xref: /linux/drivers/md/dm-thin.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20 
21 #define	DM_MSG_PREFIX	"thin"
22 
23 /*
24  * Tunable constants
25  */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 
31 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
32 		"A percentage of time allocated for copy on write");
33 
34 /*
35  * The block size of the device holding pool data must be
36  * between 64KB and 1GB.
37  */
38 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
39 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
40 
41 /*
42  * Device id is restricted to 24 bits.
43  */
44 #define MAX_DEV_ID ((1 << 24) - 1)
45 
46 /*
47  * How do we handle breaking sharing of data blocks?
48  * =================================================
49  *
50  * We use a standard copy-on-write btree to store the mappings for the
51  * devices (note I'm talking about copy-on-write of the metadata here, not
52  * the data).  When you take an internal snapshot you clone the root node
53  * of the origin btree.  After this there is no concept of an origin or a
54  * snapshot.  They are just two device trees that happen to point to the
55  * same data blocks.
56  *
57  * When we get a write in we decide if it's to a shared data block using
58  * some timestamp magic.  If it is, we have to break sharing.
59  *
60  * Let's say we write to a shared block in what was the origin.  The
61  * steps are:
62  *
63  * i) plug io further to this physical block. (see bio_prison code).
64  *
65  * ii) quiesce any read io to that shared data block.  Obviously
66  * including all devices that share this block.  (see dm_deferred_set code)
67  *
68  * iii) copy the data block to a newly allocate block.  This step can be
69  * missed out if the io covers the block. (schedule_copy).
70  *
71  * iv) insert the new mapping into the origin's btree
72  * (process_prepared_mapping).  This act of inserting breaks some
73  * sharing of btree nodes between the two devices.  Breaking sharing only
74  * effects the btree of that specific device.  Btrees for the other
75  * devices that share the block never change.  The btree for the origin
76  * device as it was after the last commit is untouched, ie. we're using
77  * persistent data structures in the functional programming sense.
78  *
79  * v) unplug io to this physical block, including the io that triggered
80  * the breaking of sharing.
81  *
82  * Steps (ii) and (iii) occur in parallel.
83  *
84  * The metadata _doesn't_ need to be committed before the io continues.  We
85  * get away with this because the io is always written to a _new_ block.
86  * If there's a crash, then:
87  *
88  * - The origin mapping will point to the old origin block (the shared
89  * one).  This will contain the data as it was before the io that triggered
90  * the breaking of sharing came in.
91  *
92  * - The snap mapping still points to the old block.  As it would after
93  * the commit.
94  *
95  * The downside of this scheme is the timestamp magic isn't perfect, and
96  * will continue to think that data block in the snapshot device is shared
97  * even after the write to the origin has broken sharing.  I suspect data
98  * blocks will typically be shared by many different devices, so we're
99  * breaking sharing n + 1 times, rather than n, where n is the number of
100  * devices that reference this data block.  At the moment I think the
101  * benefits far, far outweigh the disadvantages.
102  */
103 
104 /*----------------------------------------------------------------*/
105 
106 /*
107  * Key building.
108  */
109 static void build_data_key(struct dm_thin_device *td,
110 			   dm_block_t b, struct dm_cell_key *key)
111 {
112 	key->virtual = 0;
113 	key->dev = dm_thin_dev_id(td);
114 	key->block = b;
115 }
116 
117 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
118 			      struct dm_cell_key *key)
119 {
120 	key->virtual = 1;
121 	key->dev = dm_thin_dev_id(td);
122 	key->block = b;
123 }
124 
125 /*----------------------------------------------------------------*/
126 
127 /*
128  * A pool device ties together a metadata device and a data device.  It
129  * also provides the interface for creating and destroying internal
130  * devices.
131  */
132 struct dm_thin_new_mapping;
133 
134 /*
135  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
136  */
137 enum pool_mode {
138 	PM_WRITE,		/* metadata may be changed */
139 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
140 	PM_READ_ONLY,		/* metadata may not be changed */
141 	PM_FAIL,		/* all I/O fails */
142 };
143 
144 struct pool_features {
145 	enum pool_mode mode;
146 
147 	bool zero_new_blocks:1;
148 	bool discard_enabled:1;
149 	bool discard_passdown:1;
150 	bool error_if_no_space:1;
151 };
152 
153 struct thin_c;
154 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
155 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
156 
157 struct pool {
158 	struct list_head list;
159 	struct dm_target *ti;	/* Only set if a pool target is bound */
160 
161 	struct mapped_device *pool_md;
162 	struct block_device *md_dev;
163 	struct dm_pool_metadata *pmd;
164 
165 	dm_block_t low_water_blocks;
166 	uint32_t sectors_per_block;
167 	int sectors_per_block_shift;
168 
169 	struct pool_features pf;
170 	bool low_water_triggered:1;	/* A dm event has been sent */
171 
172 	struct dm_bio_prison *prison;
173 	struct dm_kcopyd_client *copier;
174 
175 	struct workqueue_struct *wq;
176 	struct work_struct worker;
177 	struct delayed_work waker;
178 
179 	unsigned long last_commit_jiffies;
180 	unsigned ref_count;
181 
182 	spinlock_t lock;
183 	struct bio_list deferred_flush_bios;
184 	struct list_head prepared_mappings;
185 	struct list_head prepared_discards;
186 	struct list_head active_thins;
187 
188 	struct dm_deferred_set *shared_read_ds;
189 	struct dm_deferred_set *all_io_ds;
190 
191 	struct dm_thin_new_mapping *next_mapping;
192 	mempool_t *mapping_pool;
193 
194 	process_bio_fn process_bio;
195 	process_bio_fn process_discard;
196 
197 	process_mapping_fn process_prepared_mapping;
198 	process_mapping_fn process_prepared_discard;
199 };
200 
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203 
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208 	struct dm_target *ti;
209 	struct pool *pool;
210 	struct dm_dev *data_dev;
211 	struct dm_dev *metadata_dev;
212 	struct dm_target_callbacks callbacks;
213 
214 	dm_block_t low_water_blocks;
215 	struct pool_features requested_pf; /* Features requested during table load */
216 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218 
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223 	struct list_head list;
224 	struct dm_dev *pool_dev;
225 	struct dm_dev *origin_dev;
226 	dm_thin_id dev_id;
227 
228 	struct pool *pool;
229 	struct dm_thin_device *td;
230 	bool requeue_mode:1;
231 	spinlock_t lock;
232 	struct bio_list deferred_bio_list;
233 	struct bio_list retry_on_resume_list;
234 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
235 
236 	/*
237 	 * Ensures the thin is not destroyed until the worker has finished
238 	 * iterating the active_thins list.
239 	 */
240 	atomic_t refcount;
241 	struct completion can_destroy;
242 };
243 
244 /*----------------------------------------------------------------*/
245 
246 /*
247  * wake_worker() is used when new work is queued and when pool_resume is
248  * ready to continue deferred IO processing.
249  */
250 static void wake_worker(struct pool *pool)
251 {
252 	queue_work(pool->wq, &pool->worker);
253 }
254 
255 /*----------------------------------------------------------------*/
256 
257 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
258 		      struct dm_bio_prison_cell **cell_result)
259 {
260 	int r;
261 	struct dm_bio_prison_cell *cell_prealloc;
262 
263 	/*
264 	 * Allocate a cell from the prison's mempool.
265 	 * This might block but it can't fail.
266 	 */
267 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
268 
269 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
270 	if (r)
271 		/*
272 		 * We reused an old cell; we can get rid of
273 		 * the new one.
274 		 */
275 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
276 
277 	return r;
278 }
279 
280 static void cell_release(struct pool *pool,
281 			 struct dm_bio_prison_cell *cell,
282 			 struct bio_list *bios)
283 {
284 	dm_cell_release(pool->prison, cell, bios);
285 	dm_bio_prison_free_cell(pool->prison, cell);
286 }
287 
288 static void cell_release_no_holder(struct pool *pool,
289 				   struct dm_bio_prison_cell *cell,
290 				   struct bio_list *bios)
291 {
292 	dm_cell_release_no_holder(pool->prison, cell, bios);
293 	dm_bio_prison_free_cell(pool->prison, cell);
294 }
295 
296 static void cell_defer_no_holder_no_free(struct thin_c *tc,
297 					 struct dm_bio_prison_cell *cell)
298 {
299 	struct pool *pool = tc->pool;
300 	unsigned long flags;
301 
302 	spin_lock_irqsave(&tc->lock, flags);
303 	dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
304 	spin_unlock_irqrestore(&tc->lock, flags);
305 
306 	wake_worker(pool);
307 }
308 
309 static void cell_error(struct pool *pool,
310 		       struct dm_bio_prison_cell *cell)
311 {
312 	dm_cell_error(pool->prison, cell);
313 	dm_bio_prison_free_cell(pool->prison, cell);
314 }
315 
316 /*----------------------------------------------------------------*/
317 
318 /*
319  * A global list of pools that uses a struct mapped_device as a key.
320  */
321 static struct dm_thin_pool_table {
322 	struct mutex mutex;
323 	struct list_head pools;
324 } dm_thin_pool_table;
325 
326 static void pool_table_init(void)
327 {
328 	mutex_init(&dm_thin_pool_table.mutex);
329 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
330 }
331 
332 static void __pool_table_insert(struct pool *pool)
333 {
334 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335 	list_add(&pool->list, &dm_thin_pool_table.pools);
336 }
337 
338 static void __pool_table_remove(struct pool *pool)
339 {
340 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
341 	list_del(&pool->list);
342 }
343 
344 static struct pool *__pool_table_lookup(struct mapped_device *md)
345 {
346 	struct pool *pool = NULL, *tmp;
347 
348 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
349 
350 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
351 		if (tmp->pool_md == md) {
352 			pool = tmp;
353 			break;
354 		}
355 	}
356 
357 	return pool;
358 }
359 
360 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
361 {
362 	struct pool *pool = NULL, *tmp;
363 
364 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
365 
366 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
367 		if (tmp->md_dev == md_dev) {
368 			pool = tmp;
369 			break;
370 		}
371 	}
372 
373 	return pool;
374 }
375 
376 /*----------------------------------------------------------------*/
377 
378 struct dm_thin_endio_hook {
379 	struct thin_c *tc;
380 	struct dm_deferred_entry *shared_read_entry;
381 	struct dm_deferred_entry *all_io_entry;
382 	struct dm_thin_new_mapping *overwrite_mapping;
383 	struct rb_node rb_node;
384 };
385 
386 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
387 {
388 	struct bio *bio;
389 	struct bio_list bios;
390 	unsigned long flags;
391 
392 	bio_list_init(&bios);
393 
394 	spin_lock_irqsave(&tc->lock, flags);
395 	bio_list_merge(&bios, master);
396 	bio_list_init(master);
397 	spin_unlock_irqrestore(&tc->lock, flags);
398 
399 	while ((bio = bio_list_pop(&bios)))
400 		bio_endio(bio, DM_ENDIO_REQUEUE);
401 }
402 
403 static void requeue_io(struct thin_c *tc)
404 {
405 	requeue_bio_list(tc, &tc->deferred_bio_list);
406 	requeue_bio_list(tc, &tc->retry_on_resume_list);
407 }
408 
409 static void error_thin_retry_list(struct thin_c *tc)
410 {
411 	struct bio *bio;
412 	unsigned long flags;
413 	struct bio_list bios;
414 
415 	bio_list_init(&bios);
416 
417 	spin_lock_irqsave(&tc->lock, flags);
418 	bio_list_merge(&bios, &tc->retry_on_resume_list);
419 	bio_list_init(&tc->retry_on_resume_list);
420 	spin_unlock_irqrestore(&tc->lock, flags);
421 
422 	while ((bio = bio_list_pop(&bios)))
423 		bio_io_error(bio);
424 }
425 
426 static void error_retry_list(struct pool *pool)
427 {
428 	struct thin_c *tc;
429 
430 	rcu_read_lock();
431 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
432 		error_thin_retry_list(tc);
433 	rcu_read_unlock();
434 }
435 
436 /*
437  * This section of code contains the logic for processing a thin device's IO.
438  * Much of the code depends on pool object resources (lists, workqueues, etc)
439  * but most is exclusively called from the thin target rather than the thin-pool
440  * target.
441  */
442 
443 static bool block_size_is_power_of_two(struct pool *pool)
444 {
445 	return pool->sectors_per_block_shift >= 0;
446 }
447 
448 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
449 {
450 	struct pool *pool = tc->pool;
451 	sector_t block_nr = bio->bi_iter.bi_sector;
452 
453 	if (block_size_is_power_of_two(pool))
454 		block_nr >>= pool->sectors_per_block_shift;
455 	else
456 		(void) sector_div(block_nr, pool->sectors_per_block);
457 
458 	return block_nr;
459 }
460 
461 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
462 {
463 	struct pool *pool = tc->pool;
464 	sector_t bi_sector = bio->bi_iter.bi_sector;
465 
466 	bio->bi_bdev = tc->pool_dev->bdev;
467 	if (block_size_is_power_of_two(pool))
468 		bio->bi_iter.bi_sector =
469 			(block << pool->sectors_per_block_shift) |
470 			(bi_sector & (pool->sectors_per_block - 1));
471 	else
472 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
473 				 sector_div(bi_sector, pool->sectors_per_block);
474 }
475 
476 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
477 {
478 	bio->bi_bdev = tc->origin_dev->bdev;
479 }
480 
481 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
482 {
483 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
484 		dm_thin_changed_this_transaction(tc->td);
485 }
486 
487 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
488 {
489 	struct dm_thin_endio_hook *h;
490 
491 	if (bio->bi_rw & REQ_DISCARD)
492 		return;
493 
494 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
495 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
496 }
497 
498 static void issue(struct thin_c *tc, struct bio *bio)
499 {
500 	struct pool *pool = tc->pool;
501 	unsigned long flags;
502 
503 	if (!bio_triggers_commit(tc, bio)) {
504 		generic_make_request(bio);
505 		return;
506 	}
507 
508 	/*
509 	 * Complete bio with an error if earlier I/O caused changes to
510 	 * the metadata that can't be committed e.g, due to I/O errors
511 	 * on the metadata device.
512 	 */
513 	if (dm_thin_aborted_changes(tc->td)) {
514 		bio_io_error(bio);
515 		return;
516 	}
517 
518 	/*
519 	 * Batch together any bios that trigger commits and then issue a
520 	 * single commit for them in process_deferred_bios().
521 	 */
522 	spin_lock_irqsave(&pool->lock, flags);
523 	bio_list_add(&pool->deferred_flush_bios, bio);
524 	spin_unlock_irqrestore(&pool->lock, flags);
525 }
526 
527 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
528 {
529 	remap_to_origin(tc, bio);
530 	issue(tc, bio);
531 }
532 
533 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
534 			    dm_block_t block)
535 {
536 	remap(tc, bio, block);
537 	issue(tc, bio);
538 }
539 
540 /*----------------------------------------------------------------*/
541 
542 /*
543  * Bio endio functions.
544  */
545 struct dm_thin_new_mapping {
546 	struct list_head list;
547 
548 	bool quiesced:1;
549 	bool prepared:1;
550 	bool pass_discard:1;
551 	bool definitely_not_shared:1;
552 
553 	int err;
554 	struct thin_c *tc;
555 	dm_block_t virt_block;
556 	dm_block_t data_block;
557 	struct dm_bio_prison_cell *cell, *cell2;
558 
559 	/*
560 	 * If the bio covers the whole area of a block then we can avoid
561 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
562 	 * still be in the cell, so care has to be taken to avoid issuing
563 	 * the bio twice.
564 	 */
565 	struct bio *bio;
566 	bio_end_io_t *saved_bi_end_io;
567 };
568 
569 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
570 {
571 	struct pool *pool = m->tc->pool;
572 
573 	if (m->quiesced && m->prepared) {
574 		list_add_tail(&m->list, &pool->prepared_mappings);
575 		wake_worker(pool);
576 	}
577 }
578 
579 static void copy_complete(int read_err, unsigned long write_err, void *context)
580 {
581 	unsigned long flags;
582 	struct dm_thin_new_mapping *m = context;
583 	struct pool *pool = m->tc->pool;
584 
585 	m->err = read_err || write_err ? -EIO : 0;
586 
587 	spin_lock_irqsave(&pool->lock, flags);
588 	m->prepared = true;
589 	__maybe_add_mapping(m);
590 	spin_unlock_irqrestore(&pool->lock, flags);
591 }
592 
593 static void overwrite_endio(struct bio *bio, int err)
594 {
595 	unsigned long flags;
596 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
597 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
598 	struct pool *pool = m->tc->pool;
599 
600 	m->err = err;
601 
602 	spin_lock_irqsave(&pool->lock, flags);
603 	m->prepared = true;
604 	__maybe_add_mapping(m);
605 	spin_unlock_irqrestore(&pool->lock, flags);
606 }
607 
608 /*----------------------------------------------------------------*/
609 
610 /*
611  * Workqueue.
612  */
613 
614 /*
615  * Prepared mapping jobs.
616  */
617 
618 /*
619  * This sends the bios in the cell back to the deferred_bios list.
620  */
621 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
622 {
623 	struct pool *pool = tc->pool;
624 	unsigned long flags;
625 
626 	spin_lock_irqsave(&tc->lock, flags);
627 	cell_release(pool, cell, &tc->deferred_bio_list);
628 	spin_unlock_irqrestore(&tc->lock, flags);
629 
630 	wake_worker(pool);
631 }
632 
633 /*
634  * Same as cell_defer above, except it omits the original holder of the cell.
635  */
636 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
637 {
638 	struct pool *pool = tc->pool;
639 	unsigned long flags;
640 
641 	spin_lock_irqsave(&tc->lock, flags);
642 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
643 	spin_unlock_irqrestore(&tc->lock, flags);
644 
645 	wake_worker(pool);
646 }
647 
648 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
649 {
650 	if (m->bio) {
651 		m->bio->bi_end_io = m->saved_bi_end_io;
652 		atomic_inc(&m->bio->bi_remaining);
653 	}
654 	cell_error(m->tc->pool, m->cell);
655 	list_del(&m->list);
656 	mempool_free(m, m->tc->pool->mapping_pool);
657 }
658 
659 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
660 {
661 	struct thin_c *tc = m->tc;
662 	struct pool *pool = tc->pool;
663 	struct bio *bio;
664 	int r;
665 
666 	bio = m->bio;
667 	if (bio) {
668 		bio->bi_end_io = m->saved_bi_end_io;
669 		atomic_inc(&bio->bi_remaining);
670 	}
671 
672 	if (m->err) {
673 		cell_error(pool, m->cell);
674 		goto out;
675 	}
676 
677 	/*
678 	 * Commit the prepared block into the mapping btree.
679 	 * Any I/O for this block arriving after this point will get
680 	 * remapped to it directly.
681 	 */
682 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
683 	if (r) {
684 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
685 		cell_error(pool, m->cell);
686 		goto out;
687 	}
688 
689 	/*
690 	 * Release any bios held while the block was being provisioned.
691 	 * If we are processing a write bio that completely covers the block,
692 	 * we already processed it so can ignore it now when processing
693 	 * the bios in the cell.
694 	 */
695 	if (bio) {
696 		cell_defer_no_holder(tc, m->cell);
697 		bio_endio(bio, 0);
698 	} else
699 		cell_defer(tc, m->cell);
700 
701 out:
702 	list_del(&m->list);
703 	mempool_free(m, pool->mapping_pool);
704 }
705 
706 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
707 {
708 	struct thin_c *tc = m->tc;
709 
710 	bio_io_error(m->bio);
711 	cell_defer_no_holder(tc, m->cell);
712 	cell_defer_no_holder(tc, m->cell2);
713 	mempool_free(m, tc->pool->mapping_pool);
714 }
715 
716 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
717 {
718 	struct thin_c *tc = m->tc;
719 
720 	inc_all_io_entry(tc->pool, m->bio);
721 	cell_defer_no_holder(tc, m->cell);
722 	cell_defer_no_holder(tc, m->cell2);
723 
724 	if (m->pass_discard)
725 		if (m->definitely_not_shared)
726 			remap_and_issue(tc, m->bio, m->data_block);
727 		else {
728 			bool used = false;
729 			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
730 				bio_endio(m->bio, 0);
731 			else
732 				remap_and_issue(tc, m->bio, m->data_block);
733 		}
734 	else
735 		bio_endio(m->bio, 0);
736 
737 	mempool_free(m, tc->pool->mapping_pool);
738 }
739 
740 static void process_prepared_discard(struct dm_thin_new_mapping *m)
741 {
742 	int r;
743 	struct thin_c *tc = m->tc;
744 
745 	r = dm_thin_remove_block(tc->td, m->virt_block);
746 	if (r)
747 		DMERR_LIMIT("dm_thin_remove_block() failed");
748 
749 	process_prepared_discard_passdown(m);
750 }
751 
752 static void process_prepared(struct pool *pool, struct list_head *head,
753 			     process_mapping_fn *fn)
754 {
755 	unsigned long flags;
756 	struct list_head maps;
757 	struct dm_thin_new_mapping *m, *tmp;
758 
759 	INIT_LIST_HEAD(&maps);
760 	spin_lock_irqsave(&pool->lock, flags);
761 	list_splice_init(head, &maps);
762 	spin_unlock_irqrestore(&pool->lock, flags);
763 
764 	list_for_each_entry_safe(m, tmp, &maps, list)
765 		(*fn)(m);
766 }
767 
768 /*
769  * Deferred bio jobs.
770  */
771 static int io_overlaps_block(struct pool *pool, struct bio *bio)
772 {
773 	return bio->bi_iter.bi_size ==
774 		(pool->sectors_per_block << SECTOR_SHIFT);
775 }
776 
777 static int io_overwrites_block(struct pool *pool, struct bio *bio)
778 {
779 	return (bio_data_dir(bio) == WRITE) &&
780 		io_overlaps_block(pool, bio);
781 }
782 
783 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
784 			       bio_end_io_t *fn)
785 {
786 	*save = bio->bi_end_io;
787 	bio->bi_end_io = fn;
788 }
789 
790 static int ensure_next_mapping(struct pool *pool)
791 {
792 	if (pool->next_mapping)
793 		return 0;
794 
795 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
796 
797 	return pool->next_mapping ? 0 : -ENOMEM;
798 }
799 
800 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
801 {
802 	struct dm_thin_new_mapping *m = pool->next_mapping;
803 
804 	BUG_ON(!pool->next_mapping);
805 
806 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
807 	INIT_LIST_HEAD(&m->list);
808 	m->bio = NULL;
809 
810 	pool->next_mapping = NULL;
811 
812 	return m;
813 }
814 
815 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
816 			  struct dm_dev *origin, dm_block_t data_origin,
817 			  dm_block_t data_dest,
818 			  struct dm_bio_prison_cell *cell, struct bio *bio)
819 {
820 	int r;
821 	struct pool *pool = tc->pool;
822 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
823 
824 	m->tc = tc;
825 	m->virt_block = virt_block;
826 	m->data_block = data_dest;
827 	m->cell = cell;
828 
829 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
830 		m->quiesced = true;
831 
832 	/*
833 	 * IO to pool_dev remaps to the pool target's data_dev.
834 	 *
835 	 * If the whole block of data is being overwritten, we can issue the
836 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
837 	 */
838 	if (io_overwrites_block(pool, bio)) {
839 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
840 
841 		h->overwrite_mapping = m;
842 		m->bio = bio;
843 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
844 		inc_all_io_entry(pool, bio);
845 		remap_and_issue(tc, bio, data_dest);
846 	} else {
847 		struct dm_io_region from, to;
848 
849 		from.bdev = origin->bdev;
850 		from.sector = data_origin * pool->sectors_per_block;
851 		from.count = pool->sectors_per_block;
852 
853 		to.bdev = tc->pool_dev->bdev;
854 		to.sector = data_dest * pool->sectors_per_block;
855 		to.count = pool->sectors_per_block;
856 
857 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
858 				   0, copy_complete, m);
859 		if (r < 0) {
860 			mempool_free(m, pool->mapping_pool);
861 			DMERR_LIMIT("dm_kcopyd_copy() failed");
862 			cell_error(pool, cell);
863 		}
864 	}
865 }
866 
867 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
868 				   dm_block_t data_origin, dm_block_t data_dest,
869 				   struct dm_bio_prison_cell *cell, struct bio *bio)
870 {
871 	schedule_copy(tc, virt_block, tc->pool_dev,
872 		      data_origin, data_dest, cell, bio);
873 }
874 
875 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
876 				   dm_block_t data_dest,
877 				   struct dm_bio_prison_cell *cell, struct bio *bio)
878 {
879 	schedule_copy(tc, virt_block, tc->origin_dev,
880 		      virt_block, data_dest, cell, bio);
881 }
882 
883 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
884 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
885 			  struct bio *bio)
886 {
887 	struct pool *pool = tc->pool;
888 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
889 
890 	m->quiesced = true;
891 	m->prepared = false;
892 	m->tc = tc;
893 	m->virt_block = virt_block;
894 	m->data_block = data_block;
895 	m->cell = cell;
896 
897 	/*
898 	 * If the whole block of data is being overwritten or we are not
899 	 * zeroing pre-existing data, we can issue the bio immediately.
900 	 * Otherwise we use kcopyd to zero the data first.
901 	 */
902 	if (!pool->pf.zero_new_blocks)
903 		process_prepared_mapping(m);
904 
905 	else if (io_overwrites_block(pool, bio)) {
906 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
907 
908 		h->overwrite_mapping = m;
909 		m->bio = bio;
910 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
911 		inc_all_io_entry(pool, bio);
912 		remap_and_issue(tc, bio, data_block);
913 	} else {
914 		int r;
915 		struct dm_io_region to;
916 
917 		to.bdev = tc->pool_dev->bdev;
918 		to.sector = data_block * pool->sectors_per_block;
919 		to.count = pool->sectors_per_block;
920 
921 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
922 		if (r < 0) {
923 			mempool_free(m, pool->mapping_pool);
924 			DMERR_LIMIT("dm_kcopyd_zero() failed");
925 			cell_error(pool, cell);
926 		}
927 	}
928 }
929 
930 /*
931  * A non-zero return indicates read_only or fail_io mode.
932  * Many callers don't care about the return value.
933  */
934 static int commit(struct pool *pool)
935 {
936 	int r;
937 
938 	if (get_pool_mode(pool) != PM_WRITE)
939 		return -EINVAL;
940 
941 	r = dm_pool_commit_metadata(pool->pmd);
942 	if (r)
943 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
944 
945 	return r;
946 }
947 
948 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
949 {
950 	unsigned long flags;
951 
952 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
953 		DMWARN("%s: reached low water mark for data device: sending event.",
954 		       dm_device_name(pool->pool_md));
955 		spin_lock_irqsave(&pool->lock, flags);
956 		pool->low_water_triggered = true;
957 		spin_unlock_irqrestore(&pool->lock, flags);
958 		dm_table_event(pool->ti->table);
959 	}
960 }
961 
962 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
963 
964 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
965 {
966 	int r;
967 	dm_block_t free_blocks;
968 	struct pool *pool = tc->pool;
969 
970 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
971 		return -EINVAL;
972 
973 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
974 	if (r) {
975 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
976 		return r;
977 	}
978 
979 	check_low_water_mark(pool, free_blocks);
980 
981 	if (!free_blocks) {
982 		/*
983 		 * Try to commit to see if that will free up some
984 		 * more space.
985 		 */
986 		r = commit(pool);
987 		if (r)
988 			return r;
989 
990 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
991 		if (r) {
992 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
993 			return r;
994 		}
995 
996 		if (!free_blocks) {
997 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
998 			return -ENOSPC;
999 		}
1000 	}
1001 
1002 	r = dm_pool_alloc_data_block(pool->pmd, result);
1003 	if (r) {
1004 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1005 		return r;
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 /*
1012  * If we have run out of space, queue bios until the device is
1013  * resumed, presumably after having been reloaded with more space.
1014  */
1015 static void retry_on_resume(struct bio *bio)
1016 {
1017 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1018 	struct thin_c *tc = h->tc;
1019 	unsigned long flags;
1020 
1021 	spin_lock_irqsave(&tc->lock, flags);
1022 	bio_list_add(&tc->retry_on_resume_list, bio);
1023 	spin_unlock_irqrestore(&tc->lock, flags);
1024 }
1025 
1026 static bool should_error_unserviceable_bio(struct pool *pool)
1027 {
1028 	enum pool_mode m = get_pool_mode(pool);
1029 
1030 	switch (m) {
1031 	case PM_WRITE:
1032 		/* Shouldn't get here */
1033 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1034 		return true;
1035 
1036 	case PM_OUT_OF_DATA_SPACE:
1037 		return pool->pf.error_if_no_space;
1038 
1039 	case PM_READ_ONLY:
1040 	case PM_FAIL:
1041 		return true;
1042 	default:
1043 		/* Shouldn't get here */
1044 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1045 		return true;
1046 	}
1047 }
1048 
1049 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1050 {
1051 	if (should_error_unserviceable_bio(pool))
1052 		bio_io_error(bio);
1053 	else
1054 		retry_on_resume(bio);
1055 }
1056 
1057 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1058 {
1059 	struct bio *bio;
1060 	struct bio_list bios;
1061 
1062 	if (should_error_unserviceable_bio(pool)) {
1063 		cell_error(pool, cell);
1064 		return;
1065 	}
1066 
1067 	bio_list_init(&bios);
1068 	cell_release(pool, cell, &bios);
1069 
1070 	if (should_error_unserviceable_bio(pool))
1071 		while ((bio = bio_list_pop(&bios)))
1072 			bio_io_error(bio);
1073 	else
1074 		while ((bio = bio_list_pop(&bios)))
1075 			retry_on_resume(bio);
1076 }
1077 
1078 static void process_discard(struct thin_c *tc, struct bio *bio)
1079 {
1080 	int r;
1081 	unsigned long flags;
1082 	struct pool *pool = tc->pool;
1083 	struct dm_bio_prison_cell *cell, *cell2;
1084 	struct dm_cell_key key, key2;
1085 	dm_block_t block = get_bio_block(tc, bio);
1086 	struct dm_thin_lookup_result lookup_result;
1087 	struct dm_thin_new_mapping *m;
1088 
1089 	build_virtual_key(tc->td, block, &key);
1090 	if (bio_detain(tc->pool, &key, bio, &cell))
1091 		return;
1092 
1093 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1094 	switch (r) {
1095 	case 0:
1096 		/*
1097 		 * Check nobody is fiddling with this pool block.  This can
1098 		 * happen if someone's in the process of breaking sharing
1099 		 * on this block.
1100 		 */
1101 		build_data_key(tc->td, lookup_result.block, &key2);
1102 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1103 			cell_defer_no_holder(tc, cell);
1104 			break;
1105 		}
1106 
1107 		if (io_overlaps_block(pool, bio)) {
1108 			/*
1109 			 * IO may still be going to the destination block.  We must
1110 			 * quiesce before we can do the removal.
1111 			 */
1112 			m = get_next_mapping(pool);
1113 			m->tc = tc;
1114 			m->pass_discard = pool->pf.discard_passdown;
1115 			m->definitely_not_shared = !lookup_result.shared;
1116 			m->virt_block = block;
1117 			m->data_block = lookup_result.block;
1118 			m->cell = cell;
1119 			m->cell2 = cell2;
1120 			m->bio = bio;
1121 
1122 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1123 				spin_lock_irqsave(&pool->lock, flags);
1124 				list_add_tail(&m->list, &pool->prepared_discards);
1125 				spin_unlock_irqrestore(&pool->lock, flags);
1126 				wake_worker(pool);
1127 			}
1128 		} else {
1129 			inc_all_io_entry(pool, bio);
1130 			cell_defer_no_holder(tc, cell);
1131 			cell_defer_no_holder(tc, cell2);
1132 
1133 			/*
1134 			 * The DM core makes sure that the discard doesn't span
1135 			 * a block boundary.  So we submit the discard of a
1136 			 * partial block appropriately.
1137 			 */
1138 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1139 				remap_and_issue(tc, bio, lookup_result.block);
1140 			else
1141 				bio_endio(bio, 0);
1142 		}
1143 		break;
1144 
1145 	case -ENODATA:
1146 		/*
1147 		 * It isn't provisioned, just forget it.
1148 		 */
1149 		cell_defer_no_holder(tc, cell);
1150 		bio_endio(bio, 0);
1151 		break;
1152 
1153 	default:
1154 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1155 			    __func__, r);
1156 		cell_defer_no_holder(tc, cell);
1157 		bio_io_error(bio);
1158 		break;
1159 	}
1160 }
1161 
1162 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1163 			  struct dm_cell_key *key,
1164 			  struct dm_thin_lookup_result *lookup_result,
1165 			  struct dm_bio_prison_cell *cell)
1166 {
1167 	int r;
1168 	dm_block_t data_block;
1169 	struct pool *pool = tc->pool;
1170 
1171 	r = alloc_data_block(tc, &data_block);
1172 	switch (r) {
1173 	case 0:
1174 		schedule_internal_copy(tc, block, lookup_result->block,
1175 				       data_block, cell, bio);
1176 		break;
1177 
1178 	case -ENOSPC:
1179 		retry_bios_on_resume(pool, cell);
1180 		break;
1181 
1182 	default:
1183 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1184 			    __func__, r);
1185 		cell_error(pool, cell);
1186 		break;
1187 	}
1188 }
1189 
1190 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1191 			       dm_block_t block,
1192 			       struct dm_thin_lookup_result *lookup_result)
1193 {
1194 	struct dm_bio_prison_cell *cell;
1195 	struct pool *pool = tc->pool;
1196 	struct dm_cell_key key;
1197 
1198 	/*
1199 	 * If cell is already occupied, then sharing is already in the process
1200 	 * of being broken so we have nothing further to do here.
1201 	 */
1202 	build_data_key(tc->td, lookup_result->block, &key);
1203 	if (bio_detain(pool, &key, bio, &cell))
1204 		return;
1205 
1206 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1207 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1208 	else {
1209 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1210 
1211 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1212 		inc_all_io_entry(pool, bio);
1213 		cell_defer_no_holder(tc, cell);
1214 
1215 		remap_and_issue(tc, bio, lookup_result->block);
1216 	}
1217 }
1218 
1219 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1220 			    struct dm_bio_prison_cell *cell)
1221 {
1222 	int r;
1223 	dm_block_t data_block;
1224 	struct pool *pool = tc->pool;
1225 
1226 	/*
1227 	 * Remap empty bios (flushes) immediately, without provisioning.
1228 	 */
1229 	if (!bio->bi_iter.bi_size) {
1230 		inc_all_io_entry(pool, bio);
1231 		cell_defer_no_holder(tc, cell);
1232 
1233 		remap_and_issue(tc, bio, 0);
1234 		return;
1235 	}
1236 
1237 	/*
1238 	 * Fill read bios with zeroes and complete them immediately.
1239 	 */
1240 	if (bio_data_dir(bio) == READ) {
1241 		zero_fill_bio(bio);
1242 		cell_defer_no_holder(tc, cell);
1243 		bio_endio(bio, 0);
1244 		return;
1245 	}
1246 
1247 	r = alloc_data_block(tc, &data_block);
1248 	switch (r) {
1249 	case 0:
1250 		if (tc->origin_dev)
1251 			schedule_external_copy(tc, block, data_block, cell, bio);
1252 		else
1253 			schedule_zero(tc, block, data_block, cell, bio);
1254 		break;
1255 
1256 	case -ENOSPC:
1257 		retry_bios_on_resume(pool, cell);
1258 		break;
1259 
1260 	default:
1261 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1262 			    __func__, r);
1263 		cell_error(pool, cell);
1264 		break;
1265 	}
1266 }
1267 
1268 static void process_bio(struct thin_c *tc, struct bio *bio)
1269 {
1270 	int r;
1271 	struct pool *pool = tc->pool;
1272 	dm_block_t block = get_bio_block(tc, bio);
1273 	struct dm_bio_prison_cell *cell;
1274 	struct dm_cell_key key;
1275 	struct dm_thin_lookup_result lookup_result;
1276 
1277 	/*
1278 	 * If cell is already occupied, then the block is already
1279 	 * being provisioned so we have nothing further to do here.
1280 	 */
1281 	build_virtual_key(tc->td, block, &key);
1282 	if (bio_detain(pool, &key, bio, &cell))
1283 		return;
1284 
1285 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1286 	switch (r) {
1287 	case 0:
1288 		if (lookup_result.shared) {
1289 			process_shared_bio(tc, bio, block, &lookup_result);
1290 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1291 		} else {
1292 			inc_all_io_entry(pool, bio);
1293 			cell_defer_no_holder(tc, cell);
1294 
1295 			remap_and_issue(tc, bio, lookup_result.block);
1296 		}
1297 		break;
1298 
1299 	case -ENODATA:
1300 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1301 			inc_all_io_entry(pool, bio);
1302 			cell_defer_no_holder(tc, cell);
1303 
1304 			remap_to_origin_and_issue(tc, bio);
1305 		} else
1306 			provision_block(tc, bio, block, cell);
1307 		break;
1308 
1309 	default:
1310 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1311 			    __func__, r);
1312 		cell_defer_no_holder(tc, cell);
1313 		bio_io_error(bio);
1314 		break;
1315 	}
1316 }
1317 
1318 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1319 {
1320 	int r;
1321 	int rw = bio_data_dir(bio);
1322 	dm_block_t block = get_bio_block(tc, bio);
1323 	struct dm_thin_lookup_result lookup_result;
1324 
1325 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1326 	switch (r) {
1327 	case 0:
1328 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1329 			handle_unserviceable_bio(tc->pool, bio);
1330 		else {
1331 			inc_all_io_entry(tc->pool, bio);
1332 			remap_and_issue(tc, bio, lookup_result.block);
1333 		}
1334 		break;
1335 
1336 	case -ENODATA:
1337 		if (rw != READ) {
1338 			handle_unserviceable_bio(tc->pool, bio);
1339 			break;
1340 		}
1341 
1342 		if (tc->origin_dev) {
1343 			inc_all_io_entry(tc->pool, bio);
1344 			remap_to_origin_and_issue(tc, bio);
1345 			break;
1346 		}
1347 
1348 		zero_fill_bio(bio);
1349 		bio_endio(bio, 0);
1350 		break;
1351 
1352 	default:
1353 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1354 			    __func__, r);
1355 		bio_io_error(bio);
1356 		break;
1357 	}
1358 }
1359 
1360 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1361 {
1362 	bio_endio(bio, 0);
1363 }
1364 
1365 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1366 {
1367 	bio_io_error(bio);
1368 }
1369 
1370 /*
1371  * FIXME: should we also commit due to size of transaction, measured in
1372  * metadata blocks?
1373  */
1374 static int need_commit_due_to_time(struct pool *pool)
1375 {
1376 	return jiffies < pool->last_commit_jiffies ||
1377 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1378 }
1379 
1380 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1381 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1382 
1383 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1384 {
1385 	struct rb_node **rbp, *parent;
1386 	struct dm_thin_endio_hook *pbd;
1387 	sector_t bi_sector = bio->bi_iter.bi_sector;
1388 
1389 	rbp = &tc->sort_bio_list.rb_node;
1390 	parent = NULL;
1391 	while (*rbp) {
1392 		parent = *rbp;
1393 		pbd = thin_pbd(parent);
1394 
1395 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1396 			rbp = &(*rbp)->rb_left;
1397 		else
1398 			rbp = &(*rbp)->rb_right;
1399 	}
1400 
1401 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1402 	rb_link_node(&pbd->rb_node, parent, rbp);
1403 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1404 }
1405 
1406 static void __extract_sorted_bios(struct thin_c *tc)
1407 {
1408 	struct rb_node *node;
1409 	struct dm_thin_endio_hook *pbd;
1410 	struct bio *bio;
1411 
1412 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1413 		pbd = thin_pbd(node);
1414 		bio = thin_bio(pbd);
1415 
1416 		bio_list_add(&tc->deferred_bio_list, bio);
1417 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1418 	}
1419 
1420 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1421 }
1422 
1423 static void __sort_thin_deferred_bios(struct thin_c *tc)
1424 {
1425 	struct bio *bio;
1426 	struct bio_list bios;
1427 
1428 	bio_list_init(&bios);
1429 	bio_list_merge(&bios, &tc->deferred_bio_list);
1430 	bio_list_init(&tc->deferred_bio_list);
1431 
1432 	/* Sort deferred_bio_list using rb-tree */
1433 	while ((bio = bio_list_pop(&bios)))
1434 		__thin_bio_rb_add(tc, bio);
1435 
1436 	/*
1437 	 * Transfer the sorted bios in sort_bio_list back to
1438 	 * deferred_bio_list to allow lockless submission of
1439 	 * all bios.
1440 	 */
1441 	__extract_sorted_bios(tc);
1442 }
1443 
1444 static void process_thin_deferred_bios(struct thin_c *tc)
1445 {
1446 	struct pool *pool = tc->pool;
1447 	unsigned long flags;
1448 	struct bio *bio;
1449 	struct bio_list bios;
1450 	struct blk_plug plug;
1451 
1452 	if (tc->requeue_mode) {
1453 		requeue_bio_list(tc, &tc->deferred_bio_list);
1454 		return;
1455 	}
1456 
1457 	bio_list_init(&bios);
1458 
1459 	spin_lock_irqsave(&tc->lock, flags);
1460 
1461 	if (bio_list_empty(&tc->deferred_bio_list)) {
1462 		spin_unlock_irqrestore(&tc->lock, flags);
1463 		return;
1464 	}
1465 
1466 	__sort_thin_deferred_bios(tc);
1467 
1468 	bio_list_merge(&bios, &tc->deferred_bio_list);
1469 	bio_list_init(&tc->deferred_bio_list);
1470 
1471 	spin_unlock_irqrestore(&tc->lock, flags);
1472 
1473 	blk_start_plug(&plug);
1474 	while ((bio = bio_list_pop(&bios))) {
1475 		/*
1476 		 * If we've got no free new_mapping structs, and processing
1477 		 * this bio might require one, we pause until there are some
1478 		 * prepared mappings to process.
1479 		 */
1480 		if (ensure_next_mapping(pool)) {
1481 			spin_lock_irqsave(&tc->lock, flags);
1482 			bio_list_add(&tc->deferred_bio_list, bio);
1483 			bio_list_merge(&tc->deferred_bio_list, &bios);
1484 			spin_unlock_irqrestore(&tc->lock, flags);
1485 			break;
1486 		}
1487 
1488 		if (bio->bi_rw & REQ_DISCARD)
1489 			pool->process_discard(tc, bio);
1490 		else
1491 			pool->process_bio(tc, bio);
1492 	}
1493 	blk_finish_plug(&plug);
1494 }
1495 
1496 static void thin_get(struct thin_c *tc);
1497 static void thin_put(struct thin_c *tc);
1498 
1499 /*
1500  * We can't hold rcu_read_lock() around code that can block.  So we
1501  * find a thin with the rcu lock held; bump a refcount; then drop
1502  * the lock.
1503  */
1504 static struct thin_c *get_first_thin(struct pool *pool)
1505 {
1506 	struct thin_c *tc = NULL;
1507 
1508 	rcu_read_lock();
1509 	if (!list_empty(&pool->active_thins)) {
1510 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1511 		thin_get(tc);
1512 	}
1513 	rcu_read_unlock();
1514 
1515 	return tc;
1516 }
1517 
1518 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1519 {
1520 	struct thin_c *old_tc = tc;
1521 
1522 	rcu_read_lock();
1523 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1524 		thin_get(tc);
1525 		thin_put(old_tc);
1526 		rcu_read_unlock();
1527 		return tc;
1528 	}
1529 	thin_put(old_tc);
1530 	rcu_read_unlock();
1531 
1532 	return NULL;
1533 }
1534 
1535 static void process_deferred_bios(struct pool *pool)
1536 {
1537 	unsigned long flags;
1538 	struct bio *bio;
1539 	struct bio_list bios;
1540 	struct thin_c *tc;
1541 
1542 	tc = get_first_thin(pool);
1543 	while (tc) {
1544 		process_thin_deferred_bios(tc);
1545 		tc = get_next_thin(pool, tc);
1546 	}
1547 
1548 	/*
1549 	 * If there are any deferred flush bios, we must commit
1550 	 * the metadata before issuing them.
1551 	 */
1552 	bio_list_init(&bios);
1553 	spin_lock_irqsave(&pool->lock, flags);
1554 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1555 	bio_list_init(&pool->deferred_flush_bios);
1556 	spin_unlock_irqrestore(&pool->lock, flags);
1557 
1558 	if (bio_list_empty(&bios) &&
1559 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1560 		return;
1561 
1562 	if (commit(pool)) {
1563 		while ((bio = bio_list_pop(&bios)))
1564 			bio_io_error(bio);
1565 		return;
1566 	}
1567 	pool->last_commit_jiffies = jiffies;
1568 
1569 	while ((bio = bio_list_pop(&bios)))
1570 		generic_make_request(bio);
1571 }
1572 
1573 static void do_worker(struct work_struct *ws)
1574 {
1575 	struct pool *pool = container_of(ws, struct pool, worker);
1576 
1577 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1578 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1579 	process_deferred_bios(pool);
1580 }
1581 
1582 /*
1583  * We want to commit periodically so that not too much
1584  * unwritten data builds up.
1585  */
1586 static void do_waker(struct work_struct *ws)
1587 {
1588 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1589 	wake_worker(pool);
1590 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1591 }
1592 
1593 /*----------------------------------------------------------------*/
1594 
1595 struct noflush_work {
1596 	struct work_struct worker;
1597 	struct thin_c *tc;
1598 
1599 	atomic_t complete;
1600 	wait_queue_head_t wait;
1601 };
1602 
1603 static void complete_noflush_work(struct noflush_work *w)
1604 {
1605 	atomic_set(&w->complete, 1);
1606 	wake_up(&w->wait);
1607 }
1608 
1609 static void do_noflush_start(struct work_struct *ws)
1610 {
1611 	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1612 	w->tc->requeue_mode = true;
1613 	requeue_io(w->tc);
1614 	complete_noflush_work(w);
1615 }
1616 
1617 static void do_noflush_stop(struct work_struct *ws)
1618 {
1619 	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1620 	w->tc->requeue_mode = false;
1621 	complete_noflush_work(w);
1622 }
1623 
1624 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1625 {
1626 	struct noflush_work w;
1627 
1628 	INIT_WORK_ONSTACK(&w.worker, fn);
1629 	w.tc = tc;
1630 	atomic_set(&w.complete, 0);
1631 	init_waitqueue_head(&w.wait);
1632 
1633 	queue_work(tc->pool->wq, &w.worker);
1634 
1635 	wait_event(w.wait, atomic_read(&w.complete));
1636 }
1637 
1638 /*----------------------------------------------------------------*/
1639 
1640 static enum pool_mode get_pool_mode(struct pool *pool)
1641 {
1642 	return pool->pf.mode;
1643 }
1644 
1645 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1646 {
1647 	dm_table_event(pool->ti->table);
1648 	DMINFO("%s: switching pool to %s mode",
1649 	       dm_device_name(pool->pool_md), new_mode);
1650 }
1651 
1652 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1653 {
1654 	struct pool_c *pt = pool->ti->private;
1655 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1656 	enum pool_mode old_mode = get_pool_mode(pool);
1657 
1658 	/*
1659 	 * Never allow the pool to transition to PM_WRITE mode if user
1660 	 * intervention is required to verify metadata and data consistency.
1661 	 */
1662 	if (new_mode == PM_WRITE && needs_check) {
1663 		DMERR("%s: unable to switch pool to write mode until repaired.",
1664 		      dm_device_name(pool->pool_md));
1665 		if (old_mode != new_mode)
1666 			new_mode = old_mode;
1667 		else
1668 			new_mode = PM_READ_ONLY;
1669 	}
1670 	/*
1671 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1672 	 * not going to recover without a thin_repair.	So we never let the
1673 	 * pool move out of the old mode.
1674 	 */
1675 	if (old_mode == PM_FAIL)
1676 		new_mode = old_mode;
1677 
1678 	switch (new_mode) {
1679 	case PM_FAIL:
1680 		if (old_mode != new_mode)
1681 			notify_of_pool_mode_change(pool, "failure");
1682 		dm_pool_metadata_read_only(pool->pmd);
1683 		pool->process_bio = process_bio_fail;
1684 		pool->process_discard = process_bio_fail;
1685 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1686 		pool->process_prepared_discard = process_prepared_discard_fail;
1687 
1688 		error_retry_list(pool);
1689 		break;
1690 
1691 	case PM_READ_ONLY:
1692 		if (old_mode != new_mode)
1693 			notify_of_pool_mode_change(pool, "read-only");
1694 		dm_pool_metadata_read_only(pool->pmd);
1695 		pool->process_bio = process_bio_read_only;
1696 		pool->process_discard = process_bio_success;
1697 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1698 		pool->process_prepared_discard = process_prepared_discard_passdown;
1699 
1700 		error_retry_list(pool);
1701 		break;
1702 
1703 	case PM_OUT_OF_DATA_SPACE:
1704 		/*
1705 		 * Ideally we'd never hit this state; the low water mark
1706 		 * would trigger userland to extend the pool before we
1707 		 * completely run out of data space.  However, many small
1708 		 * IOs to unprovisioned space can consume data space at an
1709 		 * alarming rate.  Adjust your low water mark if you're
1710 		 * frequently seeing this mode.
1711 		 */
1712 		if (old_mode != new_mode)
1713 			notify_of_pool_mode_change(pool, "out-of-data-space");
1714 		pool->process_bio = process_bio_read_only;
1715 		pool->process_discard = process_discard;
1716 		pool->process_prepared_mapping = process_prepared_mapping;
1717 		pool->process_prepared_discard = process_prepared_discard_passdown;
1718 		break;
1719 
1720 	case PM_WRITE:
1721 		if (old_mode != new_mode)
1722 			notify_of_pool_mode_change(pool, "write");
1723 		dm_pool_metadata_read_write(pool->pmd);
1724 		pool->process_bio = process_bio;
1725 		pool->process_discard = process_discard;
1726 		pool->process_prepared_mapping = process_prepared_mapping;
1727 		pool->process_prepared_discard = process_prepared_discard;
1728 		break;
1729 	}
1730 
1731 	pool->pf.mode = new_mode;
1732 	/*
1733 	 * The pool mode may have changed, sync it so bind_control_target()
1734 	 * doesn't cause an unexpected mode transition on resume.
1735 	 */
1736 	pt->adjusted_pf.mode = new_mode;
1737 }
1738 
1739 static void abort_transaction(struct pool *pool)
1740 {
1741 	const char *dev_name = dm_device_name(pool->pool_md);
1742 
1743 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1744 	if (dm_pool_abort_metadata(pool->pmd)) {
1745 		DMERR("%s: failed to abort metadata transaction", dev_name);
1746 		set_pool_mode(pool, PM_FAIL);
1747 	}
1748 
1749 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1750 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1751 		set_pool_mode(pool, PM_FAIL);
1752 	}
1753 }
1754 
1755 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1756 {
1757 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1758 		    dm_device_name(pool->pool_md), op, r);
1759 
1760 	abort_transaction(pool);
1761 	set_pool_mode(pool, PM_READ_ONLY);
1762 }
1763 
1764 /*----------------------------------------------------------------*/
1765 
1766 /*
1767  * Mapping functions.
1768  */
1769 
1770 /*
1771  * Called only while mapping a thin bio to hand it over to the workqueue.
1772  */
1773 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1774 {
1775 	unsigned long flags;
1776 	struct pool *pool = tc->pool;
1777 
1778 	spin_lock_irqsave(&tc->lock, flags);
1779 	bio_list_add(&tc->deferred_bio_list, bio);
1780 	spin_unlock_irqrestore(&tc->lock, flags);
1781 
1782 	wake_worker(pool);
1783 }
1784 
1785 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1786 {
1787 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1788 
1789 	h->tc = tc;
1790 	h->shared_read_entry = NULL;
1791 	h->all_io_entry = NULL;
1792 	h->overwrite_mapping = NULL;
1793 }
1794 
1795 /*
1796  * Non-blocking function called from the thin target's map function.
1797  */
1798 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1799 {
1800 	int r;
1801 	struct thin_c *tc = ti->private;
1802 	dm_block_t block = get_bio_block(tc, bio);
1803 	struct dm_thin_device *td = tc->td;
1804 	struct dm_thin_lookup_result result;
1805 	struct dm_bio_prison_cell cell1, cell2;
1806 	struct dm_bio_prison_cell *cell_result;
1807 	struct dm_cell_key key;
1808 
1809 	thin_hook_bio(tc, bio);
1810 
1811 	if (tc->requeue_mode) {
1812 		bio_endio(bio, DM_ENDIO_REQUEUE);
1813 		return DM_MAPIO_SUBMITTED;
1814 	}
1815 
1816 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1817 		bio_io_error(bio);
1818 		return DM_MAPIO_SUBMITTED;
1819 	}
1820 
1821 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1822 		thin_defer_bio(tc, bio);
1823 		return DM_MAPIO_SUBMITTED;
1824 	}
1825 
1826 	r = dm_thin_find_block(td, block, 0, &result);
1827 
1828 	/*
1829 	 * Note that we defer readahead too.
1830 	 */
1831 	switch (r) {
1832 	case 0:
1833 		if (unlikely(result.shared)) {
1834 			/*
1835 			 * We have a race condition here between the
1836 			 * result.shared value returned by the lookup and
1837 			 * snapshot creation, which may cause new
1838 			 * sharing.
1839 			 *
1840 			 * To avoid this always quiesce the origin before
1841 			 * taking the snap.  You want to do this anyway to
1842 			 * ensure a consistent application view
1843 			 * (i.e. lockfs).
1844 			 *
1845 			 * More distant ancestors are irrelevant. The
1846 			 * shared flag will be set in their case.
1847 			 */
1848 			thin_defer_bio(tc, bio);
1849 			return DM_MAPIO_SUBMITTED;
1850 		}
1851 
1852 		build_virtual_key(tc->td, block, &key);
1853 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1854 			return DM_MAPIO_SUBMITTED;
1855 
1856 		build_data_key(tc->td, result.block, &key);
1857 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1858 			cell_defer_no_holder_no_free(tc, &cell1);
1859 			return DM_MAPIO_SUBMITTED;
1860 		}
1861 
1862 		inc_all_io_entry(tc->pool, bio);
1863 		cell_defer_no_holder_no_free(tc, &cell2);
1864 		cell_defer_no_holder_no_free(tc, &cell1);
1865 
1866 		remap(tc, bio, result.block);
1867 		return DM_MAPIO_REMAPPED;
1868 
1869 	case -ENODATA:
1870 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1871 			/*
1872 			 * This block isn't provisioned, and we have no way
1873 			 * of doing so.
1874 			 */
1875 			handle_unserviceable_bio(tc->pool, bio);
1876 			return DM_MAPIO_SUBMITTED;
1877 		}
1878 		/* fall through */
1879 
1880 	case -EWOULDBLOCK:
1881 		/*
1882 		 * In future, the failed dm_thin_find_block above could
1883 		 * provide the hint to load the metadata into cache.
1884 		 */
1885 		thin_defer_bio(tc, bio);
1886 		return DM_MAPIO_SUBMITTED;
1887 
1888 	default:
1889 		/*
1890 		 * Must always call bio_io_error on failure.
1891 		 * dm_thin_find_block can fail with -EINVAL if the
1892 		 * pool is switched to fail-io mode.
1893 		 */
1894 		bio_io_error(bio);
1895 		return DM_MAPIO_SUBMITTED;
1896 	}
1897 }
1898 
1899 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1900 {
1901 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1902 	struct request_queue *q;
1903 
1904 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1905 		return 1;
1906 
1907 	q = bdev_get_queue(pt->data_dev->bdev);
1908 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1909 }
1910 
1911 static void requeue_bios(struct pool *pool)
1912 {
1913 	unsigned long flags;
1914 	struct thin_c *tc;
1915 
1916 	rcu_read_lock();
1917 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1918 		spin_lock_irqsave(&tc->lock, flags);
1919 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1920 		bio_list_init(&tc->retry_on_resume_list);
1921 		spin_unlock_irqrestore(&tc->lock, flags);
1922 	}
1923 	rcu_read_unlock();
1924 }
1925 
1926 /*----------------------------------------------------------------
1927  * Binding of control targets to a pool object
1928  *--------------------------------------------------------------*/
1929 static bool data_dev_supports_discard(struct pool_c *pt)
1930 {
1931 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1932 
1933 	return q && blk_queue_discard(q);
1934 }
1935 
1936 static bool is_factor(sector_t block_size, uint32_t n)
1937 {
1938 	return !sector_div(block_size, n);
1939 }
1940 
1941 /*
1942  * If discard_passdown was enabled verify that the data device
1943  * supports discards.  Disable discard_passdown if not.
1944  */
1945 static void disable_passdown_if_not_supported(struct pool_c *pt)
1946 {
1947 	struct pool *pool = pt->pool;
1948 	struct block_device *data_bdev = pt->data_dev->bdev;
1949 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1950 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1951 	const char *reason = NULL;
1952 	char buf[BDEVNAME_SIZE];
1953 
1954 	if (!pt->adjusted_pf.discard_passdown)
1955 		return;
1956 
1957 	if (!data_dev_supports_discard(pt))
1958 		reason = "discard unsupported";
1959 
1960 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1961 		reason = "max discard sectors smaller than a block";
1962 
1963 	else if (data_limits->discard_granularity > block_size)
1964 		reason = "discard granularity larger than a block";
1965 
1966 	else if (!is_factor(block_size, data_limits->discard_granularity))
1967 		reason = "discard granularity not a factor of block size";
1968 
1969 	if (reason) {
1970 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1971 		pt->adjusted_pf.discard_passdown = false;
1972 	}
1973 }
1974 
1975 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1976 {
1977 	struct pool_c *pt = ti->private;
1978 
1979 	/*
1980 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1981 	 */
1982 	enum pool_mode old_mode = get_pool_mode(pool);
1983 	enum pool_mode new_mode = pt->adjusted_pf.mode;
1984 
1985 	/*
1986 	 * Don't change the pool's mode until set_pool_mode() below.
1987 	 * Otherwise the pool's process_* function pointers may
1988 	 * not match the desired pool mode.
1989 	 */
1990 	pt->adjusted_pf.mode = old_mode;
1991 
1992 	pool->ti = ti;
1993 	pool->pf = pt->adjusted_pf;
1994 	pool->low_water_blocks = pt->low_water_blocks;
1995 
1996 	set_pool_mode(pool, new_mode);
1997 
1998 	return 0;
1999 }
2000 
2001 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2002 {
2003 	if (pool->ti == ti)
2004 		pool->ti = NULL;
2005 }
2006 
2007 /*----------------------------------------------------------------
2008  * Pool creation
2009  *--------------------------------------------------------------*/
2010 /* Initialize pool features. */
2011 static void pool_features_init(struct pool_features *pf)
2012 {
2013 	pf->mode = PM_WRITE;
2014 	pf->zero_new_blocks = true;
2015 	pf->discard_enabled = true;
2016 	pf->discard_passdown = true;
2017 	pf->error_if_no_space = false;
2018 }
2019 
2020 static void __pool_destroy(struct pool *pool)
2021 {
2022 	__pool_table_remove(pool);
2023 
2024 	if (dm_pool_metadata_close(pool->pmd) < 0)
2025 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2026 
2027 	dm_bio_prison_destroy(pool->prison);
2028 	dm_kcopyd_client_destroy(pool->copier);
2029 
2030 	if (pool->wq)
2031 		destroy_workqueue(pool->wq);
2032 
2033 	if (pool->next_mapping)
2034 		mempool_free(pool->next_mapping, pool->mapping_pool);
2035 	mempool_destroy(pool->mapping_pool);
2036 	dm_deferred_set_destroy(pool->shared_read_ds);
2037 	dm_deferred_set_destroy(pool->all_io_ds);
2038 	kfree(pool);
2039 }
2040 
2041 static struct kmem_cache *_new_mapping_cache;
2042 
2043 static struct pool *pool_create(struct mapped_device *pool_md,
2044 				struct block_device *metadata_dev,
2045 				unsigned long block_size,
2046 				int read_only, char **error)
2047 {
2048 	int r;
2049 	void *err_p;
2050 	struct pool *pool;
2051 	struct dm_pool_metadata *pmd;
2052 	bool format_device = read_only ? false : true;
2053 
2054 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2055 	if (IS_ERR(pmd)) {
2056 		*error = "Error creating metadata object";
2057 		return (struct pool *)pmd;
2058 	}
2059 
2060 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2061 	if (!pool) {
2062 		*error = "Error allocating memory for pool";
2063 		err_p = ERR_PTR(-ENOMEM);
2064 		goto bad_pool;
2065 	}
2066 
2067 	pool->pmd = pmd;
2068 	pool->sectors_per_block = block_size;
2069 	if (block_size & (block_size - 1))
2070 		pool->sectors_per_block_shift = -1;
2071 	else
2072 		pool->sectors_per_block_shift = __ffs(block_size);
2073 	pool->low_water_blocks = 0;
2074 	pool_features_init(&pool->pf);
2075 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
2076 	if (!pool->prison) {
2077 		*error = "Error creating pool's bio prison";
2078 		err_p = ERR_PTR(-ENOMEM);
2079 		goto bad_prison;
2080 	}
2081 
2082 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2083 	if (IS_ERR(pool->copier)) {
2084 		r = PTR_ERR(pool->copier);
2085 		*error = "Error creating pool's kcopyd client";
2086 		err_p = ERR_PTR(r);
2087 		goto bad_kcopyd_client;
2088 	}
2089 
2090 	/*
2091 	 * Create singlethreaded workqueue that will service all devices
2092 	 * that use this metadata.
2093 	 */
2094 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2095 	if (!pool->wq) {
2096 		*error = "Error creating pool's workqueue";
2097 		err_p = ERR_PTR(-ENOMEM);
2098 		goto bad_wq;
2099 	}
2100 
2101 	INIT_WORK(&pool->worker, do_worker);
2102 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2103 	spin_lock_init(&pool->lock);
2104 	bio_list_init(&pool->deferred_flush_bios);
2105 	INIT_LIST_HEAD(&pool->prepared_mappings);
2106 	INIT_LIST_HEAD(&pool->prepared_discards);
2107 	INIT_LIST_HEAD(&pool->active_thins);
2108 	pool->low_water_triggered = false;
2109 
2110 	pool->shared_read_ds = dm_deferred_set_create();
2111 	if (!pool->shared_read_ds) {
2112 		*error = "Error creating pool's shared read deferred set";
2113 		err_p = ERR_PTR(-ENOMEM);
2114 		goto bad_shared_read_ds;
2115 	}
2116 
2117 	pool->all_io_ds = dm_deferred_set_create();
2118 	if (!pool->all_io_ds) {
2119 		*error = "Error creating pool's all io deferred set";
2120 		err_p = ERR_PTR(-ENOMEM);
2121 		goto bad_all_io_ds;
2122 	}
2123 
2124 	pool->next_mapping = NULL;
2125 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2126 						      _new_mapping_cache);
2127 	if (!pool->mapping_pool) {
2128 		*error = "Error creating pool's mapping mempool";
2129 		err_p = ERR_PTR(-ENOMEM);
2130 		goto bad_mapping_pool;
2131 	}
2132 
2133 	pool->ref_count = 1;
2134 	pool->last_commit_jiffies = jiffies;
2135 	pool->pool_md = pool_md;
2136 	pool->md_dev = metadata_dev;
2137 	__pool_table_insert(pool);
2138 
2139 	return pool;
2140 
2141 bad_mapping_pool:
2142 	dm_deferred_set_destroy(pool->all_io_ds);
2143 bad_all_io_ds:
2144 	dm_deferred_set_destroy(pool->shared_read_ds);
2145 bad_shared_read_ds:
2146 	destroy_workqueue(pool->wq);
2147 bad_wq:
2148 	dm_kcopyd_client_destroy(pool->copier);
2149 bad_kcopyd_client:
2150 	dm_bio_prison_destroy(pool->prison);
2151 bad_prison:
2152 	kfree(pool);
2153 bad_pool:
2154 	if (dm_pool_metadata_close(pmd))
2155 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2156 
2157 	return err_p;
2158 }
2159 
2160 static void __pool_inc(struct pool *pool)
2161 {
2162 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2163 	pool->ref_count++;
2164 }
2165 
2166 static void __pool_dec(struct pool *pool)
2167 {
2168 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2169 	BUG_ON(!pool->ref_count);
2170 	if (!--pool->ref_count)
2171 		__pool_destroy(pool);
2172 }
2173 
2174 static struct pool *__pool_find(struct mapped_device *pool_md,
2175 				struct block_device *metadata_dev,
2176 				unsigned long block_size, int read_only,
2177 				char **error, int *created)
2178 {
2179 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2180 
2181 	if (pool) {
2182 		if (pool->pool_md != pool_md) {
2183 			*error = "metadata device already in use by a pool";
2184 			return ERR_PTR(-EBUSY);
2185 		}
2186 		__pool_inc(pool);
2187 
2188 	} else {
2189 		pool = __pool_table_lookup(pool_md);
2190 		if (pool) {
2191 			if (pool->md_dev != metadata_dev) {
2192 				*error = "different pool cannot replace a pool";
2193 				return ERR_PTR(-EINVAL);
2194 			}
2195 			__pool_inc(pool);
2196 
2197 		} else {
2198 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2199 			*created = 1;
2200 		}
2201 	}
2202 
2203 	return pool;
2204 }
2205 
2206 /*----------------------------------------------------------------
2207  * Pool target methods
2208  *--------------------------------------------------------------*/
2209 static void pool_dtr(struct dm_target *ti)
2210 {
2211 	struct pool_c *pt = ti->private;
2212 
2213 	mutex_lock(&dm_thin_pool_table.mutex);
2214 
2215 	unbind_control_target(pt->pool, ti);
2216 	__pool_dec(pt->pool);
2217 	dm_put_device(ti, pt->metadata_dev);
2218 	dm_put_device(ti, pt->data_dev);
2219 	kfree(pt);
2220 
2221 	mutex_unlock(&dm_thin_pool_table.mutex);
2222 }
2223 
2224 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2225 			       struct dm_target *ti)
2226 {
2227 	int r;
2228 	unsigned argc;
2229 	const char *arg_name;
2230 
2231 	static struct dm_arg _args[] = {
2232 		{0, 4, "Invalid number of pool feature arguments"},
2233 	};
2234 
2235 	/*
2236 	 * No feature arguments supplied.
2237 	 */
2238 	if (!as->argc)
2239 		return 0;
2240 
2241 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2242 	if (r)
2243 		return -EINVAL;
2244 
2245 	while (argc && !r) {
2246 		arg_name = dm_shift_arg(as);
2247 		argc--;
2248 
2249 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2250 			pf->zero_new_blocks = false;
2251 
2252 		else if (!strcasecmp(arg_name, "ignore_discard"))
2253 			pf->discard_enabled = false;
2254 
2255 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2256 			pf->discard_passdown = false;
2257 
2258 		else if (!strcasecmp(arg_name, "read_only"))
2259 			pf->mode = PM_READ_ONLY;
2260 
2261 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2262 			pf->error_if_no_space = true;
2263 
2264 		else {
2265 			ti->error = "Unrecognised pool feature requested";
2266 			r = -EINVAL;
2267 			break;
2268 		}
2269 	}
2270 
2271 	return r;
2272 }
2273 
2274 static void metadata_low_callback(void *context)
2275 {
2276 	struct pool *pool = context;
2277 
2278 	DMWARN("%s: reached low water mark for metadata device: sending event.",
2279 	       dm_device_name(pool->pool_md));
2280 
2281 	dm_table_event(pool->ti->table);
2282 }
2283 
2284 static sector_t get_dev_size(struct block_device *bdev)
2285 {
2286 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2287 }
2288 
2289 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2290 {
2291 	sector_t metadata_dev_size = get_dev_size(bdev);
2292 	char buffer[BDEVNAME_SIZE];
2293 
2294 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2295 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2296 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2297 }
2298 
2299 static sector_t get_metadata_dev_size(struct block_device *bdev)
2300 {
2301 	sector_t metadata_dev_size = get_dev_size(bdev);
2302 
2303 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2304 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2305 
2306 	return metadata_dev_size;
2307 }
2308 
2309 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2310 {
2311 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2312 
2313 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2314 
2315 	return metadata_dev_size;
2316 }
2317 
2318 /*
2319  * When a metadata threshold is crossed a dm event is triggered, and
2320  * userland should respond by growing the metadata device.  We could let
2321  * userland set the threshold, like we do with the data threshold, but I'm
2322  * not sure they know enough to do this well.
2323  */
2324 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2325 {
2326 	/*
2327 	 * 4M is ample for all ops with the possible exception of thin
2328 	 * device deletion which is harmless if it fails (just retry the
2329 	 * delete after you've grown the device).
2330 	 */
2331 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2332 	return min((dm_block_t)1024ULL /* 4M */, quarter);
2333 }
2334 
2335 /*
2336  * thin-pool <metadata dev> <data dev>
2337  *	     <data block size (sectors)>
2338  *	     <low water mark (blocks)>
2339  *	     [<#feature args> [<arg>]*]
2340  *
2341  * Optional feature arguments are:
2342  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2343  *	     ignore_discard: disable discard
2344  *	     no_discard_passdown: don't pass discards down to the data device
2345  *	     read_only: Don't allow any changes to be made to the pool metadata.
2346  *	     error_if_no_space: error IOs, instead of queueing, if no space.
2347  */
2348 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2349 {
2350 	int r, pool_created = 0;
2351 	struct pool_c *pt;
2352 	struct pool *pool;
2353 	struct pool_features pf;
2354 	struct dm_arg_set as;
2355 	struct dm_dev *data_dev;
2356 	unsigned long block_size;
2357 	dm_block_t low_water_blocks;
2358 	struct dm_dev *metadata_dev;
2359 	fmode_t metadata_mode;
2360 
2361 	/*
2362 	 * FIXME Remove validation from scope of lock.
2363 	 */
2364 	mutex_lock(&dm_thin_pool_table.mutex);
2365 
2366 	if (argc < 4) {
2367 		ti->error = "Invalid argument count";
2368 		r = -EINVAL;
2369 		goto out_unlock;
2370 	}
2371 
2372 	as.argc = argc;
2373 	as.argv = argv;
2374 
2375 	/*
2376 	 * Set default pool features.
2377 	 */
2378 	pool_features_init(&pf);
2379 
2380 	dm_consume_args(&as, 4);
2381 	r = parse_pool_features(&as, &pf, ti);
2382 	if (r)
2383 		goto out_unlock;
2384 
2385 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2386 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2387 	if (r) {
2388 		ti->error = "Error opening metadata block device";
2389 		goto out_unlock;
2390 	}
2391 	warn_if_metadata_device_too_big(metadata_dev->bdev);
2392 
2393 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2394 	if (r) {
2395 		ti->error = "Error getting data device";
2396 		goto out_metadata;
2397 	}
2398 
2399 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2400 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2401 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2402 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2403 		ti->error = "Invalid block size";
2404 		r = -EINVAL;
2405 		goto out;
2406 	}
2407 
2408 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2409 		ti->error = "Invalid low water mark";
2410 		r = -EINVAL;
2411 		goto out;
2412 	}
2413 
2414 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2415 	if (!pt) {
2416 		r = -ENOMEM;
2417 		goto out;
2418 	}
2419 
2420 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2421 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2422 	if (IS_ERR(pool)) {
2423 		r = PTR_ERR(pool);
2424 		goto out_free_pt;
2425 	}
2426 
2427 	/*
2428 	 * 'pool_created' reflects whether this is the first table load.
2429 	 * Top level discard support is not allowed to be changed after
2430 	 * initial load.  This would require a pool reload to trigger thin
2431 	 * device changes.
2432 	 */
2433 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2434 		ti->error = "Discard support cannot be disabled once enabled";
2435 		r = -EINVAL;
2436 		goto out_flags_changed;
2437 	}
2438 
2439 	pt->pool = pool;
2440 	pt->ti = ti;
2441 	pt->metadata_dev = metadata_dev;
2442 	pt->data_dev = data_dev;
2443 	pt->low_water_blocks = low_water_blocks;
2444 	pt->adjusted_pf = pt->requested_pf = pf;
2445 	ti->num_flush_bios = 1;
2446 
2447 	/*
2448 	 * Only need to enable discards if the pool should pass
2449 	 * them down to the data device.  The thin device's discard
2450 	 * processing will cause mappings to be removed from the btree.
2451 	 */
2452 	ti->discard_zeroes_data_unsupported = true;
2453 	if (pf.discard_enabled && pf.discard_passdown) {
2454 		ti->num_discard_bios = 1;
2455 
2456 		/*
2457 		 * Setting 'discards_supported' circumvents the normal
2458 		 * stacking of discard limits (this keeps the pool and
2459 		 * thin devices' discard limits consistent).
2460 		 */
2461 		ti->discards_supported = true;
2462 	}
2463 	ti->private = pt;
2464 
2465 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2466 						calc_metadata_threshold(pt),
2467 						metadata_low_callback,
2468 						pool);
2469 	if (r)
2470 		goto out_free_pt;
2471 
2472 	pt->callbacks.congested_fn = pool_is_congested;
2473 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2474 
2475 	mutex_unlock(&dm_thin_pool_table.mutex);
2476 
2477 	return 0;
2478 
2479 out_flags_changed:
2480 	__pool_dec(pool);
2481 out_free_pt:
2482 	kfree(pt);
2483 out:
2484 	dm_put_device(ti, data_dev);
2485 out_metadata:
2486 	dm_put_device(ti, metadata_dev);
2487 out_unlock:
2488 	mutex_unlock(&dm_thin_pool_table.mutex);
2489 
2490 	return r;
2491 }
2492 
2493 static int pool_map(struct dm_target *ti, struct bio *bio)
2494 {
2495 	int r;
2496 	struct pool_c *pt = ti->private;
2497 	struct pool *pool = pt->pool;
2498 	unsigned long flags;
2499 
2500 	/*
2501 	 * As this is a singleton target, ti->begin is always zero.
2502 	 */
2503 	spin_lock_irqsave(&pool->lock, flags);
2504 	bio->bi_bdev = pt->data_dev->bdev;
2505 	r = DM_MAPIO_REMAPPED;
2506 	spin_unlock_irqrestore(&pool->lock, flags);
2507 
2508 	return r;
2509 }
2510 
2511 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2512 {
2513 	int r;
2514 	struct pool_c *pt = ti->private;
2515 	struct pool *pool = pt->pool;
2516 	sector_t data_size = ti->len;
2517 	dm_block_t sb_data_size;
2518 
2519 	*need_commit = false;
2520 
2521 	(void) sector_div(data_size, pool->sectors_per_block);
2522 
2523 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2524 	if (r) {
2525 		DMERR("%s: failed to retrieve data device size",
2526 		      dm_device_name(pool->pool_md));
2527 		return r;
2528 	}
2529 
2530 	if (data_size < sb_data_size) {
2531 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2532 		      dm_device_name(pool->pool_md),
2533 		      (unsigned long long)data_size, sb_data_size);
2534 		return -EINVAL;
2535 
2536 	} else if (data_size > sb_data_size) {
2537 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2538 			DMERR("%s: unable to grow the data device until repaired.",
2539 			      dm_device_name(pool->pool_md));
2540 			return 0;
2541 		}
2542 
2543 		if (sb_data_size)
2544 			DMINFO("%s: growing the data device from %llu to %llu blocks",
2545 			       dm_device_name(pool->pool_md),
2546 			       sb_data_size, (unsigned long long)data_size);
2547 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2548 		if (r) {
2549 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2550 			return r;
2551 		}
2552 
2553 		*need_commit = true;
2554 	}
2555 
2556 	return 0;
2557 }
2558 
2559 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2560 {
2561 	int r;
2562 	struct pool_c *pt = ti->private;
2563 	struct pool *pool = pt->pool;
2564 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2565 
2566 	*need_commit = false;
2567 
2568 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2569 
2570 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2571 	if (r) {
2572 		DMERR("%s: failed to retrieve metadata device size",
2573 		      dm_device_name(pool->pool_md));
2574 		return r;
2575 	}
2576 
2577 	if (metadata_dev_size < sb_metadata_dev_size) {
2578 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2579 		      dm_device_name(pool->pool_md),
2580 		      metadata_dev_size, sb_metadata_dev_size);
2581 		return -EINVAL;
2582 
2583 	} else if (metadata_dev_size > sb_metadata_dev_size) {
2584 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2585 			DMERR("%s: unable to grow the metadata device until repaired.",
2586 			      dm_device_name(pool->pool_md));
2587 			return 0;
2588 		}
2589 
2590 		warn_if_metadata_device_too_big(pool->md_dev);
2591 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2592 		       dm_device_name(pool->pool_md),
2593 		       sb_metadata_dev_size, metadata_dev_size);
2594 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2595 		if (r) {
2596 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2597 			return r;
2598 		}
2599 
2600 		*need_commit = true;
2601 	}
2602 
2603 	return 0;
2604 }
2605 
2606 /*
2607  * Retrieves the number of blocks of the data device from
2608  * the superblock and compares it to the actual device size,
2609  * thus resizing the data device in case it has grown.
2610  *
2611  * This both copes with opening preallocated data devices in the ctr
2612  * being followed by a resume
2613  * -and-
2614  * calling the resume method individually after userspace has
2615  * grown the data device in reaction to a table event.
2616  */
2617 static int pool_preresume(struct dm_target *ti)
2618 {
2619 	int r;
2620 	bool need_commit1, need_commit2;
2621 	struct pool_c *pt = ti->private;
2622 	struct pool *pool = pt->pool;
2623 
2624 	/*
2625 	 * Take control of the pool object.
2626 	 */
2627 	r = bind_control_target(pool, ti);
2628 	if (r)
2629 		return r;
2630 
2631 	r = maybe_resize_data_dev(ti, &need_commit1);
2632 	if (r)
2633 		return r;
2634 
2635 	r = maybe_resize_metadata_dev(ti, &need_commit2);
2636 	if (r)
2637 		return r;
2638 
2639 	if (need_commit1 || need_commit2)
2640 		(void) commit(pool);
2641 
2642 	return 0;
2643 }
2644 
2645 static void pool_resume(struct dm_target *ti)
2646 {
2647 	struct pool_c *pt = ti->private;
2648 	struct pool *pool = pt->pool;
2649 	unsigned long flags;
2650 
2651 	spin_lock_irqsave(&pool->lock, flags);
2652 	pool->low_water_triggered = false;
2653 	spin_unlock_irqrestore(&pool->lock, flags);
2654 	requeue_bios(pool);
2655 
2656 	do_waker(&pool->waker.work);
2657 }
2658 
2659 static void pool_postsuspend(struct dm_target *ti)
2660 {
2661 	struct pool_c *pt = ti->private;
2662 	struct pool *pool = pt->pool;
2663 
2664 	cancel_delayed_work(&pool->waker);
2665 	flush_workqueue(pool->wq);
2666 	(void) commit(pool);
2667 }
2668 
2669 static int check_arg_count(unsigned argc, unsigned args_required)
2670 {
2671 	if (argc != args_required) {
2672 		DMWARN("Message received with %u arguments instead of %u.",
2673 		       argc, args_required);
2674 		return -EINVAL;
2675 	}
2676 
2677 	return 0;
2678 }
2679 
2680 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2681 {
2682 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2683 	    *dev_id <= MAX_DEV_ID)
2684 		return 0;
2685 
2686 	if (warning)
2687 		DMWARN("Message received with invalid device id: %s", arg);
2688 
2689 	return -EINVAL;
2690 }
2691 
2692 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2693 {
2694 	dm_thin_id dev_id;
2695 	int r;
2696 
2697 	r = check_arg_count(argc, 2);
2698 	if (r)
2699 		return r;
2700 
2701 	r = read_dev_id(argv[1], &dev_id, 1);
2702 	if (r)
2703 		return r;
2704 
2705 	r = dm_pool_create_thin(pool->pmd, dev_id);
2706 	if (r) {
2707 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2708 		       argv[1]);
2709 		return r;
2710 	}
2711 
2712 	return 0;
2713 }
2714 
2715 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2716 {
2717 	dm_thin_id dev_id;
2718 	dm_thin_id origin_dev_id;
2719 	int r;
2720 
2721 	r = check_arg_count(argc, 3);
2722 	if (r)
2723 		return r;
2724 
2725 	r = read_dev_id(argv[1], &dev_id, 1);
2726 	if (r)
2727 		return r;
2728 
2729 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2730 	if (r)
2731 		return r;
2732 
2733 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2734 	if (r) {
2735 		DMWARN("Creation of new snapshot %s of device %s failed.",
2736 		       argv[1], argv[2]);
2737 		return r;
2738 	}
2739 
2740 	return 0;
2741 }
2742 
2743 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2744 {
2745 	dm_thin_id dev_id;
2746 	int r;
2747 
2748 	r = check_arg_count(argc, 2);
2749 	if (r)
2750 		return r;
2751 
2752 	r = read_dev_id(argv[1], &dev_id, 1);
2753 	if (r)
2754 		return r;
2755 
2756 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2757 	if (r)
2758 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2759 
2760 	return r;
2761 }
2762 
2763 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2764 {
2765 	dm_thin_id old_id, new_id;
2766 	int r;
2767 
2768 	r = check_arg_count(argc, 3);
2769 	if (r)
2770 		return r;
2771 
2772 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2773 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2774 		return -EINVAL;
2775 	}
2776 
2777 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2778 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2779 		return -EINVAL;
2780 	}
2781 
2782 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2783 	if (r) {
2784 		DMWARN("Failed to change transaction id from %s to %s.",
2785 		       argv[1], argv[2]);
2786 		return r;
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2793 {
2794 	int r;
2795 
2796 	r = check_arg_count(argc, 1);
2797 	if (r)
2798 		return r;
2799 
2800 	(void) commit(pool);
2801 
2802 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2803 	if (r)
2804 		DMWARN("reserve_metadata_snap message failed.");
2805 
2806 	return r;
2807 }
2808 
2809 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2810 {
2811 	int r;
2812 
2813 	r = check_arg_count(argc, 1);
2814 	if (r)
2815 		return r;
2816 
2817 	r = dm_pool_release_metadata_snap(pool->pmd);
2818 	if (r)
2819 		DMWARN("release_metadata_snap message failed.");
2820 
2821 	return r;
2822 }
2823 
2824 /*
2825  * Messages supported:
2826  *   create_thin	<dev_id>
2827  *   create_snap	<dev_id> <origin_id>
2828  *   delete		<dev_id>
2829  *   trim		<dev_id> <new_size_in_sectors>
2830  *   set_transaction_id <current_trans_id> <new_trans_id>
2831  *   reserve_metadata_snap
2832  *   release_metadata_snap
2833  */
2834 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2835 {
2836 	int r = -EINVAL;
2837 	struct pool_c *pt = ti->private;
2838 	struct pool *pool = pt->pool;
2839 
2840 	if (!strcasecmp(argv[0], "create_thin"))
2841 		r = process_create_thin_mesg(argc, argv, pool);
2842 
2843 	else if (!strcasecmp(argv[0], "create_snap"))
2844 		r = process_create_snap_mesg(argc, argv, pool);
2845 
2846 	else if (!strcasecmp(argv[0], "delete"))
2847 		r = process_delete_mesg(argc, argv, pool);
2848 
2849 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2850 		r = process_set_transaction_id_mesg(argc, argv, pool);
2851 
2852 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2853 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2854 
2855 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2856 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2857 
2858 	else
2859 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2860 
2861 	if (!r)
2862 		(void) commit(pool);
2863 
2864 	return r;
2865 }
2866 
2867 static void emit_flags(struct pool_features *pf, char *result,
2868 		       unsigned sz, unsigned maxlen)
2869 {
2870 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2871 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2872 		pf->error_if_no_space;
2873 	DMEMIT("%u ", count);
2874 
2875 	if (!pf->zero_new_blocks)
2876 		DMEMIT("skip_block_zeroing ");
2877 
2878 	if (!pf->discard_enabled)
2879 		DMEMIT("ignore_discard ");
2880 
2881 	if (!pf->discard_passdown)
2882 		DMEMIT("no_discard_passdown ");
2883 
2884 	if (pf->mode == PM_READ_ONLY)
2885 		DMEMIT("read_only ");
2886 
2887 	if (pf->error_if_no_space)
2888 		DMEMIT("error_if_no_space ");
2889 }
2890 
2891 /*
2892  * Status line is:
2893  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2894  *    <used data sectors>/<total data sectors> <held metadata root>
2895  */
2896 static void pool_status(struct dm_target *ti, status_type_t type,
2897 			unsigned status_flags, char *result, unsigned maxlen)
2898 {
2899 	int r;
2900 	unsigned sz = 0;
2901 	uint64_t transaction_id;
2902 	dm_block_t nr_free_blocks_data;
2903 	dm_block_t nr_free_blocks_metadata;
2904 	dm_block_t nr_blocks_data;
2905 	dm_block_t nr_blocks_metadata;
2906 	dm_block_t held_root;
2907 	char buf[BDEVNAME_SIZE];
2908 	char buf2[BDEVNAME_SIZE];
2909 	struct pool_c *pt = ti->private;
2910 	struct pool *pool = pt->pool;
2911 
2912 	switch (type) {
2913 	case STATUSTYPE_INFO:
2914 		if (get_pool_mode(pool) == PM_FAIL) {
2915 			DMEMIT("Fail");
2916 			break;
2917 		}
2918 
2919 		/* Commit to ensure statistics aren't out-of-date */
2920 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2921 			(void) commit(pool);
2922 
2923 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2924 		if (r) {
2925 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2926 			      dm_device_name(pool->pool_md), r);
2927 			goto err;
2928 		}
2929 
2930 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2931 		if (r) {
2932 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2933 			      dm_device_name(pool->pool_md), r);
2934 			goto err;
2935 		}
2936 
2937 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2938 		if (r) {
2939 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2940 			      dm_device_name(pool->pool_md), r);
2941 			goto err;
2942 		}
2943 
2944 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2945 		if (r) {
2946 			DMERR("%s: dm_pool_get_free_block_count returned %d",
2947 			      dm_device_name(pool->pool_md), r);
2948 			goto err;
2949 		}
2950 
2951 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2952 		if (r) {
2953 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
2954 			      dm_device_name(pool->pool_md), r);
2955 			goto err;
2956 		}
2957 
2958 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2959 		if (r) {
2960 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
2961 			      dm_device_name(pool->pool_md), r);
2962 			goto err;
2963 		}
2964 
2965 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2966 		       (unsigned long long)transaction_id,
2967 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2968 		       (unsigned long long)nr_blocks_metadata,
2969 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2970 		       (unsigned long long)nr_blocks_data);
2971 
2972 		if (held_root)
2973 			DMEMIT("%llu ", held_root);
2974 		else
2975 			DMEMIT("- ");
2976 
2977 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2978 			DMEMIT("out_of_data_space ");
2979 		else if (pool->pf.mode == PM_READ_ONLY)
2980 			DMEMIT("ro ");
2981 		else
2982 			DMEMIT("rw ");
2983 
2984 		if (!pool->pf.discard_enabled)
2985 			DMEMIT("ignore_discard ");
2986 		else if (pool->pf.discard_passdown)
2987 			DMEMIT("discard_passdown ");
2988 		else
2989 			DMEMIT("no_discard_passdown ");
2990 
2991 		if (pool->pf.error_if_no_space)
2992 			DMEMIT("error_if_no_space ");
2993 		else
2994 			DMEMIT("queue_if_no_space ");
2995 
2996 		break;
2997 
2998 	case STATUSTYPE_TABLE:
2999 		DMEMIT("%s %s %lu %llu ",
3000 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3001 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3002 		       (unsigned long)pool->sectors_per_block,
3003 		       (unsigned long long)pt->low_water_blocks);
3004 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3005 		break;
3006 	}
3007 	return;
3008 
3009 err:
3010 	DMEMIT("Error");
3011 }
3012 
3013 static int pool_iterate_devices(struct dm_target *ti,
3014 				iterate_devices_callout_fn fn, void *data)
3015 {
3016 	struct pool_c *pt = ti->private;
3017 
3018 	return fn(ti, pt->data_dev, 0, ti->len, data);
3019 }
3020 
3021 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3022 		      struct bio_vec *biovec, int max_size)
3023 {
3024 	struct pool_c *pt = ti->private;
3025 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3026 
3027 	if (!q->merge_bvec_fn)
3028 		return max_size;
3029 
3030 	bvm->bi_bdev = pt->data_dev->bdev;
3031 
3032 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3033 }
3034 
3035 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3036 {
3037 	struct pool *pool = pt->pool;
3038 	struct queue_limits *data_limits;
3039 
3040 	limits->max_discard_sectors = pool->sectors_per_block;
3041 
3042 	/*
3043 	 * discard_granularity is just a hint, and not enforced.
3044 	 */
3045 	if (pt->adjusted_pf.discard_passdown) {
3046 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3047 		limits->discard_granularity = data_limits->discard_granularity;
3048 	} else
3049 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3050 }
3051 
3052 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3053 {
3054 	struct pool_c *pt = ti->private;
3055 	struct pool *pool = pt->pool;
3056 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3057 
3058 	/*
3059 	 * If the system-determined stacked limits are compatible with the
3060 	 * pool's blocksize (io_opt is a factor) do not override them.
3061 	 */
3062 	if (io_opt_sectors < pool->sectors_per_block ||
3063 	    do_div(io_opt_sectors, pool->sectors_per_block)) {
3064 		blk_limits_io_min(limits, 0);
3065 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3066 	}
3067 
3068 	/*
3069 	 * pt->adjusted_pf is a staging area for the actual features to use.
3070 	 * They get transferred to the live pool in bind_control_target()
3071 	 * called from pool_preresume().
3072 	 */
3073 	if (!pt->adjusted_pf.discard_enabled) {
3074 		/*
3075 		 * Must explicitly disallow stacking discard limits otherwise the
3076 		 * block layer will stack them if pool's data device has support.
3077 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3078 		 * user to see that, so make sure to set all discard limits to 0.
3079 		 */
3080 		limits->discard_granularity = 0;
3081 		return;
3082 	}
3083 
3084 	disable_passdown_if_not_supported(pt);
3085 
3086 	set_discard_limits(pt, limits);
3087 }
3088 
3089 static struct target_type pool_target = {
3090 	.name = "thin-pool",
3091 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3092 		    DM_TARGET_IMMUTABLE,
3093 	.version = {1, 12, 0},
3094 	.module = THIS_MODULE,
3095 	.ctr = pool_ctr,
3096 	.dtr = pool_dtr,
3097 	.map = pool_map,
3098 	.postsuspend = pool_postsuspend,
3099 	.preresume = pool_preresume,
3100 	.resume = pool_resume,
3101 	.message = pool_message,
3102 	.status = pool_status,
3103 	.merge = pool_merge,
3104 	.iterate_devices = pool_iterate_devices,
3105 	.io_hints = pool_io_hints,
3106 };
3107 
3108 /*----------------------------------------------------------------
3109  * Thin target methods
3110  *--------------------------------------------------------------*/
3111 static void thin_get(struct thin_c *tc)
3112 {
3113 	atomic_inc(&tc->refcount);
3114 }
3115 
3116 static void thin_put(struct thin_c *tc)
3117 {
3118 	if (atomic_dec_and_test(&tc->refcount))
3119 		complete(&tc->can_destroy);
3120 }
3121 
3122 static void thin_dtr(struct dm_target *ti)
3123 {
3124 	struct thin_c *tc = ti->private;
3125 	unsigned long flags;
3126 
3127 	thin_put(tc);
3128 	wait_for_completion(&tc->can_destroy);
3129 
3130 	spin_lock_irqsave(&tc->pool->lock, flags);
3131 	list_del_rcu(&tc->list);
3132 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3133 	synchronize_rcu();
3134 
3135 	mutex_lock(&dm_thin_pool_table.mutex);
3136 
3137 	__pool_dec(tc->pool);
3138 	dm_pool_close_thin_device(tc->td);
3139 	dm_put_device(ti, tc->pool_dev);
3140 	if (tc->origin_dev)
3141 		dm_put_device(ti, tc->origin_dev);
3142 	kfree(tc);
3143 
3144 	mutex_unlock(&dm_thin_pool_table.mutex);
3145 }
3146 
3147 /*
3148  * Thin target parameters:
3149  *
3150  * <pool_dev> <dev_id> [origin_dev]
3151  *
3152  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3153  * dev_id: the internal device identifier
3154  * origin_dev: a device external to the pool that should act as the origin
3155  *
3156  * If the pool device has discards disabled, they get disabled for the thin
3157  * device as well.
3158  */
3159 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3160 {
3161 	int r;
3162 	struct thin_c *tc;
3163 	struct dm_dev *pool_dev, *origin_dev;
3164 	struct mapped_device *pool_md;
3165 	unsigned long flags;
3166 
3167 	mutex_lock(&dm_thin_pool_table.mutex);
3168 
3169 	if (argc != 2 && argc != 3) {
3170 		ti->error = "Invalid argument count";
3171 		r = -EINVAL;
3172 		goto out_unlock;
3173 	}
3174 
3175 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3176 	if (!tc) {
3177 		ti->error = "Out of memory";
3178 		r = -ENOMEM;
3179 		goto out_unlock;
3180 	}
3181 	spin_lock_init(&tc->lock);
3182 	bio_list_init(&tc->deferred_bio_list);
3183 	bio_list_init(&tc->retry_on_resume_list);
3184 	tc->sort_bio_list = RB_ROOT;
3185 
3186 	if (argc == 3) {
3187 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3188 		if (r) {
3189 			ti->error = "Error opening origin device";
3190 			goto bad_origin_dev;
3191 		}
3192 		tc->origin_dev = origin_dev;
3193 	}
3194 
3195 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3196 	if (r) {
3197 		ti->error = "Error opening pool device";
3198 		goto bad_pool_dev;
3199 	}
3200 	tc->pool_dev = pool_dev;
3201 
3202 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3203 		ti->error = "Invalid device id";
3204 		r = -EINVAL;
3205 		goto bad_common;
3206 	}
3207 
3208 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3209 	if (!pool_md) {
3210 		ti->error = "Couldn't get pool mapped device";
3211 		r = -EINVAL;
3212 		goto bad_common;
3213 	}
3214 
3215 	tc->pool = __pool_table_lookup(pool_md);
3216 	if (!tc->pool) {
3217 		ti->error = "Couldn't find pool object";
3218 		r = -EINVAL;
3219 		goto bad_pool_lookup;
3220 	}
3221 	__pool_inc(tc->pool);
3222 
3223 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3224 		ti->error = "Couldn't open thin device, Pool is in fail mode";
3225 		r = -EINVAL;
3226 		goto bad_thin_open;
3227 	}
3228 
3229 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3230 	if (r) {
3231 		ti->error = "Couldn't open thin internal device";
3232 		goto bad_thin_open;
3233 	}
3234 
3235 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3236 	if (r)
3237 		goto bad_target_max_io_len;
3238 
3239 	ti->num_flush_bios = 1;
3240 	ti->flush_supported = true;
3241 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3242 
3243 	/* In case the pool supports discards, pass them on. */
3244 	ti->discard_zeroes_data_unsupported = true;
3245 	if (tc->pool->pf.discard_enabled) {
3246 		ti->discards_supported = true;
3247 		ti->num_discard_bios = 1;
3248 		/* Discard bios must be split on a block boundary */
3249 		ti->split_discard_bios = true;
3250 	}
3251 
3252 	dm_put(pool_md);
3253 
3254 	mutex_unlock(&dm_thin_pool_table.mutex);
3255 
3256 	atomic_set(&tc->refcount, 1);
3257 	init_completion(&tc->can_destroy);
3258 
3259 	spin_lock_irqsave(&tc->pool->lock, flags);
3260 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3261 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3262 	/*
3263 	 * This synchronize_rcu() call is needed here otherwise we risk a
3264 	 * wake_worker() call finding no bios to process (because the newly
3265 	 * added tc isn't yet visible).  So this reduces latency since we
3266 	 * aren't then dependent on the periodic commit to wake_worker().
3267 	 */
3268 	synchronize_rcu();
3269 
3270 	return 0;
3271 
3272 bad_target_max_io_len:
3273 	dm_pool_close_thin_device(tc->td);
3274 bad_thin_open:
3275 	__pool_dec(tc->pool);
3276 bad_pool_lookup:
3277 	dm_put(pool_md);
3278 bad_common:
3279 	dm_put_device(ti, tc->pool_dev);
3280 bad_pool_dev:
3281 	if (tc->origin_dev)
3282 		dm_put_device(ti, tc->origin_dev);
3283 bad_origin_dev:
3284 	kfree(tc);
3285 out_unlock:
3286 	mutex_unlock(&dm_thin_pool_table.mutex);
3287 
3288 	return r;
3289 }
3290 
3291 static int thin_map(struct dm_target *ti, struct bio *bio)
3292 {
3293 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3294 
3295 	return thin_bio_map(ti, bio);
3296 }
3297 
3298 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3299 {
3300 	unsigned long flags;
3301 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3302 	struct list_head work;
3303 	struct dm_thin_new_mapping *m, *tmp;
3304 	struct pool *pool = h->tc->pool;
3305 
3306 	if (h->shared_read_entry) {
3307 		INIT_LIST_HEAD(&work);
3308 		dm_deferred_entry_dec(h->shared_read_entry, &work);
3309 
3310 		spin_lock_irqsave(&pool->lock, flags);
3311 		list_for_each_entry_safe(m, tmp, &work, list) {
3312 			list_del(&m->list);
3313 			m->quiesced = true;
3314 			__maybe_add_mapping(m);
3315 		}
3316 		spin_unlock_irqrestore(&pool->lock, flags);
3317 	}
3318 
3319 	if (h->all_io_entry) {
3320 		INIT_LIST_HEAD(&work);
3321 		dm_deferred_entry_dec(h->all_io_entry, &work);
3322 		if (!list_empty(&work)) {
3323 			spin_lock_irqsave(&pool->lock, flags);
3324 			list_for_each_entry_safe(m, tmp, &work, list)
3325 				list_add_tail(&m->list, &pool->prepared_discards);
3326 			spin_unlock_irqrestore(&pool->lock, flags);
3327 			wake_worker(pool);
3328 		}
3329 	}
3330 
3331 	return 0;
3332 }
3333 
3334 static void thin_presuspend(struct dm_target *ti)
3335 {
3336 	struct thin_c *tc = ti->private;
3337 
3338 	if (dm_noflush_suspending(ti))
3339 		noflush_work(tc, do_noflush_start);
3340 }
3341 
3342 static void thin_postsuspend(struct dm_target *ti)
3343 {
3344 	struct thin_c *tc = ti->private;
3345 
3346 	/*
3347 	 * The dm_noflush_suspending flag has been cleared by now, so
3348 	 * unfortunately we must always run this.
3349 	 */
3350 	noflush_work(tc, do_noflush_stop);
3351 }
3352 
3353 /*
3354  * <nr mapped sectors> <highest mapped sector>
3355  */
3356 static void thin_status(struct dm_target *ti, status_type_t type,
3357 			unsigned status_flags, char *result, unsigned maxlen)
3358 {
3359 	int r;
3360 	ssize_t sz = 0;
3361 	dm_block_t mapped, highest;
3362 	char buf[BDEVNAME_SIZE];
3363 	struct thin_c *tc = ti->private;
3364 
3365 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3366 		DMEMIT("Fail");
3367 		return;
3368 	}
3369 
3370 	if (!tc->td)
3371 		DMEMIT("-");
3372 	else {
3373 		switch (type) {
3374 		case STATUSTYPE_INFO:
3375 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3376 			if (r) {
3377 				DMERR("dm_thin_get_mapped_count returned %d", r);
3378 				goto err;
3379 			}
3380 
3381 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3382 			if (r < 0) {
3383 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3384 				goto err;
3385 			}
3386 
3387 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3388 			if (r)
3389 				DMEMIT("%llu", ((highest + 1) *
3390 						tc->pool->sectors_per_block) - 1);
3391 			else
3392 				DMEMIT("-");
3393 			break;
3394 
3395 		case STATUSTYPE_TABLE:
3396 			DMEMIT("%s %lu",
3397 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3398 			       (unsigned long) tc->dev_id);
3399 			if (tc->origin_dev)
3400 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3401 			break;
3402 		}
3403 	}
3404 
3405 	return;
3406 
3407 err:
3408 	DMEMIT("Error");
3409 }
3410 
3411 static int thin_iterate_devices(struct dm_target *ti,
3412 				iterate_devices_callout_fn fn, void *data)
3413 {
3414 	sector_t blocks;
3415 	struct thin_c *tc = ti->private;
3416 	struct pool *pool = tc->pool;
3417 
3418 	/*
3419 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3420 	 * we follow a more convoluted path through to the pool's target.
3421 	 */
3422 	if (!pool->ti)
3423 		return 0;	/* nothing is bound */
3424 
3425 	blocks = pool->ti->len;
3426 	(void) sector_div(blocks, pool->sectors_per_block);
3427 	if (blocks)
3428 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3429 
3430 	return 0;
3431 }
3432 
3433 static struct target_type thin_target = {
3434 	.name = "thin",
3435 	.version = {1, 12, 0},
3436 	.module	= THIS_MODULE,
3437 	.ctr = thin_ctr,
3438 	.dtr = thin_dtr,
3439 	.map = thin_map,
3440 	.end_io = thin_endio,
3441 	.presuspend = thin_presuspend,
3442 	.postsuspend = thin_postsuspend,
3443 	.status = thin_status,
3444 	.iterate_devices = thin_iterate_devices,
3445 };
3446 
3447 /*----------------------------------------------------------------*/
3448 
3449 static int __init dm_thin_init(void)
3450 {
3451 	int r;
3452 
3453 	pool_table_init();
3454 
3455 	r = dm_register_target(&thin_target);
3456 	if (r)
3457 		return r;
3458 
3459 	r = dm_register_target(&pool_target);
3460 	if (r)
3461 		goto bad_pool_target;
3462 
3463 	r = -ENOMEM;
3464 
3465 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3466 	if (!_new_mapping_cache)
3467 		goto bad_new_mapping_cache;
3468 
3469 	return 0;
3470 
3471 bad_new_mapping_cache:
3472 	dm_unregister_target(&pool_target);
3473 bad_pool_target:
3474 	dm_unregister_target(&thin_target);
3475 
3476 	return r;
3477 }
3478 
3479 static void dm_thin_exit(void)
3480 {
3481 	dm_unregister_target(&thin_target);
3482 	dm_unregister_target(&pool_target);
3483 
3484 	kmem_cache_destroy(_new_mapping_cache);
3485 }
3486 
3487 module_init(dm_thin_init);
3488 module_exit(dm_thin_exit);
3489 
3490 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3491 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3492 MODULE_LICENSE("GPL");
3493