector> 4407 */ 4408 static void thin_status(struct dm_target *ti, status_type_t type, 4409 unsigned int status_flags, char *result, unsigned int maxlen) 4410 { 4411 int r; 4412 ssize_t sz = 0; 4413 dm_block_t mapped, highest; 4414 char buf[BDEVNAME_SIZE]; 4415 struct thin_c *tc = ti->private; 4416 4417 if (get_pool_mode(tc->pool) == PM_FAIL) { 4418 DMEMIT("Fail"); 4419 return; 4420 } 4421 4422 if (!tc->td) 4423 DMEMIT("-"); 4424 else { 4425 switch (type) { 4426 case STATUSTYPE_INFO: 4427 r = dm_thin_get_mapped_count(tc->td, &mapped); 4428 if (r) { 4429 DMERR("dm_thin_get_mapped_count returned %d", r); 4430 goto err; 4431 } 4432 4433 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4434 if (r < 0) { 4435 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4436 goto err; 4437 } 4438 4439 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4440 if (r) 4441 DMEMIT("%llu", ((highest + 1) * 4442 tc->pool->sectors_per_block) - 1); 4443 else 4444 DMEMIT("-"); 4445 break; 4446 4447 case STATUSTYPE_TABLE: 4448 DMEMIT("%s %lu", 4449 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4450 (unsigned long) tc->dev_id); 4451 if (tc->origin_dev) 4452 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4453 break; 4454 4455 case STATUSTYPE_IMA: 4456 *result = '\0'; 4457 break; 4458 } 4459 } 4460 4461 return; 4462 4463 err: 4464 DMEMIT("Error"); 4465 } 4466 4467 static int thin_iterate_devices(struct dm_target *ti, 4468 iterate_devices_callout_fn fn, void *data) 4469 { 4470 sector_t blocks; 4471 struct thin_c *tc = ti->private; 4472 struct pool *pool = tc->pool; 4473 4474 /* 4475 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4476 * we follow a more convoluted path through to the pool's target. 4477 */ 4478 if (!pool->ti) 4479 return 0; /* nothing is bound */ 4480 4481 blocks = pool->ti->len; 4482 (void) sector_div(blocks, pool->sectors_per_block); 4483 if (blocks) 4484 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4485 4486 return 0; 4487 } 4488 4489 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4490 { 4491 struct thin_c *tc = ti->private; 4492 struct pool *pool = tc->pool; 4493 4494 if (pool->pf.discard_enabled) { 4495 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4496 limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE; 4497 } 4498 } 4499 4500 static struct target_type thin_target = { 4501 .name = "thin", 4502 .version = {1, 23, 0}, 4503 .module = THIS_MODULE, 4504 .ctr = thin_ctr, 4505 .dtr = thin_dtr, 4506 .map = thin_map, 4507 .end_io = thin_endio, 4508 .preresume = thin_preresume, 4509 .presuspend = thin_presuspend, 4510 .postsuspend = thin_postsuspend, 4511 .status = thin_status, 4512 .iterate_devices = thin_iterate_devices, 4513 .io_hints = thin_io_hints, 4514 }; 4515 4516 /*----------------------------------------------------------------*/ 4517 4518 static int __init dm_thin_init(void) 4519 { 4520 int r = -ENOMEM; 4521 4522 pool_table_init(); 4523 4524 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4525 if (!_new_mapping_cache) 4526 return r; 4527 4528 r = dm_register_target(&thin_target); 4529 if (r) 4530 goto bad_new_mapping_cache; 4531 4532 r = dm_register_target(&pool_target); 4533 if (r) 4534 goto bad_thin_target; 4535 4536 return 0; 4537 4538 bad_thin_target: 4539 dm_unregister_target(&thin_target); 4540 bad_new_mapping_cache: 4541 kmem_cache_destroy(_new_mapping_cache); 4542 4543 return r; 4544 } 4545 4546 static void dm_thin_exit(void) 4547 { 4548 dm_unregister_target(&thin_target); 4549 dm_unregister_target(&pool_target); 4550 4551 kmem_cache_destroy(_new_mapping_cache); 4552 4553 pool_table_exit(); 4554 } 4555 4556 module_init(dm_thin_init); 4557 module_exit(dm_thin_exit); 4558 4559 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644); 4560 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4561 4562 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4563 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4564 MODULE_LICENSE("GPL"); 4565