1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/rculist.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/rbtree.h> 20 21 #define DM_MSG_PREFIX "thin" 22 23 /* 24 * Tunable constants 25 */ 26 #define ENDIO_HOOK_POOL_SIZE 1024 27 #define MAPPING_POOL_SIZE 1024 28 #define PRISON_CELLS 1024 29 #define COMMIT_PERIOD HZ 30 31 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 32 "A percentage of time allocated for copy on write"); 33 34 /* 35 * The block size of the device holding pool data must be 36 * between 64KB and 1GB. 37 */ 38 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 39 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 40 41 /* 42 * Device id is restricted to 24 bits. 43 */ 44 #define MAX_DEV_ID ((1 << 24) - 1) 45 46 /* 47 * How do we handle breaking sharing of data blocks? 48 * ================================================= 49 * 50 * We use a standard copy-on-write btree to store the mappings for the 51 * devices (note I'm talking about copy-on-write of the metadata here, not 52 * the data). When you take an internal snapshot you clone the root node 53 * of the origin btree. After this there is no concept of an origin or a 54 * snapshot. They are just two device trees that happen to point to the 55 * same data blocks. 56 * 57 * When we get a write in we decide if it's to a shared data block using 58 * some timestamp magic. If it is, we have to break sharing. 59 * 60 * Let's say we write to a shared block in what was the origin. The 61 * steps are: 62 * 63 * i) plug io further to this physical block. (see bio_prison code). 64 * 65 * ii) quiesce any read io to that shared data block. Obviously 66 * including all devices that share this block. (see dm_deferred_set code) 67 * 68 * iii) copy the data block to a newly allocate block. This step can be 69 * missed out if the io covers the block. (schedule_copy). 70 * 71 * iv) insert the new mapping into the origin's btree 72 * (process_prepared_mapping). This act of inserting breaks some 73 * sharing of btree nodes between the two devices. Breaking sharing only 74 * effects the btree of that specific device. Btrees for the other 75 * devices that share the block never change. The btree for the origin 76 * device as it was after the last commit is untouched, ie. we're using 77 * persistent data structures in the functional programming sense. 78 * 79 * v) unplug io to this physical block, including the io that triggered 80 * the breaking of sharing. 81 * 82 * Steps (ii) and (iii) occur in parallel. 83 * 84 * The metadata _doesn't_ need to be committed before the io continues. We 85 * get away with this because the io is always written to a _new_ block. 86 * If there's a crash, then: 87 * 88 * - The origin mapping will point to the old origin block (the shared 89 * one). This will contain the data as it was before the io that triggered 90 * the breaking of sharing came in. 91 * 92 * - The snap mapping still points to the old block. As it would after 93 * the commit. 94 * 95 * The downside of this scheme is the timestamp magic isn't perfect, and 96 * will continue to think that data block in the snapshot device is shared 97 * even after the write to the origin has broken sharing. I suspect data 98 * blocks will typically be shared by many different devices, so we're 99 * breaking sharing n + 1 times, rather than n, where n is the number of 100 * devices that reference this data block. At the moment I think the 101 * benefits far, far outweigh the disadvantages. 102 */ 103 104 /*----------------------------------------------------------------*/ 105 106 /* 107 * Key building. 108 */ 109 static void build_data_key(struct dm_thin_device *td, 110 dm_block_t b, struct dm_cell_key *key) 111 { 112 key->virtual = 0; 113 key->dev = dm_thin_dev_id(td); 114 key->block = b; 115 } 116 117 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 118 struct dm_cell_key *key) 119 { 120 key->virtual = 1; 121 key->dev = dm_thin_dev_id(td); 122 key->block = b; 123 } 124 125 /*----------------------------------------------------------------*/ 126 127 /* 128 * A pool device ties together a metadata device and a data device. It 129 * also provides the interface for creating and destroying internal 130 * devices. 131 */ 132 struct dm_thin_new_mapping; 133 134 /* 135 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 136 */ 137 enum pool_mode { 138 PM_WRITE, /* metadata may be changed */ 139 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 140 PM_READ_ONLY, /* metadata may not be changed */ 141 PM_FAIL, /* all I/O fails */ 142 }; 143 144 struct pool_features { 145 enum pool_mode mode; 146 147 bool zero_new_blocks:1; 148 bool discard_enabled:1; 149 bool discard_passdown:1; 150 bool error_if_no_space:1; 151 }; 152 153 struct thin_c; 154 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 155 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 156 157 struct pool { 158 struct list_head list; 159 struct dm_target *ti; /* Only set if a pool target is bound */ 160 161 struct mapped_device *pool_md; 162 struct block_device *md_dev; 163 struct dm_pool_metadata *pmd; 164 165 dm_block_t low_water_blocks; 166 uint32_t sectors_per_block; 167 int sectors_per_block_shift; 168 169 struct pool_features pf; 170 bool low_water_triggered:1; /* A dm event has been sent */ 171 172 struct dm_bio_prison *prison; 173 struct dm_kcopyd_client *copier; 174 175 struct workqueue_struct *wq; 176 struct work_struct worker; 177 struct delayed_work waker; 178 179 unsigned long last_commit_jiffies; 180 unsigned ref_count; 181 182 spinlock_t lock; 183 struct bio_list deferred_flush_bios; 184 struct list_head prepared_mappings; 185 struct list_head prepared_discards; 186 struct list_head active_thins; 187 188 struct dm_deferred_set *shared_read_ds; 189 struct dm_deferred_set *all_io_ds; 190 191 struct dm_thin_new_mapping *next_mapping; 192 mempool_t *mapping_pool; 193 194 process_bio_fn process_bio; 195 process_bio_fn process_discard; 196 197 process_mapping_fn process_prepared_mapping; 198 process_mapping_fn process_prepared_discard; 199 }; 200 201 static enum pool_mode get_pool_mode(struct pool *pool); 202 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 203 204 /* 205 * Target context for a pool. 206 */ 207 struct pool_c { 208 struct dm_target *ti; 209 struct pool *pool; 210 struct dm_dev *data_dev; 211 struct dm_dev *metadata_dev; 212 struct dm_target_callbacks callbacks; 213 214 dm_block_t low_water_blocks; 215 struct pool_features requested_pf; /* Features requested during table load */ 216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 217 }; 218 219 /* 220 * Target context for a thin. 221 */ 222 struct thin_c { 223 struct list_head list; 224 struct dm_dev *pool_dev; 225 struct dm_dev *origin_dev; 226 dm_thin_id dev_id; 227 228 struct pool *pool; 229 struct dm_thin_device *td; 230 bool requeue_mode:1; 231 spinlock_t lock; 232 struct bio_list deferred_bio_list; 233 struct bio_list retry_on_resume_list; 234 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 235 236 /* 237 * Ensures the thin is not destroyed until the worker has finished 238 * iterating the active_thins list. 239 */ 240 atomic_t refcount; 241 struct completion can_destroy; 242 }; 243 244 /*----------------------------------------------------------------*/ 245 246 /* 247 * wake_worker() is used when new work is queued and when pool_resume is 248 * ready to continue deferred IO processing. 249 */ 250 static void wake_worker(struct pool *pool) 251 { 252 queue_work(pool->wq, &pool->worker); 253 } 254 255 /*----------------------------------------------------------------*/ 256 257 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 258 struct dm_bio_prison_cell **cell_result) 259 { 260 int r; 261 struct dm_bio_prison_cell *cell_prealloc; 262 263 /* 264 * Allocate a cell from the prison's mempool. 265 * This might block but it can't fail. 266 */ 267 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 268 269 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 270 if (r) 271 /* 272 * We reused an old cell; we can get rid of 273 * the new one. 274 */ 275 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 276 277 return r; 278 } 279 280 static void cell_release(struct pool *pool, 281 struct dm_bio_prison_cell *cell, 282 struct bio_list *bios) 283 { 284 dm_cell_release(pool->prison, cell, bios); 285 dm_bio_prison_free_cell(pool->prison, cell); 286 } 287 288 static void cell_release_no_holder(struct pool *pool, 289 struct dm_bio_prison_cell *cell, 290 struct bio_list *bios) 291 { 292 dm_cell_release_no_holder(pool->prison, cell, bios); 293 dm_bio_prison_free_cell(pool->prison, cell); 294 } 295 296 static void cell_defer_no_holder_no_free(struct thin_c *tc, 297 struct dm_bio_prison_cell *cell) 298 { 299 struct pool *pool = tc->pool; 300 unsigned long flags; 301 302 spin_lock_irqsave(&tc->lock, flags); 303 dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list); 304 spin_unlock_irqrestore(&tc->lock, flags); 305 306 wake_worker(pool); 307 } 308 309 static void cell_error(struct pool *pool, 310 struct dm_bio_prison_cell *cell) 311 { 312 dm_cell_error(pool->prison, cell); 313 dm_bio_prison_free_cell(pool->prison, cell); 314 } 315 316 /*----------------------------------------------------------------*/ 317 318 /* 319 * A global list of pools that uses a struct mapped_device as a key. 320 */ 321 static struct dm_thin_pool_table { 322 struct mutex mutex; 323 struct list_head pools; 324 } dm_thin_pool_table; 325 326 static void pool_table_init(void) 327 { 328 mutex_init(&dm_thin_pool_table.mutex); 329 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 330 } 331 332 static void __pool_table_insert(struct pool *pool) 333 { 334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 335 list_add(&pool->list, &dm_thin_pool_table.pools); 336 } 337 338 static void __pool_table_remove(struct pool *pool) 339 { 340 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 341 list_del(&pool->list); 342 } 343 344 static struct pool *__pool_table_lookup(struct mapped_device *md) 345 { 346 struct pool *pool = NULL, *tmp; 347 348 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 349 350 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 351 if (tmp->pool_md == md) { 352 pool = tmp; 353 break; 354 } 355 } 356 357 return pool; 358 } 359 360 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 361 { 362 struct pool *pool = NULL, *tmp; 363 364 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 365 366 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 367 if (tmp->md_dev == md_dev) { 368 pool = tmp; 369 break; 370 } 371 } 372 373 return pool; 374 } 375 376 /*----------------------------------------------------------------*/ 377 378 struct dm_thin_endio_hook { 379 struct thin_c *tc; 380 struct dm_deferred_entry *shared_read_entry; 381 struct dm_deferred_entry *all_io_entry; 382 struct dm_thin_new_mapping *overwrite_mapping; 383 struct rb_node rb_node; 384 }; 385 386 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master) 387 { 388 struct bio *bio; 389 struct bio_list bios; 390 unsigned long flags; 391 392 bio_list_init(&bios); 393 394 spin_lock_irqsave(&tc->lock, flags); 395 bio_list_merge(&bios, master); 396 bio_list_init(master); 397 spin_unlock_irqrestore(&tc->lock, flags); 398 399 while ((bio = bio_list_pop(&bios))) 400 bio_endio(bio, DM_ENDIO_REQUEUE); 401 } 402 403 static void requeue_io(struct thin_c *tc) 404 { 405 requeue_bio_list(tc, &tc->deferred_bio_list); 406 requeue_bio_list(tc, &tc->retry_on_resume_list); 407 } 408 409 static void error_thin_retry_list(struct thin_c *tc) 410 { 411 struct bio *bio; 412 unsigned long flags; 413 struct bio_list bios; 414 415 bio_list_init(&bios); 416 417 spin_lock_irqsave(&tc->lock, flags); 418 bio_list_merge(&bios, &tc->retry_on_resume_list); 419 bio_list_init(&tc->retry_on_resume_list); 420 spin_unlock_irqrestore(&tc->lock, flags); 421 422 while ((bio = bio_list_pop(&bios))) 423 bio_io_error(bio); 424 } 425 426 static void error_retry_list(struct pool *pool) 427 { 428 struct thin_c *tc; 429 430 rcu_read_lock(); 431 list_for_each_entry_rcu(tc, &pool->active_thins, list) 432 error_thin_retry_list(tc); 433 rcu_read_unlock(); 434 } 435 436 /* 437 * This section of code contains the logic for processing a thin device's IO. 438 * Much of the code depends on pool object resources (lists, workqueues, etc) 439 * but most is exclusively called from the thin target rather than the thin-pool 440 * target. 441 */ 442 443 static bool block_size_is_power_of_two(struct pool *pool) 444 { 445 return pool->sectors_per_block_shift >= 0; 446 } 447 448 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 449 { 450 struct pool *pool = tc->pool; 451 sector_t block_nr = bio->bi_iter.bi_sector; 452 453 if (block_size_is_power_of_two(pool)) 454 block_nr >>= pool->sectors_per_block_shift; 455 else 456 (void) sector_div(block_nr, pool->sectors_per_block); 457 458 return block_nr; 459 } 460 461 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 462 { 463 struct pool *pool = tc->pool; 464 sector_t bi_sector = bio->bi_iter.bi_sector; 465 466 bio->bi_bdev = tc->pool_dev->bdev; 467 if (block_size_is_power_of_two(pool)) 468 bio->bi_iter.bi_sector = 469 (block << pool->sectors_per_block_shift) | 470 (bi_sector & (pool->sectors_per_block - 1)); 471 else 472 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 473 sector_div(bi_sector, pool->sectors_per_block); 474 } 475 476 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 477 { 478 bio->bi_bdev = tc->origin_dev->bdev; 479 } 480 481 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 482 { 483 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 484 dm_thin_changed_this_transaction(tc->td); 485 } 486 487 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 488 { 489 struct dm_thin_endio_hook *h; 490 491 if (bio->bi_rw & REQ_DISCARD) 492 return; 493 494 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 495 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 496 } 497 498 static void issue(struct thin_c *tc, struct bio *bio) 499 { 500 struct pool *pool = tc->pool; 501 unsigned long flags; 502 503 if (!bio_triggers_commit(tc, bio)) { 504 generic_make_request(bio); 505 return; 506 } 507 508 /* 509 * Complete bio with an error if earlier I/O caused changes to 510 * the metadata that can't be committed e.g, due to I/O errors 511 * on the metadata device. 512 */ 513 if (dm_thin_aborted_changes(tc->td)) { 514 bio_io_error(bio); 515 return; 516 } 517 518 /* 519 * Batch together any bios that trigger commits and then issue a 520 * single commit for them in process_deferred_bios(). 521 */ 522 spin_lock_irqsave(&pool->lock, flags); 523 bio_list_add(&pool->deferred_flush_bios, bio); 524 spin_unlock_irqrestore(&pool->lock, flags); 525 } 526 527 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 528 { 529 remap_to_origin(tc, bio); 530 issue(tc, bio); 531 } 532 533 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 534 dm_block_t block) 535 { 536 remap(tc, bio, block); 537 issue(tc, bio); 538 } 539 540 /*----------------------------------------------------------------*/ 541 542 /* 543 * Bio endio functions. 544 */ 545 struct dm_thin_new_mapping { 546 struct list_head list; 547 548 bool quiesced:1; 549 bool prepared:1; 550 bool pass_discard:1; 551 bool definitely_not_shared:1; 552 553 int err; 554 struct thin_c *tc; 555 dm_block_t virt_block; 556 dm_block_t data_block; 557 struct dm_bio_prison_cell *cell, *cell2; 558 559 /* 560 * If the bio covers the whole area of a block then we can avoid 561 * zeroing or copying. Instead this bio is hooked. The bio will 562 * still be in the cell, so care has to be taken to avoid issuing 563 * the bio twice. 564 */ 565 struct bio *bio; 566 bio_end_io_t *saved_bi_end_io; 567 }; 568 569 static void __maybe_add_mapping(struct dm_thin_new_mapping *m) 570 { 571 struct pool *pool = m->tc->pool; 572 573 if (m->quiesced && m->prepared) { 574 list_add_tail(&m->list, &pool->prepared_mappings); 575 wake_worker(pool); 576 } 577 } 578 579 static void copy_complete(int read_err, unsigned long write_err, void *context) 580 { 581 unsigned long flags; 582 struct dm_thin_new_mapping *m = context; 583 struct pool *pool = m->tc->pool; 584 585 m->err = read_err || write_err ? -EIO : 0; 586 587 spin_lock_irqsave(&pool->lock, flags); 588 m->prepared = true; 589 __maybe_add_mapping(m); 590 spin_unlock_irqrestore(&pool->lock, flags); 591 } 592 593 static void overwrite_endio(struct bio *bio, int err) 594 { 595 unsigned long flags; 596 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 597 struct dm_thin_new_mapping *m = h->overwrite_mapping; 598 struct pool *pool = m->tc->pool; 599 600 m->err = err; 601 602 spin_lock_irqsave(&pool->lock, flags); 603 m->prepared = true; 604 __maybe_add_mapping(m); 605 spin_unlock_irqrestore(&pool->lock, flags); 606 } 607 608 /*----------------------------------------------------------------*/ 609 610 /* 611 * Workqueue. 612 */ 613 614 /* 615 * Prepared mapping jobs. 616 */ 617 618 /* 619 * This sends the bios in the cell back to the deferred_bios list. 620 */ 621 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 622 { 623 struct pool *pool = tc->pool; 624 unsigned long flags; 625 626 spin_lock_irqsave(&tc->lock, flags); 627 cell_release(pool, cell, &tc->deferred_bio_list); 628 spin_unlock_irqrestore(&tc->lock, flags); 629 630 wake_worker(pool); 631 } 632 633 /* 634 * Same as cell_defer above, except it omits the original holder of the cell. 635 */ 636 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 637 { 638 struct pool *pool = tc->pool; 639 unsigned long flags; 640 641 spin_lock_irqsave(&tc->lock, flags); 642 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 643 spin_unlock_irqrestore(&tc->lock, flags); 644 645 wake_worker(pool); 646 } 647 648 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 649 { 650 if (m->bio) { 651 m->bio->bi_end_io = m->saved_bi_end_io; 652 atomic_inc(&m->bio->bi_remaining); 653 } 654 cell_error(m->tc->pool, m->cell); 655 list_del(&m->list); 656 mempool_free(m, m->tc->pool->mapping_pool); 657 } 658 659 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 660 { 661 struct thin_c *tc = m->tc; 662 struct pool *pool = tc->pool; 663 struct bio *bio; 664 int r; 665 666 bio = m->bio; 667 if (bio) { 668 bio->bi_end_io = m->saved_bi_end_io; 669 atomic_inc(&bio->bi_remaining); 670 } 671 672 if (m->err) { 673 cell_error(pool, m->cell); 674 goto out; 675 } 676 677 /* 678 * Commit the prepared block into the mapping btree. 679 * Any I/O for this block arriving after this point will get 680 * remapped to it directly. 681 */ 682 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 683 if (r) { 684 metadata_operation_failed(pool, "dm_thin_insert_block", r); 685 cell_error(pool, m->cell); 686 goto out; 687 } 688 689 /* 690 * Release any bios held while the block was being provisioned. 691 * If we are processing a write bio that completely covers the block, 692 * we already processed it so can ignore it now when processing 693 * the bios in the cell. 694 */ 695 if (bio) { 696 cell_defer_no_holder(tc, m->cell); 697 bio_endio(bio, 0); 698 } else 699 cell_defer(tc, m->cell); 700 701 out: 702 list_del(&m->list); 703 mempool_free(m, pool->mapping_pool); 704 } 705 706 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 707 { 708 struct thin_c *tc = m->tc; 709 710 bio_io_error(m->bio); 711 cell_defer_no_holder(tc, m->cell); 712 cell_defer_no_holder(tc, m->cell2); 713 mempool_free(m, tc->pool->mapping_pool); 714 } 715 716 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 717 { 718 struct thin_c *tc = m->tc; 719 720 inc_all_io_entry(tc->pool, m->bio); 721 cell_defer_no_holder(tc, m->cell); 722 cell_defer_no_holder(tc, m->cell2); 723 724 if (m->pass_discard) 725 if (m->definitely_not_shared) 726 remap_and_issue(tc, m->bio, m->data_block); 727 else { 728 bool used = false; 729 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 730 bio_endio(m->bio, 0); 731 else 732 remap_and_issue(tc, m->bio, m->data_block); 733 } 734 else 735 bio_endio(m->bio, 0); 736 737 mempool_free(m, tc->pool->mapping_pool); 738 } 739 740 static void process_prepared_discard(struct dm_thin_new_mapping *m) 741 { 742 int r; 743 struct thin_c *tc = m->tc; 744 745 r = dm_thin_remove_block(tc->td, m->virt_block); 746 if (r) 747 DMERR_LIMIT("dm_thin_remove_block() failed"); 748 749 process_prepared_discard_passdown(m); 750 } 751 752 static void process_prepared(struct pool *pool, struct list_head *head, 753 process_mapping_fn *fn) 754 { 755 unsigned long flags; 756 struct list_head maps; 757 struct dm_thin_new_mapping *m, *tmp; 758 759 INIT_LIST_HEAD(&maps); 760 spin_lock_irqsave(&pool->lock, flags); 761 list_splice_init(head, &maps); 762 spin_unlock_irqrestore(&pool->lock, flags); 763 764 list_for_each_entry_safe(m, tmp, &maps, list) 765 (*fn)(m); 766 } 767 768 /* 769 * Deferred bio jobs. 770 */ 771 static int io_overlaps_block(struct pool *pool, struct bio *bio) 772 { 773 return bio->bi_iter.bi_size == 774 (pool->sectors_per_block << SECTOR_SHIFT); 775 } 776 777 static int io_overwrites_block(struct pool *pool, struct bio *bio) 778 { 779 return (bio_data_dir(bio) == WRITE) && 780 io_overlaps_block(pool, bio); 781 } 782 783 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 784 bio_end_io_t *fn) 785 { 786 *save = bio->bi_end_io; 787 bio->bi_end_io = fn; 788 } 789 790 static int ensure_next_mapping(struct pool *pool) 791 { 792 if (pool->next_mapping) 793 return 0; 794 795 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 796 797 return pool->next_mapping ? 0 : -ENOMEM; 798 } 799 800 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 801 { 802 struct dm_thin_new_mapping *m = pool->next_mapping; 803 804 BUG_ON(!pool->next_mapping); 805 806 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 807 INIT_LIST_HEAD(&m->list); 808 m->bio = NULL; 809 810 pool->next_mapping = NULL; 811 812 return m; 813 } 814 815 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 816 struct dm_dev *origin, dm_block_t data_origin, 817 dm_block_t data_dest, 818 struct dm_bio_prison_cell *cell, struct bio *bio) 819 { 820 int r; 821 struct pool *pool = tc->pool; 822 struct dm_thin_new_mapping *m = get_next_mapping(pool); 823 824 m->tc = tc; 825 m->virt_block = virt_block; 826 m->data_block = data_dest; 827 m->cell = cell; 828 829 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 830 m->quiesced = true; 831 832 /* 833 * IO to pool_dev remaps to the pool target's data_dev. 834 * 835 * If the whole block of data is being overwritten, we can issue the 836 * bio immediately. Otherwise we use kcopyd to clone the data first. 837 */ 838 if (io_overwrites_block(pool, bio)) { 839 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 840 841 h->overwrite_mapping = m; 842 m->bio = bio; 843 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 844 inc_all_io_entry(pool, bio); 845 remap_and_issue(tc, bio, data_dest); 846 } else { 847 struct dm_io_region from, to; 848 849 from.bdev = origin->bdev; 850 from.sector = data_origin * pool->sectors_per_block; 851 from.count = pool->sectors_per_block; 852 853 to.bdev = tc->pool_dev->bdev; 854 to.sector = data_dest * pool->sectors_per_block; 855 to.count = pool->sectors_per_block; 856 857 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 858 0, copy_complete, m); 859 if (r < 0) { 860 mempool_free(m, pool->mapping_pool); 861 DMERR_LIMIT("dm_kcopyd_copy() failed"); 862 cell_error(pool, cell); 863 } 864 } 865 } 866 867 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 868 dm_block_t data_origin, dm_block_t data_dest, 869 struct dm_bio_prison_cell *cell, struct bio *bio) 870 { 871 schedule_copy(tc, virt_block, tc->pool_dev, 872 data_origin, data_dest, cell, bio); 873 } 874 875 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 876 dm_block_t data_dest, 877 struct dm_bio_prison_cell *cell, struct bio *bio) 878 { 879 schedule_copy(tc, virt_block, tc->origin_dev, 880 virt_block, data_dest, cell, bio); 881 } 882 883 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 884 dm_block_t data_block, struct dm_bio_prison_cell *cell, 885 struct bio *bio) 886 { 887 struct pool *pool = tc->pool; 888 struct dm_thin_new_mapping *m = get_next_mapping(pool); 889 890 m->quiesced = true; 891 m->prepared = false; 892 m->tc = tc; 893 m->virt_block = virt_block; 894 m->data_block = data_block; 895 m->cell = cell; 896 897 /* 898 * If the whole block of data is being overwritten or we are not 899 * zeroing pre-existing data, we can issue the bio immediately. 900 * Otherwise we use kcopyd to zero the data first. 901 */ 902 if (!pool->pf.zero_new_blocks) 903 process_prepared_mapping(m); 904 905 else if (io_overwrites_block(pool, bio)) { 906 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 907 908 h->overwrite_mapping = m; 909 m->bio = bio; 910 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 911 inc_all_io_entry(pool, bio); 912 remap_and_issue(tc, bio, data_block); 913 } else { 914 int r; 915 struct dm_io_region to; 916 917 to.bdev = tc->pool_dev->bdev; 918 to.sector = data_block * pool->sectors_per_block; 919 to.count = pool->sectors_per_block; 920 921 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); 922 if (r < 0) { 923 mempool_free(m, pool->mapping_pool); 924 DMERR_LIMIT("dm_kcopyd_zero() failed"); 925 cell_error(pool, cell); 926 } 927 } 928 } 929 930 /* 931 * A non-zero return indicates read_only or fail_io mode. 932 * Many callers don't care about the return value. 933 */ 934 static int commit(struct pool *pool) 935 { 936 int r; 937 938 if (get_pool_mode(pool) != PM_WRITE) 939 return -EINVAL; 940 941 r = dm_pool_commit_metadata(pool->pmd); 942 if (r) 943 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 944 945 return r; 946 } 947 948 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 949 { 950 unsigned long flags; 951 952 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 953 DMWARN("%s: reached low water mark for data device: sending event.", 954 dm_device_name(pool->pool_md)); 955 spin_lock_irqsave(&pool->lock, flags); 956 pool->low_water_triggered = true; 957 spin_unlock_irqrestore(&pool->lock, flags); 958 dm_table_event(pool->ti->table); 959 } 960 } 961 962 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 963 964 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 965 { 966 int r; 967 dm_block_t free_blocks; 968 struct pool *pool = tc->pool; 969 970 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 971 return -EINVAL; 972 973 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 974 if (r) { 975 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 976 return r; 977 } 978 979 check_low_water_mark(pool, free_blocks); 980 981 if (!free_blocks) { 982 /* 983 * Try to commit to see if that will free up some 984 * more space. 985 */ 986 r = commit(pool); 987 if (r) 988 return r; 989 990 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 991 if (r) { 992 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 993 return r; 994 } 995 996 if (!free_blocks) { 997 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 998 return -ENOSPC; 999 } 1000 } 1001 1002 r = dm_pool_alloc_data_block(pool->pmd, result); 1003 if (r) { 1004 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1005 return r; 1006 } 1007 1008 return 0; 1009 } 1010 1011 /* 1012 * If we have run out of space, queue bios until the device is 1013 * resumed, presumably after having been reloaded with more space. 1014 */ 1015 static void retry_on_resume(struct bio *bio) 1016 { 1017 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1018 struct thin_c *tc = h->tc; 1019 unsigned long flags; 1020 1021 spin_lock_irqsave(&tc->lock, flags); 1022 bio_list_add(&tc->retry_on_resume_list, bio); 1023 spin_unlock_irqrestore(&tc->lock, flags); 1024 } 1025 1026 static bool should_error_unserviceable_bio(struct pool *pool) 1027 { 1028 enum pool_mode m = get_pool_mode(pool); 1029 1030 switch (m) { 1031 case PM_WRITE: 1032 /* Shouldn't get here */ 1033 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1034 return true; 1035 1036 case PM_OUT_OF_DATA_SPACE: 1037 return pool->pf.error_if_no_space; 1038 1039 case PM_READ_ONLY: 1040 case PM_FAIL: 1041 return true; 1042 default: 1043 /* Shouldn't get here */ 1044 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1045 return true; 1046 } 1047 } 1048 1049 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1050 { 1051 if (should_error_unserviceable_bio(pool)) 1052 bio_io_error(bio); 1053 else 1054 retry_on_resume(bio); 1055 } 1056 1057 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1058 { 1059 struct bio *bio; 1060 struct bio_list bios; 1061 1062 if (should_error_unserviceable_bio(pool)) { 1063 cell_error(pool, cell); 1064 return; 1065 } 1066 1067 bio_list_init(&bios); 1068 cell_release(pool, cell, &bios); 1069 1070 if (should_error_unserviceable_bio(pool)) 1071 while ((bio = bio_list_pop(&bios))) 1072 bio_io_error(bio); 1073 else 1074 while ((bio = bio_list_pop(&bios))) 1075 retry_on_resume(bio); 1076 } 1077 1078 static void process_discard(struct thin_c *tc, struct bio *bio) 1079 { 1080 int r; 1081 unsigned long flags; 1082 struct pool *pool = tc->pool; 1083 struct dm_bio_prison_cell *cell, *cell2; 1084 struct dm_cell_key key, key2; 1085 dm_block_t block = get_bio_block(tc, bio); 1086 struct dm_thin_lookup_result lookup_result; 1087 struct dm_thin_new_mapping *m; 1088 1089 build_virtual_key(tc->td, block, &key); 1090 if (bio_detain(tc->pool, &key, bio, &cell)) 1091 return; 1092 1093 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1094 switch (r) { 1095 case 0: 1096 /* 1097 * Check nobody is fiddling with this pool block. This can 1098 * happen if someone's in the process of breaking sharing 1099 * on this block. 1100 */ 1101 build_data_key(tc->td, lookup_result.block, &key2); 1102 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1103 cell_defer_no_holder(tc, cell); 1104 break; 1105 } 1106 1107 if (io_overlaps_block(pool, bio)) { 1108 /* 1109 * IO may still be going to the destination block. We must 1110 * quiesce before we can do the removal. 1111 */ 1112 m = get_next_mapping(pool); 1113 m->tc = tc; 1114 m->pass_discard = pool->pf.discard_passdown; 1115 m->definitely_not_shared = !lookup_result.shared; 1116 m->virt_block = block; 1117 m->data_block = lookup_result.block; 1118 m->cell = cell; 1119 m->cell2 = cell2; 1120 m->bio = bio; 1121 1122 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 1123 spin_lock_irqsave(&pool->lock, flags); 1124 list_add_tail(&m->list, &pool->prepared_discards); 1125 spin_unlock_irqrestore(&pool->lock, flags); 1126 wake_worker(pool); 1127 } 1128 } else { 1129 inc_all_io_entry(pool, bio); 1130 cell_defer_no_holder(tc, cell); 1131 cell_defer_no_holder(tc, cell2); 1132 1133 /* 1134 * The DM core makes sure that the discard doesn't span 1135 * a block boundary. So we submit the discard of a 1136 * partial block appropriately. 1137 */ 1138 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1139 remap_and_issue(tc, bio, lookup_result.block); 1140 else 1141 bio_endio(bio, 0); 1142 } 1143 break; 1144 1145 case -ENODATA: 1146 /* 1147 * It isn't provisioned, just forget it. 1148 */ 1149 cell_defer_no_holder(tc, cell); 1150 bio_endio(bio, 0); 1151 break; 1152 1153 default: 1154 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1155 __func__, r); 1156 cell_defer_no_holder(tc, cell); 1157 bio_io_error(bio); 1158 break; 1159 } 1160 } 1161 1162 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1163 struct dm_cell_key *key, 1164 struct dm_thin_lookup_result *lookup_result, 1165 struct dm_bio_prison_cell *cell) 1166 { 1167 int r; 1168 dm_block_t data_block; 1169 struct pool *pool = tc->pool; 1170 1171 r = alloc_data_block(tc, &data_block); 1172 switch (r) { 1173 case 0: 1174 schedule_internal_copy(tc, block, lookup_result->block, 1175 data_block, cell, bio); 1176 break; 1177 1178 case -ENOSPC: 1179 retry_bios_on_resume(pool, cell); 1180 break; 1181 1182 default: 1183 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1184 __func__, r); 1185 cell_error(pool, cell); 1186 break; 1187 } 1188 } 1189 1190 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1191 dm_block_t block, 1192 struct dm_thin_lookup_result *lookup_result) 1193 { 1194 struct dm_bio_prison_cell *cell; 1195 struct pool *pool = tc->pool; 1196 struct dm_cell_key key; 1197 1198 /* 1199 * If cell is already occupied, then sharing is already in the process 1200 * of being broken so we have nothing further to do here. 1201 */ 1202 build_data_key(tc->td, lookup_result->block, &key); 1203 if (bio_detain(pool, &key, bio, &cell)) 1204 return; 1205 1206 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) 1207 break_sharing(tc, bio, block, &key, lookup_result, cell); 1208 else { 1209 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1210 1211 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1212 inc_all_io_entry(pool, bio); 1213 cell_defer_no_holder(tc, cell); 1214 1215 remap_and_issue(tc, bio, lookup_result->block); 1216 } 1217 } 1218 1219 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1220 struct dm_bio_prison_cell *cell) 1221 { 1222 int r; 1223 dm_block_t data_block; 1224 struct pool *pool = tc->pool; 1225 1226 /* 1227 * Remap empty bios (flushes) immediately, without provisioning. 1228 */ 1229 if (!bio->bi_iter.bi_size) { 1230 inc_all_io_entry(pool, bio); 1231 cell_defer_no_holder(tc, cell); 1232 1233 remap_and_issue(tc, bio, 0); 1234 return; 1235 } 1236 1237 /* 1238 * Fill read bios with zeroes and complete them immediately. 1239 */ 1240 if (bio_data_dir(bio) == READ) { 1241 zero_fill_bio(bio); 1242 cell_defer_no_holder(tc, cell); 1243 bio_endio(bio, 0); 1244 return; 1245 } 1246 1247 r = alloc_data_block(tc, &data_block); 1248 switch (r) { 1249 case 0: 1250 if (tc->origin_dev) 1251 schedule_external_copy(tc, block, data_block, cell, bio); 1252 else 1253 schedule_zero(tc, block, data_block, cell, bio); 1254 break; 1255 1256 case -ENOSPC: 1257 retry_bios_on_resume(pool, cell); 1258 break; 1259 1260 default: 1261 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1262 __func__, r); 1263 cell_error(pool, cell); 1264 break; 1265 } 1266 } 1267 1268 static void process_bio(struct thin_c *tc, struct bio *bio) 1269 { 1270 int r; 1271 struct pool *pool = tc->pool; 1272 dm_block_t block = get_bio_block(tc, bio); 1273 struct dm_bio_prison_cell *cell; 1274 struct dm_cell_key key; 1275 struct dm_thin_lookup_result lookup_result; 1276 1277 /* 1278 * If cell is already occupied, then the block is already 1279 * being provisioned so we have nothing further to do here. 1280 */ 1281 build_virtual_key(tc->td, block, &key); 1282 if (bio_detain(pool, &key, bio, &cell)) 1283 return; 1284 1285 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1286 switch (r) { 1287 case 0: 1288 if (lookup_result.shared) { 1289 process_shared_bio(tc, bio, block, &lookup_result); 1290 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ 1291 } else { 1292 inc_all_io_entry(pool, bio); 1293 cell_defer_no_holder(tc, cell); 1294 1295 remap_and_issue(tc, bio, lookup_result.block); 1296 } 1297 break; 1298 1299 case -ENODATA: 1300 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1301 inc_all_io_entry(pool, bio); 1302 cell_defer_no_holder(tc, cell); 1303 1304 remap_to_origin_and_issue(tc, bio); 1305 } else 1306 provision_block(tc, bio, block, cell); 1307 break; 1308 1309 default: 1310 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1311 __func__, r); 1312 cell_defer_no_holder(tc, cell); 1313 bio_io_error(bio); 1314 break; 1315 } 1316 } 1317 1318 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1319 { 1320 int r; 1321 int rw = bio_data_dir(bio); 1322 dm_block_t block = get_bio_block(tc, bio); 1323 struct dm_thin_lookup_result lookup_result; 1324 1325 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1326 switch (r) { 1327 case 0: 1328 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) 1329 handle_unserviceable_bio(tc->pool, bio); 1330 else { 1331 inc_all_io_entry(tc->pool, bio); 1332 remap_and_issue(tc, bio, lookup_result.block); 1333 } 1334 break; 1335 1336 case -ENODATA: 1337 if (rw != READ) { 1338 handle_unserviceable_bio(tc->pool, bio); 1339 break; 1340 } 1341 1342 if (tc->origin_dev) { 1343 inc_all_io_entry(tc->pool, bio); 1344 remap_to_origin_and_issue(tc, bio); 1345 break; 1346 } 1347 1348 zero_fill_bio(bio); 1349 bio_endio(bio, 0); 1350 break; 1351 1352 default: 1353 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1354 __func__, r); 1355 bio_io_error(bio); 1356 break; 1357 } 1358 } 1359 1360 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1361 { 1362 bio_endio(bio, 0); 1363 } 1364 1365 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1366 { 1367 bio_io_error(bio); 1368 } 1369 1370 /* 1371 * FIXME: should we also commit due to size of transaction, measured in 1372 * metadata blocks? 1373 */ 1374 static int need_commit_due_to_time(struct pool *pool) 1375 { 1376 return jiffies < pool->last_commit_jiffies || 1377 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1378 } 1379 1380 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1381 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1382 1383 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1384 { 1385 struct rb_node **rbp, *parent; 1386 struct dm_thin_endio_hook *pbd; 1387 sector_t bi_sector = bio->bi_iter.bi_sector; 1388 1389 rbp = &tc->sort_bio_list.rb_node; 1390 parent = NULL; 1391 while (*rbp) { 1392 parent = *rbp; 1393 pbd = thin_pbd(parent); 1394 1395 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1396 rbp = &(*rbp)->rb_left; 1397 else 1398 rbp = &(*rbp)->rb_right; 1399 } 1400 1401 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1402 rb_link_node(&pbd->rb_node, parent, rbp); 1403 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1404 } 1405 1406 static void __extract_sorted_bios(struct thin_c *tc) 1407 { 1408 struct rb_node *node; 1409 struct dm_thin_endio_hook *pbd; 1410 struct bio *bio; 1411 1412 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1413 pbd = thin_pbd(node); 1414 bio = thin_bio(pbd); 1415 1416 bio_list_add(&tc->deferred_bio_list, bio); 1417 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1418 } 1419 1420 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1421 } 1422 1423 static void __sort_thin_deferred_bios(struct thin_c *tc) 1424 { 1425 struct bio *bio; 1426 struct bio_list bios; 1427 1428 bio_list_init(&bios); 1429 bio_list_merge(&bios, &tc->deferred_bio_list); 1430 bio_list_init(&tc->deferred_bio_list); 1431 1432 /* Sort deferred_bio_list using rb-tree */ 1433 while ((bio = bio_list_pop(&bios))) 1434 __thin_bio_rb_add(tc, bio); 1435 1436 /* 1437 * Transfer the sorted bios in sort_bio_list back to 1438 * deferred_bio_list to allow lockless submission of 1439 * all bios. 1440 */ 1441 __extract_sorted_bios(tc); 1442 } 1443 1444 static void process_thin_deferred_bios(struct thin_c *tc) 1445 { 1446 struct pool *pool = tc->pool; 1447 unsigned long flags; 1448 struct bio *bio; 1449 struct bio_list bios; 1450 struct blk_plug plug; 1451 1452 if (tc->requeue_mode) { 1453 requeue_bio_list(tc, &tc->deferred_bio_list); 1454 return; 1455 } 1456 1457 bio_list_init(&bios); 1458 1459 spin_lock_irqsave(&tc->lock, flags); 1460 1461 if (bio_list_empty(&tc->deferred_bio_list)) { 1462 spin_unlock_irqrestore(&tc->lock, flags); 1463 return; 1464 } 1465 1466 __sort_thin_deferred_bios(tc); 1467 1468 bio_list_merge(&bios, &tc->deferred_bio_list); 1469 bio_list_init(&tc->deferred_bio_list); 1470 1471 spin_unlock_irqrestore(&tc->lock, flags); 1472 1473 blk_start_plug(&plug); 1474 while ((bio = bio_list_pop(&bios))) { 1475 /* 1476 * If we've got no free new_mapping structs, and processing 1477 * this bio might require one, we pause until there are some 1478 * prepared mappings to process. 1479 */ 1480 if (ensure_next_mapping(pool)) { 1481 spin_lock_irqsave(&tc->lock, flags); 1482 bio_list_add(&tc->deferred_bio_list, bio); 1483 bio_list_merge(&tc->deferred_bio_list, &bios); 1484 spin_unlock_irqrestore(&tc->lock, flags); 1485 break; 1486 } 1487 1488 if (bio->bi_rw & REQ_DISCARD) 1489 pool->process_discard(tc, bio); 1490 else 1491 pool->process_bio(tc, bio); 1492 } 1493 blk_finish_plug(&plug); 1494 } 1495 1496 static void thin_get(struct thin_c *tc); 1497 static void thin_put(struct thin_c *tc); 1498 1499 /* 1500 * We can't hold rcu_read_lock() around code that can block. So we 1501 * find a thin with the rcu lock held; bump a refcount; then drop 1502 * the lock. 1503 */ 1504 static struct thin_c *get_first_thin(struct pool *pool) 1505 { 1506 struct thin_c *tc = NULL; 1507 1508 rcu_read_lock(); 1509 if (!list_empty(&pool->active_thins)) { 1510 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 1511 thin_get(tc); 1512 } 1513 rcu_read_unlock(); 1514 1515 return tc; 1516 } 1517 1518 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 1519 { 1520 struct thin_c *old_tc = tc; 1521 1522 rcu_read_lock(); 1523 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 1524 thin_get(tc); 1525 thin_put(old_tc); 1526 rcu_read_unlock(); 1527 return tc; 1528 } 1529 thin_put(old_tc); 1530 rcu_read_unlock(); 1531 1532 return NULL; 1533 } 1534 1535 static void process_deferred_bios(struct pool *pool) 1536 { 1537 unsigned long flags; 1538 struct bio *bio; 1539 struct bio_list bios; 1540 struct thin_c *tc; 1541 1542 tc = get_first_thin(pool); 1543 while (tc) { 1544 process_thin_deferred_bios(tc); 1545 tc = get_next_thin(pool, tc); 1546 } 1547 1548 /* 1549 * If there are any deferred flush bios, we must commit 1550 * the metadata before issuing them. 1551 */ 1552 bio_list_init(&bios); 1553 spin_lock_irqsave(&pool->lock, flags); 1554 bio_list_merge(&bios, &pool->deferred_flush_bios); 1555 bio_list_init(&pool->deferred_flush_bios); 1556 spin_unlock_irqrestore(&pool->lock, flags); 1557 1558 if (bio_list_empty(&bios) && 1559 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 1560 return; 1561 1562 if (commit(pool)) { 1563 while ((bio = bio_list_pop(&bios))) 1564 bio_io_error(bio); 1565 return; 1566 } 1567 pool->last_commit_jiffies = jiffies; 1568 1569 while ((bio = bio_list_pop(&bios))) 1570 generic_make_request(bio); 1571 } 1572 1573 static void do_worker(struct work_struct *ws) 1574 { 1575 struct pool *pool = container_of(ws, struct pool, worker); 1576 1577 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1578 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1579 process_deferred_bios(pool); 1580 } 1581 1582 /* 1583 * We want to commit periodically so that not too much 1584 * unwritten data builds up. 1585 */ 1586 static void do_waker(struct work_struct *ws) 1587 { 1588 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1589 wake_worker(pool); 1590 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1591 } 1592 1593 /*----------------------------------------------------------------*/ 1594 1595 struct noflush_work { 1596 struct work_struct worker; 1597 struct thin_c *tc; 1598 1599 atomic_t complete; 1600 wait_queue_head_t wait; 1601 }; 1602 1603 static void complete_noflush_work(struct noflush_work *w) 1604 { 1605 atomic_set(&w->complete, 1); 1606 wake_up(&w->wait); 1607 } 1608 1609 static void do_noflush_start(struct work_struct *ws) 1610 { 1611 struct noflush_work *w = container_of(ws, struct noflush_work, worker); 1612 w->tc->requeue_mode = true; 1613 requeue_io(w->tc); 1614 complete_noflush_work(w); 1615 } 1616 1617 static void do_noflush_stop(struct work_struct *ws) 1618 { 1619 struct noflush_work *w = container_of(ws, struct noflush_work, worker); 1620 w->tc->requeue_mode = false; 1621 complete_noflush_work(w); 1622 } 1623 1624 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 1625 { 1626 struct noflush_work w; 1627 1628 INIT_WORK_ONSTACK(&w.worker, fn); 1629 w.tc = tc; 1630 atomic_set(&w.complete, 0); 1631 init_waitqueue_head(&w.wait); 1632 1633 queue_work(tc->pool->wq, &w.worker); 1634 1635 wait_event(w.wait, atomic_read(&w.complete)); 1636 } 1637 1638 /*----------------------------------------------------------------*/ 1639 1640 static enum pool_mode get_pool_mode(struct pool *pool) 1641 { 1642 return pool->pf.mode; 1643 } 1644 1645 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 1646 { 1647 dm_table_event(pool->ti->table); 1648 DMINFO("%s: switching pool to %s mode", 1649 dm_device_name(pool->pool_md), new_mode); 1650 } 1651 1652 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 1653 { 1654 struct pool_c *pt = pool->ti->private; 1655 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 1656 enum pool_mode old_mode = get_pool_mode(pool); 1657 1658 /* 1659 * Never allow the pool to transition to PM_WRITE mode if user 1660 * intervention is required to verify metadata and data consistency. 1661 */ 1662 if (new_mode == PM_WRITE && needs_check) { 1663 DMERR("%s: unable to switch pool to write mode until repaired.", 1664 dm_device_name(pool->pool_md)); 1665 if (old_mode != new_mode) 1666 new_mode = old_mode; 1667 else 1668 new_mode = PM_READ_ONLY; 1669 } 1670 /* 1671 * If we were in PM_FAIL mode, rollback of metadata failed. We're 1672 * not going to recover without a thin_repair. So we never let the 1673 * pool move out of the old mode. 1674 */ 1675 if (old_mode == PM_FAIL) 1676 new_mode = old_mode; 1677 1678 switch (new_mode) { 1679 case PM_FAIL: 1680 if (old_mode != new_mode) 1681 notify_of_pool_mode_change(pool, "failure"); 1682 dm_pool_metadata_read_only(pool->pmd); 1683 pool->process_bio = process_bio_fail; 1684 pool->process_discard = process_bio_fail; 1685 pool->process_prepared_mapping = process_prepared_mapping_fail; 1686 pool->process_prepared_discard = process_prepared_discard_fail; 1687 1688 error_retry_list(pool); 1689 break; 1690 1691 case PM_READ_ONLY: 1692 if (old_mode != new_mode) 1693 notify_of_pool_mode_change(pool, "read-only"); 1694 dm_pool_metadata_read_only(pool->pmd); 1695 pool->process_bio = process_bio_read_only; 1696 pool->process_discard = process_bio_success; 1697 pool->process_prepared_mapping = process_prepared_mapping_fail; 1698 pool->process_prepared_discard = process_prepared_discard_passdown; 1699 1700 error_retry_list(pool); 1701 break; 1702 1703 case PM_OUT_OF_DATA_SPACE: 1704 /* 1705 * Ideally we'd never hit this state; the low water mark 1706 * would trigger userland to extend the pool before we 1707 * completely run out of data space. However, many small 1708 * IOs to unprovisioned space can consume data space at an 1709 * alarming rate. Adjust your low water mark if you're 1710 * frequently seeing this mode. 1711 */ 1712 if (old_mode != new_mode) 1713 notify_of_pool_mode_change(pool, "out-of-data-space"); 1714 pool->process_bio = process_bio_read_only; 1715 pool->process_discard = process_discard; 1716 pool->process_prepared_mapping = process_prepared_mapping; 1717 pool->process_prepared_discard = process_prepared_discard_passdown; 1718 break; 1719 1720 case PM_WRITE: 1721 if (old_mode != new_mode) 1722 notify_of_pool_mode_change(pool, "write"); 1723 dm_pool_metadata_read_write(pool->pmd); 1724 pool->process_bio = process_bio; 1725 pool->process_discard = process_discard; 1726 pool->process_prepared_mapping = process_prepared_mapping; 1727 pool->process_prepared_discard = process_prepared_discard; 1728 break; 1729 } 1730 1731 pool->pf.mode = new_mode; 1732 /* 1733 * The pool mode may have changed, sync it so bind_control_target() 1734 * doesn't cause an unexpected mode transition on resume. 1735 */ 1736 pt->adjusted_pf.mode = new_mode; 1737 } 1738 1739 static void abort_transaction(struct pool *pool) 1740 { 1741 const char *dev_name = dm_device_name(pool->pool_md); 1742 1743 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 1744 if (dm_pool_abort_metadata(pool->pmd)) { 1745 DMERR("%s: failed to abort metadata transaction", dev_name); 1746 set_pool_mode(pool, PM_FAIL); 1747 } 1748 1749 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 1750 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 1751 set_pool_mode(pool, PM_FAIL); 1752 } 1753 } 1754 1755 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 1756 { 1757 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 1758 dm_device_name(pool->pool_md), op, r); 1759 1760 abort_transaction(pool); 1761 set_pool_mode(pool, PM_READ_ONLY); 1762 } 1763 1764 /*----------------------------------------------------------------*/ 1765 1766 /* 1767 * Mapping functions. 1768 */ 1769 1770 /* 1771 * Called only while mapping a thin bio to hand it over to the workqueue. 1772 */ 1773 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1774 { 1775 unsigned long flags; 1776 struct pool *pool = tc->pool; 1777 1778 spin_lock_irqsave(&tc->lock, flags); 1779 bio_list_add(&tc->deferred_bio_list, bio); 1780 spin_unlock_irqrestore(&tc->lock, flags); 1781 1782 wake_worker(pool); 1783 } 1784 1785 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1786 { 1787 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1788 1789 h->tc = tc; 1790 h->shared_read_entry = NULL; 1791 h->all_io_entry = NULL; 1792 h->overwrite_mapping = NULL; 1793 } 1794 1795 /* 1796 * Non-blocking function called from the thin target's map function. 1797 */ 1798 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1799 { 1800 int r; 1801 struct thin_c *tc = ti->private; 1802 dm_block_t block = get_bio_block(tc, bio); 1803 struct dm_thin_device *td = tc->td; 1804 struct dm_thin_lookup_result result; 1805 struct dm_bio_prison_cell cell1, cell2; 1806 struct dm_bio_prison_cell *cell_result; 1807 struct dm_cell_key key; 1808 1809 thin_hook_bio(tc, bio); 1810 1811 if (tc->requeue_mode) { 1812 bio_endio(bio, DM_ENDIO_REQUEUE); 1813 return DM_MAPIO_SUBMITTED; 1814 } 1815 1816 if (get_pool_mode(tc->pool) == PM_FAIL) { 1817 bio_io_error(bio); 1818 return DM_MAPIO_SUBMITTED; 1819 } 1820 1821 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1822 thin_defer_bio(tc, bio); 1823 return DM_MAPIO_SUBMITTED; 1824 } 1825 1826 r = dm_thin_find_block(td, block, 0, &result); 1827 1828 /* 1829 * Note that we defer readahead too. 1830 */ 1831 switch (r) { 1832 case 0: 1833 if (unlikely(result.shared)) { 1834 /* 1835 * We have a race condition here between the 1836 * result.shared value returned by the lookup and 1837 * snapshot creation, which may cause new 1838 * sharing. 1839 * 1840 * To avoid this always quiesce the origin before 1841 * taking the snap. You want to do this anyway to 1842 * ensure a consistent application view 1843 * (i.e. lockfs). 1844 * 1845 * More distant ancestors are irrelevant. The 1846 * shared flag will be set in their case. 1847 */ 1848 thin_defer_bio(tc, bio); 1849 return DM_MAPIO_SUBMITTED; 1850 } 1851 1852 build_virtual_key(tc->td, block, &key); 1853 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) 1854 return DM_MAPIO_SUBMITTED; 1855 1856 build_data_key(tc->td, result.block, &key); 1857 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { 1858 cell_defer_no_holder_no_free(tc, &cell1); 1859 return DM_MAPIO_SUBMITTED; 1860 } 1861 1862 inc_all_io_entry(tc->pool, bio); 1863 cell_defer_no_holder_no_free(tc, &cell2); 1864 cell_defer_no_holder_no_free(tc, &cell1); 1865 1866 remap(tc, bio, result.block); 1867 return DM_MAPIO_REMAPPED; 1868 1869 case -ENODATA: 1870 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1871 /* 1872 * This block isn't provisioned, and we have no way 1873 * of doing so. 1874 */ 1875 handle_unserviceable_bio(tc->pool, bio); 1876 return DM_MAPIO_SUBMITTED; 1877 } 1878 /* fall through */ 1879 1880 case -EWOULDBLOCK: 1881 /* 1882 * In future, the failed dm_thin_find_block above could 1883 * provide the hint to load the metadata into cache. 1884 */ 1885 thin_defer_bio(tc, bio); 1886 return DM_MAPIO_SUBMITTED; 1887 1888 default: 1889 /* 1890 * Must always call bio_io_error on failure. 1891 * dm_thin_find_block can fail with -EINVAL if the 1892 * pool is switched to fail-io mode. 1893 */ 1894 bio_io_error(bio); 1895 return DM_MAPIO_SUBMITTED; 1896 } 1897 } 1898 1899 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1900 { 1901 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 1902 struct request_queue *q; 1903 1904 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 1905 return 1; 1906 1907 q = bdev_get_queue(pt->data_dev->bdev); 1908 return bdi_congested(&q->backing_dev_info, bdi_bits); 1909 } 1910 1911 static void requeue_bios(struct pool *pool) 1912 { 1913 unsigned long flags; 1914 struct thin_c *tc; 1915 1916 rcu_read_lock(); 1917 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 1918 spin_lock_irqsave(&tc->lock, flags); 1919 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 1920 bio_list_init(&tc->retry_on_resume_list); 1921 spin_unlock_irqrestore(&tc->lock, flags); 1922 } 1923 rcu_read_unlock(); 1924 } 1925 1926 /*---------------------------------------------------------------- 1927 * Binding of control targets to a pool object 1928 *--------------------------------------------------------------*/ 1929 static bool data_dev_supports_discard(struct pool_c *pt) 1930 { 1931 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1932 1933 return q && blk_queue_discard(q); 1934 } 1935 1936 static bool is_factor(sector_t block_size, uint32_t n) 1937 { 1938 return !sector_div(block_size, n); 1939 } 1940 1941 /* 1942 * If discard_passdown was enabled verify that the data device 1943 * supports discards. Disable discard_passdown if not. 1944 */ 1945 static void disable_passdown_if_not_supported(struct pool_c *pt) 1946 { 1947 struct pool *pool = pt->pool; 1948 struct block_device *data_bdev = pt->data_dev->bdev; 1949 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 1950 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 1951 const char *reason = NULL; 1952 char buf[BDEVNAME_SIZE]; 1953 1954 if (!pt->adjusted_pf.discard_passdown) 1955 return; 1956 1957 if (!data_dev_supports_discard(pt)) 1958 reason = "discard unsupported"; 1959 1960 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 1961 reason = "max discard sectors smaller than a block"; 1962 1963 else if (data_limits->discard_granularity > block_size) 1964 reason = "discard granularity larger than a block"; 1965 1966 else if (!is_factor(block_size, data_limits->discard_granularity)) 1967 reason = "discard granularity not a factor of block size"; 1968 1969 if (reason) { 1970 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 1971 pt->adjusted_pf.discard_passdown = false; 1972 } 1973 } 1974 1975 static int bind_control_target(struct pool *pool, struct dm_target *ti) 1976 { 1977 struct pool_c *pt = ti->private; 1978 1979 /* 1980 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 1981 */ 1982 enum pool_mode old_mode = get_pool_mode(pool); 1983 enum pool_mode new_mode = pt->adjusted_pf.mode; 1984 1985 /* 1986 * Don't change the pool's mode until set_pool_mode() below. 1987 * Otherwise the pool's process_* function pointers may 1988 * not match the desired pool mode. 1989 */ 1990 pt->adjusted_pf.mode = old_mode; 1991 1992 pool->ti = ti; 1993 pool->pf = pt->adjusted_pf; 1994 pool->low_water_blocks = pt->low_water_blocks; 1995 1996 set_pool_mode(pool, new_mode); 1997 1998 return 0; 1999 } 2000 2001 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2002 { 2003 if (pool->ti == ti) 2004 pool->ti = NULL; 2005 } 2006 2007 /*---------------------------------------------------------------- 2008 * Pool creation 2009 *--------------------------------------------------------------*/ 2010 /* Initialize pool features. */ 2011 static void pool_features_init(struct pool_features *pf) 2012 { 2013 pf->mode = PM_WRITE; 2014 pf->zero_new_blocks = true; 2015 pf->discard_enabled = true; 2016 pf->discard_passdown = true; 2017 pf->error_if_no_space = false; 2018 } 2019 2020 static void __pool_destroy(struct pool *pool) 2021 { 2022 __pool_table_remove(pool); 2023 2024 if (dm_pool_metadata_close(pool->pmd) < 0) 2025 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2026 2027 dm_bio_prison_destroy(pool->prison); 2028 dm_kcopyd_client_destroy(pool->copier); 2029 2030 if (pool->wq) 2031 destroy_workqueue(pool->wq); 2032 2033 if (pool->next_mapping) 2034 mempool_free(pool->next_mapping, pool->mapping_pool); 2035 mempool_destroy(pool->mapping_pool); 2036 dm_deferred_set_destroy(pool->shared_read_ds); 2037 dm_deferred_set_destroy(pool->all_io_ds); 2038 kfree(pool); 2039 } 2040 2041 static struct kmem_cache *_new_mapping_cache; 2042 2043 static struct pool *pool_create(struct mapped_device *pool_md, 2044 struct block_device *metadata_dev, 2045 unsigned long block_size, 2046 int read_only, char **error) 2047 { 2048 int r; 2049 void *err_p; 2050 struct pool *pool; 2051 struct dm_pool_metadata *pmd; 2052 bool format_device = read_only ? false : true; 2053 2054 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2055 if (IS_ERR(pmd)) { 2056 *error = "Error creating metadata object"; 2057 return (struct pool *)pmd; 2058 } 2059 2060 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2061 if (!pool) { 2062 *error = "Error allocating memory for pool"; 2063 err_p = ERR_PTR(-ENOMEM); 2064 goto bad_pool; 2065 } 2066 2067 pool->pmd = pmd; 2068 pool->sectors_per_block = block_size; 2069 if (block_size & (block_size - 1)) 2070 pool->sectors_per_block_shift = -1; 2071 else 2072 pool->sectors_per_block_shift = __ffs(block_size); 2073 pool->low_water_blocks = 0; 2074 pool_features_init(&pool->pf); 2075 pool->prison = dm_bio_prison_create(PRISON_CELLS); 2076 if (!pool->prison) { 2077 *error = "Error creating pool's bio prison"; 2078 err_p = ERR_PTR(-ENOMEM); 2079 goto bad_prison; 2080 } 2081 2082 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2083 if (IS_ERR(pool->copier)) { 2084 r = PTR_ERR(pool->copier); 2085 *error = "Error creating pool's kcopyd client"; 2086 err_p = ERR_PTR(r); 2087 goto bad_kcopyd_client; 2088 } 2089 2090 /* 2091 * Create singlethreaded workqueue that will service all devices 2092 * that use this metadata. 2093 */ 2094 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2095 if (!pool->wq) { 2096 *error = "Error creating pool's workqueue"; 2097 err_p = ERR_PTR(-ENOMEM); 2098 goto bad_wq; 2099 } 2100 2101 INIT_WORK(&pool->worker, do_worker); 2102 INIT_DELAYED_WORK(&pool->waker, do_waker); 2103 spin_lock_init(&pool->lock); 2104 bio_list_init(&pool->deferred_flush_bios); 2105 INIT_LIST_HEAD(&pool->prepared_mappings); 2106 INIT_LIST_HEAD(&pool->prepared_discards); 2107 INIT_LIST_HEAD(&pool->active_thins); 2108 pool->low_water_triggered = false; 2109 2110 pool->shared_read_ds = dm_deferred_set_create(); 2111 if (!pool->shared_read_ds) { 2112 *error = "Error creating pool's shared read deferred set"; 2113 err_p = ERR_PTR(-ENOMEM); 2114 goto bad_shared_read_ds; 2115 } 2116 2117 pool->all_io_ds = dm_deferred_set_create(); 2118 if (!pool->all_io_ds) { 2119 *error = "Error creating pool's all io deferred set"; 2120 err_p = ERR_PTR(-ENOMEM); 2121 goto bad_all_io_ds; 2122 } 2123 2124 pool->next_mapping = NULL; 2125 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2126 _new_mapping_cache); 2127 if (!pool->mapping_pool) { 2128 *error = "Error creating pool's mapping mempool"; 2129 err_p = ERR_PTR(-ENOMEM); 2130 goto bad_mapping_pool; 2131 } 2132 2133 pool->ref_count = 1; 2134 pool->last_commit_jiffies = jiffies; 2135 pool->pool_md = pool_md; 2136 pool->md_dev = metadata_dev; 2137 __pool_table_insert(pool); 2138 2139 return pool; 2140 2141 bad_mapping_pool: 2142 dm_deferred_set_destroy(pool->all_io_ds); 2143 bad_all_io_ds: 2144 dm_deferred_set_destroy(pool->shared_read_ds); 2145 bad_shared_read_ds: 2146 destroy_workqueue(pool->wq); 2147 bad_wq: 2148 dm_kcopyd_client_destroy(pool->copier); 2149 bad_kcopyd_client: 2150 dm_bio_prison_destroy(pool->prison); 2151 bad_prison: 2152 kfree(pool); 2153 bad_pool: 2154 if (dm_pool_metadata_close(pmd)) 2155 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2156 2157 return err_p; 2158 } 2159 2160 static void __pool_inc(struct pool *pool) 2161 { 2162 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2163 pool->ref_count++; 2164 } 2165 2166 static void __pool_dec(struct pool *pool) 2167 { 2168 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2169 BUG_ON(!pool->ref_count); 2170 if (!--pool->ref_count) 2171 __pool_destroy(pool); 2172 } 2173 2174 static struct pool *__pool_find(struct mapped_device *pool_md, 2175 struct block_device *metadata_dev, 2176 unsigned long block_size, int read_only, 2177 char **error, int *created) 2178 { 2179 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2180 2181 if (pool) { 2182 if (pool->pool_md != pool_md) { 2183 *error = "metadata device already in use by a pool"; 2184 return ERR_PTR(-EBUSY); 2185 } 2186 __pool_inc(pool); 2187 2188 } else { 2189 pool = __pool_table_lookup(pool_md); 2190 if (pool) { 2191 if (pool->md_dev != metadata_dev) { 2192 *error = "different pool cannot replace a pool"; 2193 return ERR_PTR(-EINVAL); 2194 } 2195 __pool_inc(pool); 2196 2197 } else { 2198 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2199 *created = 1; 2200 } 2201 } 2202 2203 return pool; 2204 } 2205 2206 /*---------------------------------------------------------------- 2207 * Pool target methods 2208 *--------------------------------------------------------------*/ 2209 static void pool_dtr(struct dm_target *ti) 2210 { 2211 struct pool_c *pt = ti->private; 2212 2213 mutex_lock(&dm_thin_pool_table.mutex); 2214 2215 unbind_control_target(pt->pool, ti); 2216 __pool_dec(pt->pool); 2217 dm_put_device(ti, pt->metadata_dev); 2218 dm_put_device(ti, pt->data_dev); 2219 kfree(pt); 2220 2221 mutex_unlock(&dm_thin_pool_table.mutex); 2222 } 2223 2224 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2225 struct dm_target *ti) 2226 { 2227 int r; 2228 unsigned argc; 2229 const char *arg_name; 2230 2231 static struct dm_arg _args[] = { 2232 {0, 4, "Invalid number of pool feature arguments"}, 2233 }; 2234 2235 /* 2236 * No feature arguments supplied. 2237 */ 2238 if (!as->argc) 2239 return 0; 2240 2241 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2242 if (r) 2243 return -EINVAL; 2244 2245 while (argc && !r) { 2246 arg_name = dm_shift_arg(as); 2247 argc--; 2248 2249 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2250 pf->zero_new_blocks = false; 2251 2252 else if (!strcasecmp(arg_name, "ignore_discard")) 2253 pf->discard_enabled = false; 2254 2255 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2256 pf->discard_passdown = false; 2257 2258 else if (!strcasecmp(arg_name, "read_only")) 2259 pf->mode = PM_READ_ONLY; 2260 2261 else if (!strcasecmp(arg_name, "error_if_no_space")) 2262 pf->error_if_no_space = true; 2263 2264 else { 2265 ti->error = "Unrecognised pool feature requested"; 2266 r = -EINVAL; 2267 break; 2268 } 2269 } 2270 2271 return r; 2272 } 2273 2274 static void metadata_low_callback(void *context) 2275 { 2276 struct pool *pool = context; 2277 2278 DMWARN("%s: reached low water mark for metadata device: sending event.", 2279 dm_device_name(pool->pool_md)); 2280 2281 dm_table_event(pool->ti->table); 2282 } 2283 2284 static sector_t get_dev_size(struct block_device *bdev) 2285 { 2286 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2287 } 2288 2289 static void warn_if_metadata_device_too_big(struct block_device *bdev) 2290 { 2291 sector_t metadata_dev_size = get_dev_size(bdev); 2292 char buffer[BDEVNAME_SIZE]; 2293 2294 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 2295 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2296 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2297 } 2298 2299 static sector_t get_metadata_dev_size(struct block_device *bdev) 2300 { 2301 sector_t metadata_dev_size = get_dev_size(bdev); 2302 2303 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 2304 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 2305 2306 return metadata_dev_size; 2307 } 2308 2309 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2310 { 2311 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2312 2313 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 2314 2315 return metadata_dev_size; 2316 } 2317 2318 /* 2319 * When a metadata threshold is crossed a dm event is triggered, and 2320 * userland should respond by growing the metadata device. We could let 2321 * userland set the threshold, like we do with the data threshold, but I'm 2322 * not sure they know enough to do this well. 2323 */ 2324 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2325 { 2326 /* 2327 * 4M is ample for all ops with the possible exception of thin 2328 * device deletion which is harmless if it fails (just retry the 2329 * delete after you've grown the device). 2330 */ 2331 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2332 return min((dm_block_t)1024ULL /* 4M */, quarter); 2333 } 2334 2335 /* 2336 * thin-pool <metadata dev> <data dev> 2337 * <data block size (sectors)> 2338 * <low water mark (blocks)> 2339 * [<#feature args> [<arg>]*] 2340 * 2341 * Optional feature arguments are: 2342 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2343 * ignore_discard: disable discard 2344 * no_discard_passdown: don't pass discards down to the data device 2345 * read_only: Don't allow any changes to be made to the pool metadata. 2346 * error_if_no_space: error IOs, instead of queueing, if no space. 2347 */ 2348 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2349 { 2350 int r, pool_created = 0; 2351 struct pool_c *pt; 2352 struct pool *pool; 2353 struct pool_features pf; 2354 struct dm_arg_set as; 2355 struct dm_dev *data_dev; 2356 unsigned long block_size; 2357 dm_block_t low_water_blocks; 2358 struct dm_dev *metadata_dev; 2359 fmode_t metadata_mode; 2360 2361 /* 2362 * FIXME Remove validation from scope of lock. 2363 */ 2364 mutex_lock(&dm_thin_pool_table.mutex); 2365 2366 if (argc < 4) { 2367 ti->error = "Invalid argument count"; 2368 r = -EINVAL; 2369 goto out_unlock; 2370 } 2371 2372 as.argc = argc; 2373 as.argv = argv; 2374 2375 /* 2376 * Set default pool features. 2377 */ 2378 pool_features_init(&pf); 2379 2380 dm_consume_args(&as, 4); 2381 r = parse_pool_features(&as, &pf, ti); 2382 if (r) 2383 goto out_unlock; 2384 2385 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2386 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2387 if (r) { 2388 ti->error = "Error opening metadata block device"; 2389 goto out_unlock; 2390 } 2391 warn_if_metadata_device_too_big(metadata_dev->bdev); 2392 2393 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2394 if (r) { 2395 ti->error = "Error getting data device"; 2396 goto out_metadata; 2397 } 2398 2399 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2400 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2401 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2402 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2403 ti->error = "Invalid block size"; 2404 r = -EINVAL; 2405 goto out; 2406 } 2407 2408 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2409 ti->error = "Invalid low water mark"; 2410 r = -EINVAL; 2411 goto out; 2412 } 2413 2414 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2415 if (!pt) { 2416 r = -ENOMEM; 2417 goto out; 2418 } 2419 2420 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2421 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2422 if (IS_ERR(pool)) { 2423 r = PTR_ERR(pool); 2424 goto out_free_pt; 2425 } 2426 2427 /* 2428 * 'pool_created' reflects whether this is the first table load. 2429 * Top level discard support is not allowed to be changed after 2430 * initial load. This would require a pool reload to trigger thin 2431 * device changes. 2432 */ 2433 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2434 ti->error = "Discard support cannot be disabled once enabled"; 2435 r = -EINVAL; 2436 goto out_flags_changed; 2437 } 2438 2439 pt->pool = pool; 2440 pt->ti = ti; 2441 pt->metadata_dev = metadata_dev; 2442 pt->data_dev = data_dev; 2443 pt->low_water_blocks = low_water_blocks; 2444 pt->adjusted_pf = pt->requested_pf = pf; 2445 ti->num_flush_bios = 1; 2446 2447 /* 2448 * Only need to enable discards if the pool should pass 2449 * them down to the data device. The thin device's discard 2450 * processing will cause mappings to be removed from the btree. 2451 */ 2452 ti->discard_zeroes_data_unsupported = true; 2453 if (pf.discard_enabled && pf.discard_passdown) { 2454 ti->num_discard_bios = 1; 2455 2456 /* 2457 * Setting 'discards_supported' circumvents the normal 2458 * stacking of discard limits (this keeps the pool and 2459 * thin devices' discard limits consistent). 2460 */ 2461 ti->discards_supported = true; 2462 } 2463 ti->private = pt; 2464 2465 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2466 calc_metadata_threshold(pt), 2467 metadata_low_callback, 2468 pool); 2469 if (r) 2470 goto out_free_pt; 2471 2472 pt->callbacks.congested_fn = pool_is_congested; 2473 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2474 2475 mutex_unlock(&dm_thin_pool_table.mutex); 2476 2477 return 0; 2478 2479 out_flags_changed: 2480 __pool_dec(pool); 2481 out_free_pt: 2482 kfree(pt); 2483 out: 2484 dm_put_device(ti, data_dev); 2485 out_metadata: 2486 dm_put_device(ti, metadata_dev); 2487 out_unlock: 2488 mutex_unlock(&dm_thin_pool_table.mutex); 2489 2490 return r; 2491 } 2492 2493 static int pool_map(struct dm_target *ti, struct bio *bio) 2494 { 2495 int r; 2496 struct pool_c *pt = ti->private; 2497 struct pool *pool = pt->pool; 2498 unsigned long flags; 2499 2500 /* 2501 * As this is a singleton target, ti->begin is always zero. 2502 */ 2503 spin_lock_irqsave(&pool->lock, flags); 2504 bio->bi_bdev = pt->data_dev->bdev; 2505 r = DM_MAPIO_REMAPPED; 2506 spin_unlock_irqrestore(&pool->lock, flags); 2507 2508 return r; 2509 } 2510 2511 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 2512 { 2513 int r; 2514 struct pool_c *pt = ti->private; 2515 struct pool *pool = pt->pool; 2516 sector_t data_size = ti->len; 2517 dm_block_t sb_data_size; 2518 2519 *need_commit = false; 2520 2521 (void) sector_div(data_size, pool->sectors_per_block); 2522 2523 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2524 if (r) { 2525 DMERR("%s: failed to retrieve data device size", 2526 dm_device_name(pool->pool_md)); 2527 return r; 2528 } 2529 2530 if (data_size < sb_data_size) { 2531 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 2532 dm_device_name(pool->pool_md), 2533 (unsigned long long)data_size, sb_data_size); 2534 return -EINVAL; 2535 2536 } else if (data_size > sb_data_size) { 2537 if (dm_pool_metadata_needs_check(pool->pmd)) { 2538 DMERR("%s: unable to grow the data device until repaired.", 2539 dm_device_name(pool->pool_md)); 2540 return 0; 2541 } 2542 2543 if (sb_data_size) 2544 DMINFO("%s: growing the data device from %llu to %llu blocks", 2545 dm_device_name(pool->pool_md), 2546 sb_data_size, (unsigned long long)data_size); 2547 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2548 if (r) { 2549 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 2550 return r; 2551 } 2552 2553 *need_commit = true; 2554 } 2555 2556 return 0; 2557 } 2558 2559 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 2560 { 2561 int r; 2562 struct pool_c *pt = ti->private; 2563 struct pool *pool = pt->pool; 2564 dm_block_t metadata_dev_size, sb_metadata_dev_size; 2565 2566 *need_commit = false; 2567 2568 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 2569 2570 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 2571 if (r) { 2572 DMERR("%s: failed to retrieve metadata device size", 2573 dm_device_name(pool->pool_md)); 2574 return r; 2575 } 2576 2577 if (metadata_dev_size < sb_metadata_dev_size) { 2578 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 2579 dm_device_name(pool->pool_md), 2580 metadata_dev_size, sb_metadata_dev_size); 2581 return -EINVAL; 2582 2583 } else if (metadata_dev_size > sb_metadata_dev_size) { 2584 if (dm_pool_metadata_needs_check(pool->pmd)) { 2585 DMERR("%s: unable to grow the metadata device until repaired.", 2586 dm_device_name(pool->pool_md)); 2587 return 0; 2588 } 2589 2590 warn_if_metadata_device_too_big(pool->md_dev); 2591 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 2592 dm_device_name(pool->pool_md), 2593 sb_metadata_dev_size, metadata_dev_size); 2594 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 2595 if (r) { 2596 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 2597 return r; 2598 } 2599 2600 *need_commit = true; 2601 } 2602 2603 return 0; 2604 } 2605 2606 /* 2607 * Retrieves the number of blocks of the data device from 2608 * the superblock and compares it to the actual device size, 2609 * thus resizing the data device in case it has grown. 2610 * 2611 * This both copes with opening preallocated data devices in the ctr 2612 * being followed by a resume 2613 * -and- 2614 * calling the resume method individually after userspace has 2615 * grown the data device in reaction to a table event. 2616 */ 2617 static int pool_preresume(struct dm_target *ti) 2618 { 2619 int r; 2620 bool need_commit1, need_commit2; 2621 struct pool_c *pt = ti->private; 2622 struct pool *pool = pt->pool; 2623 2624 /* 2625 * Take control of the pool object. 2626 */ 2627 r = bind_control_target(pool, ti); 2628 if (r) 2629 return r; 2630 2631 r = maybe_resize_data_dev(ti, &need_commit1); 2632 if (r) 2633 return r; 2634 2635 r = maybe_resize_metadata_dev(ti, &need_commit2); 2636 if (r) 2637 return r; 2638 2639 if (need_commit1 || need_commit2) 2640 (void) commit(pool); 2641 2642 return 0; 2643 } 2644 2645 static void pool_resume(struct dm_target *ti) 2646 { 2647 struct pool_c *pt = ti->private; 2648 struct pool *pool = pt->pool; 2649 unsigned long flags; 2650 2651 spin_lock_irqsave(&pool->lock, flags); 2652 pool->low_water_triggered = false; 2653 spin_unlock_irqrestore(&pool->lock, flags); 2654 requeue_bios(pool); 2655 2656 do_waker(&pool->waker.work); 2657 } 2658 2659 static void pool_postsuspend(struct dm_target *ti) 2660 { 2661 struct pool_c *pt = ti->private; 2662 struct pool *pool = pt->pool; 2663 2664 cancel_delayed_work(&pool->waker); 2665 flush_workqueue(pool->wq); 2666 (void) commit(pool); 2667 } 2668 2669 static int check_arg_count(unsigned argc, unsigned args_required) 2670 { 2671 if (argc != args_required) { 2672 DMWARN("Message received with %u arguments instead of %u.", 2673 argc, args_required); 2674 return -EINVAL; 2675 } 2676 2677 return 0; 2678 } 2679 2680 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2681 { 2682 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2683 *dev_id <= MAX_DEV_ID) 2684 return 0; 2685 2686 if (warning) 2687 DMWARN("Message received with invalid device id: %s", arg); 2688 2689 return -EINVAL; 2690 } 2691 2692 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2693 { 2694 dm_thin_id dev_id; 2695 int r; 2696 2697 r = check_arg_count(argc, 2); 2698 if (r) 2699 return r; 2700 2701 r = read_dev_id(argv[1], &dev_id, 1); 2702 if (r) 2703 return r; 2704 2705 r = dm_pool_create_thin(pool->pmd, dev_id); 2706 if (r) { 2707 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2708 argv[1]); 2709 return r; 2710 } 2711 2712 return 0; 2713 } 2714 2715 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2716 { 2717 dm_thin_id dev_id; 2718 dm_thin_id origin_dev_id; 2719 int r; 2720 2721 r = check_arg_count(argc, 3); 2722 if (r) 2723 return r; 2724 2725 r = read_dev_id(argv[1], &dev_id, 1); 2726 if (r) 2727 return r; 2728 2729 r = read_dev_id(argv[2], &origin_dev_id, 1); 2730 if (r) 2731 return r; 2732 2733 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2734 if (r) { 2735 DMWARN("Creation of new snapshot %s of device %s failed.", 2736 argv[1], argv[2]); 2737 return r; 2738 } 2739 2740 return 0; 2741 } 2742 2743 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2744 { 2745 dm_thin_id dev_id; 2746 int r; 2747 2748 r = check_arg_count(argc, 2); 2749 if (r) 2750 return r; 2751 2752 r = read_dev_id(argv[1], &dev_id, 1); 2753 if (r) 2754 return r; 2755 2756 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2757 if (r) 2758 DMWARN("Deletion of thin device %s failed.", argv[1]); 2759 2760 return r; 2761 } 2762 2763 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2764 { 2765 dm_thin_id old_id, new_id; 2766 int r; 2767 2768 r = check_arg_count(argc, 3); 2769 if (r) 2770 return r; 2771 2772 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2773 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2774 return -EINVAL; 2775 } 2776 2777 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2778 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2779 return -EINVAL; 2780 } 2781 2782 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2783 if (r) { 2784 DMWARN("Failed to change transaction id from %s to %s.", 2785 argv[1], argv[2]); 2786 return r; 2787 } 2788 2789 return 0; 2790 } 2791 2792 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2793 { 2794 int r; 2795 2796 r = check_arg_count(argc, 1); 2797 if (r) 2798 return r; 2799 2800 (void) commit(pool); 2801 2802 r = dm_pool_reserve_metadata_snap(pool->pmd); 2803 if (r) 2804 DMWARN("reserve_metadata_snap message failed."); 2805 2806 return r; 2807 } 2808 2809 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2810 { 2811 int r; 2812 2813 r = check_arg_count(argc, 1); 2814 if (r) 2815 return r; 2816 2817 r = dm_pool_release_metadata_snap(pool->pmd); 2818 if (r) 2819 DMWARN("release_metadata_snap message failed."); 2820 2821 return r; 2822 } 2823 2824 /* 2825 * Messages supported: 2826 * create_thin <dev_id> 2827 * create_snap <dev_id> <origin_id> 2828 * delete <dev_id> 2829 * trim <dev_id> <new_size_in_sectors> 2830 * set_transaction_id <current_trans_id> <new_trans_id> 2831 * reserve_metadata_snap 2832 * release_metadata_snap 2833 */ 2834 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2835 { 2836 int r = -EINVAL; 2837 struct pool_c *pt = ti->private; 2838 struct pool *pool = pt->pool; 2839 2840 if (!strcasecmp(argv[0], "create_thin")) 2841 r = process_create_thin_mesg(argc, argv, pool); 2842 2843 else if (!strcasecmp(argv[0], "create_snap")) 2844 r = process_create_snap_mesg(argc, argv, pool); 2845 2846 else if (!strcasecmp(argv[0], "delete")) 2847 r = process_delete_mesg(argc, argv, pool); 2848 2849 else if (!strcasecmp(argv[0], "set_transaction_id")) 2850 r = process_set_transaction_id_mesg(argc, argv, pool); 2851 2852 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2853 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2854 2855 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2856 r = process_release_metadata_snap_mesg(argc, argv, pool); 2857 2858 else 2859 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2860 2861 if (!r) 2862 (void) commit(pool); 2863 2864 return r; 2865 } 2866 2867 static void emit_flags(struct pool_features *pf, char *result, 2868 unsigned sz, unsigned maxlen) 2869 { 2870 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2871 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 2872 pf->error_if_no_space; 2873 DMEMIT("%u ", count); 2874 2875 if (!pf->zero_new_blocks) 2876 DMEMIT("skip_block_zeroing "); 2877 2878 if (!pf->discard_enabled) 2879 DMEMIT("ignore_discard "); 2880 2881 if (!pf->discard_passdown) 2882 DMEMIT("no_discard_passdown "); 2883 2884 if (pf->mode == PM_READ_ONLY) 2885 DMEMIT("read_only "); 2886 2887 if (pf->error_if_no_space) 2888 DMEMIT("error_if_no_space "); 2889 } 2890 2891 /* 2892 * Status line is: 2893 * <transaction id> <used metadata sectors>/<total metadata sectors> 2894 * <used data sectors>/<total data sectors> <held metadata root> 2895 */ 2896 static void pool_status(struct dm_target *ti, status_type_t type, 2897 unsigned status_flags, char *result, unsigned maxlen) 2898 { 2899 int r; 2900 unsigned sz = 0; 2901 uint64_t transaction_id; 2902 dm_block_t nr_free_blocks_data; 2903 dm_block_t nr_free_blocks_metadata; 2904 dm_block_t nr_blocks_data; 2905 dm_block_t nr_blocks_metadata; 2906 dm_block_t held_root; 2907 char buf[BDEVNAME_SIZE]; 2908 char buf2[BDEVNAME_SIZE]; 2909 struct pool_c *pt = ti->private; 2910 struct pool *pool = pt->pool; 2911 2912 switch (type) { 2913 case STATUSTYPE_INFO: 2914 if (get_pool_mode(pool) == PM_FAIL) { 2915 DMEMIT("Fail"); 2916 break; 2917 } 2918 2919 /* Commit to ensure statistics aren't out-of-date */ 2920 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 2921 (void) commit(pool); 2922 2923 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 2924 if (r) { 2925 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 2926 dm_device_name(pool->pool_md), r); 2927 goto err; 2928 } 2929 2930 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 2931 if (r) { 2932 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 2933 dm_device_name(pool->pool_md), r); 2934 goto err; 2935 } 2936 2937 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 2938 if (r) { 2939 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 2940 dm_device_name(pool->pool_md), r); 2941 goto err; 2942 } 2943 2944 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 2945 if (r) { 2946 DMERR("%s: dm_pool_get_free_block_count returned %d", 2947 dm_device_name(pool->pool_md), r); 2948 goto err; 2949 } 2950 2951 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 2952 if (r) { 2953 DMERR("%s: dm_pool_get_data_dev_size returned %d", 2954 dm_device_name(pool->pool_md), r); 2955 goto err; 2956 } 2957 2958 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 2959 if (r) { 2960 DMERR("%s: dm_pool_get_metadata_snap returned %d", 2961 dm_device_name(pool->pool_md), r); 2962 goto err; 2963 } 2964 2965 DMEMIT("%llu %llu/%llu %llu/%llu ", 2966 (unsigned long long)transaction_id, 2967 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 2968 (unsigned long long)nr_blocks_metadata, 2969 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 2970 (unsigned long long)nr_blocks_data); 2971 2972 if (held_root) 2973 DMEMIT("%llu ", held_root); 2974 else 2975 DMEMIT("- "); 2976 2977 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 2978 DMEMIT("out_of_data_space "); 2979 else if (pool->pf.mode == PM_READ_ONLY) 2980 DMEMIT("ro "); 2981 else 2982 DMEMIT("rw "); 2983 2984 if (!pool->pf.discard_enabled) 2985 DMEMIT("ignore_discard "); 2986 else if (pool->pf.discard_passdown) 2987 DMEMIT("discard_passdown "); 2988 else 2989 DMEMIT("no_discard_passdown "); 2990 2991 if (pool->pf.error_if_no_space) 2992 DMEMIT("error_if_no_space "); 2993 else 2994 DMEMIT("queue_if_no_space "); 2995 2996 break; 2997 2998 case STATUSTYPE_TABLE: 2999 DMEMIT("%s %s %lu %llu ", 3000 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3001 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3002 (unsigned long)pool->sectors_per_block, 3003 (unsigned long long)pt->low_water_blocks); 3004 emit_flags(&pt->requested_pf, result, sz, maxlen); 3005 break; 3006 } 3007 return; 3008 3009 err: 3010 DMEMIT("Error"); 3011 } 3012 3013 static int pool_iterate_devices(struct dm_target *ti, 3014 iterate_devices_callout_fn fn, void *data) 3015 { 3016 struct pool_c *pt = ti->private; 3017 3018 return fn(ti, pt->data_dev, 0, ti->len, data); 3019 } 3020 3021 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 3022 struct bio_vec *biovec, int max_size) 3023 { 3024 struct pool_c *pt = ti->private; 3025 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 3026 3027 if (!q->merge_bvec_fn) 3028 return max_size; 3029 3030 bvm->bi_bdev = pt->data_dev->bdev; 3031 3032 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 3033 } 3034 3035 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 3036 { 3037 struct pool *pool = pt->pool; 3038 struct queue_limits *data_limits; 3039 3040 limits->max_discard_sectors = pool->sectors_per_block; 3041 3042 /* 3043 * discard_granularity is just a hint, and not enforced. 3044 */ 3045 if (pt->adjusted_pf.discard_passdown) { 3046 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 3047 limits->discard_granularity = data_limits->discard_granularity; 3048 } else 3049 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 3050 } 3051 3052 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3053 { 3054 struct pool_c *pt = ti->private; 3055 struct pool *pool = pt->pool; 3056 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3057 3058 /* 3059 * If the system-determined stacked limits are compatible with the 3060 * pool's blocksize (io_opt is a factor) do not override them. 3061 */ 3062 if (io_opt_sectors < pool->sectors_per_block || 3063 do_div(io_opt_sectors, pool->sectors_per_block)) { 3064 blk_limits_io_min(limits, 0); 3065 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3066 } 3067 3068 /* 3069 * pt->adjusted_pf is a staging area for the actual features to use. 3070 * They get transferred to the live pool in bind_control_target() 3071 * called from pool_preresume(). 3072 */ 3073 if (!pt->adjusted_pf.discard_enabled) { 3074 /* 3075 * Must explicitly disallow stacking discard limits otherwise the 3076 * block layer will stack them if pool's data device has support. 3077 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3078 * user to see that, so make sure to set all discard limits to 0. 3079 */ 3080 limits->discard_granularity = 0; 3081 return; 3082 } 3083 3084 disable_passdown_if_not_supported(pt); 3085 3086 set_discard_limits(pt, limits); 3087 } 3088 3089 static struct target_type pool_target = { 3090 .name = "thin-pool", 3091 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3092 DM_TARGET_IMMUTABLE, 3093 .version = {1, 12, 0}, 3094 .module = THIS_MODULE, 3095 .ctr = pool_ctr, 3096 .dtr = pool_dtr, 3097 .map = pool_map, 3098 .postsuspend = pool_postsuspend, 3099 .preresume = pool_preresume, 3100 .resume = pool_resume, 3101 .message = pool_message, 3102 .status = pool_status, 3103 .merge = pool_merge, 3104 .iterate_devices = pool_iterate_devices, 3105 .io_hints = pool_io_hints, 3106 }; 3107 3108 /*---------------------------------------------------------------- 3109 * Thin target methods 3110 *--------------------------------------------------------------*/ 3111 static void thin_get(struct thin_c *tc) 3112 { 3113 atomic_inc(&tc->refcount); 3114 } 3115 3116 static void thin_put(struct thin_c *tc) 3117 { 3118 if (atomic_dec_and_test(&tc->refcount)) 3119 complete(&tc->can_destroy); 3120 } 3121 3122 static void thin_dtr(struct dm_target *ti) 3123 { 3124 struct thin_c *tc = ti->private; 3125 unsigned long flags; 3126 3127 thin_put(tc); 3128 wait_for_completion(&tc->can_destroy); 3129 3130 spin_lock_irqsave(&tc->pool->lock, flags); 3131 list_del_rcu(&tc->list); 3132 spin_unlock_irqrestore(&tc->pool->lock, flags); 3133 synchronize_rcu(); 3134 3135 mutex_lock(&dm_thin_pool_table.mutex); 3136 3137 __pool_dec(tc->pool); 3138 dm_pool_close_thin_device(tc->td); 3139 dm_put_device(ti, tc->pool_dev); 3140 if (tc->origin_dev) 3141 dm_put_device(ti, tc->origin_dev); 3142 kfree(tc); 3143 3144 mutex_unlock(&dm_thin_pool_table.mutex); 3145 } 3146 3147 /* 3148 * Thin target parameters: 3149 * 3150 * <pool_dev> <dev_id> [origin_dev] 3151 * 3152 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3153 * dev_id: the internal device identifier 3154 * origin_dev: a device external to the pool that should act as the origin 3155 * 3156 * If the pool device has discards disabled, they get disabled for the thin 3157 * device as well. 3158 */ 3159 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3160 { 3161 int r; 3162 struct thin_c *tc; 3163 struct dm_dev *pool_dev, *origin_dev; 3164 struct mapped_device *pool_md; 3165 unsigned long flags; 3166 3167 mutex_lock(&dm_thin_pool_table.mutex); 3168 3169 if (argc != 2 && argc != 3) { 3170 ti->error = "Invalid argument count"; 3171 r = -EINVAL; 3172 goto out_unlock; 3173 } 3174 3175 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3176 if (!tc) { 3177 ti->error = "Out of memory"; 3178 r = -ENOMEM; 3179 goto out_unlock; 3180 } 3181 spin_lock_init(&tc->lock); 3182 bio_list_init(&tc->deferred_bio_list); 3183 bio_list_init(&tc->retry_on_resume_list); 3184 tc->sort_bio_list = RB_ROOT; 3185 3186 if (argc == 3) { 3187 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3188 if (r) { 3189 ti->error = "Error opening origin device"; 3190 goto bad_origin_dev; 3191 } 3192 tc->origin_dev = origin_dev; 3193 } 3194 3195 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3196 if (r) { 3197 ti->error = "Error opening pool device"; 3198 goto bad_pool_dev; 3199 } 3200 tc->pool_dev = pool_dev; 3201 3202 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 3203 ti->error = "Invalid device id"; 3204 r = -EINVAL; 3205 goto bad_common; 3206 } 3207 3208 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 3209 if (!pool_md) { 3210 ti->error = "Couldn't get pool mapped device"; 3211 r = -EINVAL; 3212 goto bad_common; 3213 } 3214 3215 tc->pool = __pool_table_lookup(pool_md); 3216 if (!tc->pool) { 3217 ti->error = "Couldn't find pool object"; 3218 r = -EINVAL; 3219 goto bad_pool_lookup; 3220 } 3221 __pool_inc(tc->pool); 3222 3223 if (get_pool_mode(tc->pool) == PM_FAIL) { 3224 ti->error = "Couldn't open thin device, Pool is in fail mode"; 3225 r = -EINVAL; 3226 goto bad_thin_open; 3227 } 3228 3229 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 3230 if (r) { 3231 ti->error = "Couldn't open thin internal device"; 3232 goto bad_thin_open; 3233 } 3234 3235 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 3236 if (r) 3237 goto bad_target_max_io_len; 3238 3239 ti->num_flush_bios = 1; 3240 ti->flush_supported = true; 3241 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 3242 3243 /* In case the pool supports discards, pass them on. */ 3244 ti->discard_zeroes_data_unsupported = true; 3245 if (tc->pool->pf.discard_enabled) { 3246 ti->discards_supported = true; 3247 ti->num_discard_bios = 1; 3248 /* Discard bios must be split on a block boundary */ 3249 ti->split_discard_bios = true; 3250 } 3251 3252 dm_put(pool_md); 3253 3254 mutex_unlock(&dm_thin_pool_table.mutex); 3255 3256 atomic_set(&tc->refcount, 1); 3257 init_completion(&tc->can_destroy); 3258 3259 spin_lock_irqsave(&tc->pool->lock, flags); 3260 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 3261 spin_unlock_irqrestore(&tc->pool->lock, flags); 3262 /* 3263 * This synchronize_rcu() call is needed here otherwise we risk a 3264 * wake_worker() call finding no bios to process (because the newly 3265 * added tc isn't yet visible). So this reduces latency since we 3266 * aren't then dependent on the periodic commit to wake_worker(). 3267 */ 3268 synchronize_rcu(); 3269 3270 return 0; 3271 3272 bad_target_max_io_len: 3273 dm_pool_close_thin_device(tc->td); 3274 bad_thin_open: 3275 __pool_dec(tc->pool); 3276 bad_pool_lookup: 3277 dm_put(pool_md); 3278 bad_common: 3279 dm_put_device(ti, tc->pool_dev); 3280 bad_pool_dev: 3281 if (tc->origin_dev) 3282 dm_put_device(ti, tc->origin_dev); 3283 bad_origin_dev: 3284 kfree(tc); 3285 out_unlock: 3286 mutex_unlock(&dm_thin_pool_table.mutex); 3287 3288 return r; 3289 } 3290 3291 static int thin_map(struct dm_target *ti, struct bio *bio) 3292 { 3293 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 3294 3295 return thin_bio_map(ti, bio); 3296 } 3297 3298 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 3299 { 3300 unsigned long flags; 3301 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 3302 struct list_head work; 3303 struct dm_thin_new_mapping *m, *tmp; 3304 struct pool *pool = h->tc->pool; 3305 3306 if (h->shared_read_entry) { 3307 INIT_LIST_HEAD(&work); 3308 dm_deferred_entry_dec(h->shared_read_entry, &work); 3309 3310 spin_lock_irqsave(&pool->lock, flags); 3311 list_for_each_entry_safe(m, tmp, &work, list) { 3312 list_del(&m->list); 3313 m->quiesced = true; 3314 __maybe_add_mapping(m); 3315 } 3316 spin_unlock_irqrestore(&pool->lock, flags); 3317 } 3318 3319 if (h->all_io_entry) { 3320 INIT_LIST_HEAD(&work); 3321 dm_deferred_entry_dec(h->all_io_entry, &work); 3322 if (!list_empty(&work)) { 3323 spin_lock_irqsave(&pool->lock, flags); 3324 list_for_each_entry_safe(m, tmp, &work, list) 3325 list_add_tail(&m->list, &pool->prepared_discards); 3326 spin_unlock_irqrestore(&pool->lock, flags); 3327 wake_worker(pool); 3328 } 3329 } 3330 3331 return 0; 3332 } 3333 3334 static void thin_presuspend(struct dm_target *ti) 3335 { 3336 struct thin_c *tc = ti->private; 3337 3338 if (dm_noflush_suspending(ti)) 3339 noflush_work(tc, do_noflush_start); 3340 } 3341 3342 static void thin_postsuspend(struct dm_target *ti) 3343 { 3344 struct thin_c *tc = ti->private; 3345 3346 /* 3347 * The dm_noflush_suspending flag has been cleared by now, so 3348 * unfortunately we must always run this. 3349 */ 3350 noflush_work(tc, do_noflush_stop); 3351 } 3352 3353 /* 3354 * <nr mapped sectors> <highest mapped sector> 3355 */ 3356 static void thin_status(struct dm_target *ti, status_type_t type, 3357 unsigned status_flags, char *result, unsigned maxlen) 3358 { 3359 int r; 3360 ssize_t sz = 0; 3361 dm_block_t mapped, highest; 3362 char buf[BDEVNAME_SIZE]; 3363 struct thin_c *tc = ti->private; 3364 3365 if (get_pool_mode(tc->pool) == PM_FAIL) { 3366 DMEMIT("Fail"); 3367 return; 3368 } 3369 3370 if (!tc->td) 3371 DMEMIT("-"); 3372 else { 3373 switch (type) { 3374 case STATUSTYPE_INFO: 3375 r = dm_thin_get_mapped_count(tc->td, &mapped); 3376 if (r) { 3377 DMERR("dm_thin_get_mapped_count returned %d", r); 3378 goto err; 3379 } 3380 3381 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3382 if (r < 0) { 3383 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3384 goto err; 3385 } 3386 3387 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3388 if (r) 3389 DMEMIT("%llu", ((highest + 1) * 3390 tc->pool->sectors_per_block) - 1); 3391 else 3392 DMEMIT("-"); 3393 break; 3394 3395 case STATUSTYPE_TABLE: 3396 DMEMIT("%s %lu", 3397 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3398 (unsigned long) tc->dev_id); 3399 if (tc->origin_dev) 3400 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3401 break; 3402 } 3403 } 3404 3405 return; 3406 3407 err: 3408 DMEMIT("Error"); 3409 } 3410 3411 static int thin_iterate_devices(struct dm_target *ti, 3412 iterate_devices_callout_fn fn, void *data) 3413 { 3414 sector_t blocks; 3415 struct thin_c *tc = ti->private; 3416 struct pool *pool = tc->pool; 3417 3418 /* 3419 * We can't call dm_pool_get_data_dev_size() since that blocks. So 3420 * we follow a more convoluted path through to the pool's target. 3421 */ 3422 if (!pool->ti) 3423 return 0; /* nothing is bound */ 3424 3425 blocks = pool->ti->len; 3426 (void) sector_div(blocks, pool->sectors_per_block); 3427 if (blocks) 3428 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 3429 3430 return 0; 3431 } 3432 3433 static struct target_type thin_target = { 3434 .name = "thin", 3435 .version = {1, 12, 0}, 3436 .module = THIS_MODULE, 3437 .ctr = thin_ctr, 3438 .dtr = thin_dtr, 3439 .map = thin_map, 3440 .end_io = thin_endio, 3441 .presuspend = thin_presuspend, 3442 .postsuspend = thin_postsuspend, 3443 .status = thin_status, 3444 .iterate_devices = thin_iterate_devices, 3445 }; 3446 3447 /*----------------------------------------------------------------*/ 3448 3449 static int __init dm_thin_init(void) 3450 { 3451 int r; 3452 3453 pool_table_init(); 3454 3455 r = dm_register_target(&thin_target); 3456 if (r) 3457 return r; 3458 3459 r = dm_register_target(&pool_target); 3460 if (r) 3461 goto bad_pool_target; 3462 3463 r = -ENOMEM; 3464 3465 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 3466 if (!_new_mapping_cache) 3467 goto bad_new_mapping_cache; 3468 3469 return 0; 3470 3471 bad_new_mapping_cache: 3472 dm_unregister_target(&pool_target); 3473 bad_pool_target: 3474 dm_unregister_target(&thin_target); 3475 3476 return r; 3477 } 3478 3479 static void dm_thin_exit(void) 3480 { 3481 dm_unregister_target(&thin_target); 3482 dm_unregister_target(&pool_target); 3483 3484 kmem_cache_destroy(_new_mapping_cache); 3485 } 3486 3487 module_init(dm_thin_init); 3488 module_exit(dm_thin_exit); 3489 3490 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 3491 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3492 MODULE_LICENSE("GPL"); 3493