xref: /linux/drivers/md/dm-thin.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include <linux/rbtree.h>
23 
24 #define	DM_MSG_PREFIX	"thin"
25 
26 /*
27  * Tunable constants
28  */
29 #define ENDIO_HOOK_POOL_SIZE 1024
30 #define MAPPING_POOL_SIZE 1024
31 #define COMMIT_PERIOD HZ
32 #define NO_SPACE_TIMEOUT_SECS 60
33 
34 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
35 
36 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
37 		"A percentage of time allocated for copy on write");
38 
39 /*
40  * The block size of the device holding pool data must be
41  * between 64KB and 1GB.
42  */
43 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
44 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
45 
46 /*
47  * Device id is restricted to 24 bits.
48  */
49 #define MAX_DEV_ID ((1 << 24) - 1)
50 
51 /*
52  * How do we handle breaking sharing of data blocks?
53  * =================================================
54  *
55  * We use a standard copy-on-write btree to store the mappings for the
56  * devices (note I'm talking about copy-on-write of the metadata here, not
57  * the data).  When you take an internal snapshot you clone the root node
58  * of the origin btree.  After this there is no concept of an origin or a
59  * snapshot.  They are just two device trees that happen to point to the
60  * same data blocks.
61  *
62  * When we get a write in we decide if it's to a shared data block using
63  * some timestamp magic.  If it is, we have to break sharing.
64  *
65  * Let's say we write to a shared block in what was the origin.  The
66  * steps are:
67  *
68  * i) plug io further to this physical block. (see bio_prison code).
69  *
70  * ii) quiesce any read io to that shared data block.  Obviously
71  * including all devices that share this block.  (see dm_deferred_set code)
72  *
73  * iii) copy the data block to a newly allocate block.  This step can be
74  * missed out if the io covers the block. (schedule_copy).
75  *
76  * iv) insert the new mapping into the origin's btree
77  * (process_prepared_mapping).  This act of inserting breaks some
78  * sharing of btree nodes between the two devices.  Breaking sharing only
79  * effects the btree of that specific device.  Btrees for the other
80  * devices that share the block never change.  The btree for the origin
81  * device as it was after the last commit is untouched, ie. we're using
82  * persistent data structures in the functional programming sense.
83  *
84  * v) unplug io to this physical block, including the io that triggered
85  * the breaking of sharing.
86  *
87  * Steps (ii) and (iii) occur in parallel.
88  *
89  * The metadata _doesn't_ need to be committed before the io continues.  We
90  * get away with this because the io is always written to a _new_ block.
91  * If there's a crash, then:
92  *
93  * - The origin mapping will point to the old origin block (the shared
94  * one).  This will contain the data as it was before the io that triggered
95  * the breaking of sharing came in.
96  *
97  * - The snap mapping still points to the old block.  As it would after
98  * the commit.
99  *
100  * The downside of this scheme is the timestamp magic isn't perfect, and
101  * will continue to think that data block in the snapshot device is shared
102  * even after the write to the origin has broken sharing.  I suspect data
103  * blocks will typically be shared by many different devices, so we're
104  * breaking sharing n + 1 times, rather than n, where n is the number of
105  * devices that reference this data block.  At the moment I think the
106  * benefits far, far outweigh the disadvantages.
107  */
108 
109 /*----------------------------------------------------------------*/
110 
111 /*
112  * Key building.
113  */
114 enum lock_space {
115 	VIRTUAL,
116 	PHYSICAL
117 };
118 
119 static void build_key(struct dm_thin_device *td, enum lock_space ls,
120 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
121 {
122 	key->virtual = (ls == VIRTUAL);
123 	key->dev = dm_thin_dev_id(td);
124 	key->block_begin = b;
125 	key->block_end = e;
126 }
127 
128 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
129 			   struct dm_cell_key *key)
130 {
131 	build_key(td, PHYSICAL, b, b + 1llu, key);
132 }
133 
134 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
135 			      struct dm_cell_key *key)
136 {
137 	build_key(td, VIRTUAL, b, b + 1llu, key);
138 }
139 
140 /*----------------------------------------------------------------*/
141 
142 #define THROTTLE_THRESHOLD (1 * HZ)
143 
144 struct throttle {
145 	struct rw_semaphore lock;
146 	unsigned long threshold;
147 	bool throttle_applied;
148 };
149 
150 static void throttle_init(struct throttle *t)
151 {
152 	init_rwsem(&t->lock);
153 	t->throttle_applied = false;
154 }
155 
156 static void throttle_work_start(struct throttle *t)
157 {
158 	t->threshold = jiffies + THROTTLE_THRESHOLD;
159 }
160 
161 static void throttle_work_update(struct throttle *t)
162 {
163 	if (!t->throttle_applied && jiffies > t->threshold) {
164 		down_write(&t->lock);
165 		t->throttle_applied = true;
166 	}
167 }
168 
169 static void throttle_work_complete(struct throttle *t)
170 {
171 	if (t->throttle_applied) {
172 		t->throttle_applied = false;
173 		up_write(&t->lock);
174 	}
175 }
176 
177 static void throttle_lock(struct throttle *t)
178 {
179 	down_read(&t->lock);
180 }
181 
182 static void throttle_unlock(struct throttle *t)
183 {
184 	up_read(&t->lock);
185 }
186 
187 /*----------------------------------------------------------------*/
188 
189 /*
190  * A pool device ties together a metadata device and a data device.  It
191  * also provides the interface for creating and destroying internal
192  * devices.
193  */
194 struct dm_thin_new_mapping;
195 
196 /*
197  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
198  */
199 enum pool_mode {
200 	PM_WRITE,		/* metadata may be changed */
201 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
202 	PM_READ_ONLY,		/* metadata may not be changed */
203 	PM_FAIL,		/* all I/O fails */
204 };
205 
206 struct pool_features {
207 	enum pool_mode mode;
208 
209 	bool zero_new_blocks:1;
210 	bool discard_enabled:1;
211 	bool discard_passdown:1;
212 	bool error_if_no_space:1;
213 };
214 
215 struct thin_c;
216 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
217 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
218 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
219 
220 #define CELL_SORT_ARRAY_SIZE 8192
221 
222 struct pool {
223 	struct list_head list;
224 	struct dm_target *ti;	/* Only set if a pool target is bound */
225 
226 	struct mapped_device *pool_md;
227 	struct block_device *md_dev;
228 	struct dm_pool_metadata *pmd;
229 
230 	dm_block_t low_water_blocks;
231 	uint32_t sectors_per_block;
232 	int sectors_per_block_shift;
233 
234 	struct pool_features pf;
235 	bool low_water_triggered:1;	/* A dm event has been sent */
236 	bool suspended:1;
237 
238 	struct dm_bio_prison *prison;
239 	struct dm_kcopyd_client *copier;
240 
241 	struct workqueue_struct *wq;
242 	struct throttle throttle;
243 	struct work_struct worker;
244 	struct delayed_work waker;
245 	struct delayed_work no_space_timeout;
246 
247 	unsigned long last_commit_jiffies;
248 	unsigned ref_count;
249 
250 	spinlock_t lock;
251 	struct bio_list deferred_flush_bios;
252 	struct list_head prepared_mappings;
253 	struct list_head prepared_discards;
254 	struct list_head active_thins;
255 
256 	struct dm_deferred_set *shared_read_ds;
257 	struct dm_deferred_set *all_io_ds;
258 
259 	struct dm_thin_new_mapping *next_mapping;
260 	mempool_t *mapping_pool;
261 
262 	process_bio_fn process_bio;
263 	process_bio_fn process_discard;
264 
265 	process_cell_fn process_cell;
266 	process_cell_fn process_discard_cell;
267 
268 	process_mapping_fn process_prepared_mapping;
269 	process_mapping_fn process_prepared_discard;
270 
271 	struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
272 };
273 
274 static enum pool_mode get_pool_mode(struct pool *pool);
275 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
276 
277 /*
278  * Target context for a pool.
279  */
280 struct pool_c {
281 	struct dm_target *ti;
282 	struct pool *pool;
283 	struct dm_dev *data_dev;
284 	struct dm_dev *metadata_dev;
285 	struct dm_target_callbacks callbacks;
286 
287 	dm_block_t low_water_blocks;
288 	struct pool_features requested_pf; /* Features requested during table load */
289 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
290 };
291 
292 /*
293  * Target context for a thin.
294  */
295 struct thin_c {
296 	struct list_head list;
297 	struct dm_dev *pool_dev;
298 	struct dm_dev *origin_dev;
299 	sector_t origin_size;
300 	dm_thin_id dev_id;
301 
302 	struct pool *pool;
303 	struct dm_thin_device *td;
304 	struct mapped_device *thin_md;
305 
306 	bool requeue_mode:1;
307 	spinlock_t lock;
308 	struct list_head deferred_cells;
309 	struct bio_list deferred_bio_list;
310 	struct bio_list retry_on_resume_list;
311 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
312 
313 	/*
314 	 * Ensures the thin is not destroyed until the worker has finished
315 	 * iterating the active_thins list.
316 	 */
317 	atomic_t refcount;
318 	struct completion can_destroy;
319 };
320 
321 /*----------------------------------------------------------------*/
322 
323 /**
324  * __blkdev_issue_discard_async - queue a discard with async completion
325  * @bdev:	blockdev to issue discard for
326  * @sector:	start sector
327  * @nr_sects:	number of sectors to discard
328  * @gfp_mask:	memory allocation flags (for bio_alloc)
329  * @flags:	BLKDEV_IFL_* flags to control behaviour
330  * @parent_bio: parent discard bio that all sub discards get chained to
331  *
332  * Description:
333  *    Asynchronously issue a discard request for the sectors in question.
334  *    NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap
335  *    that is being kept local to DM thinp until the block changes to allow
336  *    late bio splitting land upstream.
337  */
338 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
339 					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
340 					struct bio *parent_bio)
341 {
342 	struct request_queue *q = bdev_get_queue(bdev);
343 	int type = REQ_WRITE | REQ_DISCARD;
344 	unsigned int max_discard_sectors, granularity;
345 	int alignment;
346 	struct bio *bio;
347 	int ret = 0;
348 	struct blk_plug plug;
349 
350 	if (!q)
351 		return -ENXIO;
352 
353 	if (!blk_queue_discard(q))
354 		return -EOPNOTSUPP;
355 
356 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
357 	granularity = max(q->limits.discard_granularity >> 9, 1U);
358 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
359 
360 	/*
361 	 * Ensure that max_discard_sectors is of the proper
362 	 * granularity, so that requests stay aligned after a split.
363 	 */
364 	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
365 	max_discard_sectors -= max_discard_sectors % granularity;
366 	if (unlikely(!max_discard_sectors)) {
367 		/* Avoid infinite loop below. Being cautious never hurts. */
368 		return -EOPNOTSUPP;
369 	}
370 
371 	if (flags & BLKDEV_DISCARD_SECURE) {
372 		if (!blk_queue_secdiscard(q))
373 			return -EOPNOTSUPP;
374 		type |= REQ_SECURE;
375 	}
376 
377 	blk_start_plug(&plug);
378 	while (nr_sects) {
379 		unsigned int req_sects;
380 		sector_t end_sect, tmp;
381 
382 		/*
383 		 * Required bio_put occurs in bio_endio thanks to bio_chain below
384 		 */
385 		bio = bio_alloc(gfp_mask, 1);
386 		if (!bio) {
387 			ret = -ENOMEM;
388 			break;
389 		}
390 
391 		req_sects = min_t(sector_t, nr_sects, max_discard_sectors);
392 
393 		/*
394 		 * If splitting a request, and the next starting sector would be
395 		 * misaligned, stop the discard at the previous aligned sector.
396 		 */
397 		end_sect = sector + req_sects;
398 		tmp = end_sect;
399 		if (req_sects < nr_sects &&
400 		    sector_div(tmp, granularity) != alignment) {
401 			end_sect = end_sect - alignment;
402 			sector_div(end_sect, granularity);
403 			end_sect = end_sect * granularity + alignment;
404 			req_sects = end_sect - sector;
405 		}
406 
407 		bio_chain(bio, parent_bio);
408 
409 		bio->bi_iter.bi_sector = sector;
410 		bio->bi_bdev = bdev;
411 
412 		bio->bi_iter.bi_size = req_sects << 9;
413 		nr_sects -= req_sects;
414 		sector = end_sect;
415 
416 		submit_bio(type, bio);
417 
418 		/*
419 		 * We can loop for a long time in here, if someone does
420 		 * full device discards (like mkfs). Be nice and allow
421 		 * us to schedule out to avoid softlocking if preempt
422 		 * is disabled.
423 		 */
424 		cond_resched();
425 	}
426 	blk_finish_plug(&plug);
427 
428 	return ret;
429 }
430 
431 static bool block_size_is_power_of_two(struct pool *pool)
432 {
433 	return pool->sectors_per_block_shift >= 0;
434 }
435 
436 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
437 {
438 	return block_size_is_power_of_two(pool) ?
439 		(b << pool->sectors_per_block_shift) :
440 		(b * pool->sectors_per_block);
441 }
442 
443 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
444 			 struct bio *parent_bio)
445 {
446 	sector_t s = block_to_sectors(tc->pool, data_b);
447 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
448 
449 	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
450 					    GFP_NOWAIT, 0, parent_bio);
451 }
452 
453 /*----------------------------------------------------------------*/
454 
455 /*
456  * wake_worker() is used when new work is queued and when pool_resume is
457  * ready to continue deferred IO processing.
458  */
459 static void wake_worker(struct pool *pool)
460 {
461 	queue_work(pool->wq, &pool->worker);
462 }
463 
464 /*----------------------------------------------------------------*/
465 
466 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
467 		      struct dm_bio_prison_cell **cell_result)
468 {
469 	int r;
470 	struct dm_bio_prison_cell *cell_prealloc;
471 
472 	/*
473 	 * Allocate a cell from the prison's mempool.
474 	 * This might block but it can't fail.
475 	 */
476 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
477 
478 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
479 	if (r)
480 		/*
481 		 * We reused an old cell; we can get rid of
482 		 * the new one.
483 		 */
484 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
485 
486 	return r;
487 }
488 
489 static void cell_release(struct pool *pool,
490 			 struct dm_bio_prison_cell *cell,
491 			 struct bio_list *bios)
492 {
493 	dm_cell_release(pool->prison, cell, bios);
494 	dm_bio_prison_free_cell(pool->prison, cell);
495 }
496 
497 static void cell_visit_release(struct pool *pool,
498 			       void (*fn)(void *, struct dm_bio_prison_cell *),
499 			       void *context,
500 			       struct dm_bio_prison_cell *cell)
501 {
502 	dm_cell_visit_release(pool->prison, fn, context, cell);
503 	dm_bio_prison_free_cell(pool->prison, cell);
504 }
505 
506 static void cell_release_no_holder(struct pool *pool,
507 				   struct dm_bio_prison_cell *cell,
508 				   struct bio_list *bios)
509 {
510 	dm_cell_release_no_holder(pool->prison, cell, bios);
511 	dm_bio_prison_free_cell(pool->prison, cell);
512 }
513 
514 static void cell_error_with_code(struct pool *pool,
515 				 struct dm_bio_prison_cell *cell, int error_code)
516 {
517 	dm_cell_error(pool->prison, cell, error_code);
518 	dm_bio_prison_free_cell(pool->prison, cell);
519 }
520 
521 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
522 {
523 	cell_error_with_code(pool, cell, -EIO);
524 }
525 
526 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
527 {
528 	cell_error_with_code(pool, cell, 0);
529 }
530 
531 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
532 {
533 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
534 }
535 
536 /*----------------------------------------------------------------*/
537 
538 /*
539  * A global list of pools that uses a struct mapped_device as a key.
540  */
541 static struct dm_thin_pool_table {
542 	struct mutex mutex;
543 	struct list_head pools;
544 } dm_thin_pool_table;
545 
546 static void pool_table_init(void)
547 {
548 	mutex_init(&dm_thin_pool_table.mutex);
549 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
550 }
551 
552 static void __pool_table_insert(struct pool *pool)
553 {
554 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
555 	list_add(&pool->list, &dm_thin_pool_table.pools);
556 }
557 
558 static void __pool_table_remove(struct pool *pool)
559 {
560 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
561 	list_del(&pool->list);
562 }
563 
564 static struct pool *__pool_table_lookup(struct mapped_device *md)
565 {
566 	struct pool *pool = NULL, *tmp;
567 
568 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
569 
570 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
571 		if (tmp->pool_md == md) {
572 			pool = tmp;
573 			break;
574 		}
575 	}
576 
577 	return pool;
578 }
579 
580 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
581 {
582 	struct pool *pool = NULL, *tmp;
583 
584 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
585 
586 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
587 		if (tmp->md_dev == md_dev) {
588 			pool = tmp;
589 			break;
590 		}
591 	}
592 
593 	return pool;
594 }
595 
596 /*----------------------------------------------------------------*/
597 
598 struct dm_thin_endio_hook {
599 	struct thin_c *tc;
600 	struct dm_deferred_entry *shared_read_entry;
601 	struct dm_deferred_entry *all_io_entry;
602 	struct dm_thin_new_mapping *overwrite_mapping;
603 	struct rb_node rb_node;
604 	struct dm_bio_prison_cell *cell;
605 };
606 
607 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
608 {
609 	bio_list_merge(bios, master);
610 	bio_list_init(master);
611 }
612 
613 static void error_bio_list(struct bio_list *bios, int error)
614 {
615 	struct bio *bio;
616 
617 	while ((bio = bio_list_pop(bios)))
618 		bio_endio(bio, error);
619 }
620 
621 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
622 {
623 	struct bio_list bios;
624 	unsigned long flags;
625 
626 	bio_list_init(&bios);
627 
628 	spin_lock_irqsave(&tc->lock, flags);
629 	__merge_bio_list(&bios, master);
630 	spin_unlock_irqrestore(&tc->lock, flags);
631 
632 	error_bio_list(&bios, error);
633 }
634 
635 static void requeue_deferred_cells(struct thin_c *tc)
636 {
637 	struct pool *pool = tc->pool;
638 	unsigned long flags;
639 	struct list_head cells;
640 	struct dm_bio_prison_cell *cell, *tmp;
641 
642 	INIT_LIST_HEAD(&cells);
643 
644 	spin_lock_irqsave(&tc->lock, flags);
645 	list_splice_init(&tc->deferred_cells, &cells);
646 	spin_unlock_irqrestore(&tc->lock, flags);
647 
648 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
649 		cell_requeue(pool, cell);
650 }
651 
652 static void requeue_io(struct thin_c *tc)
653 {
654 	struct bio_list bios;
655 	unsigned long flags;
656 
657 	bio_list_init(&bios);
658 
659 	spin_lock_irqsave(&tc->lock, flags);
660 	__merge_bio_list(&bios, &tc->deferred_bio_list);
661 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
662 	spin_unlock_irqrestore(&tc->lock, flags);
663 
664 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
665 	requeue_deferred_cells(tc);
666 }
667 
668 static void error_retry_list(struct pool *pool)
669 {
670 	struct thin_c *tc;
671 
672 	rcu_read_lock();
673 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
674 		error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
675 	rcu_read_unlock();
676 }
677 
678 /*
679  * This section of code contains the logic for processing a thin device's IO.
680  * Much of the code depends on pool object resources (lists, workqueues, etc)
681  * but most is exclusively called from the thin target rather than the thin-pool
682  * target.
683  */
684 
685 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
686 {
687 	struct pool *pool = tc->pool;
688 	sector_t block_nr = bio->bi_iter.bi_sector;
689 
690 	if (block_size_is_power_of_two(pool))
691 		block_nr >>= pool->sectors_per_block_shift;
692 	else
693 		(void) sector_div(block_nr, pool->sectors_per_block);
694 
695 	return block_nr;
696 }
697 
698 /*
699  * Returns the _complete_ blocks that this bio covers.
700  */
701 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
702 				dm_block_t *begin, dm_block_t *end)
703 {
704 	struct pool *pool = tc->pool;
705 	sector_t b = bio->bi_iter.bi_sector;
706 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
707 
708 	b += pool->sectors_per_block - 1ull; /* so we round up */
709 
710 	if (block_size_is_power_of_two(pool)) {
711 		b >>= pool->sectors_per_block_shift;
712 		e >>= pool->sectors_per_block_shift;
713 	} else {
714 		(void) sector_div(b, pool->sectors_per_block);
715 		(void) sector_div(e, pool->sectors_per_block);
716 	}
717 
718 	if (e < b)
719 		/* Can happen if the bio is within a single block. */
720 		e = b;
721 
722 	*begin = b;
723 	*end = e;
724 }
725 
726 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
727 {
728 	struct pool *pool = tc->pool;
729 	sector_t bi_sector = bio->bi_iter.bi_sector;
730 
731 	bio->bi_bdev = tc->pool_dev->bdev;
732 	if (block_size_is_power_of_two(pool))
733 		bio->bi_iter.bi_sector =
734 			(block << pool->sectors_per_block_shift) |
735 			(bi_sector & (pool->sectors_per_block - 1));
736 	else
737 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
738 				 sector_div(bi_sector, pool->sectors_per_block);
739 }
740 
741 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
742 {
743 	bio->bi_bdev = tc->origin_dev->bdev;
744 }
745 
746 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
747 {
748 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
749 		dm_thin_changed_this_transaction(tc->td);
750 }
751 
752 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
753 {
754 	struct dm_thin_endio_hook *h;
755 
756 	if (bio->bi_rw & REQ_DISCARD)
757 		return;
758 
759 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
760 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
761 }
762 
763 static void issue(struct thin_c *tc, struct bio *bio)
764 {
765 	struct pool *pool = tc->pool;
766 	unsigned long flags;
767 
768 	if (!bio_triggers_commit(tc, bio)) {
769 		generic_make_request(bio);
770 		return;
771 	}
772 
773 	/*
774 	 * Complete bio with an error if earlier I/O caused changes to
775 	 * the metadata that can't be committed e.g, due to I/O errors
776 	 * on the metadata device.
777 	 */
778 	if (dm_thin_aborted_changes(tc->td)) {
779 		bio_io_error(bio);
780 		return;
781 	}
782 
783 	/*
784 	 * Batch together any bios that trigger commits and then issue a
785 	 * single commit for them in process_deferred_bios().
786 	 */
787 	spin_lock_irqsave(&pool->lock, flags);
788 	bio_list_add(&pool->deferred_flush_bios, bio);
789 	spin_unlock_irqrestore(&pool->lock, flags);
790 }
791 
792 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
793 {
794 	remap_to_origin(tc, bio);
795 	issue(tc, bio);
796 }
797 
798 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
799 			    dm_block_t block)
800 {
801 	remap(tc, bio, block);
802 	issue(tc, bio);
803 }
804 
805 /*----------------------------------------------------------------*/
806 
807 /*
808  * Bio endio functions.
809  */
810 struct dm_thin_new_mapping {
811 	struct list_head list;
812 
813 	bool pass_discard:1;
814 	bool maybe_shared:1;
815 
816 	/*
817 	 * Track quiescing, copying and zeroing preparation actions.  When this
818 	 * counter hits zero the block is prepared and can be inserted into the
819 	 * btree.
820 	 */
821 	atomic_t prepare_actions;
822 
823 	int err;
824 	struct thin_c *tc;
825 	dm_block_t virt_begin, virt_end;
826 	dm_block_t data_block;
827 	struct dm_bio_prison_cell *cell;
828 
829 	/*
830 	 * If the bio covers the whole area of a block then we can avoid
831 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
832 	 * still be in the cell, so care has to be taken to avoid issuing
833 	 * the bio twice.
834 	 */
835 	struct bio *bio;
836 	bio_end_io_t *saved_bi_end_io;
837 };
838 
839 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
840 {
841 	struct pool *pool = m->tc->pool;
842 
843 	if (atomic_dec_and_test(&m->prepare_actions)) {
844 		list_add_tail(&m->list, &pool->prepared_mappings);
845 		wake_worker(pool);
846 	}
847 }
848 
849 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
850 {
851 	unsigned long flags;
852 	struct pool *pool = m->tc->pool;
853 
854 	spin_lock_irqsave(&pool->lock, flags);
855 	__complete_mapping_preparation(m);
856 	spin_unlock_irqrestore(&pool->lock, flags);
857 }
858 
859 static void copy_complete(int read_err, unsigned long write_err, void *context)
860 {
861 	struct dm_thin_new_mapping *m = context;
862 
863 	m->err = read_err || write_err ? -EIO : 0;
864 	complete_mapping_preparation(m);
865 }
866 
867 static void overwrite_endio(struct bio *bio, int err)
868 {
869 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
870 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
871 
872 	bio->bi_end_io = m->saved_bi_end_io;
873 
874 	m->err = err;
875 	complete_mapping_preparation(m);
876 }
877 
878 /*----------------------------------------------------------------*/
879 
880 /*
881  * Workqueue.
882  */
883 
884 /*
885  * Prepared mapping jobs.
886  */
887 
888 /*
889  * This sends the bios in the cell, except the original holder, back
890  * to the deferred_bios list.
891  */
892 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
893 {
894 	struct pool *pool = tc->pool;
895 	unsigned long flags;
896 
897 	spin_lock_irqsave(&tc->lock, flags);
898 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
899 	spin_unlock_irqrestore(&tc->lock, flags);
900 
901 	wake_worker(pool);
902 }
903 
904 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
905 
906 struct remap_info {
907 	struct thin_c *tc;
908 	struct bio_list defer_bios;
909 	struct bio_list issue_bios;
910 };
911 
912 static void __inc_remap_and_issue_cell(void *context,
913 				       struct dm_bio_prison_cell *cell)
914 {
915 	struct remap_info *info = context;
916 	struct bio *bio;
917 
918 	while ((bio = bio_list_pop(&cell->bios))) {
919 		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
920 			bio_list_add(&info->defer_bios, bio);
921 		else {
922 			inc_all_io_entry(info->tc->pool, bio);
923 
924 			/*
925 			 * We can't issue the bios with the bio prison lock
926 			 * held, so we add them to a list to issue on
927 			 * return from this function.
928 			 */
929 			bio_list_add(&info->issue_bios, bio);
930 		}
931 	}
932 }
933 
934 static void inc_remap_and_issue_cell(struct thin_c *tc,
935 				     struct dm_bio_prison_cell *cell,
936 				     dm_block_t block)
937 {
938 	struct bio *bio;
939 	struct remap_info info;
940 
941 	info.tc = tc;
942 	bio_list_init(&info.defer_bios);
943 	bio_list_init(&info.issue_bios);
944 
945 	/*
946 	 * We have to be careful to inc any bios we're about to issue
947 	 * before the cell is released, and avoid a race with new bios
948 	 * being added to the cell.
949 	 */
950 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
951 			   &info, cell);
952 
953 	while ((bio = bio_list_pop(&info.defer_bios)))
954 		thin_defer_bio(tc, bio);
955 
956 	while ((bio = bio_list_pop(&info.issue_bios)))
957 		remap_and_issue(info.tc, bio, block);
958 }
959 
960 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
961 {
962 	cell_error(m->tc->pool, m->cell);
963 	list_del(&m->list);
964 	mempool_free(m, m->tc->pool->mapping_pool);
965 }
966 
967 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
968 {
969 	struct thin_c *tc = m->tc;
970 	struct pool *pool = tc->pool;
971 	struct bio *bio = m->bio;
972 	int r;
973 
974 	if (m->err) {
975 		cell_error(pool, m->cell);
976 		goto out;
977 	}
978 
979 	/*
980 	 * Commit the prepared block into the mapping btree.
981 	 * Any I/O for this block arriving after this point will get
982 	 * remapped to it directly.
983 	 */
984 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
985 	if (r) {
986 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
987 		cell_error(pool, m->cell);
988 		goto out;
989 	}
990 
991 	/*
992 	 * Release any bios held while the block was being provisioned.
993 	 * If we are processing a write bio that completely covers the block,
994 	 * we already processed it so can ignore it now when processing
995 	 * the bios in the cell.
996 	 */
997 	if (bio) {
998 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
999 		bio_endio(bio, 0);
1000 	} else {
1001 		inc_all_io_entry(tc->pool, m->cell->holder);
1002 		remap_and_issue(tc, m->cell->holder, m->data_block);
1003 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1004 	}
1005 
1006 out:
1007 	list_del(&m->list);
1008 	mempool_free(m, pool->mapping_pool);
1009 }
1010 
1011 /*----------------------------------------------------------------*/
1012 
1013 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1014 {
1015 	struct thin_c *tc = m->tc;
1016 	if (m->cell)
1017 		cell_defer_no_holder(tc, m->cell);
1018 	mempool_free(m, tc->pool->mapping_pool);
1019 }
1020 
1021 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1022 {
1023 	bio_io_error(m->bio);
1024 	free_discard_mapping(m);
1025 }
1026 
1027 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1028 {
1029 	bio_endio(m->bio, 0);
1030 	free_discard_mapping(m);
1031 }
1032 
1033 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1034 {
1035 	int r;
1036 	struct thin_c *tc = m->tc;
1037 
1038 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1039 	if (r) {
1040 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1041 		bio_io_error(m->bio);
1042 	} else
1043 		bio_endio(m->bio, 0);
1044 
1045 	cell_defer_no_holder(tc, m->cell);
1046 	mempool_free(m, tc->pool->mapping_pool);
1047 }
1048 
1049 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1050 {
1051 	/*
1052 	 * We've already unmapped this range of blocks, but before we
1053 	 * passdown we have to check that these blocks are now unused.
1054 	 */
1055 	int r;
1056 	bool used = true;
1057 	struct thin_c *tc = m->tc;
1058 	struct pool *pool = tc->pool;
1059 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1060 
1061 	while (b != end) {
1062 		/* find start of unmapped run */
1063 		for (; b < end; b++) {
1064 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1065 			if (r)
1066 				return r;
1067 
1068 			if (!used)
1069 				break;
1070 		}
1071 
1072 		if (b == end)
1073 			break;
1074 
1075 		/* find end of run */
1076 		for (e = b + 1; e != end; e++) {
1077 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1078 			if (r)
1079 				return r;
1080 
1081 			if (used)
1082 				break;
1083 		}
1084 
1085 		r = issue_discard(tc, b, e, m->bio);
1086 		if (r)
1087 			return r;
1088 
1089 		b = e;
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1096 {
1097 	int r;
1098 	struct thin_c *tc = m->tc;
1099 	struct pool *pool = tc->pool;
1100 
1101 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1102 	if (r)
1103 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1104 
1105 	else if (m->maybe_shared)
1106 		r = passdown_double_checking_shared_status(m);
1107 	else
1108 		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1109 
1110 	/*
1111 	 * Even if r is set, there could be sub discards in flight that we
1112 	 * need to wait for.
1113 	 */
1114 	bio_endio(m->bio, r);
1115 	cell_defer_no_holder(tc, m->cell);
1116 	mempool_free(m, pool->mapping_pool);
1117 }
1118 
1119 static void process_prepared(struct pool *pool, struct list_head *head,
1120 			     process_mapping_fn *fn)
1121 {
1122 	unsigned long flags;
1123 	struct list_head maps;
1124 	struct dm_thin_new_mapping *m, *tmp;
1125 
1126 	INIT_LIST_HEAD(&maps);
1127 	spin_lock_irqsave(&pool->lock, flags);
1128 	list_splice_init(head, &maps);
1129 	spin_unlock_irqrestore(&pool->lock, flags);
1130 
1131 	list_for_each_entry_safe(m, tmp, &maps, list)
1132 		(*fn)(m);
1133 }
1134 
1135 /*
1136  * Deferred bio jobs.
1137  */
1138 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1139 {
1140 	return bio->bi_iter.bi_size ==
1141 		(pool->sectors_per_block << SECTOR_SHIFT);
1142 }
1143 
1144 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1145 {
1146 	return (bio_data_dir(bio) == WRITE) &&
1147 		io_overlaps_block(pool, bio);
1148 }
1149 
1150 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1151 			       bio_end_io_t *fn)
1152 {
1153 	*save = bio->bi_end_io;
1154 	bio->bi_end_io = fn;
1155 }
1156 
1157 static int ensure_next_mapping(struct pool *pool)
1158 {
1159 	if (pool->next_mapping)
1160 		return 0;
1161 
1162 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1163 
1164 	return pool->next_mapping ? 0 : -ENOMEM;
1165 }
1166 
1167 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1168 {
1169 	struct dm_thin_new_mapping *m = pool->next_mapping;
1170 
1171 	BUG_ON(!pool->next_mapping);
1172 
1173 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1174 	INIT_LIST_HEAD(&m->list);
1175 	m->bio = NULL;
1176 
1177 	pool->next_mapping = NULL;
1178 
1179 	return m;
1180 }
1181 
1182 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1183 		    sector_t begin, sector_t end)
1184 {
1185 	int r;
1186 	struct dm_io_region to;
1187 
1188 	to.bdev = tc->pool_dev->bdev;
1189 	to.sector = begin;
1190 	to.count = end - begin;
1191 
1192 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1193 	if (r < 0) {
1194 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1195 		copy_complete(1, 1, m);
1196 	}
1197 }
1198 
1199 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1200 				      dm_block_t data_begin,
1201 				      struct dm_thin_new_mapping *m)
1202 {
1203 	struct pool *pool = tc->pool;
1204 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1205 
1206 	h->overwrite_mapping = m;
1207 	m->bio = bio;
1208 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1209 	inc_all_io_entry(pool, bio);
1210 	remap_and_issue(tc, bio, data_begin);
1211 }
1212 
1213 /*
1214  * A partial copy also needs to zero the uncopied region.
1215  */
1216 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1217 			  struct dm_dev *origin, dm_block_t data_origin,
1218 			  dm_block_t data_dest,
1219 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1220 			  sector_t len)
1221 {
1222 	int r;
1223 	struct pool *pool = tc->pool;
1224 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1225 
1226 	m->tc = tc;
1227 	m->virt_begin = virt_block;
1228 	m->virt_end = virt_block + 1u;
1229 	m->data_block = data_dest;
1230 	m->cell = cell;
1231 
1232 	/*
1233 	 * quiesce action + copy action + an extra reference held for the
1234 	 * duration of this function (we may need to inc later for a
1235 	 * partial zero).
1236 	 */
1237 	atomic_set(&m->prepare_actions, 3);
1238 
1239 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1240 		complete_mapping_preparation(m); /* already quiesced */
1241 
1242 	/*
1243 	 * IO to pool_dev remaps to the pool target's data_dev.
1244 	 *
1245 	 * If the whole block of data is being overwritten, we can issue the
1246 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1247 	 */
1248 	if (io_overwrites_block(pool, bio))
1249 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1250 	else {
1251 		struct dm_io_region from, to;
1252 
1253 		from.bdev = origin->bdev;
1254 		from.sector = data_origin * pool->sectors_per_block;
1255 		from.count = len;
1256 
1257 		to.bdev = tc->pool_dev->bdev;
1258 		to.sector = data_dest * pool->sectors_per_block;
1259 		to.count = len;
1260 
1261 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1262 				   0, copy_complete, m);
1263 		if (r < 0) {
1264 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1265 			copy_complete(1, 1, m);
1266 
1267 			/*
1268 			 * We allow the zero to be issued, to simplify the
1269 			 * error path.  Otherwise we'd need to start
1270 			 * worrying about decrementing the prepare_actions
1271 			 * counter.
1272 			 */
1273 		}
1274 
1275 		/*
1276 		 * Do we need to zero a tail region?
1277 		 */
1278 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1279 			atomic_inc(&m->prepare_actions);
1280 			ll_zero(tc, m,
1281 				data_dest * pool->sectors_per_block + len,
1282 				(data_dest + 1) * pool->sectors_per_block);
1283 		}
1284 	}
1285 
1286 	complete_mapping_preparation(m); /* drop our ref */
1287 }
1288 
1289 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1290 				   dm_block_t data_origin, dm_block_t data_dest,
1291 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1292 {
1293 	schedule_copy(tc, virt_block, tc->pool_dev,
1294 		      data_origin, data_dest, cell, bio,
1295 		      tc->pool->sectors_per_block);
1296 }
1297 
1298 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1299 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1300 			  struct bio *bio)
1301 {
1302 	struct pool *pool = tc->pool;
1303 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1304 
1305 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1306 	m->tc = tc;
1307 	m->virt_begin = virt_block;
1308 	m->virt_end = virt_block + 1u;
1309 	m->data_block = data_block;
1310 	m->cell = cell;
1311 
1312 	/*
1313 	 * If the whole block of data is being overwritten or we are not
1314 	 * zeroing pre-existing data, we can issue the bio immediately.
1315 	 * Otherwise we use kcopyd to zero the data first.
1316 	 */
1317 	if (pool->pf.zero_new_blocks) {
1318 		if (io_overwrites_block(pool, bio))
1319 			remap_and_issue_overwrite(tc, bio, data_block, m);
1320 		else
1321 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1322 				(data_block + 1) * pool->sectors_per_block);
1323 	} else
1324 		process_prepared_mapping(m);
1325 }
1326 
1327 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1328 				   dm_block_t data_dest,
1329 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1330 {
1331 	struct pool *pool = tc->pool;
1332 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1333 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1334 
1335 	if (virt_block_end <= tc->origin_size)
1336 		schedule_copy(tc, virt_block, tc->origin_dev,
1337 			      virt_block, data_dest, cell, bio,
1338 			      pool->sectors_per_block);
1339 
1340 	else if (virt_block_begin < tc->origin_size)
1341 		schedule_copy(tc, virt_block, tc->origin_dev,
1342 			      virt_block, data_dest, cell, bio,
1343 			      tc->origin_size - virt_block_begin);
1344 
1345 	else
1346 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1347 }
1348 
1349 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1350 
1351 static void check_for_space(struct pool *pool)
1352 {
1353 	int r;
1354 	dm_block_t nr_free;
1355 
1356 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1357 		return;
1358 
1359 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1360 	if (r)
1361 		return;
1362 
1363 	if (nr_free)
1364 		set_pool_mode(pool, PM_WRITE);
1365 }
1366 
1367 /*
1368  * A non-zero return indicates read_only or fail_io mode.
1369  * Many callers don't care about the return value.
1370  */
1371 static int commit(struct pool *pool)
1372 {
1373 	int r;
1374 
1375 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1376 		return -EINVAL;
1377 
1378 	r = dm_pool_commit_metadata(pool->pmd);
1379 	if (r)
1380 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1381 	else
1382 		check_for_space(pool);
1383 
1384 	return r;
1385 }
1386 
1387 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1388 {
1389 	unsigned long flags;
1390 
1391 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1392 		DMWARN("%s: reached low water mark for data device: sending event.",
1393 		       dm_device_name(pool->pool_md));
1394 		spin_lock_irqsave(&pool->lock, flags);
1395 		pool->low_water_triggered = true;
1396 		spin_unlock_irqrestore(&pool->lock, flags);
1397 		dm_table_event(pool->ti->table);
1398 	}
1399 }
1400 
1401 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1402 {
1403 	int r;
1404 	dm_block_t free_blocks;
1405 	struct pool *pool = tc->pool;
1406 
1407 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1408 		return -EINVAL;
1409 
1410 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1411 	if (r) {
1412 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1413 		return r;
1414 	}
1415 
1416 	check_low_water_mark(pool, free_blocks);
1417 
1418 	if (!free_blocks) {
1419 		/*
1420 		 * Try to commit to see if that will free up some
1421 		 * more space.
1422 		 */
1423 		r = commit(pool);
1424 		if (r)
1425 			return r;
1426 
1427 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1428 		if (r) {
1429 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1430 			return r;
1431 		}
1432 
1433 		if (!free_blocks) {
1434 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1435 			return -ENOSPC;
1436 		}
1437 	}
1438 
1439 	r = dm_pool_alloc_data_block(pool->pmd, result);
1440 	if (r) {
1441 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1442 		return r;
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 /*
1449  * If we have run out of space, queue bios until the device is
1450  * resumed, presumably after having been reloaded with more space.
1451  */
1452 static void retry_on_resume(struct bio *bio)
1453 {
1454 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1455 	struct thin_c *tc = h->tc;
1456 	unsigned long flags;
1457 
1458 	spin_lock_irqsave(&tc->lock, flags);
1459 	bio_list_add(&tc->retry_on_resume_list, bio);
1460 	spin_unlock_irqrestore(&tc->lock, flags);
1461 }
1462 
1463 static int should_error_unserviceable_bio(struct pool *pool)
1464 {
1465 	enum pool_mode m = get_pool_mode(pool);
1466 
1467 	switch (m) {
1468 	case PM_WRITE:
1469 		/* Shouldn't get here */
1470 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1471 		return -EIO;
1472 
1473 	case PM_OUT_OF_DATA_SPACE:
1474 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1475 
1476 	case PM_READ_ONLY:
1477 	case PM_FAIL:
1478 		return -EIO;
1479 	default:
1480 		/* Shouldn't get here */
1481 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1482 		return -EIO;
1483 	}
1484 }
1485 
1486 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1487 {
1488 	int error = should_error_unserviceable_bio(pool);
1489 
1490 	if (error)
1491 		bio_endio(bio, error);
1492 	else
1493 		retry_on_resume(bio);
1494 }
1495 
1496 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1497 {
1498 	struct bio *bio;
1499 	struct bio_list bios;
1500 	int error;
1501 
1502 	error = should_error_unserviceable_bio(pool);
1503 	if (error) {
1504 		cell_error_with_code(pool, cell, error);
1505 		return;
1506 	}
1507 
1508 	bio_list_init(&bios);
1509 	cell_release(pool, cell, &bios);
1510 
1511 	while ((bio = bio_list_pop(&bios)))
1512 		retry_on_resume(bio);
1513 }
1514 
1515 static void process_discard_cell_no_passdown(struct thin_c *tc,
1516 					     struct dm_bio_prison_cell *virt_cell)
1517 {
1518 	struct pool *pool = tc->pool;
1519 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1520 
1521 	/*
1522 	 * We don't need to lock the data blocks, since there's no
1523 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1524 	 */
1525 	m->tc = tc;
1526 	m->virt_begin = virt_cell->key.block_begin;
1527 	m->virt_end = virt_cell->key.block_end;
1528 	m->cell = virt_cell;
1529 	m->bio = virt_cell->holder;
1530 
1531 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1532 		pool->process_prepared_discard(m);
1533 }
1534 
1535 /*
1536  * FIXME: DM local hack to defer parent bios's end_io until we
1537  * _know_ all chained sub range discard bios have completed.
1538  * Will go away once late bio splitting lands upstream!
1539  */
1540 static inline void __bio_inc_remaining(struct bio *bio)
1541 {
1542 	bio->bi_flags |= (1 << BIO_CHAIN);
1543 	smp_mb__before_atomic();
1544 	atomic_inc(&bio->__bi_remaining);
1545 }
1546 
1547 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1548 				 struct bio *bio)
1549 {
1550 	struct pool *pool = tc->pool;
1551 
1552 	int r;
1553 	bool maybe_shared;
1554 	struct dm_cell_key data_key;
1555 	struct dm_bio_prison_cell *data_cell;
1556 	struct dm_thin_new_mapping *m;
1557 	dm_block_t virt_begin, virt_end, data_begin;
1558 
1559 	while (begin != end) {
1560 		r = ensure_next_mapping(pool);
1561 		if (r)
1562 			/* we did our best */
1563 			return;
1564 
1565 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1566 					      &data_begin, &maybe_shared);
1567 		if (r)
1568 			/*
1569 			 * Silently fail, letting any mappings we've
1570 			 * created complete.
1571 			 */
1572 			break;
1573 
1574 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1575 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1576 			/* contention, we'll give up with this range */
1577 			begin = virt_end;
1578 			continue;
1579 		}
1580 
1581 		/*
1582 		 * IO may still be going to the destination block.  We must
1583 		 * quiesce before we can do the removal.
1584 		 */
1585 		m = get_next_mapping(pool);
1586 		m->tc = tc;
1587 		m->maybe_shared = maybe_shared;
1588 		m->virt_begin = virt_begin;
1589 		m->virt_end = virt_end;
1590 		m->data_block = data_begin;
1591 		m->cell = data_cell;
1592 		m->bio = bio;
1593 
1594 		/*
1595 		 * The parent bio must not complete before sub discard bios are
1596 		 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1597 		 *
1598 		 * This per-mapping bi_remaining increment is paired with
1599 		 * the implicit decrement that occurs via bio_endio() in
1600 		 * process_prepared_discard_{passdown,no_passdown}.
1601 		 */
1602 		__bio_inc_remaining(bio);
1603 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1604 			pool->process_prepared_discard(m);
1605 
1606 		begin = virt_end;
1607 	}
1608 }
1609 
1610 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1611 {
1612 	struct bio *bio = virt_cell->holder;
1613 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1614 
1615 	/*
1616 	 * The virt_cell will only get freed once the origin bio completes.
1617 	 * This means it will remain locked while all the individual
1618 	 * passdown bios are in flight.
1619 	 */
1620 	h->cell = virt_cell;
1621 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1622 
1623 	/*
1624 	 * We complete the bio now, knowing that the bi_remaining field
1625 	 * will prevent completion until the sub range discards have
1626 	 * completed.
1627 	 */
1628 	bio_endio(bio, 0);
1629 }
1630 
1631 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1632 {
1633 	dm_block_t begin, end;
1634 	struct dm_cell_key virt_key;
1635 	struct dm_bio_prison_cell *virt_cell;
1636 
1637 	get_bio_block_range(tc, bio, &begin, &end);
1638 	if (begin == end) {
1639 		/*
1640 		 * The discard covers less than a block.
1641 		 */
1642 		bio_endio(bio, 0);
1643 		return;
1644 	}
1645 
1646 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1647 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1648 		/*
1649 		 * Potential starvation issue: We're relying on the
1650 		 * fs/application being well behaved, and not trying to
1651 		 * send IO to a region at the same time as discarding it.
1652 		 * If they do this persistently then it's possible this
1653 		 * cell will never be granted.
1654 		 */
1655 		return;
1656 
1657 	tc->pool->process_discard_cell(tc, virt_cell);
1658 }
1659 
1660 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1661 			  struct dm_cell_key *key,
1662 			  struct dm_thin_lookup_result *lookup_result,
1663 			  struct dm_bio_prison_cell *cell)
1664 {
1665 	int r;
1666 	dm_block_t data_block;
1667 	struct pool *pool = tc->pool;
1668 
1669 	r = alloc_data_block(tc, &data_block);
1670 	switch (r) {
1671 	case 0:
1672 		schedule_internal_copy(tc, block, lookup_result->block,
1673 				       data_block, cell, bio);
1674 		break;
1675 
1676 	case -ENOSPC:
1677 		retry_bios_on_resume(pool, cell);
1678 		break;
1679 
1680 	default:
1681 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1682 			    __func__, r);
1683 		cell_error(pool, cell);
1684 		break;
1685 	}
1686 }
1687 
1688 static void __remap_and_issue_shared_cell(void *context,
1689 					  struct dm_bio_prison_cell *cell)
1690 {
1691 	struct remap_info *info = context;
1692 	struct bio *bio;
1693 
1694 	while ((bio = bio_list_pop(&cell->bios))) {
1695 		if ((bio_data_dir(bio) == WRITE) ||
1696 		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1697 			bio_list_add(&info->defer_bios, bio);
1698 		else {
1699 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1700 
1701 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1702 			inc_all_io_entry(info->tc->pool, bio);
1703 			bio_list_add(&info->issue_bios, bio);
1704 		}
1705 	}
1706 }
1707 
1708 static void remap_and_issue_shared_cell(struct thin_c *tc,
1709 					struct dm_bio_prison_cell *cell,
1710 					dm_block_t block)
1711 {
1712 	struct bio *bio;
1713 	struct remap_info info;
1714 
1715 	info.tc = tc;
1716 	bio_list_init(&info.defer_bios);
1717 	bio_list_init(&info.issue_bios);
1718 
1719 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1720 			   &info, cell);
1721 
1722 	while ((bio = bio_list_pop(&info.defer_bios)))
1723 		thin_defer_bio(tc, bio);
1724 
1725 	while ((bio = bio_list_pop(&info.issue_bios)))
1726 		remap_and_issue(tc, bio, block);
1727 }
1728 
1729 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1730 			       dm_block_t block,
1731 			       struct dm_thin_lookup_result *lookup_result,
1732 			       struct dm_bio_prison_cell *virt_cell)
1733 {
1734 	struct dm_bio_prison_cell *data_cell;
1735 	struct pool *pool = tc->pool;
1736 	struct dm_cell_key key;
1737 
1738 	/*
1739 	 * If cell is already occupied, then sharing is already in the process
1740 	 * of being broken so we have nothing further to do here.
1741 	 */
1742 	build_data_key(tc->td, lookup_result->block, &key);
1743 	if (bio_detain(pool, &key, bio, &data_cell)) {
1744 		cell_defer_no_holder(tc, virt_cell);
1745 		return;
1746 	}
1747 
1748 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1749 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1750 		cell_defer_no_holder(tc, virt_cell);
1751 	} else {
1752 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1753 
1754 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1755 		inc_all_io_entry(pool, bio);
1756 		remap_and_issue(tc, bio, lookup_result->block);
1757 
1758 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1759 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1760 	}
1761 }
1762 
1763 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1764 			    struct dm_bio_prison_cell *cell)
1765 {
1766 	int r;
1767 	dm_block_t data_block;
1768 	struct pool *pool = tc->pool;
1769 
1770 	/*
1771 	 * Remap empty bios (flushes) immediately, without provisioning.
1772 	 */
1773 	if (!bio->bi_iter.bi_size) {
1774 		inc_all_io_entry(pool, bio);
1775 		cell_defer_no_holder(tc, cell);
1776 
1777 		remap_and_issue(tc, bio, 0);
1778 		return;
1779 	}
1780 
1781 	/*
1782 	 * Fill read bios with zeroes and complete them immediately.
1783 	 */
1784 	if (bio_data_dir(bio) == READ) {
1785 		zero_fill_bio(bio);
1786 		cell_defer_no_holder(tc, cell);
1787 		bio_endio(bio, 0);
1788 		return;
1789 	}
1790 
1791 	r = alloc_data_block(tc, &data_block);
1792 	switch (r) {
1793 	case 0:
1794 		if (tc->origin_dev)
1795 			schedule_external_copy(tc, block, data_block, cell, bio);
1796 		else
1797 			schedule_zero(tc, block, data_block, cell, bio);
1798 		break;
1799 
1800 	case -ENOSPC:
1801 		retry_bios_on_resume(pool, cell);
1802 		break;
1803 
1804 	default:
1805 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1806 			    __func__, r);
1807 		cell_error(pool, cell);
1808 		break;
1809 	}
1810 }
1811 
1812 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1813 {
1814 	int r;
1815 	struct pool *pool = tc->pool;
1816 	struct bio *bio = cell->holder;
1817 	dm_block_t block = get_bio_block(tc, bio);
1818 	struct dm_thin_lookup_result lookup_result;
1819 
1820 	if (tc->requeue_mode) {
1821 		cell_requeue(pool, cell);
1822 		return;
1823 	}
1824 
1825 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1826 	switch (r) {
1827 	case 0:
1828 		if (lookup_result.shared)
1829 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1830 		else {
1831 			inc_all_io_entry(pool, bio);
1832 			remap_and_issue(tc, bio, lookup_result.block);
1833 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1834 		}
1835 		break;
1836 
1837 	case -ENODATA:
1838 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1839 			inc_all_io_entry(pool, bio);
1840 			cell_defer_no_holder(tc, cell);
1841 
1842 			if (bio_end_sector(bio) <= tc->origin_size)
1843 				remap_to_origin_and_issue(tc, bio);
1844 
1845 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1846 				zero_fill_bio(bio);
1847 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1848 				remap_to_origin_and_issue(tc, bio);
1849 
1850 			} else {
1851 				zero_fill_bio(bio);
1852 				bio_endio(bio, 0);
1853 			}
1854 		} else
1855 			provision_block(tc, bio, block, cell);
1856 		break;
1857 
1858 	default:
1859 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1860 			    __func__, r);
1861 		cell_defer_no_holder(tc, cell);
1862 		bio_io_error(bio);
1863 		break;
1864 	}
1865 }
1866 
1867 static void process_bio(struct thin_c *tc, struct bio *bio)
1868 {
1869 	struct pool *pool = tc->pool;
1870 	dm_block_t block = get_bio_block(tc, bio);
1871 	struct dm_bio_prison_cell *cell;
1872 	struct dm_cell_key key;
1873 
1874 	/*
1875 	 * If cell is already occupied, then the block is already
1876 	 * being provisioned so we have nothing further to do here.
1877 	 */
1878 	build_virtual_key(tc->td, block, &key);
1879 	if (bio_detain(pool, &key, bio, &cell))
1880 		return;
1881 
1882 	process_cell(tc, cell);
1883 }
1884 
1885 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1886 				    struct dm_bio_prison_cell *cell)
1887 {
1888 	int r;
1889 	int rw = bio_data_dir(bio);
1890 	dm_block_t block = get_bio_block(tc, bio);
1891 	struct dm_thin_lookup_result lookup_result;
1892 
1893 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1894 	switch (r) {
1895 	case 0:
1896 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1897 			handle_unserviceable_bio(tc->pool, bio);
1898 			if (cell)
1899 				cell_defer_no_holder(tc, cell);
1900 		} else {
1901 			inc_all_io_entry(tc->pool, bio);
1902 			remap_and_issue(tc, bio, lookup_result.block);
1903 			if (cell)
1904 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1905 		}
1906 		break;
1907 
1908 	case -ENODATA:
1909 		if (cell)
1910 			cell_defer_no_holder(tc, cell);
1911 		if (rw != READ) {
1912 			handle_unserviceable_bio(tc->pool, bio);
1913 			break;
1914 		}
1915 
1916 		if (tc->origin_dev) {
1917 			inc_all_io_entry(tc->pool, bio);
1918 			remap_to_origin_and_issue(tc, bio);
1919 			break;
1920 		}
1921 
1922 		zero_fill_bio(bio);
1923 		bio_endio(bio, 0);
1924 		break;
1925 
1926 	default:
1927 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1928 			    __func__, r);
1929 		if (cell)
1930 			cell_defer_no_holder(tc, cell);
1931 		bio_io_error(bio);
1932 		break;
1933 	}
1934 }
1935 
1936 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1937 {
1938 	__process_bio_read_only(tc, bio, NULL);
1939 }
1940 
1941 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1942 {
1943 	__process_bio_read_only(tc, cell->holder, cell);
1944 }
1945 
1946 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1947 {
1948 	bio_endio(bio, 0);
1949 }
1950 
1951 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1952 {
1953 	bio_io_error(bio);
1954 }
1955 
1956 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1957 {
1958 	cell_success(tc->pool, cell);
1959 }
1960 
1961 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1962 {
1963 	cell_error(tc->pool, cell);
1964 }
1965 
1966 /*
1967  * FIXME: should we also commit due to size of transaction, measured in
1968  * metadata blocks?
1969  */
1970 static int need_commit_due_to_time(struct pool *pool)
1971 {
1972 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1973 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1974 }
1975 
1976 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1977 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1978 
1979 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1980 {
1981 	struct rb_node **rbp, *parent;
1982 	struct dm_thin_endio_hook *pbd;
1983 	sector_t bi_sector = bio->bi_iter.bi_sector;
1984 
1985 	rbp = &tc->sort_bio_list.rb_node;
1986 	parent = NULL;
1987 	while (*rbp) {
1988 		parent = *rbp;
1989 		pbd = thin_pbd(parent);
1990 
1991 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1992 			rbp = &(*rbp)->rb_left;
1993 		else
1994 			rbp = &(*rbp)->rb_right;
1995 	}
1996 
1997 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1998 	rb_link_node(&pbd->rb_node, parent, rbp);
1999 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2000 }
2001 
2002 static void __extract_sorted_bios(struct thin_c *tc)
2003 {
2004 	struct rb_node *node;
2005 	struct dm_thin_endio_hook *pbd;
2006 	struct bio *bio;
2007 
2008 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2009 		pbd = thin_pbd(node);
2010 		bio = thin_bio(pbd);
2011 
2012 		bio_list_add(&tc->deferred_bio_list, bio);
2013 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2014 	}
2015 
2016 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2017 }
2018 
2019 static void __sort_thin_deferred_bios(struct thin_c *tc)
2020 {
2021 	struct bio *bio;
2022 	struct bio_list bios;
2023 
2024 	bio_list_init(&bios);
2025 	bio_list_merge(&bios, &tc->deferred_bio_list);
2026 	bio_list_init(&tc->deferred_bio_list);
2027 
2028 	/* Sort deferred_bio_list using rb-tree */
2029 	while ((bio = bio_list_pop(&bios)))
2030 		__thin_bio_rb_add(tc, bio);
2031 
2032 	/*
2033 	 * Transfer the sorted bios in sort_bio_list back to
2034 	 * deferred_bio_list to allow lockless submission of
2035 	 * all bios.
2036 	 */
2037 	__extract_sorted_bios(tc);
2038 }
2039 
2040 static void process_thin_deferred_bios(struct thin_c *tc)
2041 {
2042 	struct pool *pool = tc->pool;
2043 	unsigned long flags;
2044 	struct bio *bio;
2045 	struct bio_list bios;
2046 	struct blk_plug plug;
2047 	unsigned count = 0;
2048 
2049 	if (tc->requeue_mode) {
2050 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2051 		return;
2052 	}
2053 
2054 	bio_list_init(&bios);
2055 
2056 	spin_lock_irqsave(&tc->lock, flags);
2057 
2058 	if (bio_list_empty(&tc->deferred_bio_list)) {
2059 		spin_unlock_irqrestore(&tc->lock, flags);
2060 		return;
2061 	}
2062 
2063 	__sort_thin_deferred_bios(tc);
2064 
2065 	bio_list_merge(&bios, &tc->deferred_bio_list);
2066 	bio_list_init(&tc->deferred_bio_list);
2067 
2068 	spin_unlock_irqrestore(&tc->lock, flags);
2069 
2070 	blk_start_plug(&plug);
2071 	while ((bio = bio_list_pop(&bios))) {
2072 		/*
2073 		 * If we've got no free new_mapping structs, and processing
2074 		 * this bio might require one, we pause until there are some
2075 		 * prepared mappings to process.
2076 		 */
2077 		if (ensure_next_mapping(pool)) {
2078 			spin_lock_irqsave(&tc->lock, flags);
2079 			bio_list_add(&tc->deferred_bio_list, bio);
2080 			bio_list_merge(&tc->deferred_bio_list, &bios);
2081 			spin_unlock_irqrestore(&tc->lock, flags);
2082 			break;
2083 		}
2084 
2085 		if (bio->bi_rw & REQ_DISCARD)
2086 			pool->process_discard(tc, bio);
2087 		else
2088 			pool->process_bio(tc, bio);
2089 
2090 		if ((count++ & 127) == 0) {
2091 			throttle_work_update(&pool->throttle);
2092 			dm_pool_issue_prefetches(pool->pmd);
2093 		}
2094 	}
2095 	blk_finish_plug(&plug);
2096 }
2097 
2098 static int cmp_cells(const void *lhs, const void *rhs)
2099 {
2100 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2101 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2102 
2103 	BUG_ON(!lhs_cell->holder);
2104 	BUG_ON(!rhs_cell->holder);
2105 
2106 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2107 		return -1;
2108 
2109 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2110 		return 1;
2111 
2112 	return 0;
2113 }
2114 
2115 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2116 {
2117 	unsigned count = 0;
2118 	struct dm_bio_prison_cell *cell, *tmp;
2119 
2120 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2121 		if (count >= CELL_SORT_ARRAY_SIZE)
2122 			break;
2123 
2124 		pool->cell_sort_array[count++] = cell;
2125 		list_del(&cell->user_list);
2126 	}
2127 
2128 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2129 
2130 	return count;
2131 }
2132 
2133 static void process_thin_deferred_cells(struct thin_c *tc)
2134 {
2135 	struct pool *pool = tc->pool;
2136 	unsigned long flags;
2137 	struct list_head cells;
2138 	struct dm_bio_prison_cell *cell;
2139 	unsigned i, j, count;
2140 
2141 	INIT_LIST_HEAD(&cells);
2142 
2143 	spin_lock_irqsave(&tc->lock, flags);
2144 	list_splice_init(&tc->deferred_cells, &cells);
2145 	spin_unlock_irqrestore(&tc->lock, flags);
2146 
2147 	if (list_empty(&cells))
2148 		return;
2149 
2150 	do {
2151 		count = sort_cells(tc->pool, &cells);
2152 
2153 		for (i = 0; i < count; i++) {
2154 			cell = pool->cell_sort_array[i];
2155 			BUG_ON(!cell->holder);
2156 
2157 			/*
2158 			 * If we've got no free new_mapping structs, and processing
2159 			 * this bio might require one, we pause until there are some
2160 			 * prepared mappings to process.
2161 			 */
2162 			if (ensure_next_mapping(pool)) {
2163 				for (j = i; j < count; j++)
2164 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2165 
2166 				spin_lock_irqsave(&tc->lock, flags);
2167 				list_splice(&cells, &tc->deferred_cells);
2168 				spin_unlock_irqrestore(&tc->lock, flags);
2169 				return;
2170 			}
2171 
2172 			if (cell->holder->bi_rw & REQ_DISCARD)
2173 				pool->process_discard_cell(tc, cell);
2174 			else
2175 				pool->process_cell(tc, cell);
2176 		}
2177 	} while (!list_empty(&cells));
2178 }
2179 
2180 static void thin_get(struct thin_c *tc);
2181 static void thin_put(struct thin_c *tc);
2182 
2183 /*
2184  * We can't hold rcu_read_lock() around code that can block.  So we
2185  * find a thin with the rcu lock held; bump a refcount; then drop
2186  * the lock.
2187  */
2188 static struct thin_c *get_first_thin(struct pool *pool)
2189 {
2190 	struct thin_c *tc = NULL;
2191 
2192 	rcu_read_lock();
2193 	if (!list_empty(&pool->active_thins)) {
2194 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2195 		thin_get(tc);
2196 	}
2197 	rcu_read_unlock();
2198 
2199 	return tc;
2200 }
2201 
2202 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2203 {
2204 	struct thin_c *old_tc = tc;
2205 
2206 	rcu_read_lock();
2207 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2208 		thin_get(tc);
2209 		thin_put(old_tc);
2210 		rcu_read_unlock();
2211 		return tc;
2212 	}
2213 	thin_put(old_tc);
2214 	rcu_read_unlock();
2215 
2216 	return NULL;
2217 }
2218 
2219 static void process_deferred_bios(struct pool *pool)
2220 {
2221 	unsigned long flags;
2222 	struct bio *bio;
2223 	struct bio_list bios;
2224 	struct thin_c *tc;
2225 
2226 	tc = get_first_thin(pool);
2227 	while (tc) {
2228 		process_thin_deferred_cells(tc);
2229 		process_thin_deferred_bios(tc);
2230 		tc = get_next_thin(pool, tc);
2231 	}
2232 
2233 	/*
2234 	 * If there are any deferred flush bios, we must commit
2235 	 * the metadata before issuing them.
2236 	 */
2237 	bio_list_init(&bios);
2238 	spin_lock_irqsave(&pool->lock, flags);
2239 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2240 	bio_list_init(&pool->deferred_flush_bios);
2241 	spin_unlock_irqrestore(&pool->lock, flags);
2242 
2243 	if (bio_list_empty(&bios) &&
2244 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2245 		return;
2246 
2247 	if (commit(pool)) {
2248 		while ((bio = bio_list_pop(&bios)))
2249 			bio_io_error(bio);
2250 		return;
2251 	}
2252 	pool->last_commit_jiffies = jiffies;
2253 
2254 	while ((bio = bio_list_pop(&bios)))
2255 		generic_make_request(bio);
2256 }
2257 
2258 static void do_worker(struct work_struct *ws)
2259 {
2260 	struct pool *pool = container_of(ws, struct pool, worker);
2261 
2262 	throttle_work_start(&pool->throttle);
2263 	dm_pool_issue_prefetches(pool->pmd);
2264 	throttle_work_update(&pool->throttle);
2265 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2266 	throttle_work_update(&pool->throttle);
2267 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2268 	throttle_work_update(&pool->throttle);
2269 	process_deferred_bios(pool);
2270 	throttle_work_complete(&pool->throttle);
2271 }
2272 
2273 /*
2274  * We want to commit periodically so that not too much
2275  * unwritten data builds up.
2276  */
2277 static void do_waker(struct work_struct *ws)
2278 {
2279 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2280 	wake_worker(pool);
2281 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2282 }
2283 
2284 /*
2285  * We're holding onto IO to allow userland time to react.  After the
2286  * timeout either the pool will have been resized (and thus back in
2287  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2288  */
2289 static void do_no_space_timeout(struct work_struct *ws)
2290 {
2291 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2292 					 no_space_timeout);
2293 
2294 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2295 		set_pool_mode(pool, PM_READ_ONLY);
2296 }
2297 
2298 /*----------------------------------------------------------------*/
2299 
2300 struct pool_work {
2301 	struct work_struct worker;
2302 	struct completion complete;
2303 };
2304 
2305 static struct pool_work *to_pool_work(struct work_struct *ws)
2306 {
2307 	return container_of(ws, struct pool_work, worker);
2308 }
2309 
2310 static void pool_work_complete(struct pool_work *pw)
2311 {
2312 	complete(&pw->complete);
2313 }
2314 
2315 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2316 			   void (*fn)(struct work_struct *))
2317 {
2318 	INIT_WORK_ONSTACK(&pw->worker, fn);
2319 	init_completion(&pw->complete);
2320 	queue_work(pool->wq, &pw->worker);
2321 	wait_for_completion(&pw->complete);
2322 }
2323 
2324 /*----------------------------------------------------------------*/
2325 
2326 struct noflush_work {
2327 	struct pool_work pw;
2328 	struct thin_c *tc;
2329 };
2330 
2331 static struct noflush_work *to_noflush(struct work_struct *ws)
2332 {
2333 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2334 }
2335 
2336 static void do_noflush_start(struct work_struct *ws)
2337 {
2338 	struct noflush_work *w = to_noflush(ws);
2339 	w->tc->requeue_mode = true;
2340 	requeue_io(w->tc);
2341 	pool_work_complete(&w->pw);
2342 }
2343 
2344 static void do_noflush_stop(struct work_struct *ws)
2345 {
2346 	struct noflush_work *w = to_noflush(ws);
2347 	w->tc->requeue_mode = false;
2348 	pool_work_complete(&w->pw);
2349 }
2350 
2351 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2352 {
2353 	struct noflush_work w;
2354 
2355 	w.tc = tc;
2356 	pool_work_wait(&w.pw, tc->pool, fn);
2357 }
2358 
2359 /*----------------------------------------------------------------*/
2360 
2361 static enum pool_mode get_pool_mode(struct pool *pool)
2362 {
2363 	return pool->pf.mode;
2364 }
2365 
2366 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2367 {
2368 	dm_table_event(pool->ti->table);
2369 	DMINFO("%s: switching pool to %s mode",
2370 	       dm_device_name(pool->pool_md), new_mode);
2371 }
2372 
2373 static bool passdown_enabled(struct pool_c *pt)
2374 {
2375 	return pt->adjusted_pf.discard_passdown;
2376 }
2377 
2378 static void set_discard_callbacks(struct pool *pool)
2379 {
2380 	struct pool_c *pt = pool->ti->private;
2381 
2382 	if (passdown_enabled(pt)) {
2383 		pool->process_discard_cell = process_discard_cell_passdown;
2384 		pool->process_prepared_discard = process_prepared_discard_passdown;
2385 	} else {
2386 		pool->process_discard_cell = process_discard_cell_no_passdown;
2387 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2388 	}
2389 }
2390 
2391 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2392 {
2393 	struct pool_c *pt = pool->ti->private;
2394 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2395 	enum pool_mode old_mode = get_pool_mode(pool);
2396 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2397 
2398 	/*
2399 	 * Never allow the pool to transition to PM_WRITE mode if user
2400 	 * intervention is required to verify metadata and data consistency.
2401 	 */
2402 	if (new_mode == PM_WRITE && needs_check) {
2403 		DMERR("%s: unable to switch pool to write mode until repaired.",
2404 		      dm_device_name(pool->pool_md));
2405 		if (old_mode != new_mode)
2406 			new_mode = old_mode;
2407 		else
2408 			new_mode = PM_READ_ONLY;
2409 	}
2410 	/*
2411 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2412 	 * not going to recover without a thin_repair.	So we never let the
2413 	 * pool move out of the old mode.
2414 	 */
2415 	if (old_mode == PM_FAIL)
2416 		new_mode = old_mode;
2417 
2418 	switch (new_mode) {
2419 	case PM_FAIL:
2420 		if (old_mode != new_mode)
2421 			notify_of_pool_mode_change(pool, "failure");
2422 		dm_pool_metadata_read_only(pool->pmd);
2423 		pool->process_bio = process_bio_fail;
2424 		pool->process_discard = process_bio_fail;
2425 		pool->process_cell = process_cell_fail;
2426 		pool->process_discard_cell = process_cell_fail;
2427 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2428 		pool->process_prepared_discard = process_prepared_discard_fail;
2429 
2430 		error_retry_list(pool);
2431 		break;
2432 
2433 	case PM_READ_ONLY:
2434 		if (old_mode != new_mode)
2435 			notify_of_pool_mode_change(pool, "read-only");
2436 		dm_pool_metadata_read_only(pool->pmd);
2437 		pool->process_bio = process_bio_read_only;
2438 		pool->process_discard = process_bio_success;
2439 		pool->process_cell = process_cell_read_only;
2440 		pool->process_discard_cell = process_cell_success;
2441 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2442 		pool->process_prepared_discard = process_prepared_discard_success;
2443 
2444 		error_retry_list(pool);
2445 		break;
2446 
2447 	case PM_OUT_OF_DATA_SPACE:
2448 		/*
2449 		 * Ideally we'd never hit this state; the low water mark
2450 		 * would trigger userland to extend the pool before we
2451 		 * completely run out of data space.  However, many small
2452 		 * IOs to unprovisioned space can consume data space at an
2453 		 * alarming rate.  Adjust your low water mark if you're
2454 		 * frequently seeing this mode.
2455 		 */
2456 		if (old_mode != new_mode)
2457 			notify_of_pool_mode_change(pool, "out-of-data-space");
2458 		pool->process_bio = process_bio_read_only;
2459 		pool->process_discard = process_discard_bio;
2460 		pool->process_cell = process_cell_read_only;
2461 		pool->process_prepared_mapping = process_prepared_mapping;
2462 		set_discard_callbacks(pool);
2463 
2464 		if (!pool->pf.error_if_no_space && no_space_timeout)
2465 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2466 		break;
2467 
2468 	case PM_WRITE:
2469 		if (old_mode != new_mode)
2470 			notify_of_pool_mode_change(pool, "write");
2471 		dm_pool_metadata_read_write(pool->pmd);
2472 		pool->process_bio = process_bio;
2473 		pool->process_discard = process_discard_bio;
2474 		pool->process_cell = process_cell;
2475 		pool->process_prepared_mapping = process_prepared_mapping;
2476 		set_discard_callbacks(pool);
2477 		break;
2478 	}
2479 
2480 	pool->pf.mode = new_mode;
2481 	/*
2482 	 * The pool mode may have changed, sync it so bind_control_target()
2483 	 * doesn't cause an unexpected mode transition on resume.
2484 	 */
2485 	pt->adjusted_pf.mode = new_mode;
2486 }
2487 
2488 static void abort_transaction(struct pool *pool)
2489 {
2490 	const char *dev_name = dm_device_name(pool->pool_md);
2491 
2492 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2493 	if (dm_pool_abort_metadata(pool->pmd)) {
2494 		DMERR("%s: failed to abort metadata transaction", dev_name);
2495 		set_pool_mode(pool, PM_FAIL);
2496 	}
2497 
2498 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2499 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2500 		set_pool_mode(pool, PM_FAIL);
2501 	}
2502 }
2503 
2504 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2505 {
2506 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2507 		    dm_device_name(pool->pool_md), op, r);
2508 
2509 	abort_transaction(pool);
2510 	set_pool_mode(pool, PM_READ_ONLY);
2511 }
2512 
2513 /*----------------------------------------------------------------*/
2514 
2515 /*
2516  * Mapping functions.
2517  */
2518 
2519 /*
2520  * Called only while mapping a thin bio to hand it over to the workqueue.
2521  */
2522 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2523 {
2524 	unsigned long flags;
2525 	struct pool *pool = tc->pool;
2526 
2527 	spin_lock_irqsave(&tc->lock, flags);
2528 	bio_list_add(&tc->deferred_bio_list, bio);
2529 	spin_unlock_irqrestore(&tc->lock, flags);
2530 
2531 	wake_worker(pool);
2532 }
2533 
2534 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2535 {
2536 	struct pool *pool = tc->pool;
2537 
2538 	throttle_lock(&pool->throttle);
2539 	thin_defer_bio(tc, bio);
2540 	throttle_unlock(&pool->throttle);
2541 }
2542 
2543 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2544 {
2545 	unsigned long flags;
2546 	struct pool *pool = tc->pool;
2547 
2548 	throttle_lock(&pool->throttle);
2549 	spin_lock_irqsave(&tc->lock, flags);
2550 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2551 	spin_unlock_irqrestore(&tc->lock, flags);
2552 	throttle_unlock(&pool->throttle);
2553 
2554 	wake_worker(pool);
2555 }
2556 
2557 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2558 {
2559 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2560 
2561 	h->tc = tc;
2562 	h->shared_read_entry = NULL;
2563 	h->all_io_entry = NULL;
2564 	h->overwrite_mapping = NULL;
2565 	h->cell = NULL;
2566 }
2567 
2568 /*
2569  * Non-blocking function called from the thin target's map function.
2570  */
2571 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2572 {
2573 	int r;
2574 	struct thin_c *tc = ti->private;
2575 	dm_block_t block = get_bio_block(tc, bio);
2576 	struct dm_thin_device *td = tc->td;
2577 	struct dm_thin_lookup_result result;
2578 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2579 	struct dm_cell_key key;
2580 
2581 	thin_hook_bio(tc, bio);
2582 
2583 	if (tc->requeue_mode) {
2584 		bio_endio(bio, DM_ENDIO_REQUEUE);
2585 		return DM_MAPIO_SUBMITTED;
2586 	}
2587 
2588 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2589 		bio_io_error(bio);
2590 		return DM_MAPIO_SUBMITTED;
2591 	}
2592 
2593 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2594 		thin_defer_bio_with_throttle(tc, bio);
2595 		return DM_MAPIO_SUBMITTED;
2596 	}
2597 
2598 	/*
2599 	 * We must hold the virtual cell before doing the lookup, otherwise
2600 	 * there's a race with discard.
2601 	 */
2602 	build_virtual_key(tc->td, block, &key);
2603 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2604 		return DM_MAPIO_SUBMITTED;
2605 
2606 	r = dm_thin_find_block(td, block, 0, &result);
2607 
2608 	/*
2609 	 * Note that we defer readahead too.
2610 	 */
2611 	switch (r) {
2612 	case 0:
2613 		if (unlikely(result.shared)) {
2614 			/*
2615 			 * We have a race condition here between the
2616 			 * result.shared value returned by the lookup and
2617 			 * snapshot creation, which may cause new
2618 			 * sharing.
2619 			 *
2620 			 * To avoid this always quiesce the origin before
2621 			 * taking the snap.  You want to do this anyway to
2622 			 * ensure a consistent application view
2623 			 * (i.e. lockfs).
2624 			 *
2625 			 * More distant ancestors are irrelevant. The
2626 			 * shared flag will be set in their case.
2627 			 */
2628 			thin_defer_cell(tc, virt_cell);
2629 			return DM_MAPIO_SUBMITTED;
2630 		}
2631 
2632 		build_data_key(tc->td, result.block, &key);
2633 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2634 			cell_defer_no_holder(tc, virt_cell);
2635 			return DM_MAPIO_SUBMITTED;
2636 		}
2637 
2638 		inc_all_io_entry(tc->pool, bio);
2639 		cell_defer_no_holder(tc, data_cell);
2640 		cell_defer_no_holder(tc, virt_cell);
2641 
2642 		remap(tc, bio, result.block);
2643 		return DM_MAPIO_REMAPPED;
2644 
2645 	case -ENODATA:
2646 	case -EWOULDBLOCK:
2647 		thin_defer_cell(tc, virt_cell);
2648 		return DM_MAPIO_SUBMITTED;
2649 
2650 	default:
2651 		/*
2652 		 * Must always call bio_io_error on failure.
2653 		 * dm_thin_find_block can fail with -EINVAL if the
2654 		 * pool is switched to fail-io mode.
2655 		 */
2656 		bio_io_error(bio);
2657 		cell_defer_no_holder(tc, virt_cell);
2658 		return DM_MAPIO_SUBMITTED;
2659 	}
2660 }
2661 
2662 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2663 {
2664 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2665 	struct request_queue *q;
2666 
2667 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2668 		return 1;
2669 
2670 	q = bdev_get_queue(pt->data_dev->bdev);
2671 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2672 }
2673 
2674 static void requeue_bios(struct pool *pool)
2675 {
2676 	unsigned long flags;
2677 	struct thin_c *tc;
2678 
2679 	rcu_read_lock();
2680 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2681 		spin_lock_irqsave(&tc->lock, flags);
2682 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2683 		bio_list_init(&tc->retry_on_resume_list);
2684 		spin_unlock_irqrestore(&tc->lock, flags);
2685 	}
2686 	rcu_read_unlock();
2687 }
2688 
2689 /*----------------------------------------------------------------
2690  * Binding of control targets to a pool object
2691  *--------------------------------------------------------------*/
2692 static bool data_dev_supports_discard(struct pool_c *pt)
2693 {
2694 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2695 
2696 	return q && blk_queue_discard(q);
2697 }
2698 
2699 static bool is_factor(sector_t block_size, uint32_t n)
2700 {
2701 	return !sector_div(block_size, n);
2702 }
2703 
2704 /*
2705  * If discard_passdown was enabled verify that the data device
2706  * supports discards.  Disable discard_passdown if not.
2707  */
2708 static void disable_passdown_if_not_supported(struct pool_c *pt)
2709 {
2710 	struct pool *pool = pt->pool;
2711 	struct block_device *data_bdev = pt->data_dev->bdev;
2712 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2713 	const char *reason = NULL;
2714 	char buf[BDEVNAME_SIZE];
2715 
2716 	if (!pt->adjusted_pf.discard_passdown)
2717 		return;
2718 
2719 	if (!data_dev_supports_discard(pt))
2720 		reason = "discard unsupported";
2721 
2722 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2723 		reason = "max discard sectors smaller than a block";
2724 
2725 	if (reason) {
2726 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2727 		pt->adjusted_pf.discard_passdown = false;
2728 	}
2729 }
2730 
2731 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2732 {
2733 	struct pool_c *pt = ti->private;
2734 
2735 	/*
2736 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2737 	 */
2738 	enum pool_mode old_mode = get_pool_mode(pool);
2739 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2740 
2741 	/*
2742 	 * Don't change the pool's mode until set_pool_mode() below.
2743 	 * Otherwise the pool's process_* function pointers may
2744 	 * not match the desired pool mode.
2745 	 */
2746 	pt->adjusted_pf.mode = old_mode;
2747 
2748 	pool->ti = ti;
2749 	pool->pf = pt->adjusted_pf;
2750 	pool->low_water_blocks = pt->low_water_blocks;
2751 
2752 	set_pool_mode(pool, new_mode);
2753 
2754 	return 0;
2755 }
2756 
2757 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2758 {
2759 	if (pool->ti == ti)
2760 		pool->ti = NULL;
2761 }
2762 
2763 /*----------------------------------------------------------------
2764  * Pool creation
2765  *--------------------------------------------------------------*/
2766 /* Initialize pool features. */
2767 static void pool_features_init(struct pool_features *pf)
2768 {
2769 	pf->mode = PM_WRITE;
2770 	pf->zero_new_blocks = true;
2771 	pf->discard_enabled = true;
2772 	pf->discard_passdown = true;
2773 	pf->error_if_no_space = false;
2774 }
2775 
2776 static void __pool_destroy(struct pool *pool)
2777 {
2778 	__pool_table_remove(pool);
2779 
2780 	if (dm_pool_metadata_close(pool->pmd) < 0)
2781 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2782 
2783 	dm_bio_prison_destroy(pool->prison);
2784 	dm_kcopyd_client_destroy(pool->copier);
2785 
2786 	if (pool->wq)
2787 		destroy_workqueue(pool->wq);
2788 
2789 	if (pool->next_mapping)
2790 		mempool_free(pool->next_mapping, pool->mapping_pool);
2791 	mempool_destroy(pool->mapping_pool);
2792 	dm_deferred_set_destroy(pool->shared_read_ds);
2793 	dm_deferred_set_destroy(pool->all_io_ds);
2794 	kfree(pool);
2795 }
2796 
2797 static struct kmem_cache *_new_mapping_cache;
2798 
2799 static struct pool *pool_create(struct mapped_device *pool_md,
2800 				struct block_device *metadata_dev,
2801 				unsigned long block_size,
2802 				int read_only, char **error)
2803 {
2804 	int r;
2805 	void *err_p;
2806 	struct pool *pool;
2807 	struct dm_pool_metadata *pmd;
2808 	bool format_device = read_only ? false : true;
2809 
2810 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2811 	if (IS_ERR(pmd)) {
2812 		*error = "Error creating metadata object";
2813 		return (struct pool *)pmd;
2814 	}
2815 
2816 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2817 	if (!pool) {
2818 		*error = "Error allocating memory for pool";
2819 		err_p = ERR_PTR(-ENOMEM);
2820 		goto bad_pool;
2821 	}
2822 
2823 	pool->pmd = pmd;
2824 	pool->sectors_per_block = block_size;
2825 	if (block_size & (block_size - 1))
2826 		pool->sectors_per_block_shift = -1;
2827 	else
2828 		pool->sectors_per_block_shift = __ffs(block_size);
2829 	pool->low_water_blocks = 0;
2830 	pool_features_init(&pool->pf);
2831 	pool->prison = dm_bio_prison_create();
2832 	if (!pool->prison) {
2833 		*error = "Error creating pool's bio prison";
2834 		err_p = ERR_PTR(-ENOMEM);
2835 		goto bad_prison;
2836 	}
2837 
2838 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2839 	if (IS_ERR(pool->copier)) {
2840 		r = PTR_ERR(pool->copier);
2841 		*error = "Error creating pool's kcopyd client";
2842 		err_p = ERR_PTR(r);
2843 		goto bad_kcopyd_client;
2844 	}
2845 
2846 	/*
2847 	 * Create singlethreaded workqueue that will service all devices
2848 	 * that use this metadata.
2849 	 */
2850 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2851 	if (!pool->wq) {
2852 		*error = "Error creating pool's workqueue";
2853 		err_p = ERR_PTR(-ENOMEM);
2854 		goto bad_wq;
2855 	}
2856 
2857 	throttle_init(&pool->throttle);
2858 	INIT_WORK(&pool->worker, do_worker);
2859 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2860 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2861 	spin_lock_init(&pool->lock);
2862 	bio_list_init(&pool->deferred_flush_bios);
2863 	INIT_LIST_HEAD(&pool->prepared_mappings);
2864 	INIT_LIST_HEAD(&pool->prepared_discards);
2865 	INIT_LIST_HEAD(&pool->active_thins);
2866 	pool->low_water_triggered = false;
2867 	pool->suspended = true;
2868 
2869 	pool->shared_read_ds = dm_deferred_set_create();
2870 	if (!pool->shared_read_ds) {
2871 		*error = "Error creating pool's shared read deferred set";
2872 		err_p = ERR_PTR(-ENOMEM);
2873 		goto bad_shared_read_ds;
2874 	}
2875 
2876 	pool->all_io_ds = dm_deferred_set_create();
2877 	if (!pool->all_io_ds) {
2878 		*error = "Error creating pool's all io deferred set";
2879 		err_p = ERR_PTR(-ENOMEM);
2880 		goto bad_all_io_ds;
2881 	}
2882 
2883 	pool->next_mapping = NULL;
2884 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2885 						      _new_mapping_cache);
2886 	if (!pool->mapping_pool) {
2887 		*error = "Error creating pool's mapping mempool";
2888 		err_p = ERR_PTR(-ENOMEM);
2889 		goto bad_mapping_pool;
2890 	}
2891 
2892 	pool->ref_count = 1;
2893 	pool->last_commit_jiffies = jiffies;
2894 	pool->pool_md = pool_md;
2895 	pool->md_dev = metadata_dev;
2896 	__pool_table_insert(pool);
2897 
2898 	return pool;
2899 
2900 bad_mapping_pool:
2901 	dm_deferred_set_destroy(pool->all_io_ds);
2902 bad_all_io_ds:
2903 	dm_deferred_set_destroy(pool->shared_read_ds);
2904 bad_shared_read_ds:
2905 	destroy_workqueue(pool->wq);
2906 bad_wq:
2907 	dm_kcopyd_client_destroy(pool->copier);
2908 bad_kcopyd_client:
2909 	dm_bio_prison_destroy(pool->prison);
2910 bad_prison:
2911 	kfree(pool);
2912 bad_pool:
2913 	if (dm_pool_metadata_close(pmd))
2914 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2915 
2916 	return err_p;
2917 }
2918 
2919 static void __pool_inc(struct pool *pool)
2920 {
2921 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2922 	pool->ref_count++;
2923 }
2924 
2925 static void __pool_dec(struct pool *pool)
2926 {
2927 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2928 	BUG_ON(!pool->ref_count);
2929 	if (!--pool->ref_count)
2930 		__pool_destroy(pool);
2931 }
2932 
2933 static struct pool *__pool_find(struct mapped_device *pool_md,
2934 				struct block_device *metadata_dev,
2935 				unsigned long block_size, int read_only,
2936 				char **error, int *created)
2937 {
2938 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2939 
2940 	if (pool) {
2941 		if (pool->pool_md != pool_md) {
2942 			*error = "metadata device already in use by a pool";
2943 			return ERR_PTR(-EBUSY);
2944 		}
2945 		__pool_inc(pool);
2946 
2947 	} else {
2948 		pool = __pool_table_lookup(pool_md);
2949 		if (pool) {
2950 			if (pool->md_dev != metadata_dev) {
2951 				*error = "different pool cannot replace a pool";
2952 				return ERR_PTR(-EINVAL);
2953 			}
2954 			__pool_inc(pool);
2955 
2956 		} else {
2957 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2958 			*created = 1;
2959 		}
2960 	}
2961 
2962 	return pool;
2963 }
2964 
2965 /*----------------------------------------------------------------
2966  * Pool target methods
2967  *--------------------------------------------------------------*/
2968 static void pool_dtr(struct dm_target *ti)
2969 {
2970 	struct pool_c *pt = ti->private;
2971 
2972 	mutex_lock(&dm_thin_pool_table.mutex);
2973 
2974 	unbind_control_target(pt->pool, ti);
2975 	__pool_dec(pt->pool);
2976 	dm_put_device(ti, pt->metadata_dev);
2977 	dm_put_device(ti, pt->data_dev);
2978 	kfree(pt);
2979 
2980 	mutex_unlock(&dm_thin_pool_table.mutex);
2981 }
2982 
2983 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2984 			       struct dm_target *ti)
2985 {
2986 	int r;
2987 	unsigned argc;
2988 	const char *arg_name;
2989 
2990 	static struct dm_arg _args[] = {
2991 		{0, 4, "Invalid number of pool feature arguments"},
2992 	};
2993 
2994 	/*
2995 	 * No feature arguments supplied.
2996 	 */
2997 	if (!as->argc)
2998 		return 0;
2999 
3000 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3001 	if (r)
3002 		return -EINVAL;
3003 
3004 	while (argc && !r) {
3005 		arg_name = dm_shift_arg(as);
3006 		argc--;
3007 
3008 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3009 			pf->zero_new_blocks = false;
3010 
3011 		else if (!strcasecmp(arg_name, "ignore_discard"))
3012 			pf->discard_enabled = false;
3013 
3014 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3015 			pf->discard_passdown = false;
3016 
3017 		else if (!strcasecmp(arg_name, "read_only"))
3018 			pf->mode = PM_READ_ONLY;
3019 
3020 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3021 			pf->error_if_no_space = true;
3022 
3023 		else {
3024 			ti->error = "Unrecognised pool feature requested";
3025 			r = -EINVAL;
3026 			break;
3027 		}
3028 	}
3029 
3030 	return r;
3031 }
3032 
3033 static void metadata_low_callback(void *context)
3034 {
3035 	struct pool *pool = context;
3036 
3037 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3038 	       dm_device_name(pool->pool_md));
3039 
3040 	dm_table_event(pool->ti->table);
3041 }
3042 
3043 static sector_t get_dev_size(struct block_device *bdev)
3044 {
3045 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3046 }
3047 
3048 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3049 {
3050 	sector_t metadata_dev_size = get_dev_size(bdev);
3051 	char buffer[BDEVNAME_SIZE];
3052 
3053 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3054 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3055 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3056 }
3057 
3058 static sector_t get_metadata_dev_size(struct block_device *bdev)
3059 {
3060 	sector_t metadata_dev_size = get_dev_size(bdev);
3061 
3062 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3063 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3064 
3065 	return metadata_dev_size;
3066 }
3067 
3068 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3069 {
3070 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3071 
3072 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3073 
3074 	return metadata_dev_size;
3075 }
3076 
3077 /*
3078  * When a metadata threshold is crossed a dm event is triggered, and
3079  * userland should respond by growing the metadata device.  We could let
3080  * userland set the threshold, like we do with the data threshold, but I'm
3081  * not sure they know enough to do this well.
3082  */
3083 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3084 {
3085 	/*
3086 	 * 4M is ample for all ops with the possible exception of thin
3087 	 * device deletion which is harmless if it fails (just retry the
3088 	 * delete after you've grown the device).
3089 	 */
3090 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3091 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3092 }
3093 
3094 /*
3095  * thin-pool <metadata dev> <data dev>
3096  *	     <data block size (sectors)>
3097  *	     <low water mark (blocks)>
3098  *	     [<#feature args> [<arg>]*]
3099  *
3100  * Optional feature arguments are:
3101  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3102  *	     ignore_discard: disable discard
3103  *	     no_discard_passdown: don't pass discards down to the data device
3104  *	     read_only: Don't allow any changes to be made to the pool metadata.
3105  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3106  */
3107 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3108 {
3109 	int r, pool_created = 0;
3110 	struct pool_c *pt;
3111 	struct pool *pool;
3112 	struct pool_features pf;
3113 	struct dm_arg_set as;
3114 	struct dm_dev *data_dev;
3115 	unsigned long block_size;
3116 	dm_block_t low_water_blocks;
3117 	struct dm_dev *metadata_dev;
3118 	fmode_t metadata_mode;
3119 
3120 	/*
3121 	 * FIXME Remove validation from scope of lock.
3122 	 */
3123 	mutex_lock(&dm_thin_pool_table.mutex);
3124 
3125 	if (argc < 4) {
3126 		ti->error = "Invalid argument count";
3127 		r = -EINVAL;
3128 		goto out_unlock;
3129 	}
3130 
3131 	as.argc = argc;
3132 	as.argv = argv;
3133 
3134 	/*
3135 	 * Set default pool features.
3136 	 */
3137 	pool_features_init(&pf);
3138 
3139 	dm_consume_args(&as, 4);
3140 	r = parse_pool_features(&as, &pf, ti);
3141 	if (r)
3142 		goto out_unlock;
3143 
3144 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3145 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3146 	if (r) {
3147 		ti->error = "Error opening metadata block device";
3148 		goto out_unlock;
3149 	}
3150 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3151 
3152 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3153 	if (r) {
3154 		ti->error = "Error getting data device";
3155 		goto out_metadata;
3156 	}
3157 
3158 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3159 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3160 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3161 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3162 		ti->error = "Invalid block size";
3163 		r = -EINVAL;
3164 		goto out;
3165 	}
3166 
3167 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3168 		ti->error = "Invalid low water mark";
3169 		r = -EINVAL;
3170 		goto out;
3171 	}
3172 
3173 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3174 	if (!pt) {
3175 		r = -ENOMEM;
3176 		goto out;
3177 	}
3178 
3179 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3180 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3181 	if (IS_ERR(pool)) {
3182 		r = PTR_ERR(pool);
3183 		goto out_free_pt;
3184 	}
3185 
3186 	/*
3187 	 * 'pool_created' reflects whether this is the first table load.
3188 	 * Top level discard support is not allowed to be changed after
3189 	 * initial load.  This would require a pool reload to trigger thin
3190 	 * device changes.
3191 	 */
3192 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3193 		ti->error = "Discard support cannot be disabled once enabled";
3194 		r = -EINVAL;
3195 		goto out_flags_changed;
3196 	}
3197 
3198 	pt->pool = pool;
3199 	pt->ti = ti;
3200 	pt->metadata_dev = metadata_dev;
3201 	pt->data_dev = data_dev;
3202 	pt->low_water_blocks = low_water_blocks;
3203 	pt->adjusted_pf = pt->requested_pf = pf;
3204 	ti->num_flush_bios = 1;
3205 
3206 	/*
3207 	 * Only need to enable discards if the pool should pass
3208 	 * them down to the data device.  The thin device's discard
3209 	 * processing will cause mappings to be removed from the btree.
3210 	 */
3211 	ti->discard_zeroes_data_unsupported = true;
3212 	if (pf.discard_enabled && pf.discard_passdown) {
3213 		ti->num_discard_bios = 1;
3214 
3215 		/*
3216 		 * Setting 'discards_supported' circumvents the normal
3217 		 * stacking of discard limits (this keeps the pool and
3218 		 * thin devices' discard limits consistent).
3219 		 */
3220 		ti->discards_supported = true;
3221 	}
3222 	ti->private = pt;
3223 
3224 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3225 						calc_metadata_threshold(pt),
3226 						metadata_low_callback,
3227 						pool);
3228 	if (r)
3229 		goto out_free_pt;
3230 
3231 	pt->callbacks.congested_fn = pool_is_congested;
3232 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3233 
3234 	mutex_unlock(&dm_thin_pool_table.mutex);
3235 
3236 	return 0;
3237 
3238 out_flags_changed:
3239 	__pool_dec(pool);
3240 out_free_pt:
3241 	kfree(pt);
3242 out:
3243 	dm_put_device(ti, data_dev);
3244 out_metadata:
3245 	dm_put_device(ti, metadata_dev);
3246 out_unlock:
3247 	mutex_unlock(&dm_thin_pool_table.mutex);
3248 
3249 	return r;
3250 }
3251 
3252 static int pool_map(struct dm_target *ti, struct bio *bio)
3253 {
3254 	int r;
3255 	struct pool_c *pt = ti->private;
3256 	struct pool *pool = pt->pool;
3257 	unsigned long flags;
3258 
3259 	/*
3260 	 * As this is a singleton target, ti->begin is always zero.
3261 	 */
3262 	spin_lock_irqsave(&pool->lock, flags);
3263 	bio->bi_bdev = pt->data_dev->bdev;
3264 	r = DM_MAPIO_REMAPPED;
3265 	spin_unlock_irqrestore(&pool->lock, flags);
3266 
3267 	return r;
3268 }
3269 
3270 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3271 {
3272 	int r;
3273 	struct pool_c *pt = ti->private;
3274 	struct pool *pool = pt->pool;
3275 	sector_t data_size = ti->len;
3276 	dm_block_t sb_data_size;
3277 
3278 	*need_commit = false;
3279 
3280 	(void) sector_div(data_size, pool->sectors_per_block);
3281 
3282 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3283 	if (r) {
3284 		DMERR("%s: failed to retrieve data device size",
3285 		      dm_device_name(pool->pool_md));
3286 		return r;
3287 	}
3288 
3289 	if (data_size < sb_data_size) {
3290 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3291 		      dm_device_name(pool->pool_md),
3292 		      (unsigned long long)data_size, sb_data_size);
3293 		return -EINVAL;
3294 
3295 	} else if (data_size > sb_data_size) {
3296 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3297 			DMERR("%s: unable to grow the data device until repaired.",
3298 			      dm_device_name(pool->pool_md));
3299 			return 0;
3300 		}
3301 
3302 		if (sb_data_size)
3303 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3304 			       dm_device_name(pool->pool_md),
3305 			       sb_data_size, (unsigned long long)data_size);
3306 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3307 		if (r) {
3308 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3309 			return r;
3310 		}
3311 
3312 		*need_commit = true;
3313 	}
3314 
3315 	return 0;
3316 }
3317 
3318 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3319 {
3320 	int r;
3321 	struct pool_c *pt = ti->private;
3322 	struct pool *pool = pt->pool;
3323 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3324 
3325 	*need_commit = false;
3326 
3327 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3328 
3329 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3330 	if (r) {
3331 		DMERR("%s: failed to retrieve metadata device size",
3332 		      dm_device_name(pool->pool_md));
3333 		return r;
3334 	}
3335 
3336 	if (metadata_dev_size < sb_metadata_dev_size) {
3337 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3338 		      dm_device_name(pool->pool_md),
3339 		      metadata_dev_size, sb_metadata_dev_size);
3340 		return -EINVAL;
3341 
3342 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3343 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3344 			DMERR("%s: unable to grow the metadata device until repaired.",
3345 			      dm_device_name(pool->pool_md));
3346 			return 0;
3347 		}
3348 
3349 		warn_if_metadata_device_too_big(pool->md_dev);
3350 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3351 		       dm_device_name(pool->pool_md),
3352 		       sb_metadata_dev_size, metadata_dev_size);
3353 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3354 		if (r) {
3355 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3356 			return r;
3357 		}
3358 
3359 		*need_commit = true;
3360 	}
3361 
3362 	return 0;
3363 }
3364 
3365 /*
3366  * Retrieves the number of blocks of the data device from
3367  * the superblock and compares it to the actual device size,
3368  * thus resizing the data device in case it has grown.
3369  *
3370  * This both copes with opening preallocated data devices in the ctr
3371  * being followed by a resume
3372  * -and-
3373  * calling the resume method individually after userspace has
3374  * grown the data device in reaction to a table event.
3375  */
3376 static int pool_preresume(struct dm_target *ti)
3377 {
3378 	int r;
3379 	bool need_commit1, need_commit2;
3380 	struct pool_c *pt = ti->private;
3381 	struct pool *pool = pt->pool;
3382 
3383 	/*
3384 	 * Take control of the pool object.
3385 	 */
3386 	r = bind_control_target(pool, ti);
3387 	if (r)
3388 		return r;
3389 
3390 	r = maybe_resize_data_dev(ti, &need_commit1);
3391 	if (r)
3392 		return r;
3393 
3394 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3395 	if (r)
3396 		return r;
3397 
3398 	if (need_commit1 || need_commit2)
3399 		(void) commit(pool);
3400 
3401 	return 0;
3402 }
3403 
3404 static void pool_suspend_active_thins(struct pool *pool)
3405 {
3406 	struct thin_c *tc;
3407 
3408 	/* Suspend all active thin devices */
3409 	tc = get_first_thin(pool);
3410 	while (tc) {
3411 		dm_internal_suspend_noflush(tc->thin_md);
3412 		tc = get_next_thin(pool, tc);
3413 	}
3414 }
3415 
3416 static void pool_resume_active_thins(struct pool *pool)
3417 {
3418 	struct thin_c *tc;
3419 
3420 	/* Resume all active thin devices */
3421 	tc = get_first_thin(pool);
3422 	while (tc) {
3423 		dm_internal_resume(tc->thin_md);
3424 		tc = get_next_thin(pool, tc);
3425 	}
3426 }
3427 
3428 static void pool_resume(struct dm_target *ti)
3429 {
3430 	struct pool_c *pt = ti->private;
3431 	struct pool *pool = pt->pool;
3432 	unsigned long flags;
3433 
3434 	/*
3435 	 * Must requeue active_thins' bios and then resume
3436 	 * active_thins _before_ clearing 'suspend' flag.
3437 	 */
3438 	requeue_bios(pool);
3439 	pool_resume_active_thins(pool);
3440 
3441 	spin_lock_irqsave(&pool->lock, flags);
3442 	pool->low_water_triggered = false;
3443 	pool->suspended = false;
3444 	spin_unlock_irqrestore(&pool->lock, flags);
3445 
3446 	do_waker(&pool->waker.work);
3447 }
3448 
3449 static void pool_presuspend(struct dm_target *ti)
3450 {
3451 	struct pool_c *pt = ti->private;
3452 	struct pool *pool = pt->pool;
3453 	unsigned long flags;
3454 
3455 	spin_lock_irqsave(&pool->lock, flags);
3456 	pool->suspended = true;
3457 	spin_unlock_irqrestore(&pool->lock, flags);
3458 
3459 	pool_suspend_active_thins(pool);
3460 }
3461 
3462 static void pool_presuspend_undo(struct dm_target *ti)
3463 {
3464 	struct pool_c *pt = ti->private;
3465 	struct pool *pool = pt->pool;
3466 	unsigned long flags;
3467 
3468 	pool_resume_active_thins(pool);
3469 
3470 	spin_lock_irqsave(&pool->lock, flags);
3471 	pool->suspended = false;
3472 	spin_unlock_irqrestore(&pool->lock, flags);
3473 }
3474 
3475 static void pool_postsuspend(struct dm_target *ti)
3476 {
3477 	struct pool_c *pt = ti->private;
3478 	struct pool *pool = pt->pool;
3479 
3480 	cancel_delayed_work(&pool->waker);
3481 	cancel_delayed_work(&pool->no_space_timeout);
3482 	flush_workqueue(pool->wq);
3483 	(void) commit(pool);
3484 }
3485 
3486 static int check_arg_count(unsigned argc, unsigned args_required)
3487 {
3488 	if (argc != args_required) {
3489 		DMWARN("Message received with %u arguments instead of %u.",
3490 		       argc, args_required);
3491 		return -EINVAL;
3492 	}
3493 
3494 	return 0;
3495 }
3496 
3497 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3498 {
3499 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3500 	    *dev_id <= MAX_DEV_ID)
3501 		return 0;
3502 
3503 	if (warning)
3504 		DMWARN("Message received with invalid device id: %s", arg);
3505 
3506 	return -EINVAL;
3507 }
3508 
3509 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3510 {
3511 	dm_thin_id dev_id;
3512 	int r;
3513 
3514 	r = check_arg_count(argc, 2);
3515 	if (r)
3516 		return r;
3517 
3518 	r = read_dev_id(argv[1], &dev_id, 1);
3519 	if (r)
3520 		return r;
3521 
3522 	r = dm_pool_create_thin(pool->pmd, dev_id);
3523 	if (r) {
3524 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3525 		       argv[1]);
3526 		return r;
3527 	}
3528 
3529 	return 0;
3530 }
3531 
3532 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3533 {
3534 	dm_thin_id dev_id;
3535 	dm_thin_id origin_dev_id;
3536 	int r;
3537 
3538 	r = check_arg_count(argc, 3);
3539 	if (r)
3540 		return r;
3541 
3542 	r = read_dev_id(argv[1], &dev_id, 1);
3543 	if (r)
3544 		return r;
3545 
3546 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3547 	if (r)
3548 		return r;
3549 
3550 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3551 	if (r) {
3552 		DMWARN("Creation of new snapshot %s of device %s failed.",
3553 		       argv[1], argv[2]);
3554 		return r;
3555 	}
3556 
3557 	return 0;
3558 }
3559 
3560 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3561 {
3562 	dm_thin_id dev_id;
3563 	int r;
3564 
3565 	r = check_arg_count(argc, 2);
3566 	if (r)
3567 		return r;
3568 
3569 	r = read_dev_id(argv[1], &dev_id, 1);
3570 	if (r)
3571 		return r;
3572 
3573 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3574 	if (r)
3575 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3576 
3577 	return r;
3578 }
3579 
3580 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3581 {
3582 	dm_thin_id old_id, new_id;
3583 	int r;
3584 
3585 	r = check_arg_count(argc, 3);
3586 	if (r)
3587 		return r;
3588 
3589 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3590 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3591 		return -EINVAL;
3592 	}
3593 
3594 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3595 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3596 		return -EINVAL;
3597 	}
3598 
3599 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3600 	if (r) {
3601 		DMWARN("Failed to change transaction id from %s to %s.",
3602 		       argv[1], argv[2]);
3603 		return r;
3604 	}
3605 
3606 	return 0;
3607 }
3608 
3609 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3610 {
3611 	int r;
3612 
3613 	r = check_arg_count(argc, 1);
3614 	if (r)
3615 		return r;
3616 
3617 	(void) commit(pool);
3618 
3619 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3620 	if (r)
3621 		DMWARN("reserve_metadata_snap message failed.");
3622 
3623 	return r;
3624 }
3625 
3626 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3627 {
3628 	int r;
3629 
3630 	r = check_arg_count(argc, 1);
3631 	if (r)
3632 		return r;
3633 
3634 	r = dm_pool_release_metadata_snap(pool->pmd);
3635 	if (r)
3636 		DMWARN("release_metadata_snap message failed.");
3637 
3638 	return r;
3639 }
3640 
3641 /*
3642  * Messages supported:
3643  *   create_thin	<dev_id>
3644  *   create_snap	<dev_id> <origin_id>
3645  *   delete		<dev_id>
3646  *   set_transaction_id <current_trans_id> <new_trans_id>
3647  *   reserve_metadata_snap
3648  *   release_metadata_snap
3649  */
3650 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3651 {
3652 	int r = -EINVAL;
3653 	struct pool_c *pt = ti->private;
3654 	struct pool *pool = pt->pool;
3655 
3656 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3657 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3658 		      dm_device_name(pool->pool_md));
3659 		return -EOPNOTSUPP;
3660 	}
3661 
3662 	if (!strcasecmp(argv[0], "create_thin"))
3663 		r = process_create_thin_mesg(argc, argv, pool);
3664 
3665 	else if (!strcasecmp(argv[0], "create_snap"))
3666 		r = process_create_snap_mesg(argc, argv, pool);
3667 
3668 	else if (!strcasecmp(argv[0], "delete"))
3669 		r = process_delete_mesg(argc, argv, pool);
3670 
3671 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3672 		r = process_set_transaction_id_mesg(argc, argv, pool);
3673 
3674 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3675 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3676 
3677 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3678 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3679 
3680 	else
3681 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3682 
3683 	if (!r)
3684 		(void) commit(pool);
3685 
3686 	return r;
3687 }
3688 
3689 static void emit_flags(struct pool_features *pf, char *result,
3690 		       unsigned sz, unsigned maxlen)
3691 {
3692 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3693 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3694 		pf->error_if_no_space;
3695 	DMEMIT("%u ", count);
3696 
3697 	if (!pf->zero_new_blocks)
3698 		DMEMIT("skip_block_zeroing ");
3699 
3700 	if (!pf->discard_enabled)
3701 		DMEMIT("ignore_discard ");
3702 
3703 	if (!pf->discard_passdown)
3704 		DMEMIT("no_discard_passdown ");
3705 
3706 	if (pf->mode == PM_READ_ONLY)
3707 		DMEMIT("read_only ");
3708 
3709 	if (pf->error_if_no_space)
3710 		DMEMIT("error_if_no_space ");
3711 }
3712 
3713 /*
3714  * Status line is:
3715  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3716  *    <used data sectors>/<total data sectors> <held metadata root>
3717  */
3718 static void pool_status(struct dm_target *ti, status_type_t type,
3719 			unsigned status_flags, char *result, unsigned maxlen)
3720 {
3721 	int r;
3722 	unsigned sz = 0;
3723 	uint64_t transaction_id;
3724 	dm_block_t nr_free_blocks_data;
3725 	dm_block_t nr_free_blocks_metadata;
3726 	dm_block_t nr_blocks_data;
3727 	dm_block_t nr_blocks_metadata;
3728 	dm_block_t held_root;
3729 	char buf[BDEVNAME_SIZE];
3730 	char buf2[BDEVNAME_SIZE];
3731 	struct pool_c *pt = ti->private;
3732 	struct pool *pool = pt->pool;
3733 
3734 	switch (type) {
3735 	case STATUSTYPE_INFO:
3736 		if (get_pool_mode(pool) == PM_FAIL) {
3737 			DMEMIT("Fail");
3738 			break;
3739 		}
3740 
3741 		/* Commit to ensure statistics aren't out-of-date */
3742 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3743 			(void) commit(pool);
3744 
3745 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3746 		if (r) {
3747 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3748 			      dm_device_name(pool->pool_md), r);
3749 			goto err;
3750 		}
3751 
3752 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3753 		if (r) {
3754 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3755 			      dm_device_name(pool->pool_md), r);
3756 			goto err;
3757 		}
3758 
3759 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3760 		if (r) {
3761 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3762 			      dm_device_name(pool->pool_md), r);
3763 			goto err;
3764 		}
3765 
3766 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3767 		if (r) {
3768 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3769 			      dm_device_name(pool->pool_md), r);
3770 			goto err;
3771 		}
3772 
3773 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3774 		if (r) {
3775 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3776 			      dm_device_name(pool->pool_md), r);
3777 			goto err;
3778 		}
3779 
3780 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3781 		if (r) {
3782 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3783 			      dm_device_name(pool->pool_md), r);
3784 			goto err;
3785 		}
3786 
3787 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3788 		       (unsigned long long)transaction_id,
3789 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3790 		       (unsigned long long)nr_blocks_metadata,
3791 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3792 		       (unsigned long long)nr_blocks_data);
3793 
3794 		if (held_root)
3795 			DMEMIT("%llu ", held_root);
3796 		else
3797 			DMEMIT("- ");
3798 
3799 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3800 			DMEMIT("out_of_data_space ");
3801 		else if (pool->pf.mode == PM_READ_ONLY)
3802 			DMEMIT("ro ");
3803 		else
3804 			DMEMIT("rw ");
3805 
3806 		if (!pool->pf.discard_enabled)
3807 			DMEMIT("ignore_discard ");
3808 		else if (pool->pf.discard_passdown)
3809 			DMEMIT("discard_passdown ");
3810 		else
3811 			DMEMIT("no_discard_passdown ");
3812 
3813 		if (pool->pf.error_if_no_space)
3814 			DMEMIT("error_if_no_space ");
3815 		else
3816 			DMEMIT("queue_if_no_space ");
3817 
3818 		break;
3819 
3820 	case STATUSTYPE_TABLE:
3821 		DMEMIT("%s %s %lu %llu ",
3822 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3823 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3824 		       (unsigned long)pool->sectors_per_block,
3825 		       (unsigned long long)pt->low_water_blocks);
3826 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3827 		break;
3828 	}
3829 	return;
3830 
3831 err:
3832 	DMEMIT("Error");
3833 }
3834 
3835 static int pool_iterate_devices(struct dm_target *ti,
3836 				iterate_devices_callout_fn fn, void *data)
3837 {
3838 	struct pool_c *pt = ti->private;
3839 
3840 	return fn(ti, pt->data_dev, 0, ti->len, data);
3841 }
3842 
3843 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3844 		      struct bio_vec *biovec, int max_size)
3845 {
3846 	struct pool_c *pt = ti->private;
3847 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3848 
3849 	if (!q->merge_bvec_fn)
3850 		return max_size;
3851 
3852 	bvm->bi_bdev = pt->data_dev->bdev;
3853 
3854 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3855 }
3856 
3857 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3858 {
3859 	struct pool_c *pt = ti->private;
3860 	struct pool *pool = pt->pool;
3861 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3862 
3863 	/*
3864 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3865 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3866 	 * This is especially beneficial when the pool's data device is a RAID
3867 	 * device that has a full stripe width that matches pool->sectors_per_block
3868 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3869 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3870 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3871 	 */
3872 	if (limits->max_sectors < pool->sectors_per_block) {
3873 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3874 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3875 				limits->max_sectors--;
3876 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3877 		}
3878 	}
3879 
3880 	/*
3881 	 * If the system-determined stacked limits are compatible with the
3882 	 * pool's blocksize (io_opt is a factor) do not override them.
3883 	 */
3884 	if (io_opt_sectors < pool->sectors_per_block ||
3885 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3886 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3887 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3888 		else
3889 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3890 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3891 	}
3892 
3893 	/*
3894 	 * pt->adjusted_pf is a staging area for the actual features to use.
3895 	 * They get transferred to the live pool in bind_control_target()
3896 	 * called from pool_preresume().
3897 	 */
3898 	if (!pt->adjusted_pf.discard_enabled) {
3899 		/*
3900 		 * Must explicitly disallow stacking discard limits otherwise the
3901 		 * block layer will stack them if pool's data device has support.
3902 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3903 		 * user to see that, so make sure to set all discard limits to 0.
3904 		 */
3905 		limits->discard_granularity = 0;
3906 		return;
3907 	}
3908 
3909 	disable_passdown_if_not_supported(pt);
3910 
3911 	/*
3912 	 * The pool uses the same discard limits as the underlying data
3913 	 * device.  DM core has already set this up.
3914 	 */
3915 }
3916 
3917 static struct target_type pool_target = {
3918 	.name = "thin-pool",
3919 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3920 		    DM_TARGET_IMMUTABLE,
3921 	.version = {1, 15, 0},
3922 	.module = THIS_MODULE,
3923 	.ctr = pool_ctr,
3924 	.dtr = pool_dtr,
3925 	.map = pool_map,
3926 	.presuspend = pool_presuspend,
3927 	.presuspend_undo = pool_presuspend_undo,
3928 	.postsuspend = pool_postsuspend,
3929 	.preresume = pool_preresume,
3930 	.resume = pool_resume,
3931 	.message = pool_message,
3932 	.status = pool_status,
3933 	.merge = pool_merge,
3934 	.iterate_devices = pool_iterate_devices,
3935 	.io_hints = pool_io_hints,
3936 };
3937 
3938 /*----------------------------------------------------------------
3939  * Thin target methods
3940  *--------------------------------------------------------------*/
3941 static void thin_get(struct thin_c *tc)
3942 {
3943 	atomic_inc(&tc->refcount);
3944 }
3945 
3946 static void thin_put(struct thin_c *tc)
3947 {
3948 	if (atomic_dec_and_test(&tc->refcount))
3949 		complete(&tc->can_destroy);
3950 }
3951 
3952 static void thin_dtr(struct dm_target *ti)
3953 {
3954 	struct thin_c *tc = ti->private;
3955 	unsigned long flags;
3956 
3957 	spin_lock_irqsave(&tc->pool->lock, flags);
3958 	list_del_rcu(&tc->list);
3959 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3960 	synchronize_rcu();
3961 
3962 	thin_put(tc);
3963 	wait_for_completion(&tc->can_destroy);
3964 
3965 	mutex_lock(&dm_thin_pool_table.mutex);
3966 
3967 	__pool_dec(tc->pool);
3968 	dm_pool_close_thin_device(tc->td);
3969 	dm_put_device(ti, tc->pool_dev);
3970 	if (tc->origin_dev)
3971 		dm_put_device(ti, tc->origin_dev);
3972 	kfree(tc);
3973 
3974 	mutex_unlock(&dm_thin_pool_table.mutex);
3975 }
3976 
3977 /*
3978  * Thin target parameters:
3979  *
3980  * <pool_dev> <dev_id> [origin_dev]
3981  *
3982  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3983  * dev_id: the internal device identifier
3984  * origin_dev: a device external to the pool that should act as the origin
3985  *
3986  * If the pool device has discards disabled, they get disabled for the thin
3987  * device as well.
3988  */
3989 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3990 {
3991 	int r;
3992 	struct thin_c *tc;
3993 	struct dm_dev *pool_dev, *origin_dev;
3994 	struct mapped_device *pool_md;
3995 	unsigned long flags;
3996 
3997 	mutex_lock(&dm_thin_pool_table.mutex);
3998 
3999 	if (argc != 2 && argc != 3) {
4000 		ti->error = "Invalid argument count";
4001 		r = -EINVAL;
4002 		goto out_unlock;
4003 	}
4004 
4005 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4006 	if (!tc) {
4007 		ti->error = "Out of memory";
4008 		r = -ENOMEM;
4009 		goto out_unlock;
4010 	}
4011 	tc->thin_md = dm_table_get_md(ti->table);
4012 	spin_lock_init(&tc->lock);
4013 	INIT_LIST_HEAD(&tc->deferred_cells);
4014 	bio_list_init(&tc->deferred_bio_list);
4015 	bio_list_init(&tc->retry_on_resume_list);
4016 	tc->sort_bio_list = RB_ROOT;
4017 
4018 	if (argc == 3) {
4019 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4020 		if (r) {
4021 			ti->error = "Error opening origin device";
4022 			goto bad_origin_dev;
4023 		}
4024 		tc->origin_dev = origin_dev;
4025 	}
4026 
4027 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4028 	if (r) {
4029 		ti->error = "Error opening pool device";
4030 		goto bad_pool_dev;
4031 	}
4032 	tc->pool_dev = pool_dev;
4033 
4034 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4035 		ti->error = "Invalid device id";
4036 		r = -EINVAL;
4037 		goto bad_common;
4038 	}
4039 
4040 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4041 	if (!pool_md) {
4042 		ti->error = "Couldn't get pool mapped device";
4043 		r = -EINVAL;
4044 		goto bad_common;
4045 	}
4046 
4047 	tc->pool = __pool_table_lookup(pool_md);
4048 	if (!tc->pool) {
4049 		ti->error = "Couldn't find pool object";
4050 		r = -EINVAL;
4051 		goto bad_pool_lookup;
4052 	}
4053 	__pool_inc(tc->pool);
4054 
4055 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4056 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4057 		r = -EINVAL;
4058 		goto bad_pool;
4059 	}
4060 
4061 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4062 	if (r) {
4063 		ti->error = "Couldn't open thin internal device";
4064 		goto bad_pool;
4065 	}
4066 
4067 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4068 	if (r)
4069 		goto bad;
4070 
4071 	ti->num_flush_bios = 1;
4072 	ti->flush_supported = true;
4073 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4074 
4075 	/* In case the pool supports discards, pass them on. */
4076 	ti->discard_zeroes_data_unsupported = true;
4077 	if (tc->pool->pf.discard_enabled) {
4078 		ti->discards_supported = true;
4079 		ti->num_discard_bios = 1;
4080 		ti->split_discard_bios = false;
4081 	}
4082 
4083 	mutex_unlock(&dm_thin_pool_table.mutex);
4084 
4085 	spin_lock_irqsave(&tc->pool->lock, flags);
4086 	if (tc->pool->suspended) {
4087 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4088 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4089 		ti->error = "Unable to activate thin device while pool is suspended";
4090 		r = -EINVAL;
4091 		goto bad;
4092 	}
4093 	atomic_set(&tc->refcount, 1);
4094 	init_completion(&tc->can_destroy);
4095 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4096 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4097 	/*
4098 	 * This synchronize_rcu() call is needed here otherwise we risk a
4099 	 * wake_worker() call finding no bios to process (because the newly
4100 	 * added tc isn't yet visible).  So this reduces latency since we
4101 	 * aren't then dependent on the periodic commit to wake_worker().
4102 	 */
4103 	synchronize_rcu();
4104 
4105 	dm_put(pool_md);
4106 
4107 	return 0;
4108 
4109 bad:
4110 	dm_pool_close_thin_device(tc->td);
4111 bad_pool:
4112 	__pool_dec(tc->pool);
4113 bad_pool_lookup:
4114 	dm_put(pool_md);
4115 bad_common:
4116 	dm_put_device(ti, tc->pool_dev);
4117 bad_pool_dev:
4118 	if (tc->origin_dev)
4119 		dm_put_device(ti, tc->origin_dev);
4120 bad_origin_dev:
4121 	kfree(tc);
4122 out_unlock:
4123 	mutex_unlock(&dm_thin_pool_table.mutex);
4124 
4125 	return r;
4126 }
4127 
4128 static int thin_map(struct dm_target *ti, struct bio *bio)
4129 {
4130 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4131 
4132 	return thin_bio_map(ti, bio);
4133 }
4134 
4135 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4136 {
4137 	unsigned long flags;
4138 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4139 	struct list_head work;
4140 	struct dm_thin_new_mapping *m, *tmp;
4141 	struct pool *pool = h->tc->pool;
4142 
4143 	if (h->shared_read_entry) {
4144 		INIT_LIST_HEAD(&work);
4145 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4146 
4147 		spin_lock_irqsave(&pool->lock, flags);
4148 		list_for_each_entry_safe(m, tmp, &work, list) {
4149 			list_del(&m->list);
4150 			__complete_mapping_preparation(m);
4151 		}
4152 		spin_unlock_irqrestore(&pool->lock, flags);
4153 	}
4154 
4155 	if (h->all_io_entry) {
4156 		INIT_LIST_HEAD(&work);
4157 		dm_deferred_entry_dec(h->all_io_entry, &work);
4158 		if (!list_empty(&work)) {
4159 			spin_lock_irqsave(&pool->lock, flags);
4160 			list_for_each_entry_safe(m, tmp, &work, list)
4161 				list_add_tail(&m->list, &pool->prepared_discards);
4162 			spin_unlock_irqrestore(&pool->lock, flags);
4163 			wake_worker(pool);
4164 		}
4165 	}
4166 
4167 	if (h->cell)
4168 		cell_defer_no_holder(h->tc, h->cell);
4169 
4170 	return 0;
4171 }
4172 
4173 static void thin_presuspend(struct dm_target *ti)
4174 {
4175 	struct thin_c *tc = ti->private;
4176 
4177 	if (dm_noflush_suspending(ti))
4178 		noflush_work(tc, do_noflush_start);
4179 }
4180 
4181 static void thin_postsuspend(struct dm_target *ti)
4182 {
4183 	struct thin_c *tc = ti->private;
4184 
4185 	/*
4186 	 * The dm_noflush_suspending flag has been cleared by now, so
4187 	 * unfortunately we must always run this.
4188 	 */
4189 	noflush_work(tc, do_noflush_stop);
4190 }
4191 
4192 static int thin_preresume(struct dm_target *ti)
4193 {
4194 	struct thin_c *tc = ti->private;
4195 
4196 	if (tc->origin_dev)
4197 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4198 
4199 	return 0;
4200 }
4201 
4202 /*
4203  * <nr mapped sectors> <highest mapped sector>
4204  */
4205 static void thin_status(struct dm_target *ti, status_type_t type,
4206 			unsigned status_flags, char *result, unsigned maxlen)
4207 {
4208 	int r;
4209 	ssize_t sz = 0;
4210 	dm_block_t mapped, highest;
4211 	char buf[BDEVNAME_SIZE];
4212 	struct thin_c *tc = ti->private;
4213 
4214 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4215 		DMEMIT("Fail");
4216 		return;
4217 	}
4218 
4219 	if (!tc->td)
4220 		DMEMIT("-");
4221 	else {
4222 		switch (type) {
4223 		case STATUSTYPE_INFO:
4224 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4225 			if (r) {
4226 				DMERR("dm_thin_get_mapped_count returned %d", r);
4227 				goto err;
4228 			}
4229 
4230 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4231 			if (r < 0) {
4232 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4233 				goto err;
4234 			}
4235 
4236 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4237 			if (r)
4238 				DMEMIT("%llu", ((highest + 1) *
4239 						tc->pool->sectors_per_block) - 1);
4240 			else
4241 				DMEMIT("-");
4242 			break;
4243 
4244 		case STATUSTYPE_TABLE:
4245 			DMEMIT("%s %lu",
4246 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4247 			       (unsigned long) tc->dev_id);
4248 			if (tc->origin_dev)
4249 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4250 			break;
4251 		}
4252 	}
4253 
4254 	return;
4255 
4256 err:
4257 	DMEMIT("Error");
4258 }
4259 
4260 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4261 		      struct bio_vec *biovec, int max_size)
4262 {
4263 	struct thin_c *tc = ti->private;
4264 	struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4265 
4266 	if (!q->merge_bvec_fn)
4267 		return max_size;
4268 
4269 	bvm->bi_bdev = tc->pool_dev->bdev;
4270 	bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4271 
4272 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4273 }
4274 
4275 static int thin_iterate_devices(struct dm_target *ti,
4276 				iterate_devices_callout_fn fn, void *data)
4277 {
4278 	sector_t blocks;
4279 	struct thin_c *tc = ti->private;
4280 	struct pool *pool = tc->pool;
4281 
4282 	/*
4283 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4284 	 * we follow a more convoluted path through to the pool's target.
4285 	 */
4286 	if (!pool->ti)
4287 		return 0;	/* nothing is bound */
4288 
4289 	blocks = pool->ti->len;
4290 	(void) sector_div(blocks, pool->sectors_per_block);
4291 	if (blocks)
4292 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4293 
4294 	return 0;
4295 }
4296 
4297 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4298 {
4299 	struct thin_c *tc = ti->private;
4300 	struct pool *pool = tc->pool;
4301 
4302 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4303 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4304 }
4305 
4306 static struct target_type thin_target = {
4307 	.name = "thin",
4308 	.version = {1, 15, 0},
4309 	.module	= THIS_MODULE,
4310 	.ctr = thin_ctr,
4311 	.dtr = thin_dtr,
4312 	.map = thin_map,
4313 	.end_io = thin_endio,
4314 	.preresume = thin_preresume,
4315 	.presuspend = thin_presuspend,
4316 	.postsuspend = thin_postsuspend,
4317 	.status = thin_status,
4318 	.merge = thin_merge,
4319 	.iterate_devices = thin_iterate_devices,
4320 	.io_hints = thin_io_hints,
4321 };
4322 
4323 /*----------------------------------------------------------------*/
4324 
4325 static int __init dm_thin_init(void)
4326 {
4327 	int r;
4328 
4329 	pool_table_init();
4330 
4331 	r = dm_register_target(&thin_target);
4332 	if (r)
4333 		return r;
4334 
4335 	r = dm_register_target(&pool_target);
4336 	if (r)
4337 		goto bad_pool_target;
4338 
4339 	r = -ENOMEM;
4340 
4341 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4342 	if (!_new_mapping_cache)
4343 		goto bad_new_mapping_cache;
4344 
4345 	return 0;
4346 
4347 bad_new_mapping_cache:
4348 	dm_unregister_target(&pool_target);
4349 bad_pool_target:
4350 	dm_unregister_target(&thin_target);
4351 
4352 	return r;
4353 }
4354 
4355 static void dm_thin_exit(void)
4356 {
4357 	dm_unregister_target(&thin_target);
4358 	dm_unregister_target(&pool_target);
4359 
4360 	kmem_cache_destroy(_new_mapping_cache);
4361 }
4362 
4363 module_init(dm_thin_init);
4364 module_exit(dm_thin_exit);
4365 
4366 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4367 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4368 
4369 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4370 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4371 MODULE_LICENSE("GPL");
4372