1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/sort.h> 22 #include <linux/rbtree.h> 23 24 #define DM_MSG_PREFIX "thin" 25 26 /* 27 * Tunable constants 28 */ 29 #define ENDIO_HOOK_POOL_SIZE 1024 30 #define MAPPING_POOL_SIZE 1024 31 #define COMMIT_PERIOD HZ 32 #define NO_SPACE_TIMEOUT_SECS 60 33 34 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 35 36 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 37 "A percentage of time allocated for copy on write"); 38 39 /* 40 * The block size of the device holding pool data must be 41 * between 64KB and 1GB. 42 */ 43 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 44 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 45 46 /* 47 * Device id is restricted to 24 bits. 48 */ 49 #define MAX_DEV_ID ((1 << 24) - 1) 50 51 /* 52 * How do we handle breaking sharing of data blocks? 53 * ================================================= 54 * 55 * We use a standard copy-on-write btree to store the mappings for the 56 * devices (note I'm talking about copy-on-write of the metadata here, not 57 * the data). When you take an internal snapshot you clone the root node 58 * of the origin btree. After this there is no concept of an origin or a 59 * snapshot. They are just two device trees that happen to point to the 60 * same data blocks. 61 * 62 * When we get a write in we decide if it's to a shared data block using 63 * some timestamp magic. If it is, we have to break sharing. 64 * 65 * Let's say we write to a shared block in what was the origin. The 66 * steps are: 67 * 68 * i) plug io further to this physical block. (see bio_prison code). 69 * 70 * ii) quiesce any read io to that shared data block. Obviously 71 * including all devices that share this block. (see dm_deferred_set code) 72 * 73 * iii) copy the data block to a newly allocate block. This step can be 74 * missed out if the io covers the block. (schedule_copy). 75 * 76 * iv) insert the new mapping into the origin's btree 77 * (process_prepared_mapping). This act of inserting breaks some 78 * sharing of btree nodes between the two devices. Breaking sharing only 79 * effects the btree of that specific device. Btrees for the other 80 * devices that share the block never change. The btree for the origin 81 * device as it was after the last commit is untouched, ie. we're using 82 * persistent data structures in the functional programming sense. 83 * 84 * v) unplug io to this physical block, including the io that triggered 85 * the breaking of sharing. 86 * 87 * Steps (ii) and (iii) occur in parallel. 88 * 89 * The metadata _doesn't_ need to be committed before the io continues. We 90 * get away with this because the io is always written to a _new_ block. 91 * If there's a crash, then: 92 * 93 * - The origin mapping will point to the old origin block (the shared 94 * one). This will contain the data as it was before the io that triggered 95 * the breaking of sharing came in. 96 * 97 * - The snap mapping still points to the old block. As it would after 98 * the commit. 99 * 100 * The downside of this scheme is the timestamp magic isn't perfect, and 101 * will continue to think that data block in the snapshot device is shared 102 * even after the write to the origin has broken sharing. I suspect data 103 * blocks will typically be shared by many different devices, so we're 104 * breaking sharing n + 1 times, rather than n, where n is the number of 105 * devices that reference this data block. At the moment I think the 106 * benefits far, far outweigh the disadvantages. 107 */ 108 109 /*----------------------------------------------------------------*/ 110 111 /* 112 * Key building. 113 */ 114 enum lock_space { 115 VIRTUAL, 116 PHYSICAL 117 }; 118 119 static void build_key(struct dm_thin_device *td, enum lock_space ls, 120 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 121 { 122 key->virtual = (ls == VIRTUAL); 123 key->dev = dm_thin_dev_id(td); 124 key->block_begin = b; 125 key->block_end = e; 126 } 127 128 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 129 struct dm_cell_key *key) 130 { 131 build_key(td, PHYSICAL, b, b + 1llu, key); 132 } 133 134 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 135 struct dm_cell_key *key) 136 { 137 build_key(td, VIRTUAL, b, b + 1llu, key); 138 } 139 140 /*----------------------------------------------------------------*/ 141 142 #define THROTTLE_THRESHOLD (1 * HZ) 143 144 struct throttle { 145 struct rw_semaphore lock; 146 unsigned long threshold; 147 bool throttle_applied; 148 }; 149 150 static void throttle_init(struct throttle *t) 151 { 152 init_rwsem(&t->lock); 153 t->throttle_applied = false; 154 } 155 156 static void throttle_work_start(struct throttle *t) 157 { 158 t->threshold = jiffies + THROTTLE_THRESHOLD; 159 } 160 161 static void throttle_work_update(struct throttle *t) 162 { 163 if (!t->throttle_applied && jiffies > t->threshold) { 164 down_write(&t->lock); 165 t->throttle_applied = true; 166 } 167 } 168 169 static void throttle_work_complete(struct throttle *t) 170 { 171 if (t->throttle_applied) { 172 t->throttle_applied = false; 173 up_write(&t->lock); 174 } 175 } 176 177 static void throttle_lock(struct throttle *t) 178 { 179 down_read(&t->lock); 180 } 181 182 static void throttle_unlock(struct throttle *t) 183 { 184 up_read(&t->lock); 185 } 186 187 /*----------------------------------------------------------------*/ 188 189 /* 190 * A pool device ties together a metadata device and a data device. It 191 * also provides the interface for creating and destroying internal 192 * devices. 193 */ 194 struct dm_thin_new_mapping; 195 196 /* 197 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 198 */ 199 enum pool_mode { 200 PM_WRITE, /* metadata may be changed */ 201 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 202 PM_READ_ONLY, /* metadata may not be changed */ 203 PM_FAIL, /* all I/O fails */ 204 }; 205 206 struct pool_features { 207 enum pool_mode mode; 208 209 bool zero_new_blocks:1; 210 bool discard_enabled:1; 211 bool discard_passdown:1; 212 bool error_if_no_space:1; 213 }; 214 215 struct thin_c; 216 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 217 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 218 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 219 220 #define CELL_SORT_ARRAY_SIZE 8192 221 222 struct pool { 223 struct list_head list; 224 struct dm_target *ti; /* Only set if a pool target is bound */ 225 226 struct mapped_device *pool_md; 227 struct block_device *md_dev; 228 struct dm_pool_metadata *pmd; 229 230 dm_block_t low_water_blocks; 231 uint32_t sectors_per_block; 232 int sectors_per_block_shift; 233 234 struct pool_features pf; 235 bool low_water_triggered:1; /* A dm event has been sent */ 236 bool suspended:1; 237 238 struct dm_bio_prison *prison; 239 struct dm_kcopyd_client *copier; 240 241 struct workqueue_struct *wq; 242 struct throttle throttle; 243 struct work_struct worker; 244 struct delayed_work waker; 245 struct delayed_work no_space_timeout; 246 247 unsigned long last_commit_jiffies; 248 unsigned ref_count; 249 250 spinlock_t lock; 251 struct bio_list deferred_flush_bios; 252 struct list_head prepared_mappings; 253 struct list_head prepared_discards; 254 struct list_head active_thins; 255 256 struct dm_deferred_set *shared_read_ds; 257 struct dm_deferred_set *all_io_ds; 258 259 struct dm_thin_new_mapping *next_mapping; 260 mempool_t *mapping_pool; 261 262 process_bio_fn process_bio; 263 process_bio_fn process_discard; 264 265 process_cell_fn process_cell; 266 process_cell_fn process_discard_cell; 267 268 process_mapping_fn process_prepared_mapping; 269 process_mapping_fn process_prepared_discard; 270 271 struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE]; 272 }; 273 274 static enum pool_mode get_pool_mode(struct pool *pool); 275 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 276 277 /* 278 * Target context for a pool. 279 */ 280 struct pool_c { 281 struct dm_target *ti; 282 struct pool *pool; 283 struct dm_dev *data_dev; 284 struct dm_dev *metadata_dev; 285 struct dm_target_callbacks callbacks; 286 287 dm_block_t low_water_blocks; 288 struct pool_features requested_pf; /* Features requested during table load */ 289 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 290 }; 291 292 /* 293 * Target context for a thin. 294 */ 295 struct thin_c { 296 struct list_head list; 297 struct dm_dev *pool_dev; 298 struct dm_dev *origin_dev; 299 sector_t origin_size; 300 dm_thin_id dev_id; 301 302 struct pool *pool; 303 struct dm_thin_device *td; 304 struct mapped_device *thin_md; 305 306 bool requeue_mode:1; 307 spinlock_t lock; 308 struct list_head deferred_cells; 309 struct bio_list deferred_bio_list; 310 struct bio_list retry_on_resume_list; 311 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 312 313 /* 314 * Ensures the thin is not destroyed until the worker has finished 315 * iterating the active_thins list. 316 */ 317 atomic_t refcount; 318 struct completion can_destroy; 319 }; 320 321 /*----------------------------------------------------------------*/ 322 323 /** 324 * __blkdev_issue_discard_async - queue a discard with async completion 325 * @bdev: blockdev to issue discard for 326 * @sector: start sector 327 * @nr_sects: number of sectors to discard 328 * @gfp_mask: memory allocation flags (for bio_alloc) 329 * @flags: BLKDEV_IFL_* flags to control behaviour 330 * @parent_bio: parent discard bio that all sub discards get chained to 331 * 332 * Description: 333 * Asynchronously issue a discard request for the sectors in question. 334 * NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap 335 * that is being kept local to DM thinp until the block changes to allow 336 * late bio splitting land upstream. 337 */ 338 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector, 339 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags, 340 struct bio *parent_bio) 341 { 342 struct request_queue *q = bdev_get_queue(bdev); 343 int type = REQ_WRITE | REQ_DISCARD; 344 unsigned int max_discard_sectors, granularity; 345 int alignment; 346 struct bio *bio; 347 int ret = 0; 348 struct blk_plug plug; 349 350 if (!q) 351 return -ENXIO; 352 353 if (!blk_queue_discard(q)) 354 return -EOPNOTSUPP; 355 356 /* Zero-sector (unknown) and one-sector granularities are the same. */ 357 granularity = max(q->limits.discard_granularity >> 9, 1U); 358 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity; 359 360 /* 361 * Ensure that max_discard_sectors is of the proper 362 * granularity, so that requests stay aligned after a split. 363 */ 364 max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9); 365 max_discard_sectors -= max_discard_sectors % granularity; 366 if (unlikely(!max_discard_sectors)) { 367 /* Avoid infinite loop below. Being cautious never hurts. */ 368 return -EOPNOTSUPP; 369 } 370 371 if (flags & BLKDEV_DISCARD_SECURE) { 372 if (!blk_queue_secdiscard(q)) 373 return -EOPNOTSUPP; 374 type |= REQ_SECURE; 375 } 376 377 blk_start_plug(&plug); 378 while (nr_sects) { 379 unsigned int req_sects; 380 sector_t end_sect, tmp; 381 382 /* 383 * Required bio_put occurs in bio_endio thanks to bio_chain below 384 */ 385 bio = bio_alloc(gfp_mask, 1); 386 if (!bio) { 387 ret = -ENOMEM; 388 break; 389 } 390 391 req_sects = min_t(sector_t, nr_sects, max_discard_sectors); 392 393 /* 394 * If splitting a request, and the next starting sector would be 395 * misaligned, stop the discard at the previous aligned sector. 396 */ 397 end_sect = sector + req_sects; 398 tmp = end_sect; 399 if (req_sects < nr_sects && 400 sector_div(tmp, granularity) != alignment) { 401 end_sect = end_sect - alignment; 402 sector_div(end_sect, granularity); 403 end_sect = end_sect * granularity + alignment; 404 req_sects = end_sect - sector; 405 } 406 407 bio_chain(bio, parent_bio); 408 409 bio->bi_iter.bi_sector = sector; 410 bio->bi_bdev = bdev; 411 412 bio->bi_iter.bi_size = req_sects << 9; 413 nr_sects -= req_sects; 414 sector = end_sect; 415 416 submit_bio(type, bio); 417 418 /* 419 * We can loop for a long time in here, if someone does 420 * full device discards (like mkfs). Be nice and allow 421 * us to schedule out to avoid softlocking if preempt 422 * is disabled. 423 */ 424 cond_resched(); 425 } 426 blk_finish_plug(&plug); 427 428 return ret; 429 } 430 431 static bool block_size_is_power_of_two(struct pool *pool) 432 { 433 return pool->sectors_per_block_shift >= 0; 434 } 435 436 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 437 { 438 return block_size_is_power_of_two(pool) ? 439 (b << pool->sectors_per_block_shift) : 440 (b * pool->sectors_per_block); 441 } 442 443 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e, 444 struct bio *parent_bio) 445 { 446 sector_t s = block_to_sectors(tc->pool, data_b); 447 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 448 449 return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len, 450 GFP_NOWAIT, 0, parent_bio); 451 } 452 453 /*----------------------------------------------------------------*/ 454 455 /* 456 * wake_worker() is used when new work is queued and when pool_resume is 457 * ready to continue deferred IO processing. 458 */ 459 static void wake_worker(struct pool *pool) 460 { 461 queue_work(pool->wq, &pool->worker); 462 } 463 464 /*----------------------------------------------------------------*/ 465 466 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 467 struct dm_bio_prison_cell **cell_result) 468 { 469 int r; 470 struct dm_bio_prison_cell *cell_prealloc; 471 472 /* 473 * Allocate a cell from the prison's mempool. 474 * This might block but it can't fail. 475 */ 476 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 477 478 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 479 if (r) 480 /* 481 * We reused an old cell; we can get rid of 482 * the new one. 483 */ 484 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 485 486 return r; 487 } 488 489 static void cell_release(struct pool *pool, 490 struct dm_bio_prison_cell *cell, 491 struct bio_list *bios) 492 { 493 dm_cell_release(pool->prison, cell, bios); 494 dm_bio_prison_free_cell(pool->prison, cell); 495 } 496 497 static void cell_visit_release(struct pool *pool, 498 void (*fn)(void *, struct dm_bio_prison_cell *), 499 void *context, 500 struct dm_bio_prison_cell *cell) 501 { 502 dm_cell_visit_release(pool->prison, fn, context, cell); 503 dm_bio_prison_free_cell(pool->prison, cell); 504 } 505 506 static void cell_release_no_holder(struct pool *pool, 507 struct dm_bio_prison_cell *cell, 508 struct bio_list *bios) 509 { 510 dm_cell_release_no_holder(pool->prison, cell, bios); 511 dm_bio_prison_free_cell(pool->prison, cell); 512 } 513 514 static void cell_error_with_code(struct pool *pool, 515 struct dm_bio_prison_cell *cell, int error_code) 516 { 517 dm_cell_error(pool->prison, cell, error_code); 518 dm_bio_prison_free_cell(pool->prison, cell); 519 } 520 521 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 522 { 523 cell_error_with_code(pool, cell, -EIO); 524 } 525 526 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 527 { 528 cell_error_with_code(pool, cell, 0); 529 } 530 531 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 532 { 533 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE); 534 } 535 536 /*----------------------------------------------------------------*/ 537 538 /* 539 * A global list of pools that uses a struct mapped_device as a key. 540 */ 541 static struct dm_thin_pool_table { 542 struct mutex mutex; 543 struct list_head pools; 544 } dm_thin_pool_table; 545 546 static void pool_table_init(void) 547 { 548 mutex_init(&dm_thin_pool_table.mutex); 549 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 550 } 551 552 static void __pool_table_insert(struct pool *pool) 553 { 554 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 555 list_add(&pool->list, &dm_thin_pool_table.pools); 556 } 557 558 static void __pool_table_remove(struct pool *pool) 559 { 560 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 561 list_del(&pool->list); 562 } 563 564 static struct pool *__pool_table_lookup(struct mapped_device *md) 565 { 566 struct pool *pool = NULL, *tmp; 567 568 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 569 570 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 571 if (tmp->pool_md == md) { 572 pool = tmp; 573 break; 574 } 575 } 576 577 return pool; 578 } 579 580 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 581 { 582 struct pool *pool = NULL, *tmp; 583 584 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 585 586 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 587 if (tmp->md_dev == md_dev) { 588 pool = tmp; 589 break; 590 } 591 } 592 593 return pool; 594 } 595 596 /*----------------------------------------------------------------*/ 597 598 struct dm_thin_endio_hook { 599 struct thin_c *tc; 600 struct dm_deferred_entry *shared_read_entry; 601 struct dm_deferred_entry *all_io_entry; 602 struct dm_thin_new_mapping *overwrite_mapping; 603 struct rb_node rb_node; 604 struct dm_bio_prison_cell *cell; 605 }; 606 607 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 608 { 609 bio_list_merge(bios, master); 610 bio_list_init(master); 611 } 612 613 static void error_bio_list(struct bio_list *bios, int error) 614 { 615 struct bio *bio; 616 617 while ((bio = bio_list_pop(bios))) 618 bio_endio(bio, error); 619 } 620 621 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error) 622 { 623 struct bio_list bios; 624 unsigned long flags; 625 626 bio_list_init(&bios); 627 628 spin_lock_irqsave(&tc->lock, flags); 629 __merge_bio_list(&bios, master); 630 spin_unlock_irqrestore(&tc->lock, flags); 631 632 error_bio_list(&bios, error); 633 } 634 635 static void requeue_deferred_cells(struct thin_c *tc) 636 { 637 struct pool *pool = tc->pool; 638 unsigned long flags; 639 struct list_head cells; 640 struct dm_bio_prison_cell *cell, *tmp; 641 642 INIT_LIST_HEAD(&cells); 643 644 spin_lock_irqsave(&tc->lock, flags); 645 list_splice_init(&tc->deferred_cells, &cells); 646 spin_unlock_irqrestore(&tc->lock, flags); 647 648 list_for_each_entry_safe(cell, tmp, &cells, user_list) 649 cell_requeue(pool, cell); 650 } 651 652 static void requeue_io(struct thin_c *tc) 653 { 654 struct bio_list bios; 655 unsigned long flags; 656 657 bio_list_init(&bios); 658 659 spin_lock_irqsave(&tc->lock, flags); 660 __merge_bio_list(&bios, &tc->deferred_bio_list); 661 __merge_bio_list(&bios, &tc->retry_on_resume_list); 662 spin_unlock_irqrestore(&tc->lock, flags); 663 664 error_bio_list(&bios, DM_ENDIO_REQUEUE); 665 requeue_deferred_cells(tc); 666 } 667 668 static void error_retry_list(struct pool *pool) 669 { 670 struct thin_c *tc; 671 672 rcu_read_lock(); 673 list_for_each_entry_rcu(tc, &pool->active_thins, list) 674 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO); 675 rcu_read_unlock(); 676 } 677 678 /* 679 * This section of code contains the logic for processing a thin device's IO. 680 * Much of the code depends on pool object resources (lists, workqueues, etc) 681 * but most is exclusively called from the thin target rather than the thin-pool 682 * target. 683 */ 684 685 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 686 { 687 struct pool *pool = tc->pool; 688 sector_t block_nr = bio->bi_iter.bi_sector; 689 690 if (block_size_is_power_of_two(pool)) 691 block_nr >>= pool->sectors_per_block_shift; 692 else 693 (void) sector_div(block_nr, pool->sectors_per_block); 694 695 return block_nr; 696 } 697 698 /* 699 * Returns the _complete_ blocks that this bio covers. 700 */ 701 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 702 dm_block_t *begin, dm_block_t *end) 703 { 704 struct pool *pool = tc->pool; 705 sector_t b = bio->bi_iter.bi_sector; 706 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 707 708 b += pool->sectors_per_block - 1ull; /* so we round up */ 709 710 if (block_size_is_power_of_two(pool)) { 711 b >>= pool->sectors_per_block_shift; 712 e >>= pool->sectors_per_block_shift; 713 } else { 714 (void) sector_div(b, pool->sectors_per_block); 715 (void) sector_div(e, pool->sectors_per_block); 716 } 717 718 if (e < b) 719 /* Can happen if the bio is within a single block. */ 720 e = b; 721 722 *begin = b; 723 *end = e; 724 } 725 726 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 727 { 728 struct pool *pool = tc->pool; 729 sector_t bi_sector = bio->bi_iter.bi_sector; 730 731 bio->bi_bdev = tc->pool_dev->bdev; 732 if (block_size_is_power_of_two(pool)) 733 bio->bi_iter.bi_sector = 734 (block << pool->sectors_per_block_shift) | 735 (bi_sector & (pool->sectors_per_block - 1)); 736 else 737 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 738 sector_div(bi_sector, pool->sectors_per_block); 739 } 740 741 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 742 { 743 bio->bi_bdev = tc->origin_dev->bdev; 744 } 745 746 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 747 { 748 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 749 dm_thin_changed_this_transaction(tc->td); 750 } 751 752 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 753 { 754 struct dm_thin_endio_hook *h; 755 756 if (bio->bi_rw & REQ_DISCARD) 757 return; 758 759 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 760 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 761 } 762 763 static void issue(struct thin_c *tc, struct bio *bio) 764 { 765 struct pool *pool = tc->pool; 766 unsigned long flags; 767 768 if (!bio_triggers_commit(tc, bio)) { 769 generic_make_request(bio); 770 return; 771 } 772 773 /* 774 * Complete bio with an error if earlier I/O caused changes to 775 * the metadata that can't be committed e.g, due to I/O errors 776 * on the metadata device. 777 */ 778 if (dm_thin_aborted_changes(tc->td)) { 779 bio_io_error(bio); 780 return; 781 } 782 783 /* 784 * Batch together any bios that trigger commits and then issue a 785 * single commit for them in process_deferred_bios(). 786 */ 787 spin_lock_irqsave(&pool->lock, flags); 788 bio_list_add(&pool->deferred_flush_bios, bio); 789 spin_unlock_irqrestore(&pool->lock, flags); 790 } 791 792 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 793 { 794 remap_to_origin(tc, bio); 795 issue(tc, bio); 796 } 797 798 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 799 dm_block_t block) 800 { 801 remap(tc, bio, block); 802 issue(tc, bio); 803 } 804 805 /*----------------------------------------------------------------*/ 806 807 /* 808 * Bio endio functions. 809 */ 810 struct dm_thin_new_mapping { 811 struct list_head list; 812 813 bool pass_discard:1; 814 bool maybe_shared:1; 815 816 /* 817 * Track quiescing, copying and zeroing preparation actions. When this 818 * counter hits zero the block is prepared and can be inserted into the 819 * btree. 820 */ 821 atomic_t prepare_actions; 822 823 int err; 824 struct thin_c *tc; 825 dm_block_t virt_begin, virt_end; 826 dm_block_t data_block; 827 struct dm_bio_prison_cell *cell; 828 829 /* 830 * If the bio covers the whole area of a block then we can avoid 831 * zeroing or copying. Instead this bio is hooked. The bio will 832 * still be in the cell, so care has to be taken to avoid issuing 833 * the bio twice. 834 */ 835 struct bio *bio; 836 bio_end_io_t *saved_bi_end_io; 837 }; 838 839 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 840 { 841 struct pool *pool = m->tc->pool; 842 843 if (atomic_dec_and_test(&m->prepare_actions)) { 844 list_add_tail(&m->list, &pool->prepared_mappings); 845 wake_worker(pool); 846 } 847 } 848 849 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 850 { 851 unsigned long flags; 852 struct pool *pool = m->tc->pool; 853 854 spin_lock_irqsave(&pool->lock, flags); 855 __complete_mapping_preparation(m); 856 spin_unlock_irqrestore(&pool->lock, flags); 857 } 858 859 static void copy_complete(int read_err, unsigned long write_err, void *context) 860 { 861 struct dm_thin_new_mapping *m = context; 862 863 m->err = read_err || write_err ? -EIO : 0; 864 complete_mapping_preparation(m); 865 } 866 867 static void overwrite_endio(struct bio *bio, int err) 868 { 869 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 870 struct dm_thin_new_mapping *m = h->overwrite_mapping; 871 872 bio->bi_end_io = m->saved_bi_end_io; 873 874 m->err = err; 875 complete_mapping_preparation(m); 876 } 877 878 /*----------------------------------------------------------------*/ 879 880 /* 881 * Workqueue. 882 */ 883 884 /* 885 * Prepared mapping jobs. 886 */ 887 888 /* 889 * This sends the bios in the cell, except the original holder, back 890 * to the deferred_bios list. 891 */ 892 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 893 { 894 struct pool *pool = tc->pool; 895 unsigned long flags; 896 897 spin_lock_irqsave(&tc->lock, flags); 898 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 899 spin_unlock_irqrestore(&tc->lock, flags); 900 901 wake_worker(pool); 902 } 903 904 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 905 906 struct remap_info { 907 struct thin_c *tc; 908 struct bio_list defer_bios; 909 struct bio_list issue_bios; 910 }; 911 912 static void __inc_remap_and_issue_cell(void *context, 913 struct dm_bio_prison_cell *cell) 914 { 915 struct remap_info *info = context; 916 struct bio *bio; 917 918 while ((bio = bio_list_pop(&cell->bios))) { 919 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) 920 bio_list_add(&info->defer_bios, bio); 921 else { 922 inc_all_io_entry(info->tc->pool, bio); 923 924 /* 925 * We can't issue the bios with the bio prison lock 926 * held, so we add them to a list to issue on 927 * return from this function. 928 */ 929 bio_list_add(&info->issue_bios, bio); 930 } 931 } 932 } 933 934 static void inc_remap_and_issue_cell(struct thin_c *tc, 935 struct dm_bio_prison_cell *cell, 936 dm_block_t block) 937 { 938 struct bio *bio; 939 struct remap_info info; 940 941 info.tc = tc; 942 bio_list_init(&info.defer_bios); 943 bio_list_init(&info.issue_bios); 944 945 /* 946 * We have to be careful to inc any bios we're about to issue 947 * before the cell is released, and avoid a race with new bios 948 * being added to the cell. 949 */ 950 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 951 &info, cell); 952 953 while ((bio = bio_list_pop(&info.defer_bios))) 954 thin_defer_bio(tc, bio); 955 956 while ((bio = bio_list_pop(&info.issue_bios))) 957 remap_and_issue(info.tc, bio, block); 958 } 959 960 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 961 { 962 cell_error(m->tc->pool, m->cell); 963 list_del(&m->list); 964 mempool_free(m, m->tc->pool->mapping_pool); 965 } 966 967 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 968 { 969 struct thin_c *tc = m->tc; 970 struct pool *pool = tc->pool; 971 struct bio *bio = m->bio; 972 int r; 973 974 if (m->err) { 975 cell_error(pool, m->cell); 976 goto out; 977 } 978 979 /* 980 * Commit the prepared block into the mapping btree. 981 * Any I/O for this block arriving after this point will get 982 * remapped to it directly. 983 */ 984 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 985 if (r) { 986 metadata_operation_failed(pool, "dm_thin_insert_block", r); 987 cell_error(pool, m->cell); 988 goto out; 989 } 990 991 /* 992 * Release any bios held while the block was being provisioned. 993 * If we are processing a write bio that completely covers the block, 994 * we already processed it so can ignore it now when processing 995 * the bios in the cell. 996 */ 997 if (bio) { 998 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 999 bio_endio(bio, 0); 1000 } else { 1001 inc_all_io_entry(tc->pool, m->cell->holder); 1002 remap_and_issue(tc, m->cell->holder, m->data_block); 1003 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1004 } 1005 1006 out: 1007 list_del(&m->list); 1008 mempool_free(m, pool->mapping_pool); 1009 } 1010 1011 /*----------------------------------------------------------------*/ 1012 1013 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1014 { 1015 struct thin_c *tc = m->tc; 1016 if (m->cell) 1017 cell_defer_no_holder(tc, m->cell); 1018 mempool_free(m, tc->pool->mapping_pool); 1019 } 1020 1021 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1022 { 1023 bio_io_error(m->bio); 1024 free_discard_mapping(m); 1025 } 1026 1027 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1028 { 1029 bio_endio(m->bio, 0); 1030 free_discard_mapping(m); 1031 } 1032 1033 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1034 { 1035 int r; 1036 struct thin_c *tc = m->tc; 1037 1038 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1039 if (r) { 1040 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1041 bio_io_error(m->bio); 1042 } else 1043 bio_endio(m->bio, 0); 1044 1045 cell_defer_no_holder(tc, m->cell); 1046 mempool_free(m, tc->pool->mapping_pool); 1047 } 1048 1049 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m) 1050 { 1051 /* 1052 * We've already unmapped this range of blocks, but before we 1053 * passdown we have to check that these blocks are now unused. 1054 */ 1055 int r; 1056 bool used = true; 1057 struct thin_c *tc = m->tc; 1058 struct pool *pool = tc->pool; 1059 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1060 1061 while (b != end) { 1062 /* find start of unmapped run */ 1063 for (; b < end; b++) { 1064 r = dm_pool_block_is_used(pool->pmd, b, &used); 1065 if (r) 1066 return r; 1067 1068 if (!used) 1069 break; 1070 } 1071 1072 if (b == end) 1073 break; 1074 1075 /* find end of run */ 1076 for (e = b + 1; e != end; e++) { 1077 r = dm_pool_block_is_used(pool->pmd, e, &used); 1078 if (r) 1079 return r; 1080 1081 if (used) 1082 break; 1083 } 1084 1085 r = issue_discard(tc, b, e, m->bio); 1086 if (r) 1087 return r; 1088 1089 b = e; 1090 } 1091 1092 return 0; 1093 } 1094 1095 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 1096 { 1097 int r; 1098 struct thin_c *tc = m->tc; 1099 struct pool *pool = tc->pool; 1100 1101 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1102 if (r) 1103 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1104 1105 else if (m->maybe_shared) 1106 r = passdown_double_checking_shared_status(m); 1107 else 1108 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio); 1109 1110 /* 1111 * Even if r is set, there could be sub discards in flight that we 1112 * need to wait for. 1113 */ 1114 bio_endio(m->bio, r); 1115 cell_defer_no_holder(tc, m->cell); 1116 mempool_free(m, pool->mapping_pool); 1117 } 1118 1119 static void process_prepared(struct pool *pool, struct list_head *head, 1120 process_mapping_fn *fn) 1121 { 1122 unsigned long flags; 1123 struct list_head maps; 1124 struct dm_thin_new_mapping *m, *tmp; 1125 1126 INIT_LIST_HEAD(&maps); 1127 spin_lock_irqsave(&pool->lock, flags); 1128 list_splice_init(head, &maps); 1129 spin_unlock_irqrestore(&pool->lock, flags); 1130 1131 list_for_each_entry_safe(m, tmp, &maps, list) 1132 (*fn)(m); 1133 } 1134 1135 /* 1136 * Deferred bio jobs. 1137 */ 1138 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1139 { 1140 return bio->bi_iter.bi_size == 1141 (pool->sectors_per_block << SECTOR_SHIFT); 1142 } 1143 1144 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1145 { 1146 return (bio_data_dir(bio) == WRITE) && 1147 io_overlaps_block(pool, bio); 1148 } 1149 1150 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1151 bio_end_io_t *fn) 1152 { 1153 *save = bio->bi_end_io; 1154 bio->bi_end_io = fn; 1155 } 1156 1157 static int ensure_next_mapping(struct pool *pool) 1158 { 1159 if (pool->next_mapping) 1160 return 0; 1161 1162 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 1163 1164 return pool->next_mapping ? 0 : -ENOMEM; 1165 } 1166 1167 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1168 { 1169 struct dm_thin_new_mapping *m = pool->next_mapping; 1170 1171 BUG_ON(!pool->next_mapping); 1172 1173 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1174 INIT_LIST_HEAD(&m->list); 1175 m->bio = NULL; 1176 1177 pool->next_mapping = NULL; 1178 1179 return m; 1180 } 1181 1182 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1183 sector_t begin, sector_t end) 1184 { 1185 int r; 1186 struct dm_io_region to; 1187 1188 to.bdev = tc->pool_dev->bdev; 1189 to.sector = begin; 1190 to.count = end - begin; 1191 1192 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1193 if (r < 0) { 1194 DMERR_LIMIT("dm_kcopyd_zero() failed"); 1195 copy_complete(1, 1, m); 1196 } 1197 } 1198 1199 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1200 dm_block_t data_begin, 1201 struct dm_thin_new_mapping *m) 1202 { 1203 struct pool *pool = tc->pool; 1204 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1205 1206 h->overwrite_mapping = m; 1207 m->bio = bio; 1208 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1209 inc_all_io_entry(pool, bio); 1210 remap_and_issue(tc, bio, data_begin); 1211 } 1212 1213 /* 1214 * A partial copy also needs to zero the uncopied region. 1215 */ 1216 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1217 struct dm_dev *origin, dm_block_t data_origin, 1218 dm_block_t data_dest, 1219 struct dm_bio_prison_cell *cell, struct bio *bio, 1220 sector_t len) 1221 { 1222 int r; 1223 struct pool *pool = tc->pool; 1224 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1225 1226 m->tc = tc; 1227 m->virt_begin = virt_block; 1228 m->virt_end = virt_block + 1u; 1229 m->data_block = data_dest; 1230 m->cell = cell; 1231 1232 /* 1233 * quiesce action + copy action + an extra reference held for the 1234 * duration of this function (we may need to inc later for a 1235 * partial zero). 1236 */ 1237 atomic_set(&m->prepare_actions, 3); 1238 1239 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1240 complete_mapping_preparation(m); /* already quiesced */ 1241 1242 /* 1243 * IO to pool_dev remaps to the pool target's data_dev. 1244 * 1245 * If the whole block of data is being overwritten, we can issue the 1246 * bio immediately. Otherwise we use kcopyd to clone the data first. 1247 */ 1248 if (io_overwrites_block(pool, bio)) 1249 remap_and_issue_overwrite(tc, bio, data_dest, m); 1250 else { 1251 struct dm_io_region from, to; 1252 1253 from.bdev = origin->bdev; 1254 from.sector = data_origin * pool->sectors_per_block; 1255 from.count = len; 1256 1257 to.bdev = tc->pool_dev->bdev; 1258 to.sector = data_dest * pool->sectors_per_block; 1259 to.count = len; 1260 1261 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1262 0, copy_complete, m); 1263 if (r < 0) { 1264 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1265 copy_complete(1, 1, m); 1266 1267 /* 1268 * We allow the zero to be issued, to simplify the 1269 * error path. Otherwise we'd need to start 1270 * worrying about decrementing the prepare_actions 1271 * counter. 1272 */ 1273 } 1274 1275 /* 1276 * Do we need to zero a tail region? 1277 */ 1278 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1279 atomic_inc(&m->prepare_actions); 1280 ll_zero(tc, m, 1281 data_dest * pool->sectors_per_block + len, 1282 (data_dest + 1) * pool->sectors_per_block); 1283 } 1284 } 1285 1286 complete_mapping_preparation(m); /* drop our ref */ 1287 } 1288 1289 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1290 dm_block_t data_origin, dm_block_t data_dest, 1291 struct dm_bio_prison_cell *cell, struct bio *bio) 1292 { 1293 schedule_copy(tc, virt_block, tc->pool_dev, 1294 data_origin, data_dest, cell, bio, 1295 tc->pool->sectors_per_block); 1296 } 1297 1298 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1299 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1300 struct bio *bio) 1301 { 1302 struct pool *pool = tc->pool; 1303 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1304 1305 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1306 m->tc = tc; 1307 m->virt_begin = virt_block; 1308 m->virt_end = virt_block + 1u; 1309 m->data_block = data_block; 1310 m->cell = cell; 1311 1312 /* 1313 * If the whole block of data is being overwritten or we are not 1314 * zeroing pre-existing data, we can issue the bio immediately. 1315 * Otherwise we use kcopyd to zero the data first. 1316 */ 1317 if (pool->pf.zero_new_blocks) { 1318 if (io_overwrites_block(pool, bio)) 1319 remap_and_issue_overwrite(tc, bio, data_block, m); 1320 else 1321 ll_zero(tc, m, data_block * pool->sectors_per_block, 1322 (data_block + 1) * pool->sectors_per_block); 1323 } else 1324 process_prepared_mapping(m); 1325 } 1326 1327 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1328 dm_block_t data_dest, 1329 struct dm_bio_prison_cell *cell, struct bio *bio) 1330 { 1331 struct pool *pool = tc->pool; 1332 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1333 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1334 1335 if (virt_block_end <= tc->origin_size) 1336 schedule_copy(tc, virt_block, tc->origin_dev, 1337 virt_block, data_dest, cell, bio, 1338 pool->sectors_per_block); 1339 1340 else if (virt_block_begin < tc->origin_size) 1341 schedule_copy(tc, virt_block, tc->origin_dev, 1342 virt_block, data_dest, cell, bio, 1343 tc->origin_size - virt_block_begin); 1344 1345 else 1346 schedule_zero(tc, virt_block, data_dest, cell, bio); 1347 } 1348 1349 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1350 1351 static void check_for_space(struct pool *pool) 1352 { 1353 int r; 1354 dm_block_t nr_free; 1355 1356 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1357 return; 1358 1359 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1360 if (r) 1361 return; 1362 1363 if (nr_free) 1364 set_pool_mode(pool, PM_WRITE); 1365 } 1366 1367 /* 1368 * A non-zero return indicates read_only or fail_io mode. 1369 * Many callers don't care about the return value. 1370 */ 1371 static int commit(struct pool *pool) 1372 { 1373 int r; 1374 1375 if (get_pool_mode(pool) >= PM_READ_ONLY) 1376 return -EINVAL; 1377 1378 r = dm_pool_commit_metadata(pool->pmd); 1379 if (r) 1380 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1381 else 1382 check_for_space(pool); 1383 1384 return r; 1385 } 1386 1387 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1388 { 1389 unsigned long flags; 1390 1391 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1392 DMWARN("%s: reached low water mark for data device: sending event.", 1393 dm_device_name(pool->pool_md)); 1394 spin_lock_irqsave(&pool->lock, flags); 1395 pool->low_water_triggered = true; 1396 spin_unlock_irqrestore(&pool->lock, flags); 1397 dm_table_event(pool->ti->table); 1398 } 1399 } 1400 1401 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1402 { 1403 int r; 1404 dm_block_t free_blocks; 1405 struct pool *pool = tc->pool; 1406 1407 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1408 return -EINVAL; 1409 1410 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1411 if (r) { 1412 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1413 return r; 1414 } 1415 1416 check_low_water_mark(pool, free_blocks); 1417 1418 if (!free_blocks) { 1419 /* 1420 * Try to commit to see if that will free up some 1421 * more space. 1422 */ 1423 r = commit(pool); 1424 if (r) 1425 return r; 1426 1427 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1428 if (r) { 1429 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1430 return r; 1431 } 1432 1433 if (!free_blocks) { 1434 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1435 return -ENOSPC; 1436 } 1437 } 1438 1439 r = dm_pool_alloc_data_block(pool->pmd, result); 1440 if (r) { 1441 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1442 return r; 1443 } 1444 1445 return 0; 1446 } 1447 1448 /* 1449 * If we have run out of space, queue bios until the device is 1450 * resumed, presumably after having been reloaded with more space. 1451 */ 1452 static void retry_on_resume(struct bio *bio) 1453 { 1454 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1455 struct thin_c *tc = h->tc; 1456 unsigned long flags; 1457 1458 spin_lock_irqsave(&tc->lock, flags); 1459 bio_list_add(&tc->retry_on_resume_list, bio); 1460 spin_unlock_irqrestore(&tc->lock, flags); 1461 } 1462 1463 static int should_error_unserviceable_bio(struct pool *pool) 1464 { 1465 enum pool_mode m = get_pool_mode(pool); 1466 1467 switch (m) { 1468 case PM_WRITE: 1469 /* Shouldn't get here */ 1470 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1471 return -EIO; 1472 1473 case PM_OUT_OF_DATA_SPACE: 1474 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1475 1476 case PM_READ_ONLY: 1477 case PM_FAIL: 1478 return -EIO; 1479 default: 1480 /* Shouldn't get here */ 1481 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1482 return -EIO; 1483 } 1484 } 1485 1486 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1487 { 1488 int error = should_error_unserviceable_bio(pool); 1489 1490 if (error) 1491 bio_endio(bio, error); 1492 else 1493 retry_on_resume(bio); 1494 } 1495 1496 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1497 { 1498 struct bio *bio; 1499 struct bio_list bios; 1500 int error; 1501 1502 error = should_error_unserviceable_bio(pool); 1503 if (error) { 1504 cell_error_with_code(pool, cell, error); 1505 return; 1506 } 1507 1508 bio_list_init(&bios); 1509 cell_release(pool, cell, &bios); 1510 1511 while ((bio = bio_list_pop(&bios))) 1512 retry_on_resume(bio); 1513 } 1514 1515 static void process_discard_cell_no_passdown(struct thin_c *tc, 1516 struct dm_bio_prison_cell *virt_cell) 1517 { 1518 struct pool *pool = tc->pool; 1519 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1520 1521 /* 1522 * We don't need to lock the data blocks, since there's no 1523 * passdown. We only lock data blocks for allocation and breaking sharing. 1524 */ 1525 m->tc = tc; 1526 m->virt_begin = virt_cell->key.block_begin; 1527 m->virt_end = virt_cell->key.block_end; 1528 m->cell = virt_cell; 1529 m->bio = virt_cell->holder; 1530 1531 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1532 pool->process_prepared_discard(m); 1533 } 1534 1535 /* 1536 * FIXME: DM local hack to defer parent bios's end_io until we 1537 * _know_ all chained sub range discard bios have completed. 1538 * Will go away once late bio splitting lands upstream! 1539 */ 1540 static inline void __bio_inc_remaining(struct bio *bio) 1541 { 1542 bio->bi_flags |= (1 << BIO_CHAIN); 1543 smp_mb__before_atomic(); 1544 atomic_inc(&bio->__bi_remaining); 1545 } 1546 1547 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1548 struct bio *bio) 1549 { 1550 struct pool *pool = tc->pool; 1551 1552 int r; 1553 bool maybe_shared; 1554 struct dm_cell_key data_key; 1555 struct dm_bio_prison_cell *data_cell; 1556 struct dm_thin_new_mapping *m; 1557 dm_block_t virt_begin, virt_end, data_begin; 1558 1559 while (begin != end) { 1560 r = ensure_next_mapping(pool); 1561 if (r) 1562 /* we did our best */ 1563 return; 1564 1565 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1566 &data_begin, &maybe_shared); 1567 if (r) 1568 /* 1569 * Silently fail, letting any mappings we've 1570 * created complete. 1571 */ 1572 break; 1573 1574 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1575 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1576 /* contention, we'll give up with this range */ 1577 begin = virt_end; 1578 continue; 1579 } 1580 1581 /* 1582 * IO may still be going to the destination block. We must 1583 * quiesce before we can do the removal. 1584 */ 1585 m = get_next_mapping(pool); 1586 m->tc = tc; 1587 m->maybe_shared = maybe_shared; 1588 m->virt_begin = virt_begin; 1589 m->virt_end = virt_end; 1590 m->data_block = data_begin; 1591 m->cell = data_cell; 1592 m->bio = bio; 1593 1594 /* 1595 * The parent bio must not complete before sub discard bios are 1596 * chained to it (see __blkdev_issue_discard_async's bio_chain)! 1597 * 1598 * This per-mapping bi_remaining increment is paired with 1599 * the implicit decrement that occurs via bio_endio() in 1600 * process_prepared_discard_{passdown,no_passdown}. 1601 */ 1602 __bio_inc_remaining(bio); 1603 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1604 pool->process_prepared_discard(m); 1605 1606 begin = virt_end; 1607 } 1608 } 1609 1610 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1611 { 1612 struct bio *bio = virt_cell->holder; 1613 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1614 1615 /* 1616 * The virt_cell will only get freed once the origin bio completes. 1617 * This means it will remain locked while all the individual 1618 * passdown bios are in flight. 1619 */ 1620 h->cell = virt_cell; 1621 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1622 1623 /* 1624 * We complete the bio now, knowing that the bi_remaining field 1625 * will prevent completion until the sub range discards have 1626 * completed. 1627 */ 1628 bio_endio(bio, 0); 1629 } 1630 1631 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1632 { 1633 dm_block_t begin, end; 1634 struct dm_cell_key virt_key; 1635 struct dm_bio_prison_cell *virt_cell; 1636 1637 get_bio_block_range(tc, bio, &begin, &end); 1638 if (begin == end) { 1639 /* 1640 * The discard covers less than a block. 1641 */ 1642 bio_endio(bio, 0); 1643 return; 1644 } 1645 1646 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1647 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1648 /* 1649 * Potential starvation issue: We're relying on the 1650 * fs/application being well behaved, and not trying to 1651 * send IO to a region at the same time as discarding it. 1652 * If they do this persistently then it's possible this 1653 * cell will never be granted. 1654 */ 1655 return; 1656 1657 tc->pool->process_discard_cell(tc, virt_cell); 1658 } 1659 1660 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1661 struct dm_cell_key *key, 1662 struct dm_thin_lookup_result *lookup_result, 1663 struct dm_bio_prison_cell *cell) 1664 { 1665 int r; 1666 dm_block_t data_block; 1667 struct pool *pool = tc->pool; 1668 1669 r = alloc_data_block(tc, &data_block); 1670 switch (r) { 1671 case 0: 1672 schedule_internal_copy(tc, block, lookup_result->block, 1673 data_block, cell, bio); 1674 break; 1675 1676 case -ENOSPC: 1677 retry_bios_on_resume(pool, cell); 1678 break; 1679 1680 default: 1681 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1682 __func__, r); 1683 cell_error(pool, cell); 1684 break; 1685 } 1686 } 1687 1688 static void __remap_and_issue_shared_cell(void *context, 1689 struct dm_bio_prison_cell *cell) 1690 { 1691 struct remap_info *info = context; 1692 struct bio *bio; 1693 1694 while ((bio = bio_list_pop(&cell->bios))) { 1695 if ((bio_data_dir(bio) == WRITE) || 1696 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))) 1697 bio_list_add(&info->defer_bios, bio); 1698 else { 1699 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1700 1701 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1702 inc_all_io_entry(info->tc->pool, bio); 1703 bio_list_add(&info->issue_bios, bio); 1704 } 1705 } 1706 } 1707 1708 static void remap_and_issue_shared_cell(struct thin_c *tc, 1709 struct dm_bio_prison_cell *cell, 1710 dm_block_t block) 1711 { 1712 struct bio *bio; 1713 struct remap_info info; 1714 1715 info.tc = tc; 1716 bio_list_init(&info.defer_bios); 1717 bio_list_init(&info.issue_bios); 1718 1719 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1720 &info, cell); 1721 1722 while ((bio = bio_list_pop(&info.defer_bios))) 1723 thin_defer_bio(tc, bio); 1724 1725 while ((bio = bio_list_pop(&info.issue_bios))) 1726 remap_and_issue(tc, bio, block); 1727 } 1728 1729 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1730 dm_block_t block, 1731 struct dm_thin_lookup_result *lookup_result, 1732 struct dm_bio_prison_cell *virt_cell) 1733 { 1734 struct dm_bio_prison_cell *data_cell; 1735 struct pool *pool = tc->pool; 1736 struct dm_cell_key key; 1737 1738 /* 1739 * If cell is already occupied, then sharing is already in the process 1740 * of being broken so we have nothing further to do here. 1741 */ 1742 build_data_key(tc->td, lookup_result->block, &key); 1743 if (bio_detain(pool, &key, bio, &data_cell)) { 1744 cell_defer_no_holder(tc, virt_cell); 1745 return; 1746 } 1747 1748 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1749 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1750 cell_defer_no_holder(tc, virt_cell); 1751 } else { 1752 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1753 1754 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1755 inc_all_io_entry(pool, bio); 1756 remap_and_issue(tc, bio, lookup_result->block); 1757 1758 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1759 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1760 } 1761 } 1762 1763 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1764 struct dm_bio_prison_cell *cell) 1765 { 1766 int r; 1767 dm_block_t data_block; 1768 struct pool *pool = tc->pool; 1769 1770 /* 1771 * Remap empty bios (flushes) immediately, without provisioning. 1772 */ 1773 if (!bio->bi_iter.bi_size) { 1774 inc_all_io_entry(pool, bio); 1775 cell_defer_no_holder(tc, cell); 1776 1777 remap_and_issue(tc, bio, 0); 1778 return; 1779 } 1780 1781 /* 1782 * Fill read bios with zeroes and complete them immediately. 1783 */ 1784 if (bio_data_dir(bio) == READ) { 1785 zero_fill_bio(bio); 1786 cell_defer_no_holder(tc, cell); 1787 bio_endio(bio, 0); 1788 return; 1789 } 1790 1791 r = alloc_data_block(tc, &data_block); 1792 switch (r) { 1793 case 0: 1794 if (tc->origin_dev) 1795 schedule_external_copy(tc, block, data_block, cell, bio); 1796 else 1797 schedule_zero(tc, block, data_block, cell, bio); 1798 break; 1799 1800 case -ENOSPC: 1801 retry_bios_on_resume(pool, cell); 1802 break; 1803 1804 default: 1805 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1806 __func__, r); 1807 cell_error(pool, cell); 1808 break; 1809 } 1810 } 1811 1812 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1813 { 1814 int r; 1815 struct pool *pool = tc->pool; 1816 struct bio *bio = cell->holder; 1817 dm_block_t block = get_bio_block(tc, bio); 1818 struct dm_thin_lookup_result lookup_result; 1819 1820 if (tc->requeue_mode) { 1821 cell_requeue(pool, cell); 1822 return; 1823 } 1824 1825 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1826 switch (r) { 1827 case 0: 1828 if (lookup_result.shared) 1829 process_shared_bio(tc, bio, block, &lookup_result, cell); 1830 else { 1831 inc_all_io_entry(pool, bio); 1832 remap_and_issue(tc, bio, lookup_result.block); 1833 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1834 } 1835 break; 1836 1837 case -ENODATA: 1838 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1839 inc_all_io_entry(pool, bio); 1840 cell_defer_no_holder(tc, cell); 1841 1842 if (bio_end_sector(bio) <= tc->origin_size) 1843 remap_to_origin_and_issue(tc, bio); 1844 1845 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1846 zero_fill_bio(bio); 1847 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1848 remap_to_origin_and_issue(tc, bio); 1849 1850 } else { 1851 zero_fill_bio(bio); 1852 bio_endio(bio, 0); 1853 } 1854 } else 1855 provision_block(tc, bio, block, cell); 1856 break; 1857 1858 default: 1859 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1860 __func__, r); 1861 cell_defer_no_holder(tc, cell); 1862 bio_io_error(bio); 1863 break; 1864 } 1865 } 1866 1867 static void process_bio(struct thin_c *tc, struct bio *bio) 1868 { 1869 struct pool *pool = tc->pool; 1870 dm_block_t block = get_bio_block(tc, bio); 1871 struct dm_bio_prison_cell *cell; 1872 struct dm_cell_key key; 1873 1874 /* 1875 * If cell is already occupied, then the block is already 1876 * being provisioned so we have nothing further to do here. 1877 */ 1878 build_virtual_key(tc->td, block, &key); 1879 if (bio_detain(pool, &key, bio, &cell)) 1880 return; 1881 1882 process_cell(tc, cell); 1883 } 1884 1885 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1886 struct dm_bio_prison_cell *cell) 1887 { 1888 int r; 1889 int rw = bio_data_dir(bio); 1890 dm_block_t block = get_bio_block(tc, bio); 1891 struct dm_thin_lookup_result lookup_result; 1892 1893 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1894 switch (r) { 1895 case 0: 1896 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1897 handle_unserviceable_bio(tc->pool, bio); 1898 if (cell) 1899 cell_defer_no_holder(tc, cell); 1900 } else { 1901 inc_all_io_entry(tc->pool, bio); 1902 remap_and_issue(tc, bio, lookup_result.block); 1903 if (cell) 1904 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1905 } 1906 break; 1907 1908 case -ENODATA: 1909 if (cell) 1910 cell_defer_no_holder(tc, cell); 1911 if (rw != READ) { 1912 handle_unserviceable_bio(tc->pool, bio); 1913 break; 1914 } 1915 1916 if (tc->origin_dev) { 1917 inc_all_io_entry(tc->pool, bio); 1918 remap_to_origin_and_issue(tc, bio); 1919 break; 1920 } 1921 1922 zero_fill_bio(bio); 1923 bio_endio(bio, 0); 1924 break; 1925 1926 default: 1927 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1928 __func__, r); 1929 if (cell) 1930 cell_defer_no_holder(tc, cell); 1931 bio_io_error(bio); 1932 break; 1933 } 1934 } 1935 1936 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1937 { 1938 __process_bio_read_only(tc, bio, NULL); 1939 } 1940 1941 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1942 { 1943 __process_bio_read_only(tc, cell->holder, cell); 1944 } 1945 1946 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1947 { 1948 bio_endio(bio, 0); 1949 } 1950 1951 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1952 { 1953 bio_io_error(bio); 1954 } 1955 1956 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1957 { 1958 cell_success(tc->pool, cell); 1959 } 1960 1961 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1962 { 1963 cell_error(tc->pool, cell); 1964 } 1965 1966 /* 1967 * FIXME: should we also commit due to size of transaction, measured in 1968 * metadata blocks? 1969 */ 1970 static int need_commit_due_to_time(struct pool *pool) 1971 { 1972 return !time_in_range(jiffies, pool->last_commit_jiffies, 1973 pool->last_commit_jiffies + COMMIT_PERIOD); 1974 } 1975 1976 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1977 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1978 1979 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1980 { 1981 struct rb_node **rbp, *parent; 1982 struct dm_thin_endio_hook *pbd; 1983 sector_t bi_sector = bio->bi_iter.bi_sector; 1984 1985 rbp = &tc->sort_bio_list.rb_node; 1986 parent = NULL; 1987 while (*rbp) { 1988 parent = *rbp; 1989 pbd = thin_pbd(parent); 1990 1991 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1992 rbp = &(*rbp)->rb_left; 1993 else 1994 rbp = &(*rbp)->rb_right; 1995 } 1996 1997 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1998 rb_link_node(&pbd->rb_node, parent, rbp); 1999 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2000 } 2001 2002 static void __extract_sorted_bios(struct thin_c *tc) 2003 { 2004 struct rb_node *node; 2005 struct dm_thin_endio_hook *pbd; 2006 struct bio *bio; 2007 2008 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2009 pbd = thin_pbd(node); 2010 bio = thin_bio(pbd); 2011 2012 bio_list_add(&tc->deferred_bio_list, bio); 2013 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2014 } 2015 2016 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2017 } 2018 2019 static void __sort_thin_deferred_bios(struct thin_c *tc) 2020 { 2021 struct bio *bio; 2022 struct bio_list bios; 2023 2024 bio_list_init(&bios); 2025 bio_list_merge(&bios, &tc->deferred_bio_list); 2026 bio_list_init(&tc->deferred_bio_list); 2027 2028 /* Sort deferred_bio_list using rb-tree */ 2029 while ((bio = bio_list_pop(&bios))) 2030 __thin_bio_rb_add(tc, bio); 2031 2032 /* 2033 * Transfer the sorted bios in sort_bio_list back to 2034 * deferred_bio_list to allow lockless submission of 2035 * all bios. 2036 */ 2037 __extract_sorted_bios(tc); 2038 } 2039 2040 static void process_thin_deferred_bios(struct thin_c *tc) 2041 { 2042 struct pool *pool = tc->pool; 2043 unsigned long flags; 2044 struct bio *bio; 2045 struct bio_list bios; 2046 struct blk_plug plug; 2047 unsigned count = 0; 2048 2049 if (tc->requeue_mode) { 2050 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE); 2051 return; 2052 } 2053 2054 bio_list_init(&bios); 2055 2056 spin_lock_irqsave(&tc->lock, flags); 2057 2058 if (bio_list_empty(&tc->deferred_bio_list)) { 2059 spin_unlock_irqrestore(&tc->lock, flags); 2060 return; 2061 } 2062 2063 __sort_thin_deferred_bios(tc); 2064 2065 bio_list_merge(&bios, &tc->deferred_bio_list); 2066 bio_list_init(&tc->deferred_bio_list); 2067 2068 spin_unlock_irqrestore(&tc->lock, flags); 2069 2070 blk_start_plug(&plug); 2071 while ((bio = bio_list_pop(&bios))) { 2072 /* 2073 * If we've got no free new_mapping structs, and processing 2074 * this bio might require one, we pause until there are some 2075 * prepared mappings to process. 2076 */ 2077 if (ensure_next_mapping(pool)) { 2078 spin_lock_irqsave(&tc->lock, flags); 2079 bio_list_add(&tc->deferred_bio_list, bio); 2080 bio_list_merge(&tc->deferred_bio_list, &bios); 2081 spin_unlock_irqrestore(&tc->lock, flags); 2082 break; 2083 } 2084 2085 if (bio->bi_rw & REQ_DISCARD) 2086 pool->process_discard(tc, bio); 2087 else 2088 pool->process_bio(tc, bio); 2089 2090 if ((count++ & 127) == 0) { 2091 throttle_work_update(&pool->throttle); 2092 dm_pool_issue_prefetches(pool->pmd); 2093 } 2094 } 2095 blk_finish_plug(&plug); 2096 } 2097 2098 static int cmp_cells(const void *lhs, const void *rhs) 2099 { 2100 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2101 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2102 2103 BUG_ON(!lhs_cell->holder); 2104 BUG_ON(!rhs_cell->holder); 2105 2106 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2107 return -1; 2108 2109 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2110 return 1; 2111 2112 return 0; 2113 } 2114 2115 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2116 { 2117 unsigned count = 0; 2118 struct dm_bio_prison_cell *cell, *tmp; 2119 2120 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2121 if (count >= CELL_SORT_ARRAY_SIZE) 2122 break; 2123 2124 pool->cell_sort_array[count++] = cell; 2125 list_del(&cell->user_list); 2126 } 2127 2128 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2129 2130 return count; 2131 } 2132 2133 static void process_thin_deferred_cells(struct thin_c *tc) 2134 { 2135 struct pool *pool = tc->pool; 2136 unsigned long flags; 2137 struct list_head cells; 2138 struct dm_bio_prison_cell *cell; 2139 unsigned i, j, count; 2140 2141 INIT_LIST_HEAD(&cells); 2142 2143 spin_lock_irqsave(&tc->lock, flags); 2144 list_splice_init(&tc->deferred_cells, &cells); 2145 spin_unlock_irqrestore(&tc->lock, flags); 2146 2147 if (list_empty(&cells)) 2148 return; 2149 2150 do { 2151 count = sort_cells(tc->pool, &cells); 2152 2153 for (i = 0; i < count; i++) { 2154 cell = pool->cell_sort_array[i]; 2155 BUG_ON(!cell->holder); 2156 2157 /* 2158 * If we've got no free new_mapping structs, and processing 2159 * this bio might require one, we pause until there are some 2160 * prepared mappings to process. 2161 */ 2162 if (ensure_next_mapping(pool)) { 2163 for (j = i; j < count; j++) 2164 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2165 2166 spin_lock_irqsave(&tc->lock, flags); 2167 list_splice(&cells, &tc->deferred_cells); 2168 spin_unlock_irqrestore(&tc->lock, flags); 2169 return; 2170 } 2171 2172 if (cell->holder->bi_rw & REQ_DISCARD) 2173 pool->process_discard_cell(tc, cell); 2174 else 2175 pool->process_cell(tc, cell); 2176 } 2177 } while (!list_empty(&cells)); 2178 } 2179 2180 static void thin_get(struct thin_c *tc); 2181 static void thin_put(struct thin_c *tc); 2182 2183 /* 2184 * We can't hold rcu_read_lock() around code that can block. So we 2185 * find a thin with the rcu lock held; bump a refcount; then drop 2186 * the lock. 2187 */ 2188 static struct thin_c *get_first_thin(struct pool *pool) 2189 { 2190 struct thin_c *tc = NULL; 2191 2192 rcu_read_lock(); 2193 if (!list_empty(&pool->active_thins)) { 2194 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2195 thin_get(tc); 2196 } 2197 rcu_read_unlock(); 2198 2199 return tc; 2200 } 2201 2202 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2203 { 2204 struct thin_c *old_tc = tc; 2205 2206 rcu_read_lock(); 2207 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2208 thin_get(tc); 2209 thin_put(old_tc); 2210 rcu_read_unlock(); 2211 return tc; 2212 } 2213 thin_put(old_tc); 2214 rcu_read_unlock(); 2215 2216 return NULL; 2217 } 2218 2219 static void process_deferred_bios(struct pool *pool) 2220 { 2221 unsigned long flags; 2222 struct bio *bio; 2223 struct bio_list bios; 2224 struct thin_c *tc; 2225 2226 tc = get_first_thin(pool); 2227 while (tc) { 2228 process_thin_deferred_cells(tc); 2229 process_thin_deferred_bios(tc); 2230 tc = get_next_thin(pool, tc); 2231 } 2232 2233 /* 2234 * If there are any deferred flush bios, we must commit 2235 * the metadata before issuing them. 2236 */ 2237 bio_list_init(&bios); 2238 spin_lock_irqsave(&pool->lock, flags); 2239 bio_list_merge(&bios, &pool->deferred_flush_bios); 2240 bio_list_init(&pool->deferred_flush_bios); 2241 spin_unlock_irqrestore(&pool->lock, flags); 2242 2243 if (bio_list_empty(&bios) && 2244 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2245 return; 2246 2247 if (commit(pool)) { 2248 while ((bio = bio_list_pop(&bios))) 2249 bio_io_error(bio); 2250 return; 2251 } 2252 pool->last_commit_jiffies = jiffies; 2253 2254 while ((bio = bio_list_pop(&bios))) 2255 generic_make_request(bio); 2256 } 2257 2258 static void do_worker(struct work_struct *ws) 2259 { 2260 struct pool *pool = container_of(ws, struct pool, worker); 2261 2262 throttle_work_start(&pool->throttle); 2263 dm_pool_issue_prefetches(pool->pmd); 2264 throttle_work_update(&pool->throttle); 2265 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2266 throttle_work_update(&pool->throttle); 2267 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2268 throttle_work_update(&pool->throttle); 2269 process_deferred_bios(pool); 2270 throttle_work_complete(&pool->throttle); 2271 } 2272 2273 /* 2274 * We want to commit periodically so that not too much 2275 * unwritten data builds up. 2276 */ 2277 static void do_waker(struct work_struct *ws) 2278 { 2279 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2280 wake_worker(pool); 2281 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2282 } 2283 2284 /* 2285 * We're holding onto IO to allow userland time to react. After the 2286 * timeout either the pool will have been resized (and thus back in 2287 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO. 2288 */ 2289 static void do_no_space_timeout(struct work_struct *ws) 2290 { 2291 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2292 no_space_timeout); 2293 2294 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) 2295 set_pool_mode(pool, PM_READ_ONLY); 2296 } 2297 2298 /*----------------------------------------------------------------*/ 2299 2300 struct pool_work { 2301 struct work_struct worker; 2302 struct completion complete; 2303 }; 2304 2305 static struct pool_work *to_pool_work(struct work_struct *ws) 2306 { 2307 return container_of(ws, struct pool_work, worker); 2308 } 2309 2310 static void pool_work_complete(struct pool_work *pw) 2311 { 2312 complete(&pw->complete); 2313 } 2314 2315 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2316 void (*fn)(struct work_struct *)) 2317 { 2318 INIT_WORK_ONSTACK(&pw->worker, fn); 2319 init_completion(&pw->complete); 2320 queue_work(pool->wq, &pw->worker); 2321 wait_for_completion(&pw->complete); 2322 } 2323 2324 /*----------------------------------------------------------------*/ 2325 2326 struct noflush_work { 2327 struct pool_work pw; 2328 struct thin_c *tc; 2329 }; 2330 2331 static struct noflush_work *to_noflush(struct work_struct *ws) 2332 { 2333 return container_of(to_pool_work(ws), struct noflush_work, pw); 2334 } 2335 2336 static void do_noflush_start(struct work_struct *ws) 2337 { 2338 struct noflush_work *w = to_noflush(ws); 2339 w->tc->requeue_mode = true; 2340 requeue_io(w->tc); 2341 pool_work_complete(&w->pw); 2342 } 2343 2344 static void do_noflush_stop(struct work_struct *ws) 2345 { 2346 struct noflush_work *w = to_noflush(ws); 2347 w->tc->requeue_mode = false; 2348 pool_work_complete(&w->pw); 2349 } 2350 2351 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2352 { 2353 struct noflush_work w; 2354 2355 w.tc = tc; 2356 pool_work_wait(&w.pw, tc->pool, fn); 2357 } 2358 2359 /*----------------------------------------------------------------*/ 2360 2361 static enum pool_mode get_pool_mode(struct pool *pool) 2362 { 2363 return pool->pf.mode; 2364 } 2365 2366 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2367 { 2368 dm_table_event(pool->ti->table); 2369 DMINFO("%s: switching pool to %s mode", 2370 dm_device_name(pool->pool_md), new_mode); 2371 } 2372 2373 static bool passdown_enabled(struct pool_c *pt) 2374 { 2375 return pt->adjusted_pf.discard_passdown; 2376 } 2377 2378 static void set_discard_callbacks(struct pool *pool) 2379 { 2380 struct pool_c *pt = pool->ti->private; 2381 2382 if (passdown_enabled(pt)) { 2383 pool->process_discard_cell = process_discard_cell_passdown; 2384 pool->process_prepared_discard = process_prepared_discard_passdown; 2385 } else { 2386 pool->process_discard_cell = process_discard_cell_no_passdown; 2387 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2388 } 2389 } 2390 2391 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2392 { 2393 struct pool_c *pt = pool->ti->private; 2394 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2395 enum pool_mode old_mode = get_pool_mode(pool); 2396 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2397 2398 /* 2399 * Never allow the pool to transition to PM_WRITE mode if user 2400 * intervention is required to verify metadata and data consistency. 2401 */ 2402 if (new_mode == PM_WRITE && needs_check) { 2403 DMERR("%s: unable to switch pool to write mode until repaired.", 2404 dm_device_name(pool->pool_md)); 2405 if (old_mode != new_mode) 2406 new_mode = old_mode; 2407 else 2408 new_mode = PM_READ_ONLY; 2409 } 2410 /* 2411 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2412 * not going to recover without a thin_repair. So we never let the 2413 * pool move out of the old mode. 2414 */ 2415 if (old_mode == PM_FAIL) 2416 new_mode = old_mode; 2417 2418 switch (new_mode) { 2419 case PM_FAIL: 2420 if (old_mode != new_mode) 2421 notify_of_pool_mode_change(pool, "failure"); 2422 dm_pool_metadata_read_only(pool->pmd); 2423 pool->process_bio = process_bio_fail; 2424 pool->process_discard = process_bio_fail; 2425 pool->process_cell = process_cell_fail; 2426 pool->process_discard_cell = process_cell_fail; 2427 pool->process_prepared_mapping = process_prepared_mapping_fail; 2428 pool->process_prepared_discard = process_prepared_discard_fail; 2429 2430 error_retry_list(pool); 2431 break; 2432 2433 case PM_READ_ONLY: 2434 if (old_mode != new_mode) 2435 notify_of_pool_mode_change(pool, "read-only"); 2436 dm_pool_metadata_read_only(pool->pmd); 2437 pool->process_bio = process_bio_read_only; 2438 pool->process_discard = process_bio_success; 2439 pool->process_cell = process_cell_read_only; 2440 pool->process_discard_cell = process_cell_success; 2441 pool->process_prepared_mapping = process_prepared_mapping_fail; 2442 pool->process_prepared_discard = process_prepared_discard_success; 2443 2444 error_retry_list(pool); 2445 break; 2446 2447 case PM_OUT_OF_DATA_SPACE: 2448 /* 2449 * Ideally we'd never hit this state; the low water mark 2450 * would trigger userland to extend the pool before we 2451 * completely run out of data space. However, many small 2452 * IOs to unprovisioned space can consume data space at an 2453 * alarming rate. Adjust your low water mark if you're 2454 * frequently seeing this mode. 2455 */ 2456 if (old_mode != new_mode) 2457 notify_of_pool_mode_change(pool, "out-of-data-space"); 2458 pool->process_bio = process_bio_read_only; 2459 pool->process_discard = process_discard_bio; 2460 pool->process_cell = process_cell_read_only; 2461 pool->process_prepared_mapping = process_prepared_mapping; 2462 set_discard_callbacks(pool); 2463 2464 if (!pool->pf.error_if_no_space && no_space_timeout) 2465 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2466 break; 2467 2468 case PM_WRITE: 2469 if (old_mode != new_mode) 2470 notify_of_pool_mode_change(pool, "write"); 2471 dm_pool_metadata_read_write(pool->pmd); 2472 pool->process_bio = process_bio; 2473 pool->process_discard = process_discard_bio; 2474 pool->process_cell = process_cell; 2475 pool->process_prepared_mapping = process_prepared_mapping; 2476 set_discard_callbacks(pool); 2477 break; 2478 } 2479 2480 pool->pf.mode = new_mode; 2481 /* 2482 * The pool mode may have changed, sync it so bind_control_target() 2483 * doesn't cause an unexpected mode transition on resume. 2484 */ 2485 pt->adjusted_pf.mode = new_mode; 2486 } 2487 2488 static void abort_transaction(struct pool *pool) 2489 { 2490 const char *dev_name = dm_device_name(pool->pool_md); 2491 2492 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2493 if (dm_pool_abort_metadata(pool->pmd)) { 2494 DMERR("%s: failed to abort metadata transaction", dev_name); 2495 set_pool_mode(pool, PM_FAIL); 2496 } 2497 2498 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2499 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2500 set_pool_mode(pool, PM_FAIL); 2501 } 2502 } 2503 2504 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2505 { 2506 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2507 dm_device_name(pool->pool_md), op, r); 2508 2509 abort_transaction(pool); 2510 set_pool_mode(pool, PM_READ_ONLY); 2511 } 2512 2513 /*----------------------------------------------------------------*/ 2514 2515 /* 2516 * Mapping functions. 2517 */ 2518 2519 /* 2520 * Called only while mapping a thin bio to hand it over to the workqueue. 2521 */ 2522 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2523 { 2524 unsigned long flags; 2525 struct pool *pool = tc->pool; 2526 2527 spin_lock_irqsave(&tc->lock, flags); 2528 bio_list_add(&tc->deferred_bio_list, bio); 2529 spin_unlock_irqrestore(&tc->lock, flags); 2530 2531 wake_worker(pool); 2532 } 2533 2534 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2535 { 2536 struct pool *pool = tc->pool; 2537 2538 throttle_lock(&pool->throttle); 2539 thin_defer_bio(tc, bio); 2540 throttle_unlock(&pool->throttle); 2541 } 2542 2543 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2544 { 2545 unsigned long flags; 2546 struct pool *pool = tc->pool; 2547 2548 throttle_lock(&pool->throttle); 2549 spin_lock_irqsave(&tc->lock, flags); 2550 list_add_tail(&cell->user_list, &tc->deferred_cells); 2551 spin_unlock_irqrestore(&tc->lock, flags); 2552 throttle_unlock(&pool->throttle); 2553 2554 wake_worker(pool); 2555 } 2556 2557 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2558 { 2559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2560 2561 h->tc = tc; 2562 h->shared_read_entry = NULL; 2563 h->all_io_entry = NULL; 2564 h->overwrite_mapping = NULL; 2565 h->cell = NULL; 2566 } 2567 2568 /* 2569 * Non-blocking function called from the thin target's map function. 2570 */ 2571 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2572 { 2573 int r; 2574 struct thin_c *tc = ti->private; 2575 dm_block_t block = get_bio_block(tc, bio); 2576 struct dm_thin_device *td = tc->td; 2577 struct dm_thin_lookup_result result; 2578 struct dm_bio_prison_cell *virt_cell, *data_cell; 2579 struct dm_cell_key key; 2580 2581 thin_hook_bio(tc, bio); 2582 2583 if (tc->requeue_mode) { 2584 bio_endio(bio, DM_ENDIO_REQUEUE); 2585 return DM_MAPIO_SUBMITTED; 2586 } 2587 2588 if (get_pool_mode(tc->pool) == PM_FAIL) { 2589 bio_io_error(bio); 2590 return DM_MAPIO_SUBMITTED; 2591 } 2592 2593 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 2594 thin_defer_bio_with_throttle(tc, bio); 2595 return DM_MAPIO_SUBMITTED; 2596 } 2597 2598 /* 2599 * We must hold the virtual cell before doing the lookup, otherwise 2600 * there's a race with discard. 2601 */ 2602 build_virtual_key(tc->td, block, &key); 2603 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2604 return DM_MAPIO_SUBMITTED; 2605 2606 r = dm_thin_find_block(td, block, 0, &result); 2607 2608 /* 2609 * Note that we defer readahead too. 2610 */ 2611 switch (r) { 2612 case 0: 2613 if (unlikely(result.shared)) { 2614 /* 2615 * We have a race condition here between the 2616 * result.shared value returned by the lookup and 2617 * snapshot creation, which may cause new 2618 * sharing. 2619 * 2620 * To avoid this always quiesce the origin before 2621 * taking the snap. You want to do this anyway to 2622 * ensure a consistent application view 2623 * (i.e. lockfs). 2624 * 2625 * More distant ancestors are irrelevant. The 2626 * shared flag will be set in their case. 2627 */ 2628 thin_defer_cell(tc, virt_cell); 2629 return DM_MAPIO_SUBMITTED; 2630 } 2631 2632 build_data_key(tc->td, result.block, &key); 2633 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2634 cell_defer_no_holder(tc, virt_cell); 2635 return DM_MAPIO_SUBMITTED; 2636 } 2637 2638 inc_all_io_entry(tc->pool, bio); 2639 cell_defer_no_holder(tc, data_cell); 2640 cell_defer_no_holder(tc, virt_cell); 2641 2642 remap(tc, bio, result.block); 2643 return DM_MAPIO_REMAPPED; 2644 2645 case -ENODATA: 2646 case -EWOULDBLOCK: 2647 thin_defer_cell(tc, virt_cell); 2648 return DM_MAPIO_SUBMITTED; 2649 2650 default: 2651 /* 2652 * Must always call bio_io_error on failure. 2653 * dm_thin_find_block can fail with -EINVAL if the 2654 * pool is switched to fail-io mode. 2655 */ 2656 bio_io_error(bio); 2657 cell_defer_no_holder(tc, virt_cell); 2658 return DM_MAPIO_SUBMITTED; 2659 } 2660 } 2661 2662 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2663 { 2664 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2665 struct request_queue *q; 2666 2667 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2668 return 1; 2669 2670 q = bdev_get_queue(pt->data_dev->bdev); 2671 return bdi_congested(&q->backing_dev_info, bdi_bits); 2672 } 2673 2674 static void requeue_bios(struct pool *pool) 2675 { 2676 unsigned long flags; 2677 struct thin_c *tc; 2678 2679 rcu_read_lock(); 2680 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2681 spin_lock_irqsave(&tc->lock, flags); 2682 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2683 bio_list_init(&tc->retry_on_resume_list); 2684 spin_unlock_irqrestore(&tc->lock, flags); 2685 } 2686 rcu_read_unlock(); 2687 } 2688 2689 /*---------------------------------------------------------------- 2690 * Binding of control targets to a pool object 2691 *--------------------------------------------------------------*/ 2692 static bool data_dev_supports_discard(struct pool_c *pt) 2693 { 2694 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2695 2696 return q && blk_queue_discard(q); 2697 } 2698 2699 static bool is_factor(sector_t block_size, uint32_t n) 2700 { 2701 return !sector_div(block_size, n); 2702 } 2703 2704 /* 2705 * If discard_passdown was enabled verify that the data device 2706 * supports discards. Disable discard_passdown if not. 2707 */ 2708 static void disable_passdown_if_not_supported(struct pool_c *pt) 2709 { 2710 struct pool *pool = pt->pool; 2711 struct block_device *data_bdev = pt->data_dev->bdev; 2712 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2713 const char *reason = NULL; 2714 char buf[BDEVNAME_SIZE]; 2715 2716 if (!pt->adjusted_pf.discard_passdown) 2717 return; 2718 2719 if (!data_dev_supports_discard(pt)) 2720 reason = "discard unsupported"; 2721 2722 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2723 reason = "max discard sectors smaller than a block"; 2724 2725 if (reason) { 2726 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2727 pt->adjusted_pf.discard_passdown = false; 2728 } 2729 } 2730 2731 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2732 { 2733 struct pool_c *pt = ti->private; 2734 2735 /* 2736 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2737 */ 2738 enum pool_mode old_mode = get_pool_mode(pool); 2739 enum pool_mode new_mode = pt->adjusted_pf.mode; 2740 2741 /* 2742 * Don't change the pool's mode until set_pool_mode() below. 2743 * Otherwise the pool's process_* function pointers may 2744 * not match the desired pool mode. 2745 */ 2746 pt->adjusted_pf.mode = old_mode; 2747 2748 pool->ti = ti; 2749 pool->pf = pt->adjusted_pf; 2750 pool->low_water_blocks = pt->low_water_blocks; 2751 2752 set_pool_mode(pool, new_mode); 2753 2754 return 0; 2755 } 2756 2757 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2758 { 2759 if (pool->ti == ti) 2760 pool->ti = NULL; 2761 } 2762 2763 /*---------------------------------------------------------------- 2764 * Pool creation 2765 *--------------------------------------------------------------*/ 2766 /* Initialize pool features. */ 2767 static void pool_features_init(struct pool_features *pf) 2768 { 2769 pf->mode = PM_WRITE; 2770 pf->zero_new_blocks = true; 2771 pf->discard_enabled = true; 2772 pf->discard_passdown = true; 2773 pf->error_if_no_space = false; 2774 } 2775 2776 static void __pool_destroy(struct pool *pool) 2777 { 2778 __pool_table_remove(pool); 2779 2780 if (dm_pool_metadata_close(pool->pmd) < 0) 2781 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2782 2783 dm_bio_prison_destroy(pool->prison); 2784 dm_kcopyd_client_destroy(pool->copier); 2785 2786 if (pool->wq) 2787 destroy_workqueue(pool->wq); 2788 2789 if (pool->next_mapping) 2790 mempool_free(pool->next_mapping, pool->mapping_pool); 2791 mempool_destroy(pool->mapping_pool); 2792 dm_deferred_set_destroy(pool->shared_read_ds); 2793 dm_deferred_set_destroy(pool->all_io_ds); 2794 kfree(pool); 2795 } 2796 2797 static struct kmem_cache *_new_mapping_cache; 2798 2799 static struct pool *pool_create(struct mapped_device *pool_md, 2800 struct block_device *metadata_dev, 2801 unsigned long block_size, 2802 int read_only, char **error) 2803 { 2804 int r; 2805 void *err_p; 2806 struct pool *pool; 2807 struct dm_pool_metadata *pmd; 2808 bool format_device = read_only ? false : true; 2809 2810 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2811 if (IS_ERR(pmd)) { 2812 *error = "Error creating metadata object"; 2813 return (struct pool *)pmd; 2814 } 2815 2816 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2817 if (!pool) { 2818 *error = "Error allocating memory for pool"; 2819 err_p = ERR_PTR(-ENOMEM); 2820 goto bad_pool; 2821 } 2822 2823 pool->pmd = pmd; 2824 pool->sectors_per_block = block_size; 2825 if (block_size & (block_size - 1)) 2826 pool->sectors_per_block_shift = -1; 2827 else 2828 pool->sectors_per_block_shift = __ffs(block_size); 2829 pool->low_water_blocks = 0; 2830 pool_features_init(&pool->pf); 2831 pool->prison = dm_bio_prison_create(); 2832 if (!pool->prison) { 2833 *error = "Error creating pool's bio prison"; 2834 err_p = ERR_PTR(-ENOMEM); 2835 goto bad_prison; 2836 } 2837 2838 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2839 if (IS_ERR(pool->copier)) { 2840 r = PTR_ERR(pool->copier); 2841 *error = "Error creating pool's kcopyd client"; 2842 err_p = ERR_PTR(r); 2843 goto bad_kcopyd_client; 2844 } 2845 2846 /* 2847 * Create singlethreaded workqueue that will service all devices 2848 * that use this metadata. 2849 */ 2850 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2851 if (!pool->wq) { 2852 *error = "Error creating pool's workqueue"; 2853 err_p = ERR_PTR(-ENOMEM); 2854 goto bad_wq; 2855 } 2856 2857 throttle_init(&pool->throttle); 2858 INIT_WORK(&pool->worker, do_worker); 2859 INIT_DELAYED_WORK(&pool->waker, do_waker); 2860 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2861 spin_lock_init(&pool->lock); 2862 bio_list_init(&pool->deferred_flush_bios); 2863 INIT_LIST_HEAD(&pool->prepared_mappings); 2864 INIT_LIST_HEAD(&pool->prepared_discards); 2865 INIT_LIST_HEAD(&pool->active_thins); 2866 pool->low_water_triggered = false; 2867 pool->suspended = true; 2868 2869 pool->shared_read_ds = dm_deferred_set_create(); 2870 if (!pool->shared_read_ds) { 2871 *error = "Error creating pool's shared read deferred set"; 2872 err_p = ERR_PTR(-ENOMEM); 2873 goto bad_shared_read_ds; 2874 } 2875 2876 pool->all_io_ds = dm_deferred_set_create(); 2877 if (!pool->all_io_ds) { 2878 *error = "Error creating pool's all io deferred set"; 2879 err_p = ERR_PTR(-ENOMEM); 2880 goto bad_all_io_ds; 2881 } 2882 2883 pool->next_mapping = NULL; 2884 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2885 _new_mapping_cache); 2886 if (!pool->mapping_pool) { 2887 *error = "Error creating pool's mapping mempool"; 2888 err_p = ERR_PTR(-ENOMEM); 2889 goto bad_mapping_pool; 2890 } 2891 2892 pool->ref_count = 1; 2893 pool->last_commit_jiffies = jiffies; 2894 pool->pool_md = pool_md; 2895 pool->md_dev = metadata_dev; 2896 __pool_table_insert(pool); 2897 2898 return pool; 2899 2900 bad_mapping_pool: 2901 dm_deferred_set_destroy(pool->all_io_ds); 2902 bad_all_io_ds: 2903 dm_deferred_set_destroy(pool->shared_read_ds); 2904 bad_shared_read_ds: 2905 destroy_workqueue(pool->wq); 2906 bad_wq: 2907 dm_kcopyd_client_destroy(pool->copier); 2908 bad_kcopyd_client: 2909 dm_bio_prison_destroy(pool->prison); 2910 bad_prison: 2911 kfree(pool); 2912 bad_pool: 2913 if (dm_pool_metadata_close(pmd)) 2914 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2915 2916 return err_p; 2917 } 2918 2919 static void __pool_inc(struct pool *pool) 2920 { 2921 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2922 pool->ref_count++; 2923 } 2924 2925 static void __pool_dec(struct pool *pool) 2926 { 2927 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2928 BUG_ON(!pool->ref_count); 2929 if (!--pool->ref_count) 2930 __pool_destroy(pool); 2931 } 2932 2933 static struct pool *__pool_find(struct mapped_device *pool_md, 2934 struct block_device *metadata_dev, 2935 unsigned long block_size, int read_only, 2936 char **error, int *created) 2937 { 2938 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2939 2940 if (pool) { 2941 if (pool->pool_md != pool_md) { 2942 *error = "metadata device already in use by a pool"; 2943 return ERR_PTR(-EBUSY); 2944 } 2945 __pool_inc(pool); 2946 2947 } else { 2948 pool = __pool_table_lookup(pool_md); 2949 if (pool) { 2950 if (pool->md_dev != metadata_dev) { 2951 *error = "different pool cannot replace a pool"; 2952 return ERR_PTR(-EINVAL); 2953 } 2954 __pool_inc(pool); 2955 2956 } else { 2957 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2958 *created = 1; 2959 } 2960 } 2961 2962 return pool; 2963 } 2964 2965 /*---------------------------------------------------------------- 2966 * Pool target methods 2967 *--------------------------------------------------------------*/ 2968 static void pool_dtr(struct dm_target *ti) 2969 { 2970 struct pool_c *pt = ti->private; 2971 2972 mutex_lock(&dm_thin_pool_table.mutex); 2973 2974 unbind_control_target(pt->pool, ti); 2975 __pool_dec(pt->pool); 2976 dm_put_device(ti, pt->metadata_dev); 2977 dm_put_device(ti, pt->data_dev); 2978 kfree(pt); 2979 2980 mutex_unlock(&dm_thin_pool_table.mutex); 2981 } 2982 2983 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2984 struct dm_target *ti) 2985 { 2986 int r; 2987 unsigned argc; 2988 const char *arg_name; 2989 2990 static struct dm_arg _args[] = { 2991 {0, 4, "Invalid number of pool feature arguments"}, 2992 }; 2993 2994 /* 2995 * No feature arguments supplied. 2996 */ 2997 if (!as->argc) 2998 return 0; 2999 3000 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3001 if (r) 3002 return -EINVAL; 3003 3004 while (argc && !r) { 3005 arg_name = dm_shift_arg(as); 3006 argc--; 3007 3008 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3009 pf->zero_new_blocks = false; 3010 3011 else if (!strcasecmp(arg_name, "ignore_discard")) 3012 pf->discard_enabled = false; 3013 3014 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3015 pf->discard_passdown = false; 3016 3017 else if (!strcasecmp(arg_name, "read_only")) 3018 pf->mode = PM_READ_ONLY; 3019 3020 else if (!strcasecmp(arg_name, "error_if_no_space")) 3021 pf->error_if_no_space = true; 3022 3023 else { 3024 ti->error = "Unrecognised pool feature requested"; 3025 r = -EINVAL; 3026 break; 3027 } 3028 } 3029 3030 return r; 3031 } 3032 3033 static void metadata_low_callback(void *context) 3034 { 3035 struct pool *pool = context; 3036 3037 DMWARN("%s: reached low water mark for metadata device: sending event.", 3038 dm_device_name(pool->pool_md)); 3039 3040 dm_table_event(pool->ti->table); 3041 } 3042 3043 static sector_t get_dev_size(struct block_device *bdev) 3044 { 3045 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3046 } 3047 3048 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3049 { 3050 sector_t metadata_dev_size = get_dev_size(bdev); 3051 char buffer[BDEVNAME_SIZE]; 3052 3053 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3054 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3055 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3056 } 3057 3058 static sector_t get_metadata_dev_size(struct block_device *bdev) 3059 { 3060 sector_t metadata_dev_size = get_dev_size(bdev); 3061 3062 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3063 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3064 3065 return metadata_dev_size; 3066 } 3067 3068 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3069 { 3070 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3071 3072 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3073 3074 return metadata_dev_size; 3075 } 3076 3077 /* 3078 * When a metadata threshold is crossed a dm event is triggered, and 3079 * userland should respond by growing the metadata device. We could let 3080 * userland set the threshold, like we do with the data threshold, but I'm 3081 * not sure they know enough to do this well. 3082 */ 3083 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3084 { 3085 /* 3086 * 4M is ample for all ops with the possible exception of thin 3087 * device deletion which is harmless if it fails (just retry the 3088 * delete after you've grown the device). 3089 */ 3090 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3091 return min((dm_block_t)1024ULL /* 4M */, quarter); 3092 } 3093 3094 /* 3095 * thin-pool <metadata dev> <data dev> 3096 * <data block size (sectors)> 3097 * <low water mark (blocks)> 3098 * [<#feature args> [<arg>]*] 3099 * 3100 * Optional feature arguments are: 3101 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3102 * ignore_discard: disable discard 3103 * no_discard_passdown: don't pass discards down to the data device 3104 * read_only: Don't allow any changes to be made to the pool metadata. 3105 * error_if_no_space: error IOs, instead of queueing, if no space. 3106 */ 3107 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3108 { 3109 int r, pool_created = 0; 3110 struct pool_c *pt; 3111 struct pool *pool; 3112 struct pool_features pf; 3113 struct dm_arg_set as; 3114 struct dm_dev *data_dev; 3115 unsigned long block_size; 3116 dm_block_t low_water_blocks; 3117 struct dm_dev *metadata_dev; 3118 fmode_t metadata_mode; 3119 3120 /* 3121 * FIXME Remove validation from scope of lock. 3122 */ 3123 mutex_lock(&dm_thin_pool_table.mutex); 3124 3125 if (argc < 4) { 3126 ti->error = "Invalid argument count"; 3127 r = -EINVAL; 3128 goto out_unlock; 3129 } 3130 3131 as.argc = argc; 3132 as.argv = argv; 3133 3134 /* 3135 * Set default pool features. 3136 */ 3137 pool_features_init(&pf); 3138 3139 dm_consume_args(&as, 4); 3140 r = parse_pool_features(&as, &pf, ti); 3141 if (r) 3142 goto out_unlock; 3143 3144 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3145 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3146 if (r) { 3147 ti->error = "Error opening metadata block device"; 3148 goto out_unlock; 3149 } 3150 warn_if_metadata_device_too_big(metadata_dev->bdev); 3151 3152 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3153 if (r) { 3154 ti->error = "Error getting data device"; 3155 goto out_metadata; 3156 } 3157 3158 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3159 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3160 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3161 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3162 ti->error = "Invalid block size"; 3163 r = -EINVAL; 3164 goto out; 3165 } 3166 3167 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3168 ti->error = "Invalid low water mark"; 3169 r = -EINVAL; 3170 goto out; 3171 } 3172 3173 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3174 if (!pt) { 3175 r = -ENOMEM; 3176 goto out; 3177 } 3178 3179 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3180 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3181 if (IS_ERR(pool)) { 3182 r = PTR_ERR(pool); 3183 goto out_free_pt; 3184 } 3185 3186 /* 3187 * 'pool_created' reflects whether this is the first table load. 3188 * Top level discard support is not allowed to be changed after 3189 * initial load. This would require a pool reload to trigger thin 3190 * device changes. 3191 */ 3192 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3193 ti->error = "Discard support cannot be disabled once enabled"; 3194 r = -EINVAL; 3195 goto out_flags_changed; 3196 } 3197 3198 pt->pool = pool; 3199 pt->ti = ti; 3200 pt->metadata_dev = metadata_dev; 3201 pt->data_dev = data_dev; 3202 pt->low_water_blocks = low_water_blocks; 3203 pt->adjusted_pf = pt->requested_pf = pf; 3204 ti->num_flush_bios = 1; 3205 3206 /* 3207 * Only need to enable discards if the pool should pass 3208 * them down to the data device. The thin device's discard 3209 * processing will cause mappings to be removed from the btree. 3210 */ 3211 ti->discard_zeroes_data_unsupported = true; 3212 if (pf.discard_enabled && pf.discard_passdown) { 3213 ti->num_discard_bios = 1; 3214 3215 /* 3216 * Setting 'discards_supported' circumvents the normal 3217 * stacking of discard limits (this keeps the pool and 3218 * thin devices' discard limits consistent). 3219 */ 3220 ti->discards_supported = true; 3221 } 3222 ti->private = pt; 3223 3224 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3225 calc_metadata_threshold(pt), 3226 metadata_low_callback, 3227 pool); 3228 if (r) 3229 goto out_free_pt; 3230 3231 pt->callbacks.congested_fn = pool_is_congested; 3232 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3233 3234 mutex_unlock(&dm_thin_pool_table.mutex); 3235 3236 return 0; 3237 3238 out_flags_changed: 3239 __pool_dec(pool); 3240 out_free_pt: 3241 kfree(pt); 3242 out: 3243 dm_put_device(ti, data_dev); 3244 out_metadata: 3245 dm_put_device(ti, metadata_dev); 3246 out_unlock: 3247 mutex_unlock(&dm_thin_pool_table.mutex); 3248 3249 return r; 3250 } 3251 3252 static int pool_map(struct dm_target *ti, struct bio *bio) 3253 { 3254 int r; 3255 struct pool_c *pt = ti->private; 3256 struct pool *pool = pt->pool; 3257 unsigned long flags; 3258 3259 /* 3260 * As this is a singleton target, ti->begin is always zero. 3261 */ 3262 spin_lock_irqsave(&pool->lock, flags); 3263 bio->bi_bdev = pt->data_dev->bdev; 3264 r = DM_MAPIO_REMAPPED; 3265 spin_unlock_irqrestore(&pool->lock, flags); 3266 3267 return r; 3268 } 3269 3270 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3271 { 3272 int r; 3273 struct pool_c *pt = ti->private; 3274 struct pool *pool = pt->pool; 3275 sector_t data_size = ti->len; 3276 dm_block_t sb_data_size; 3277 3278 *need_commit = false; 3279 3280 (void) sector_div(data_size, pool->sectors_per_block); 3281 3282 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3283 if (r) { 3284 DMERR("%s: failed to retrieve data device size", 3285 dm_device_name(pool->pool_md)); 3286 return r; 3287 } 3288 3289 if (data_size < sb_data_size) { 3290 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3291 dm_device_name(pool->pool_md), 3292 (unsigned long long)data_size, sb_data_size); 3293 return -EINVAL; 3294 3295 } else if (data_size > sb_data_size) { 3296 if (dm_pool_metadata_needs_check(pool->pmd)) { 3297 DMERR("%s: unable to grow the data device until repaired.", 3298 dm_device_name(pool->pool_md)); 3299 return 0; 3300 } 3301 3302 if (sb_data_size) 3303 DMINFO("%s: growing the data device from %llu to %llu blocks", 3304 dm_device_name(pool->pool_md), 3305 sb_data_size, (unsigned long long)data_size); 3306 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3307 if (r) { 3308 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3309 return r; 3310 } 3311 3312 *need_commit = true; 3313 } 3314 3315 return 0; 3316 } 3317 3318 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3319 { 3320 int r; 3321 struct pool_c *pt = ti->private; 3322 struct pool *pool = pt->pool; 3323 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3324 3325 *need_commit = false; 3326 3327 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3328 3329 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3330 if (r) { 3331 DMERR("%s: failed to retrieve metadata device size", 3332 dm_device_name(pool->pool_md)); 3333 return r; 3334 } 3335 3336 if (metadata_dev_size < sb_metadata_dev_size) { 3337 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3338 dm_device_name(pool->pool_md), 3339 metadata_dev_size, sb_metadata_dev_size); 3340 return -EINVAL; 3341 3342 } else if (metadata_dev_size > sb_metadata_dev_size) { 3343 if (dm_pool_metadata_needs_check(pool->pmd)) { 3344 DMERR("%s: unable to grow the metadata device until repaired.", 3345 dm_device_name(pool->pool_md)); 3346 return 0; 3347 } 3348 3349 warn_if_metadata_device_too_big(pool->md_dev); 3350 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3351 dm_device_name(pool->pool_md), 3352 sb_metadata_dev_size, metadata_dev_size); 3353 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3354 if (r) { 3355 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3356 return r; 3357 } 3358 3359 *need_commit = true; 3360 } 3361 3362 return 0; 3363 } 3364 3365 /* 3366 * Retrieves the number of blocks of the data device from 3367 * the superblock and compares it to the actual device size, 3368 * thus resizing the data device in case it has grown. 3369 * 3370 * This both copes with opening preallocated data devices in the ctr 3371 * being followed by a resume 3372 * -and- 3373 * calling the resume method individually after userspace has 3374 * grown the data device in reaction to a table event. 3375 */ 3376 static int pool_preresume(struct dm_target *ti) 3377 { 3378 int r; 3379 bool need_commit1, need_commit2; 3380 struct pool_c *pt = ti->private; 3381 struct pool *pool = pt->pool; 3382 3383 /* 3384 * Take control of the pool object. 3385 */ 3386 r = bind_control_target(pool, ti); 3387 if (r) 3388 return r; 3389 3390 r = maybe_resize_data_dev(ti, &need_commit1); 3391 if (r) 3392 return r; 3393 3394 r = maybe_resize_metadata_dev(ti, &need_commit2); 3395 if (r) 3396 return r; 3397 3398 if (need_commit1 || need_commit2) 3399 (void) commit(pool); 3400 3401 return 0; 3402 } 3403 3404 static void pool_suspend_active_thins(struct pool *pool) 3405 { 3406 struct thin_c *tc; 3407 3408 /* Suspend all active thin devices */ 3409 tc = get_first_thin(pool); 3410 while (tc) { 3411 dm_internal_suspend_noflush(tc->thin_md); 3412 tc = get_next_thin(pool, tc); 3413 } 3414 } 3415 3416 static void pool_resume_active_thins(struct pool *pool) 3417 { 3418 struct thin_c *tc; 3419 3420 /* Resume all active thin devices */ 3421 tc = get_first_thin(pool); 3422 while (tc) { 3423 dm_internal_resume(tc->thin_md); 3424 tc = get_next_thin(pool, tc); 3425 } 3426 } 3427 3428 static void pool_resume(struct dm_target *ti) 3429 { 3430 struct pool_c *pt = ti->private; 3431 struct pool *pool = pt->pool; 3432 unsigned long flags; 3433 3434 /* 3435 * Must requeue active_thins' bios and then resume 3436 * active_thins _before_ clearing 'suspend' flag. 3437 */ 3438 requeue_bios(pool); 3439 pool_resume_active_thins(pool); 3440 3441 spin_lock_irqsave(&pool->lock, flags); 3442 pool->low_water_triggered = false; 3443 pool->suspended = false; 3444 spin_unlock_irqrestore(&pool->lock, flags); 3445 3446 do_waker(&pool->waker.work); 3447 } 3448 3449 static void pool_presuspend(struct dm_target *ti) 3450 { 3451 struct pool_c *pt = ti->private; 3452 struct pool *pool = pt->pool; 3453 unsigned long flags; 3454 3455 spin_lock_irqsave(&pool->lock, flags); 3456 pool->suspended = true; 3457 spin_unlock_irqrestore(&pool->lock, flags); 3458 3459 pool_suspend_active_thins(pool); 3460 } 3461 3462 static void pool_presuspend_undo(struct dm_target *ti) 3463 { 3464 struct pool_c *pt = ti->private; 3465 struct pool *pool = pt->pool; 3466 unsigned long flags; 3467 3468 pool_resume_active_thins(pool); 3469 3470 spin_lock_irqsave(&pool->lock, flags); 3471 pool->suspended = false; 3472 spin_unlock_irqrestore(&pool->lock, flags); 3473 } 3474 3475 static void pool_postsuspend(struct dm_target *ti) 3476 { 3477 struct pool_c *pt = ti->private; 3478 struct pool *pool = pt->pool; 3479 3480 cancel_delayed_work(&pool->waker); 3481 cancel_delayed_work(&pool->no_space_timeout); 3482 flush_workqueue(pool->wq); 3483 (void) commit(pool); 3484 } 3485 3486 static int check_arg_count(unsigned argc, unsigned args_required) 3487 { 3488 if (argc != args_required) { 3489 DMWARN("Message received with %u arguments instead of %u.", 3490 argc, args_required); 3491 return -EINVAL; 3492 } 3493 3494 return 0; 3495 } 3496 3497 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3498 { 3499 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3500 *dev_id <= MAX_DEV_ID) 3501 return 0; 3502 3503 if (warning) 3504 DMWARN("Message received with invalid device id: %s", arg); 3505 3506 return -EINVAL; 3507 } 3508 3509 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3510 { 3511 dm_thin_id dev_id; 3512 int r; 3513 3514 r = check_arg_count(argc, 2); 3515 if (r) 3516 return r; 3517 3518 r = read_dev_id(argv[1], &dev_id, 1); 3519 if (r) 3520 return r; 3521 3522 r = dm_pool_create_thin(pool->pmd, dev_id); 3523 if (r) { 3524 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3525 argv[1]); 3526 return r; 3527 } 3528 3529 return 0; 3530 } 3531 3532 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3533 { 3534 dm_thin_id dev_id; 3535 dm_thin_id origin_dev_id; 3536 int r; 3537 3538 r = check_arg_count(argc, 3); 3539 if (r) 3540 return r; 3541 3542 r = read_dev_id(argv[1], &dev_id, 1); 3543 if (r) 3544 return r; 3545 3546 r = read_dev_id(argv[2], &origin_dev_id, 1); 3547 if (r) 3548 return r; 3549 3550 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3551 if (r) { 3552 DMWARN("Creation of new snapshot %s of device %s failed.", 3553 argv[1], argv[2]); 3554 return r; 3555 } 3556 3557 return 0; 3558 } 3559 3560 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3561 { 3562 dm_thin_id dev_id; 3563 int r; 3564 3565 r = check_arg_count(argc, 2); 3566 if (r) 3567 return r; 3568 3569 r = read_dev_id(argv[1], &dev_id, 1); 3570 if (r) 3571 return r; 3572 3573 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3574 if (r) 3575 DMWARN("Deletion of thin device %s failed.", argv[1]); 3576 3577 return r; 3578 } 3579 3580 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3581 { 3582 dm_thin_id old_id, new_id; 3583 int r; 3584 3585 r = check_arg_count(argc, 3); 3586 if (r) 3587 return r; 3588 3589 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3590 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3591 return -EINVAL; 3592 } 3593 3594 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3595 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3596 return -EINVAL; 3597 } 3598 3599 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3600 if (r) { 3601 DMWARN("Failed to change transaction id from %s to %s.", 3602 argv[1], argv[2]); 3603 return r; 3604 } 3605 3606 return 0; 3607 } 3608 3609 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3610 { 3611 int r; 3612 3613 r = check_arg_count(argc, 1); 3614 if (r) 3615 return r; 3616 3617 (void) commit(pool); 3618 3619 r = dm_pool_reserve_metadata_snap(pool->pmd); 3620 if (r) 3621 DMWARN("reserve_metadata_snap message failed."); 3622 3623 return r; 3624 } 3625 3626 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3627 { 3628 int r; 3629 3630 r = check_arg_count(argc, 1); 3631 if (r) 3632 return r; 3633 3634 r = dm_pool_release_metadata_snap(pool->pmd); 3635 if (r) 3636 DMWARN("release_metadata_snap message failed."); 3637 3638 return r; 3639 } 3640 3641 /* 3642 * Messages supported: 3643 * create_thin <dev_id> 3644 * create_snap <dev_id> <origin_id> 3645 * delete <dev_id> 3646 * set_transaction_id <current_trans_id> <new_trans_id> 3647 * reserve_metadata_snap 3648 * release_metadata_snap 3649 */ 3650 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3651 { 3652 int r = -EINVAL; 3653 struct pool_c *pt = ti->private; 3654 struct pool *pool = pt->pool; 3655 3656 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3657 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3658 dm_device_name(pool->pool_md)); 3659 return -EOPNOTSUPP; 3660 } 3661 3662 if (!strcasecmp(argv[0], "create_thin")) 3663 r = process_create_thin_mesg(argc, argv, pool); 3664 3665 else if (!strcasecmp(argv[0], "create_snap")) 3666 r = process_create_snap_mesg(argc, argv, pool); 3667 3668 else if (!strcasecmp(argv[0], "delete")) 3669 r = process_delete_mesg(argc, argv, pool); 3670 3671 else if (!strcasecmp(argv[0], "set_transaction_id")) 3672 r = process_set_transaction_id_mesg(argc, argv, pool); 3673 3674 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3675 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3676 3677 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3678 r = process_release_metadata_snap_mesg(argc, argv, pool); 3679 3680 else 3681 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3682 3683 if (!r) 3684 (void) commit(pool); 3685 3686 return r; 3687 } 3688 3689 static void emit_flags(struct pool_features *pf, char *result, 3690 unsigned sz, unsigned maxlen) 3691 { 3692 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3693 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3694 pf->error_if_no_space; 3695 DMEMIT("%u ", count); 3696 3697 if (!pf->zero_new_blocks) 3698 DMEMIT("skip_block_zeroing "); 3699 3700 if (!pf->discard_enabled) 3701 DMEMIT("ignore_discard "); 3702 3703 if (!pf->discard_passdown) 3704 DMEMIT("no_discard_passdown "); 3705 3706 if (pf->mode == PM_READ_ONLY) 3707 DMEMIT("read_only "); 3708 3709 if (pf->error_if_no_space) 3710 DMEMIT("error_if_no_space "); 3711 } 3712 3713 /* 3714 * Status line is: 3715 * <transaction id> <used metadata sectors>/<total metadata sectors> 3716 * <used data sectors>/<total data sectors> <held metadata root> 3717 */ 3718 static void pool_status(struct dm_target *ti, status_type_t type, 3719 unsigned status_flags, char *result, unsigned maxlen) 3720 { 3721 int r; 3722 unsigned sz = 0; 3723 uint64_t transaction_id; 3724 dm_block_t nr_free_blocks_data; 3725 dm_block_t nr_free_blocks_metadata; 3726 dm_block_t nr_blocks_data; 3727 dm_block_t nr_blocks_metadata; 3728 dm_block_t held_root; 3729 char buf[BDEVNAME_SIZE]; 3730 char buf2[BDEVNAME_SIZE]; 3731 struct pool_c *pt = ti->private; 3732 struct pool *pool = pt->pool; 3733 3734 switch (type) { 3735 case STATUSTYPE_INFO: 3736 if (get_pool_mode(pool) == PM_FAIL) { 3737 DMEMIT("Fail"); 3738 break; 3739 } 3740 3741 /* Commit to ensure statistics aren't out-of-date */ 3742 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3743 (void) commit(pool); 3744 3745 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3746 if (r) { 3747 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3748 dm_device_name(pool->pool_md), r); 3749 goto err; 3750 } 3751 3752 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3753 if (r) { 3754 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3755 dm_device_name(pool->pool_md), r); 3756 goto err; 3757 } 3758 3759 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3760 if (r) { 3761 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3762 dm_device_name(pool->pool_md), r); 3763 goto err; 3764 } 3765 3766 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3767 if (r) { 3768 DMERR("%s: dm_pool_get_free_block_count returned %d", 3769 dm_device_name(pool->pool_md), r); 3770 goto err; 3771 } 3772 3773 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3774 if (r) { 3775 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3776 dm_device_name(pool->pool_md), r); 3777 goto err; 3778 } 3779 3780 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3781 if (r) { 3782 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3783 dm_device_name(pool->pool_md), r); 3784 goto err; 3785 } 3786 3787 DMEMIT("%llu %llu/%llu %llu/%llu ", 3788 (unsigned long long)transaction_id, 3789 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3790 (unsigned long long)nr_blocks_metadata, 3791 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3792 (unsigned long long)nr_blocks_data); 3793 3794 if (held_root) 3795 DMEMIT("%llu ", held_root); 3796 else 3797 DMEMIT("- "); 3798 3799 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3800 DMEMIT("out_of_data_space "); 3801 else if (pool->pf.mode == PM_READ_ONLY) 3802 DMEMIT("ro "); 3803 else 3804 DMEMIT("rw "); 3805 3806 if (!pool->pf.discard_enabled) 3807 DMEMIT("ignore_discard "); 3808 else if (pool->pf.discard_passdown) 3809 DMEMIT("discard_passdown "); 3810 else 3811 DMEMIT("no_discard_passdown "); 3812 3813 if (pool->pf.error_if_no_space) 3814 DMEMIT("error_if_no_space "); 3815 else 3816 DMEMIT("queue_if_no_space "); 3817 3818 break; 3819 3820 case STATUSTYPE_TABLE: 3821 DMEMIT("%s %s %lu %llu ", 3822 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3823 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3824 (unsigned long)pool->sectors_per_block, 3825 (unsigned long long)pt->low_water_blocks); 3826 emit_flags(&pt->requested_pf, result, sz, maxlen); 3827 break; 3828 } 3829 return; 3830 3831 err: 3832 DMEMIT("Error"); 3833 } 3834 3835 static int pool_iterate_devices(struct dm_target *ti, 3836 iterate_devices_callout_fn fn, void *data) 3837 { 3838 struct pool_c *pt = ti->private; 3839 3840 return fn(ti, pt->data_dev, 0, ti->len, data); 3841 } 3842 3843 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 3844 struct bio_vec *biovec, int max_size) 3845 { 3846 struct pool_c *pt = ti->private; 3847 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 3848 3849 if (!q->merge_bvec_fn) 3850 return max_size; 3851 3852 bvm->bi_bdev = pt->data_dev->bdev; 3853 3854 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 3855 } 3856 3857 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3858 { 3859 struct pool_c *pt = ti->private; 3860 struct pool *pool = pt->pool; 3861 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3862 3863 /* 3864 * If max_sectors is smaller than pool->sectors_per_block adjust it 3865 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3866 * This is especially beneficial when the pool's data device is a RAID 3867 * device that has a full stripe width that matches pool->sectors_per_block 3868 * -- because even though partial RAID stripe-sized IOs will be issued to a 3869 * single RAID stripe; when aggregated they will end on a full RAID stripe 3870 * boundary.. which avoids additional partial RAID stripe writes cascading 3871 */ 3872 if (limits->max_sectors < pool->sectors_per_block) { 3873 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3874 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3875 limits->max_sectors--; 3876 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3877 } 3878 } 3879 3880 /* 3881 * If the system-determined stacked limits are compatible with the 3882 * pool's blocksize (io_opt is a factor) do not override them. 3883 */ 3884 if (io_opt_sectors < pool->sectors_per_block || 3885 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3886 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3887 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3888 else 3889 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3890 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3891 } 3892 3893 /* 3894 * pt->adjusted_pf is a staging area for the actual features to use. 3895 * They get transferred to the live pool in bind_control_target() 3896 * called from pool_preresume(). 3897 */ 3898 if (!pt->adjusted_pf.discard_enabled) { 3899 /* 3900 * Must explicitly disallow stacking discard limits otherwise the 3901 * block layer will stack them if pool's data device has support. 3902 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3903 * user to see that, so make sure to set all discard limits to 0. 3904 */ 3905 limits->discard_granularity = 0; 3906 return; 3907 } 3908 3909 disable_passdown_if_not_supported(pt); 3910 3911 /* 3912 * The pool uses the same discard limits as the underlying data 3913 * device. DM core has already set this up. 3914 */ 3915 } 3916 3917 static struct target_type pool_target = { 3918 .name = "thin-pool", 3919 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3920 DM_TARGET_IMMUTABLE, 3921 .version = {1, 15, 0}, 3922 .module = THIS_MODULE, 3923 .ctr = pool_ctr, 3924 .dtr = pool_dtr, 3925 .map = pool_map, 3926 .presuspend = pool_presuspend, 3927 .presuspend_undo = pool_presuspend_undo, 3928 .postsuspend = pool_postsuspend, 3929 .preresume = pool_preresume, 3930 .resume = pool_resume, 3931 .message = pool_message, 3932 .status = pool_status, 3933 .merge = pool_merge, 3934 .iterate_devices = pool_iterate_devices, 3935 .io_hints = pool_io_hints, 3936 }; 3937 3938 /*---------------------------------------------------------------- 3939 * Thin target methods 3940 *--------------------------------------------------------------*/ 3941 static void thin_get(struct thin_c *tc) 3942 { 3943 atomic_inc(&tc->refcount); 3944 } 3945 3946 static void thin_put(struct thin_c *tc) 3947 { 3948 if (atomic_dec_and_test(&tc->refcount)) 3949 complete(&tc->can_destroy); 3950 } 3951 3952 static void thin_dtr(struct dm_target *ti) 3953 { 3954 struct thin_c *tc = ti->private; 3955 unsigned long flags; 3956 3957 spin_lock_irqsave(&tc->pool->lock, flags); 3958 list_del_rcu(&tc->list); 3959 spin_unlock_irqrestore(&tc->pool->lock, flags); 3960 synchronize_rcu(); 3961 3962 thin_put(tc); 3963 wait_for_completion(&tc->can_destroy); 3964 3965 mutex_lock(&dm_thin_pool_table.mutex); 3966 3967 __pool_dec(tc->pool); 3968 dm_pool_close_thin_device(tc->td); 3969 dm_put_device(ti, tc->pool_dev); 3970 if (tc->origin_dev) 3971 dm_put_device(ti, tc->origin_dev); 3972 kfree(tc); 3973 3974 mutex_unlock(&dm_thin_pool_table.mutex); 3975 } 3976 3977 /* 3978 * Thin target parameters: 3979 * 3980 * <pool_dev> <dev_id> [origin_dev] 3981 * 3982 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3983 * dev_id: the internal device identifier 3984 * origin_dev: a device external to the pool that should act as the origin 3985 * 3986 * If the pool device has discards disabled, they get disabled for the thin 3987 * device as well. 3988 */ 3989 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3990 { 3991 int r; 3992 struct thin_c *tc; 3993 struct dm_dev *pool_dev, *origin_dev; 3994 struct mapped_device *pool_md; 3995 unsigned long flags; 3996 3997 mutex_lock(&dm_thin_pool_table.mutex); 3998 3999 if (argc != 2 && argc != 3) { 4000 ti->error = "Invalid argument count"; 4001 r = -EINVAL; 4002 goto out_unlock; 4003 } 4004 4005 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4006 if (!tc) { 4007 ti->error = "Out of memory"; 4008 r = -ENOMEM; 4009 goto out_unlock; 4010 } 4011 tc->thin_md = dm_table_get_md(ti->table); 4012 spin_lock_init(&tc->lock); 4013 INIT_LIST_HEAD(&tc->deferred_cells); 4014 bio_list_init(&tc->deferred_bio_list); 4015 bio_list_init(&tc->retry_on_resume_list); 4016 tc->sort_bio_list = RB_ROOT; 4017 4018 if (argc == 3) { 4019 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4020 if (r) { 4021 ti->error = "Error opening origin device"; 4022 goto bad_origin_dev; 4023 } 4024 tc->origin_dev = origin_dev; 4025 } 4026 4027 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4028 if (r) { 4029 ti->error = "Error opening pool device"; 4030 goto bad_pool_dev; 4031 } 4032 tc->pool_dev = pool_dev; 4033 4034 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4035 ti->error = "Invalid device id"; 4036 r = -EINVAL; 4037 goto bad_common; 4038 } 4039 4040 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4041 if (!pool_md) { 4042 ti->error = "Couldn't get pool mapped device"; 4043 r = -EINVAL; 4044 goto bad_common; 4045 } 4046 4047 tc->pool = __pool_table_lookup(pool_md); 4048 if (!tc->pool) { 4049 ti->error = "Couldn't find pool object"; 4050 r = -EINVAL; 4051 goto bad_pool_lookup; 4052 } 4053 __pool_inc(tc->pool); 4054 4055 if (get_pool_mode(tc->pool) == PM_FAIL) { 4056 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4057 r = -EINVAL; 4058 goto bad_pool; 4059 } 4060 4061 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4062 if (r) { 4063 ti->error = "Couldn't open thin internal device"; 4064 goto bad_pool; 4065 } 4066 4067 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4068 if (r) 4069 goto bad; 4070 4071 ti->num_flush_bios = 1; 4072 ti->flush_supported = true; 4073 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 4074 4075 /* In case the pool supports discards, pass them on. */ 4076 ti->discard_zeroes_data_unsupported = true; 4077 if (tc->pool->pf.discard_enabled) { 4078 ti->discards_supported = true; 4079 ti->num_discard_bios = 1; 4080 ti->split_discard_bios = false; 4081 } 4082 4083 mutex_unlock(&dm_thin_pool_table.mutex); 4084 4085 spin_lock_irqsave(&tc->pool->lock, flags); 4086 if (tc->pool->suspended) { 4087 spin_unlock_irqrestore(&tc->pool->lock, flags); 4088 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4089 ti->error = "Unable to activate thin device while pool is suspended"; 4090 r = -EINVAL; 4091 goto bad; 4092 } 4093 atomic_set(&tc->refcount, 1); 4094 init_completion(&tc->can_destroy); 4095 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4096 spin_unlock_irqrestore(&tc->pool->lock, flags); 4097 /* 4098 * This synchronize_rcu() call is needed here otherwise we risk a 4099 * wake_worker() call finding no bios to process (because the newly 4100 * added tc isn't yet visible). So this reduces latency since we 4101 * aren't then dependent on the periodic commit to wake_worker(). 4102 */ 4103 synchronize_rcu(); 4104 4105 dm_put(pool_md); 4106 4107 return 0; 4108 4109 bad: 4110 dm_pool_close_thin_device(tc->td); 4111 bad_pool: 4112 __pool_dec(tc->pool); 4113 bad_pool_lookup: 4114 dm_put(pool_md); 4115 bad_common: 4116 dm_put_device(ti, tc->pool_dev); 4117 bad_pool_dev: 4118 if (tc->origin_dev) 4119 dm_put_device(ti, tc->origin_dev); 4120 bad_origin_dev: 4121 kfree(tc); 4122 out_unlock: 4123 mutex_unlock(&dm_thin_pool_table.mutex); 4124 4125 return r; 4126 } 4127 4128 static int thin_map(struct dm_target *ti, struct bio *bio) 4129 { 4130 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4131 4132 return thin_bio_map(ti, bio); 4133 } 4134 4135 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 4136 { 4137 unsigned long flags; 4138 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4139 struct list_head work; 4140 struct dm_thin_new_mapping *m, *tmp; 4141 struct pool *pool = h->tc->pool; 4142 4143 if (h->shared_read_entry) { 4144 INIT_LIST_HEAD(&work); 4145 dm_deferred_entry_dec(h->shared_read_entry, &work); 4146 4147 spin_lock_irqsave(&pool->lock, flags); 4148 list_for_each_entry_safe(m, tmp, &work, list) { 4149 list_del(&m->list); 4150 __complete_mapping_preparation(m); 4151 } 4152 spin_unlock_irqrestore(&pool->lock, flags); 4153 } 4154 4155 if (h->all_io_entry) { 4156 INIT_LIST_HEAD(&work); 4157 dm_deferred_entry_dec(h->all_io_entry, &work); 4158 if (!list_empty(&work)) { 4159 spin_lock_irqsave(&pool->lock, flags); 4160 list_for_each_entry_safe(m, tmp, &work, list) 4161 list_add_tail(&m->list, &pool->prepared_discards); 4162 spin_unlock_irqrestore(&pool->lock, flags); 4163 wake_worker(pool); 4164 } 4165 } 4166 4167 if (h->cell) 4168 cell_defer_no_holder(h->tc, h->cell); 4169 4170 return 0; 4171 } 4172 4173 static void thin_presuspend(struct dm_target *ti) 4174 { 4175 struct thin_c *tc = ti->private; 4176 4177 if (dm_noflush_suspending(ti)) 4178 noflush_work(tc, do_noflush_start); 4179 } 4180 4181 static void thin_postsuspend(struct dm_target *ti) 4182 { 4183 struct thin_c *tc = ti->private; 4184 4185 /* 4186 * The dm_noflush_suspending flag has been cleared by now, so 4187 * unfortunately we must always run this. 4188 */ 4189 noflush_work(tc, do_noflush_stop); 4190 } 4191 4192 static int thin_preresume(struct dm_target *ti) 4193 { 4194 struct thin_c *tc = ti->private; 4195 4196 if (tc->origin_dev) 4197 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4198 4199 return 0; 4200 } 4201 4202 /* 4203 * <nr mapped sectors> <highest mapped sector> 4204 */ 4205 static void thin_status(struct dm_target *ti, status_type_t type, 4206 unsigned status_flags, char *result, unsigned maxlen) 4207 { 4208 int r; 4209 ssize_t sz = 0; 4210 dm_block_t mapped, highest; 4211 char buf[BDEVNAME_SIZE]; 4212 struct thin_c *tc = ti->private; 4213 4214 if (get_pool_mode(tc->pool) == PM_FAIL) { 4215 DMEMIT("Fail"); 4216 return; 4217 } 4218 4219 if (!tc->td) 4220 DMEMIT("-"); 4221 else { 4222 switch (type) { 4223 case STATUSTYPE_INFO: 4224 r = dm_thin_get_mapped_count(tc->td, &mapped); 4225 if (r) { 4226 DMERR("dm_thin_get_mapped_count returned %d", r); 4227 goto err; 4228 } 4229 4230 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4231 if (r < 0) { 4232 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4233 goto err; 4234 } 4235 4236 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4237 if (r) 4238 DMEMIT("%llu", ((highest + 1) * 4239 tc->pool->sectors_per_block) - 1); 4240 else 4241 DMEMIT("-"); 4242 break; 4243 4244 case STATUSTYPE_TABLE: 4245 DMEMIT("%s %lu", 4246 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4247 (unsigned long) tc->dev_id); 4248 if (tc->origin_dev) 4249 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4250 break; 4251 } 4252 } 4253 4254 return; 4255 4256 err: 4257 DMEMIT("Error"); 4258 } 4259 4260 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 4261 struct bio_vec *biovec, int max_size) 4262 { 4263 struct thin_c *tc = ti->private; 4264 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev); 4265 4266 if (!q->merge_bvec_fn) 4267 return max_size; 4268 4269 bvm->bi_bdev = tc->pool_dev->bdev; 4270 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector); 4271 4272 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 4273 } 4274 4275 static int thin_iterate_devices(struct dm_target *ti, 4276 iterate_devices_callout_fn fn, void *data) 4277 { 4278 sector_t blocks; 4279 struct thin_c *tc = ti->private; 4280 struct pool *pool = tc->pool; 4281 4282 /* 4283 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4284 * we follow a more convoluted path through to the pool's target. 4285 */ 4286 if (!pool->ti) 4287 return 0; /* nothing is bound */ 4288 4289 blocks = pool->ti->len; 4290 (void) sector_div(blocks, pool->sectors_per_block); 4291 if (blocks) 4292 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4293 4294 return 0; 4295 } 4296 4297 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4298 { 4299 struct thin_c *tc = ti->private; 4300 struct pool *pool = tc->pool; 4301 4302 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4303 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4304 } 4305 4306 static struct target_type thin_target = { 4307 .name = "thin", 4308 .version = {1, 15, 0}, 4309 .module = THIS_MODULE, 4310 .ctr = thin_ctr, 4311 .dtr = thin_dtr, 4312 .map = thin_map, 4313 .end_io = thin_endio, 4314 .preresume = thin_preresume, 4315 .presuspend = thin_presuspend, 4316 .postsuspend = thin_postsuspend, 4317 .status = thin_status, 4318 .merge = thin_merge, 4319 .iterate_devices = thin_iterate_devices, 4320 .io_hints = thin_io_hints, 4321 }; 4322 4323 /*----------------------------------------------------------------*/ 4324 4325 static int __init dm_thin_init(void) 4326 { 4327 int r; 4328 4329 pool_table_init(); 4330 4331 r = dm_register_target(&thin_target); 4332 if (r) 4333 return r; 4334 4335 r = dm_register_target(&pool_target); 4336 if (r) 4337 goto bad_pool_target; 4338 4339 r = -ENOMEM; 4340 4341 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4342 if (!_new_mapping_cache) 4343 goto bad_new_mapping_cache; 4344 4345 return 0; 4346 4347 bad_new_mapping_cache: 4348 dm_unregister_target(&pool_target); 4349 bad_pool_target: 4350 dm_unregister_target(&thin_target); 4351 4352 return r; 4353 } 4354 4355 static void dm_thin_exit(void) 4356 { 4357 dm_unregister_target(&thin_target); 4358 dm_unregister_target(&pool_target); 4359 4360 kmem_cache_destroy(_new_mapping_cache); 4361 } 4362 4363 module_init(dm_thin_init); 4364 module_exit(dm_thin_exit); 4365 4366 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4367 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4368 4369 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4370 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4371 MODULE_LICENSE("GPL"); 4372