xref: /linux/drivers/md/dm-thin-metadata.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat, Inc.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-thin-metadata.h"
9 #include "persistent-data/dm-btree.h"
10 #include "persistent-data/dm-space-map.h"
11 #include "persistent-data/dm-space-map-disk.h"
12 #include "persistent-data/dm-transaction-manager.h"
13 
14 #include <linux/list.h>
15 #include <linux/device-mapper.h>
16 #include <linux/workqueue.h>
17 
18 /*
19  *--------------------------------------------------------------------------
20  * As far as the metadata goes, there is:
21  *
22  * - A superblock in block zero, taking up fewer than 512 bytes for
23  *   atomic writes.
24  *
25  * - A space map managing the metadata blocks.
26  *
27  * - A space map managing the data blocks.
28  *
29  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
30  *
31  * - A hierarchical btree, with 2 levels which effectively maps (thin
32  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
33  *   field holding the time in the low 24 bits, and block in the top 40
34  *   bits.
35  *
36  * BTrees consist solely of btree_nodes, that fill a block.  Some are
37  * internal nodes, as such their values are a __le64 pointing to other
38  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
39  * smaller than the block size).  The nodes consist of the header,
40  * followed by an array of keys, followed by an array of values.  We have
41  * to binary search on the keys so they're all held together to help the
42  * cpu cache.
43  *
44  * Space maps have 2 btrees:
45  *
46  * - One maps a uint64_t onto a struct index_entry.  Which points to a
47  *   bitmap block, and has some details about how many free entries there
48  *   are etc.
49  *
50  * - The bitmap blocks have a header (for the checksum).  Then the rest
51  *   of the block is pairs of bits.  With the meaning being:
52  *
53  *   0 - ref count is 0
54  *   1 - ref count is 1
55  *   2 - ref count is 2
56  *   3 - ref count is higher than 2
57  *
58  * - If the count is higher than 2 then the ref count is entered in a
59  *   second btree that directly maps the block_address to a uint32_t ref
60  *   count.
61  *
62  * The space map metadata variant doesn't have a bitmaps btree.  Instead
63  * it has one single blocks worth of index_entries.  This avoids
64  * recursive issues with the bitmap btree needing to allocate space in
65  * order to insert.  With a small data block size such as 64k the
66  * metadata support data devices that are hundreds of terrabytes.
67  *
68  * The space maps allocate space linearly from front to back.  Space that
69  * is freed in a transaction is never recycled within that transaction.
70  * To try and avoid fragmenting _free_ space the allocator always goes
71  * back and fills in gaps.
72  *
73  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
74  * from the block manager.
75  *--------------------------------------------------------------------------
76  */
77 
78 #define DM_MSG_PREFIX   "thin metadata"
79 
80 #define THIN_SUPERBLOCK_MAGIC 27022010
81 #define THIN_SUPERBLOCK_LOCATION 0
82 #define THIN_VERSION 2
83 #define SECTOR_TO_BLOCK_SHIFT 3
84 
85 /*
86  * For btree insert:
87  *  3 for btree insert +
88  *  2 for btree lookup used within space map
89  * For btree remove:
90  *  2 for shadow spine +
91  *  4 for rebalance 3 child node
92  */
93 #define THIN_MAX_CONCURRENT_LOCKS 6
94 
95 /* This should be plenty */
96 #define SPACE_MAP_ROOT_SIZE 128
97 
98 /*
99  * Little endian on-disk superblock and device details.
100  */
101 struct thin_disk_superblock {
102 	__le32 csum;	/* Checksum of superblock except for this field. */
103 	__le32 flags;
104 	__le64 blocknr;	/* This block number, dm_block_t. */
105 
106 	__u8 uuid[16];
107 	__le64 magic;
108 	__le32 version;
109 	__le32 time;
110 
111 	__le64 trans_id;
112 
113 	/*
114 	 * Root held by userspace transactions.
115 	 */
116 	__le64 held_root;
117 
118 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
119 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
120 
121 	/*
122 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
123 	 */
124 	__le64 data_mapping_root;
125 
126 	/*
127 	 * Device detail root mapping dev_id -> device_details
128 	 */
129 	__le64 device_details_root;
130 
131 	__le32 data_block_size;		/* In 512-byte sectors. */
132 
133 	__le32 metadata_block_size;	/* In 512-byte sectors. */
134 	__le64 metadata_nr_blocks;
135 
136 	__le32 compat_flags;
137 	__le32 compat_ro_flags;
138 	__le32 incompat_flags;
139 } __packed;
140 
141 struct disk_device_details {
142 	__le64 mapped_blocks;
143 	__le64 transaction_id;		/* When created. */
144 	__le32 creation_time;
145 	__le32 snapshotted_time;
146 } __packed;
147 
148 struct dm_pool_metadata {
149 	struct hlist_node hash;
150 
151 	struct block_device *bdev;
152 	struct dm_block_manager *bm;
153 	struct dm_space_map *metadata_sm;
154 	struct dm_space_map *data_sm;
155 	struct dm_transaction_manager *tm;
156 	struct dm_transaction_manager *nb_tm;
157 
158 	/*
159 	 * Two-level btree.
160 	 * First level holds thin_dev_t.
161 	 * Second level holds mappings.
162 	 */
163 	struct dm_btree_info info;
164 
165 	/*
166 	 * Non-blocking version of the above.
167 	 */
168 	struct dm_btree_info nb_info;
169 
170 	/*
171 	 * Just the top level for deleting whole devices.
172 	 */
173 	struct dm_btree_info tl_info;
174 
175 	/*
176 	 * Just the bottom level for creating new devices.
177 	 */
178 	struct dm_btree_info bl_info;
179 
180 	/*
181 	 * Describes the device details btree.
182 	 */
183 	struct dm_btree_info details_info;
184 
185 	struct rw_semaphore root_lock;
186 	uint32_t time;
187 	dm_block_t root;
188 	dm_block_t details_root;
189 	struct list_head thin_devices;
190 	uint64_t trans_id;
191 	unsigned long flags;
192 	sector_t data_block_size;
193 
194 	/*
195 	 * Pre-commit callback.
196 	 *
197 	 * This allows the thin provisioning target to run a callback before
198 	 * the metadata are committed.
199 	 */
200 	dm_pool_pre_commit_fn pre_commit_fn;
201 	void *pre_commit_context;
202 
203 	/*
204 	 * We reserve a section of the metadata for commit overhead.
205 	 * All reported space does *not* include this.
206 	 */
207 	dm_block_t metadata_reserve;
208 
209 	/*
210 	 * Set if a transaction has to be aborted but the attempt to roll back
211 	 * to the previous (good) transaction failed.  The only pool metadata
212 	 * operation possible in this state is the closing of the device.
213 	 */
214 	bool fail_io:1;
215 
216 	/*
217 	 * Set once a thin-pool has been accessed through one of the interfaces
218 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
219 	 * thin-pool message, metadata snapshots, etc).
220 	 */
221 	bool in_service:1;
222 
223 	/*
224 	 * Reading the space map roots can fail, so we read it into these
225 	 * buffers before the superblock is locked and updated.
226 	 */
227 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
228 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
229 };
230 
231 struct dm_thin_device {
232 	struct list_head list;
233 	struct dm_pool_metadata *pmd;
234 	dm_thin_id id;
235 
236 	int open_count;
237 	bool changed:1;
238 	bool aborted_with_changes:1;
239 	uint64_t mapped_blocks;
240 	uint64_t transaction_id;
241 	uint32_t creation_time;
242 	uint32_t snapshotted_time;
243 };
244 
245 /*
246  *--------------------------------------------------------------
247  * superblock validator
248  *--------------------------------------------------------------
249  */
250 #define SUPERBLOCK_CSUM_XOR 160774
251 
252 static void sb_prepare_for_write(const struct dm_block_validator *v,
253 				 struct dm_block *b,
254 				 size_t block_size)
255 {
256 	struct thin_disk_superblock *disk_super = dm_block_data(b);
257 
258 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
259 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
260 						      block_size - sizeof(__le32),
261 						      SUPERBLOCK_CSUM_XOR));
262 }
263 
264 static int sb_check(const struct dm_block_validator *v,
265 		    struct dm_block *b,
266 		    size_t block_size)
267 {
268 	struct thin_disk_superblock *disk_super = dm_block_data(b);
269 	__le32 csum_le;
270 
271 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
272 		DMERR("%s failed: blocknr %llu: wanted %llu",
273 		      __func__, le64_to_cpu(disk_super->blocknr),
274 		      (unsigned long long)dm_block_location(b));
275 		return -ENOTBLK;
276 	}
277 
278 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
279 		DMERR("%s failed: magic %llu: wanted %llu",
280 		      __func__, le64_to_cpu(disk_super->magic),
281 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
282 		return -EILSEQ;
283 	}
284 
285 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
286 					     block_size - sizeof(__le32),
287 					     SUPERBLOCK_CSUM_XOR));
288 	if (csum_le != disk_super->csum) {
289 		DMERR("%s failed: csum %u: wanted %u",
290 		      __func__, le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
291 		return -EILSEQ;
292 	}
293 
294 	return 0;
295 }
296 
297 static const struct dm_block_validator sb_validator = {
298 	.name = "superblock",
299 	.prepare_for_write = sb_prepare_for_write,
300 	.check = sb_check
301 };
302 
303 /*
304  *--------------------------------------------------------------
305  * Methods for the btree value types
306  *--------------------------------------------------------------
307  */
308 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
309 {
310 	return (b << 24) | t;
311 }
312 
313 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
314 {
315 	*b = v >> 24;
316 	*t = v & ((1 << 24) - 1);
317 }
318 
319 /*
320  * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
321  * possible.  'with_runs' reads contiguous runs of blocks, and calls the
322  * given sm function.
323  */
324 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
325 
326 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned int count, run_fn fn)
327 {
328 	uint64_t b, begin, end;
329 	uint32_t t;
330 	bool in_run = false;
331 	unsigned int i;
332 
333 	for (i = 0; i < count; i++, value_le++) {
334 		/* We know value_le is 8 byte aligned */
335 		unpack_block_time(le64_to_cpu(*value_le), &b, &t);
336 
337 		if (in_run) {
338 			if (b == end) {
339 				end++;
340 			} else {
341 				fn(sm, begin, end);
342 				begin = b;
343 				end = b + 1;
344 			}
345 		} else {
346 			in_run = true;
347 			begin = b;
348 			end = b + 1;
349 		}
350 	}
351 
352 	if (in_run)
353 		fn(sm, begin, end);
354 }
355 
356 static void data_block_inc(void *context, const void *value_le, unsigned int count)
357 {
358 	with_runs((struct dm_space_map *) context,
359 		  (const __le64 *) value_le, count, dm_sm_inc_blocks);
360 }
361 
362 static void data_block_dec(void *context, const void *value_le, unsigned int count)
363 {
364 	with_runs((struct dm_space_map *) context,
365 		  (const __le64 *) value_le, count, dm_sm_dec_blocks);
366 }
367 
368 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
369 {
370 	__le64 v1_le, v2_le;
371 	uint64_t b1, b2;
372 	uint32_t t;
373 
374 	memcpy(&v1_le, value1_le, sizeof(v1_le));
375 	memcpy(&v2_le, value2_le, sizeof(v2_le));
376 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
377 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
378 
379 	return b1 == b2;
380 }
381 
382 static void subtree_inc(void *context, const void *value, unsigned int count)
383 {
384 	struct dm_btree_info *info = context;
385 	const __le64 *root_le = value;
386 	unsigned int i;
387 
388 	for (i = 0; i < count; i++, root_le++)
389 		dm_tm_inc(info->tm, le64_to_cpu(*root_le));
390 }
391 
392 static void subtree_dec(void *context, const void *value, unsigned int count)
393 {
394 	struct dm_btree_info *info = context;
395 	const __le64 *root_le = value;
396 	unsigned int i;
397 
398 	for (i = 0; i < count; i++, root_le++)
399 		if (dm_btree_del(info, le64_to_cpu(*root_le)))
400 			DMERR("btree delete failed");
401 }
402 
403 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
404 {
405 	__le64 v1_le, v2_le;
406 
407 	memcpy(&v1_le, value1_le, sizeof(v1_le));
408 	memcpy(&v2_le, value2_le, sizeof(v2_le));
409 
410 	return v1_le == v2_le;
411 }
412 
413 /*----------------------------------------------------------------*/
414 
415 /*
416  * Variant that is used for in-core only changes or code that
417  * shouldn't put the pool in service on its own (e.g. commit).
418  */
419 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
420 	__acquires(pmd->root_lock)
421 {
422 	down_write(&pmd->root_lock);
423 }
424 
425 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
426 {
427 	pmd_write_lock_in_core(pmd);
428 	if (unlikely(!pmd->in_service))
429 		pmd->in_service = true;
430 }
431 
432 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
433 	__releases(pmd->root_lock)
434 {
435 	up_write(&pmd->root_lock);
436 }
437 
438 /*----------------------------------------------------------------*/
439 
440 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
441 				struct dm_block **sblock)
442 {
443 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
444 				     &sb_validator, sblock);
445 }
446 
447 static int superblock_lock(struct dm_pool_metadata *pmd,
448 			   struct dm_block **sblock)
449 {
450 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
451 				&sb_validator, sblock);
452 }
453 
454 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
455 {
456 	int r;
457 	unsigned int i;
458 	struct dm_block *b;
459 	__le64 *data_le, zero = cpu_to_le64(0);
460 	unsigned int block_size = dm_bm_block_size(bm) / sizeof(__le64);
461 
462 	/*
463 	 * We can't use a validator here - it may be all zeroes.
464 	 */
465 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
466 	if (r)
467 		return r;
468 
469 	data_le = dm_block_data(b);
470 	*result = 1;
471 	for (i = 0; i < block_size; i++) {
472 		if (data_le[i] != zero) {
473 			*result = 0;
474 			break;
475 		}
476 	}
477 
478 	dm_bm_unlock(b);
479 
480 	return 0;
481 }
482 
483 static void __setup_btree_details(struct dm_pool_metadata *pmd)
484 {
485 	pmd->info.tm = pmd->tm;
486 	pmd->info.levels = 2;
487 	pmd->info.value_type.context = pmd->data_sm;
488 	pmd->info.value_type.size = sizeof(__le64);
489 	pmd->info.value_type.inc = data_block_inc;
490 	pmd->info.value_type.dec = data_block_dec;
491 	pmd->info.value_type.equal = data_block_equal;
492 
493 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
494 	pmd->nb_info.tm = pmd->nb_tm;
495 
496 	pmd->tl_info.tm = pmd->tm;
497 	pmd->tl_info.levels = 1;
498 	pmd->tl_info.value_type.context = &pmd->bl_info;
499 	pmd->tl_info.value_type.size = sizeof(__le64);
500 	pmd->tl_info.value_type.inc = subtree_inc;
501 	pmd->tl_info.value_type.dec = subtree_dec;
502 	pmd->tl_info.value_type.equal = subtree_equal;
503 
504 	pmd->bl_info.tm = pmd->tm;
505 	pmd->bl_info.levels = 1;
506 	pmd->bl_info.value_type.context = pmd->data_sm;
507 	pmd->bl_info.value_type.size = sizeof(__le64);
508 	pmd->bl_info.value_type.inc = data_block_inc;
509 	pmd->bl_info.value_type.dec = data_block_dec;
510 	pmd->bl_info.value_type.equal = data_block_equal;
511 
512 	pmd->details_info.tm = pmd->tm;
513 	pmd->details_info.levels = 1;
514 	pmd->details_info.value_type.context = NULL;
515 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
516 	pmd->details_info.value_type.inc = NULL;
517 	pmd->details_info.value_type.dec = NULL;
518 	pmd->details_info.value_type.equal = NULL;
519 }
520 
521 static int save_sm_roots(struct dm_pool_metadata *pmd)
522 {
523 	int r;
524 	size_t len;
525 
526 	r = dm_sm_root_size(pmd->metadata_sm, &len);
527 	if (r < 0)
528 		return r;
529 
530 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
531 	if (r < 0)
532 		return r;
533 
534 	r = dm_sm_root_size(pmd->data_sm, &len);
535 	if (r < 0)
536 		return r;
537 
538 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
539 }
540 
541 static void copy_sm_roots(struct dm_pool_metadata *pmd,
542 			  struct thin_disk_superblock *disk)
543 {
544 	memcpy(&disk->metadata_space_map_root,
545 	       &pmd->metadata_space_map_root,
546 	       sizeof(pmd->metadata_space_map_root));
547 
548 	memcpy(&disk->data_space_map_root,
549 	       &pmd->data_space_map_root,
550 	       sizeof(pmd->data_space_map_root));
551 }
552 
553 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
554 {
555 	int r;
556 	struct dm_block *sblock;
557 	struct thin_disk_superblock *disk_super;
558 	sector_t bdev_size = bdev_nr_sectors(pmd->bdev);
559 
560 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
561 		bdev_size = THIN_METADATA_MAX_SECTORS;
562 
563 	r = dm_sm_commit(pmd->data_sm);
564 	if (r < 0)
565 		return r;
566 
567 	r = dm_tm_pre_commit(pmd->tm);
568 	if (r < 0)
569 		return r;
570 
571 	r = save_sm_roots(pmd);
572 	if (r < 0)
573 		return r;
574 
575 	r = superblock_lock_zero(pmd, &sblock);
576 	if (r)
577 		return r;
578 
579 	disk_super = dm_block_data(sblock);
580 	disk_super->flags = 0;
581 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
582 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
583 	disk_super->version = cpu_to_le32(THIN_VERSION);
584 	disk_super->time = 0;
585 	disk_super->trans_id = 0;
586 	disk_super->held_root = 0;
587 
588 	copy_sm_roots(pmd, disk_super);
589 
590 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
591 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
592 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
593 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
594 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
595 
596 	return dm_tm_commit(pmd->tm, sblock);
597 }
598 
599 static int __format_metadata(struct dm_pool_metadata *pmd)
600 {
601 	int r;
602 
603 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
604 				 &pmd->tm, &pmd->metadata_sm);
605 	if (r < 0) {
606 		pmd->tm = NULL;
607 		pmd->metadata_sm = NULL;
608 		DMERR("tm_create_with_sm failed");
609 		return r;
610 	}
611 
612 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
613 	if (IS_ERR(pmd->data_sm)) {
614 		DMERR("sm_disk_create failed");
615 		r = PTR_ERR(pmd->data_sm);
616 		pmd->data_sm = NULL;
617 		goto bad_cleanup_tm;
618 	}
619 
620 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
621 	if (!pmd->nb_tm) {
622 		DMERR("could not create non-blocking clone tm");
623 		r = -ENOMEM;
624 		goto bad_cleanup_data_sm;
625 	}
626 
627 	__setup_btree_details(pmd);
628 
629 	r = dm_btree_empty(&pmd->info, &pmd->root);
630 	if (r < 0)
631 		goto bad_cleanup_nb_tm;
632 
633 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
634 	if (r < 0) {
635 		DMERR("couldn't create devices root");
636 		goto bad_cleanup_nb_tm;
637 	}
638 
639 	r = __write_initial_superblock(pmd);
640 	if (r)
641 		goto bad_cleanup_nb_tm;
642 
643 	return 0;
644 
645 bad_cleanup_nb_tm:
646 	dm_tm_destroy(pmd->nb_tm);
647 	pmd->nb_tm = NULL;
648 bad_cleanup_data_sm:
649 	dm_sm_destroy(pmd->data_sm);
650 	pmd->data_sm = NULL;
651 bad_cleanup_tm:
652 	dm_tm_destroy(pmd->tm);
653 	pmd->tm = NULL;
654 	dm_sm_destroy(pmd->metadata_sm);
655 	pmd->metadata_sm = NULL;
656 
657 	return r;
658 }
659 
660 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
661 				     struct dm_pool_metadata *pmd)
662 {
663 	uint32_t features;
664 
665 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
666 	if (features) {
667 		DMERR("could not access metadata due to unsupported optional features (%lx).",
668 		      (unsigned long)features);
669 		return -EINVAL;
670 	}
671 
672 	/*
673 	 * Check for read-only metadata to skip the following RDWR checks.
674 	 */
675 	if (bdev_read_only(pmd->bdev))
676 		return 0;
677 
678 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
679 	if (features) {
680 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
681 		      (unsigned long)features);
682 		return -EINVAL;
683 	}
684 
685 	return 0;
686 }
687 
688 static int __open_metadata(struct dm_pool_metadata *pmd)
689 {
690 	int r;
691 	struct dm_block *sblock;
692 	struct thin_disk_superblock *disk_super;
693 
694 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
695 			    &sb_validator, &sblock);
696 	if (r < 0) {
697 		DMERR("couldn't read superblock");
698 		return r;
699 	}
700 
701 	disk_super = dm_block_data(sblock);
702 
703 	/* Verify the data block size hasn't changed */
704 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
705 		DMERR("changing the data block size (from %u to %llu) is not supported",
706 		      le32_to_cpu(disk_super->data_block_size),
707 		      (unsigned long long)pmd->data_block_size);
708 		r = -EINVAL;
709 		goto bad_unlock_sblock;
710 	}
711 
712 	r = __check_incompat_features(disk_super, pmd);
713 	if (r < 0)
714 		goto bad_unlock_sblock;
715 
716 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
717 			       disk_super->metadata_space_map_root,
718 			       sizeof(disk_super->metadata_space_map_root),
719 			       &pmd->tm, &pmd->metadata_sm);
720 	if (r < 0) {
721 		pmd->tm = NULL;
722 		pmd->metadata_sm = NULL;
723 		DMERR("tm_open_with_sm failed");
724 		goto bad_unlock_sblock;
725 	}
726 
727 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
728 				       sizeof(disk_super->data_space_map_root));
729 	if (IS_ERR(pmd->data_sm)) {
730 		DMERR("sm_disk_open failed");
731 		r = PTR_ERR(pmd->data_sm);
732 		pmd->data_sm = NULL;
733 		goto bad_cleanup_tm;
734 	}
735 
736 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
737 	if (!pmd->nb_tm) {
738 		DMERR("could not create non-blocking clone tm");
739 		r = -ENOMEM;
740 		goto bad_cleanup_data_sm;
741 	}
742 
743 	/*
744 	 * For pool metadata opening process, root setting is redundant
745 	 * because it will be set again in __begin_transaction(). But dm
746 	 * pool aborting process really needs to get last transaction's
747 	 * root to avoid accessing broken btree.
748 	 */
749 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
750 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
751 
752 	__setup_btree_details(pmd);
753 	dm_bm_unlock(sblock);
754 
755 	return 0;
756 
757 bad_cleanup_data_sm:
758 	dm_sm_destroy(pmd->data_sm);
759 	pmd->data_sm = NULL;
760 bad_cleanup_tm:
761 	dm_tm_destroy(pmd->tm);
762 	pmd->tm = NULL;
763 	dm_sm_destroy(pmd->metadata_sm);
764 	pmd->metadata_sm = NULL;
765 bad_unlock_sblock:
766 	dm_bm_unlock(sblock);
767 
768 	return r;
769 }
770 
771 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
772 {
773 	int r, unformatted;
774 
775 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
776 	if (r)
777 		return r;
778 
779 	if (unformatted)
780 		return format_device ? __format_metadata(pmd) : -EPERM;
781 
782 	return __open_metadata(pmd);
783 }
784 
785 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
786 {
787 	int r;
788 
789 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
790 					  THIN_MAX_CONCURRENT_LOCKS);
791 	if (IS_ERR(pmd->bm)) {
792 		DMERR("could not create block manager");
793 		r = PTR_ERR(pmd->bm);
794 		pmd->bm = NULL;
795 		return r;
796 	}
797 
798 	r = __open_or_format_metadata(pmd, format_device);
799 	if (r) {
800 		dm_block_manager_destroy(pmd->bm);
801 		pmd->bm = NULL;
802 	}
803 
804 	return r;
805 }
806 
807 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
808 					      bool destroy_bm)
809 {
810 	dm_sm_destroy(pmd->data_sm);
811 	pmd->data_sm = NULL;
812 	dm_sm_destroy(pmd->metadata_sm);
813 	pmd->metadata_sm = NULL;
814 	dm_tm_destroy(pmd->nb_tm);
815 	pmd->nb_tm = NULL;
816 	dm_tm_destroy(pmd->tm);
817 	pmd->tm = NULL;
818 	if (destroy_bm)
819 		dm_block_manager_destroy(pmd->bm);
820 }
821 
822 static int __begin_transaction(struct dm_pool_metadata *pmd)
823 {
824 	int r;
825 	struct thin_disk_superblock *disk_super;
826 	struct dm_block *sblock;
827 
828 	/*
829 	 * We re-read the superblock every time.  Shouldn't need to do this
830 	 * really.
831 	 */
832 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
833 			    &sb_validator, &sblock);
834 	if (r)
835 		return r;
836 
837 	disk_super = dm_block_data(sblock);
838 	pmd->time = le32_to_cpu(disk_super->time);
839 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
840 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
841 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
842 	pmd->flags = le32_to_cpu(disk_super->flags);
843 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
844 
845 	dm_bm_unlock(sblock);
846 	return 0;
847 }
848 
849 static int __write_changed_details(struct dm_pool_metadata *pmd)
850 {
851 	int r;
852 	struct dm_thin_device *td, *tmp;
853 	struct disk_device_details details;
854 	uint64_t key;
855 
856 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
857 		if (!td->changed)
858 			continue;
859 
860 		key = td->id;
861 
862 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
863 		details.transaction_id = cpu_to_le64(td->transaction_id);
864 		details.creation_time = cpu_to_le32(td->creation_time);
865 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
866 		__dm_bless_for_disk(&details);
867 
868 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
869 				    &key, &details, &pmd->details_root);
870 		if (r)
871 			return r;
872 
873 		if (td->open_count)
874 			td->changed = false;
875 		else {
876 			list_del(&td->list);
877 			kfree(td);
878 		}
879 	}
880 
881 	return 0;
882 }
883 
884 static int __commit_transaction(struct dm_pool_metadata *pmd)
885 {
886 	int r;
887 	struct thin_disk_superblock *disk_super;
888 	struct dm_block *sblock;
889 
890 	/*
891 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
892 	 */
893 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
894 	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
895 
896 	if (unlikely(!pmd->in_service))
897 		return 0;
898 
899 	if (pmd->pre_commit_fn) {
900 		r = pmd->pre_commit_fn(pmd->pre_commit_context);
901 		if (r < 0) {
902 			DMERR("pre-commit callback failed");
903 			return r;
904 		}
905 	}
906 
907 	r = __write_changed_details(pmd);
908 	if (r < 0)
909 		return r;
910 
911 	r = dm_sm_commit(pmd->data_sm);
912 	if (r < 0)
913 		return r;
914 
915 	r = dm_tm_pre_commit(pmd->tm);
916 	if (r < 0)
917 		return r;
918 
919 	r = save_sm_roots(pmd);
920 	if (r < 0)
921 		return r;
922 
923 	r = superblock_lock(pmd, &sblock);
924 	if (r)
925 		return r;
926 
927 	disk_super = dm_block_data(sblock);
928 	disk_super->time = cpu_to_le32(pmd->time);
929 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
930 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
931 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
932 	disk_super->flags = cpu_to_le32(pmd->flags);
933 
934 	copy_sm_roots(pmd, disk_super);
935 
936 	return dm_tm_commit(pmd->tm, sblock);
937 }
938 
939 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
940 {
941 	int r;
942 	dm_block_t total;
943 	dm_block_t max_blocks = 4096; /* 16M */
944 
945 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
946 	if (r) {
947 		DMERR("could not get size of metadata device");
948 		pmd->metadata_reserve = max_blocks;
949 	} else
950 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
951 }
952 
953 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
954 					       sector_t data_block_size,
955 					       bool format_device)
956 {
957 	int r;
958 	struct dm_pool_metadata *pmd;
959 
960 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
961 	if (!pmd) {
962 		DMERR("could not allocate metadata struct");
963 		return ERR_PTR(-ENOMEM);
964 	}
965 
966 	init_rwsem(&pmd->root_lock);
967 	pmd->time = 0;
968 	INIT_LIST_HEAD(&pmd->thin_devices);
969 	pmd->fail_io = false;
970 	pmd->in_service = false;
971 	pmd->bdev = bdev;
972 	pmd->data_block_size = data_block_size;
973 	pmd->pre_commit_fn = NULL;
974 	pmd->pre_commit_context = NULL;
975 
976 	r = __create_persistent_data_objects(pmd, format_device);
977 	if (r) {
978 		kfree(pmd);
979 		return ERR_PTR(r);
980 	}
981 
982 	r = __begin_transaction(pmd);
983 	if (r < 0) {
984 		if (dm_pool_metadata_close(pmd) < 0)
985 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
986 		return ERR_PTR(r);
987 	}
988 
989 	__set_metadata_reserve(pmd);
990 
991 	return pmd;
992 }
993 
994 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
995 {
996 	int r;
997 	unsigned int open_devices = 0;
998 	struct dm_thin_device *td, *tmp;
999 
1000 	down_read(&pmd->root_lock);
1001 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1002 		if (td->open_count)
1003 			open_devices++;
1004 		else {
1005 			list_del(&td->list);
1006 			kfree(td);
1007 		}
1008 	}
1009 	up_read(&pmd->root_lock);
1010 
1011 	if (open_devices) {
1012 		DMERR("attempt to close pmd when %u device(s) are still open",
1013 		       open_devices);
1014 		return -EBUSY;
1015 	}
1016 
1017 	pmd_write_lock_in_core(pmd);
1018 	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
1019 		r = __commit_transaction(pmd);
1020 		if (r < 0)
1021 			DMWARN("%s: __commit_transaction() failed, error = %d",
1022 			       __func__, r);
1023 	}
1024 	pmd_write_unlock(pmd);
1025 	__destroy_persistent_data_objects(pmd, true);
1026 
1027 	kfree(pmd);
1028 	return 0;
1029 }
1030 
1031 /*
1032  * __open_device: Returns @td corresponding to device with id @dev,
1033  * creating it if @create is set and incrementing @td->open_count.
1034  * On failure, @td is undefined.
1035  */
1036 static int __open_device(struct dm_pool_metadata *pmd,
1037 			 dm_thin_id dev, int create,
1038 			 struct dm_thin_device **td)
1039 {
1040 	int r, changed = 0;
1041 	struct dm_thin_device *td2;
1042 	uint64_t key = dev;
1043 	struct disk_device_details details_le;
1044 
1045 	/*
1046 	 * If the device is already open, return it.
1047 	 */
1048 	list_for_each_entry(td2, &pmd->thin_devices, list)
1049 		if (td2->id == dev) {
1050 			/*
1051 			 * May not create an already-open device.
1052 			 */
1053 			if (create)
1054 				return -EEXIST;
1055 
1056 			td2->open_count++;
1057 			*td = td2;
1058 			return 0;
1059 		}
1060 
1061 	/*
1062 	 * Check the device exists.
1063 	 */
1064 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1065 			    &key, &details_le);
1066 	if (r) {
1067 		if (r != -ENODATA || !create)
1068 			return r;
1069 
1070 		/*
1071 		 * Create new device.
1072 		 */
1073 		changed = 1;
1074 		details_le.mapped_blocks = 0;
1075 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1076 		details_le.creation_time = cpu_to_le32(pmd->time);
1077 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1078 	}
1079 
1080 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1081 	if (!*td)
1082 		return -ENOMEM;
1083 
1084 	(*td)->pmd = pmd;
1085 	(*td)->id = dev;
1086 	(*td)->open_count = 1;
1087 	(*td)->changed = changed;
1088 	(*td)->aborted_with_changes = false;
1089 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1090 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1091 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1092 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1093 
1094 	list_add(&(*td)->list, &pmd->thin_devices);
1095 
1096 	return 0;
1097 }
1098 
1099 static void __close_device(struct dm_thin_device *td)
1100 {
1101 	--td->open_count;
1102 }
1103 
1104 static int __create_thin(struct dm_pool_metadata *pmd,
1105 			 dm_thin_id dev)
1106 {
1107 	int r;
1108 	dm_block_t dev_root;
1109 	uint64_t key = dev;
1110 	struct dm_thin_device *td;
1111 	__le64 value;
1112 
1113 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1114 			    &key, NULL);
1115 	if (!r)
1116 		return -EEXIST;
1117 
1118 	/*
1119 	 * Create an empty btree for the mappings.
1120 	 */
1121 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1122 	if (r)
1123 		return r;
1124 
1125 	/*
1126 	 * Insert it into the main mapping tree.
1127 	 */
1128 	value = cpu_to_le64(dev_root);
1129 	__dm_bless_for_disk(&value);
1130 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1131 	if (r) {
1132 		dm_btree_del(&pmd->bl_info, dev_root);
1133 		return r;
1134 	}
1135 
1136 	r = __open_device(pmd, dev, 1, &td);
1137 	if (r) {
1138 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1139 		dm_btree_del(&pmd->bl_info, dev_root);
1140 		return r;
1141 	}
1142 	__close_device(td);
1143 
1144 	return r;
1145 }
1146 
1147 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1148 {
1149 	int r = -EINVAL;
1150 
1151 	pmd_write_lock(pmd);
1152 	if (!pmd->fail_io)
1153 		r = __create_thin(pmd, dev);
1154 	pmd_write_unlock(pmd);
1155 
1156 	return r;
1157 }
1158 
1159 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1160 				  struct dm_thin_device *snap,
1161 				  dm_thin_id origin, uint32_t time)
1162 {
1163 	int r;
1164 	struct dm_thin_device *td;
1165 
1166 	r = __open_device(pmd, origin, 0, &td);
1167 	if (r)
1168 		return r;
1169 
1170 	td->changed = true;
1171 	td->snapshotted_time = time;
1172 
1173 	snap->mapped_blocks = td->mapped_blocks;
1174 	snap->snapshotted_time = time;
1175 	__close_device(td);
1176 
1177 	return 0;
1178 }
1179 
1180 static int __create_snap(struct dm_pool_metadata *pmd,
1181 			 dm_thin_id dev, dm_thin_id origin)
1182 {
1183 	int r;
1184 	dm_block_t origin_root;
1185 	uint64_t key = origin, dev_key = dev;
1186 	struct dm_thin_device *td;
1187 	__le64 value;
1188 
1189 	/* check this device is unused */
1190 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1191 			    &dev_key, NULL);
1192 	if (!r)
1193 		return -EEXIST;
1194 
1195 	/* find the mapping tree for the origin */
1196 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1197 	if (r)
1198 		return r;
1199 	origin_root = le64_to_cpu(value);
1200 
1201 	/* clone the origin, an inc will do */
1202 	dm_tm_inc(pmd->tm, origin_root);
1203 
1204 	/* insert into the main mapping tree */
1205 	value = cpu_to_le64(origin_root);
1206 	__dm_bless_for_disk(&value);
1207 	key = dev;
1208 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1209 	if (r) {
1210 		dm_tm_dec(pmd->tm, origin_root);
1211 		return r;
1212 	}
1213 
1214 	pmd->time++;
1215 
1216 	r = __open_device(pmd, dev, 1, &td);
1217 	if (r)
1218 		goto bad;
1219 
1220 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1221 	__close_device(td);
1222 
1223 	if (r)
1224 		goto bad;
1225 
1226 	return 0;
1227 
1228 bad:
1229 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1230 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1231 			&key, &pmd->details_root);
1232 	return r;
1233 }
1234 
1235 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1236 				 dm_thin_id dev,
1237 				 dm_thin_id origin)
1238 {
1239 	int r = -EINVAL;
1240 
1241 	pmd_write_lock(pmd);
1242 	if (!pmd->fail_io)
1243 		r = __create_snap(pmd, dev, origin);
1244 	pmd_write_unlock(pmd);
1245 
1246 	return r;
1247 }
1248 
1249 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1250 {
1251 	int r;
1252 	uint64_t key = dev;
1253 	struct dm_thin_device *td;
1254 
1255 	/* TODO: failure should mark the transaction invalid */
1256 	r = __open_device(pmd, dev, 0, &td);
1257 	if (r)
1258 		return r;
1259 
1260 	if (td->open_count > 1) {
1261 		__close_device(td);
1262 		return -EBUSY;
1263 	}
1264 
1265 	list_del(&td->list);
1266 	kfree(td);
1267 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1268 			    &key, &pmd->details_root);
1269 	if (r)
1270 		return r;
1271 
1272 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1273 	if (r)
1274 		return r;
1275 
1276 	return 0;
1277 }
1278 
1279 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1280 			       dm_thin_id dev)
1281 {
1282 	int r = -EINVAL;
1283 
1284 	pmd_write_lock(pmd);
1285 	if (!pmd->fail_io)
1286 		r = __delete_device(pmd, dev);
1287 	pmd_write_unlock(pmd);
1288 
1289 	return r;
1290 }
1291 
1292 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1293 					uint64_t current_id,
1294 					uint64_t new_id)
1295 {
1296 	int r = -EINVAL;
1297 
1298 	pmd_write_lock(pmd);
1299 
1300 	if (pmd->fail_io)
1301 		goto out;
1302 
1303 	if (pmd->trans_id != current_id) {
1304 		DMERR("mismatched transaction id");
1305 		goto out;
1306 	}
1307 
1308 	pmd->trans_id = new_id;
1309 	r = 0;
1310 
1311 out:
1312 	pmd_write_unlock(pmd);
1313 
1314 	return r;
1315 }
1316 
1317 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1318 					uint64_t *result)
1319 {
1320 	int r = -EINVAL;
1321 
1322 	down_read(&pmd->root_lock);
1323 	if (!pmd->fail_io) {
1324 		*result = pmd->trans_id;
1325 		r = 0;
1326 	}
1327 	up_read(&pmd->root_lock);
1328 
1329 	return r;
1330 }
1331 
1332 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1333 {
1334 	int r, inc;
1335 	struct thin_disk_superblock *disk_super;
1336 	struct dm_block *copy, *sblock;
1337 	dm_block_t held_root;
1338 
1339 	/*
1340 	 * We commit to ensure the btree roots which we increment in a
1341 	 * moment are up to date.
1342 	 */
1343 	r = __commit_transaction(pmd);
1344 	if (r < 0) {
1345 		DMWARN("%s: __commit_transaction() failed, error = %d",
1346 		       __func__, r);
1347 		return r;
1348 	}
1349 
1350 	/*
1351 	 * Copy the superblock.
1352 	 */
1353 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1354 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1355 			       &sb_validator, &copy, &inc);
1356 	if (r)
1357 		return r;
1358 
1359 	BUG_ON(!inc);
1360 
1361 	held_root = dm_block_location(copy);
1362 	disk_super = dm_block_data(copy);
1363 
1364 	if (le64_to_cpu(disk_super->held_root)) {
1365 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1366 
1367 		dm_tm_dec(pmd->tm, held_root);
1368 		dm_tm_unlock(pmd->tm, copy);
1369 		return -EBUSY;
1370 	}
1371 
1372 	/*
1373 	 * Wipe the spacemap since we're not publishing this.
1374 	 */
1375 	memset(&disk_super->data_space_map_root, 0,
1376 	       sizeof(disk_super->data_space_map_root));
1377 	memset(&disk_super->metadata_space_map_root, 0,
1378 	       sizeof(disk_super->metadata_space_map_root));
1379 
1380 	/*
1381 	 * Increment the data structures that need to be preserved.
1382 	 */
1383 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1384 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1385 	dm_tm_unlock(pmd->tm, copy);
1386 
1387 	/*
1388 	 * Write the held root into the superblock.
1389 	 */
1390 	r = superblock_lock(pmd, &sblock);
1391 	if (r) {
1392 		dm_tm_dec(pmd->tm, held_root);
1393 		return r;
1394 	}
1395 
1396 	disk_super = dm_block_data(sblock);
1397 	disk_super->held_root = cpu_to_le64(held_root);
1398 	dm_bm_unlock(sblock);
1399 	return 0;
1400 }
1401 
1402 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1403 {
1404 	int r = -EINVAL;
1405 
1406 	pmd_write_lock(pmd);
1407 	if (!pmd->fail_io)
1408 		r = __reserve_metadata_snap(pmd);
1409 	pmd_write_unlock(pmd);
1410 
1411 	return r;
1412 }
1413 
1414 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1415 {
1416 	int r;
1417 	struct thin_disk_superblock *disk_super;
1418 	struct dm_block *sblock, *copy;
1419 	dm_block_t held_root;
1420 
1421 	r = superblock_lock(pmd, &sblock);
1422 	if (r)
1423 		return r;
1424 
1425 	disk_super = dm_block_data(sblock);
1426 	held_root = le64_to_cpu(disk_super->held_root);
1427 	disk_super->held_root = cpu_to_le64(0);
1428 
1429 	dm_bm_unlock(sblock);
1430 
1431 	if (!held_root) {
1432 		DMWARN("No pool metadata snapshot found: nothing to release.");
1433 		return -EINVAL;
1434 	}
1435 
1436 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1437 	if (r)
1438 		return r;
1439 
1440 	disk_super = dm_block_data(copy);
1441 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1442 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1443 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1444 
1445 	dm_tm_unlock(pmd->tm, copy);
1446 
1447 	return 0;
1448 }
1449 
1450 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1451 {
1452 	int r = -EINVAL;
1453 
1454 	pmd_write_lock(pmd);
1455 	if (!pmd->fail_io)
1456 		r = __release_metadata_snap(pmd);
1457 	pmd_write_unlock(pmd);
1458 
1459 	return r;
1460 }
1461 
1462 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1463 			       dm_block_t *result)
1464 {
1465 	int r;
1466 	struct thin_disk_superblock *disk_super;
1467 	struct dm_block *sblock;
1468 
1469 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1470 			    &sb_validator, &sblock);
1471 	if (r)
1472 		return r;
1473 
1474 	disk_super = dm_block_data(sblock);
1475 	*result = le64_to_cpu(disk_super->held_root);
1476 
1477 	dm_bm_unlock(sblock);
1478 
1479 	return 0;
1480 }
1481 
1482 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1483 			      dm_block_t *result)
1484 {
1485 	int r = -EINVAL;
1486 
1487 	down_read(&pmd->root_lock);
1488 	if (!pmd->fail_io)
1489 		r = __get_metadata_snap(pmd, result);
1490 	up_read(&pmd->root_lock);
1491 
1492 	return r;
1493 }
1494 
1495 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1496 			     struct dm_thin_device **td)
1497 {
1498 	int r = -EINVAL;
1499 
1500 	pmd_write_lock_in_core(pmd);
1501 	if (!pmd->fail_io)
1502 		r = __open_device(pmd, dev, 0, td);
1503 	pmd_write_unlock(pmd);
1504 
1505 	return r;
1506 }
1507 
1508 int dm_pool_close_thin_device(struct dm_thin_device *td)
1509 {
1510 	pmd_write_lock_in_core(td->pmd);
1511 	__close_device(td);
1512 	pmd_write_unlock(td->pmd);
1513 
1514 	return 0;
1515 }
1516 
1517 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1518 {
1519 	return td->id;
1520 }
1521 
1522 /*
1523  * Check whether @time (of block creation) is older than @td's last snapshot.
1524  * If so then the associated block is shared with the last snapshot device.
1525  * Any block on a device created *after* the device last got snapshotted is
1526  * necessarily not shared.
1527  */
1528 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1529 {
1530 	return td->snapshotted_time > time;
1531 }
1532 
1533 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1534 				 struct dm_thin_lookup_result *result)
1535 {
1536 	uint64_t block_time = 0;
1537 	dm_block_t exception_block;
1538 	uint32_t exception_time;
1539 
1540 	block_time = le64_to_cpu(value);
1541 	unpack_block_time(block_time, &exception_block, &exception_time);
1542 	result->block = exception_block;
1543 	result->shared = __snapshotted_since(td, exception_time);
1544 }
1545 
1546 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1547 			int can_issue_io, struct dm_thin_lookup_result *result)
1548 {
1549 	int r;
1550 	__le64 value;
1551 	struct dm_pool_metadata *pmd = td->pmd;
1552 	dm_block_t keys[2] = { td->id, block };
1553 	struct dm_btree_info *info;
1554 
1555 	if (can_issue_io)
1556 		info = &pmd->info;
1557 	else
1558 		info = &pmd->nb_info;
1559 
1560 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1561 	if (!r)
1562 		unpack_lookup_result(td, value, result);
1563 
1564 	return r;
1565 }
1566 
1567 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1568 		       int can_issue_io, struct dm_thin_lookup_result *result)
1569 {
1570 	int r;
1571 	struct dm_pool_metadata *pmd = td->pmd;
1572 
1573 	down_read(&pmd->root_lock);
1574 	if (pmd->fail_io) {
1575 		up_read(&pmd->root_lock);
1576 		return -EINVAL;
1577 	}
1578 
1579 	r = __find_block(td, block, can_issue_io, result);
1580 
1581 	up_read(&pmd->root_lock);
1582 	return r;
1583 }
1584 
1585 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1586 					  dm_block_t *vblock,
1587 					  struct dm_thin_lookup_result *result)
1588 {
1589 	int r;
1590 	__le64 value;
1591 	struct dm_pool_metadata *pmd = td->pmd;
1592 	dm_block_t keys[2] = { td->id, block };
1593 
1594 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1595 	if (!r)
1596 		unpack_lookup_result(td, value, result);
1597 
1598 	return r;
1599 }
1600 
1601 static int __find_mapped_range(struct dm_thin_device *td,
1602 			       dm_block_t begin, dm_block_t end,
1603 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1604 			       dm_block_t *pool_begin, bool *maybe_shared)
1605 {
1606 	int r;
1607 	dm_block_t pool_end;
1608 	struct dm_thin_lookup_result lookup;
1609 
1610 	if (end < begin)
1611 		return -ENODATA;
1612 
1613 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1614 	if (r)
1615 		return r;
1616 
1617 	if (begin >= end)
1618 		return -ENODATA;
1619 
1620 	*thin_begin = begin;
1621 	*pool_begin = lookup.block;
1622 	*maybe_shared = lookup.shared;
1623 
1624 	begin++;
1625 	pool_end = *pool_begin + 1;
1626 	while (begin != end) {
1627 		r = __find_block(td, begin, true, &lookup);
1628 		if (r) {
1629 			if (r == -ENODATA)
1630 				break;
1631 
1632 			return r;
1633 		}
1634 
1635 		if ((lookup.block != pool_end) ||
1636 		    (lookup.shared != *maybe_shared))
1637 			break;
1638 
1639 		pool_end++;
1640 		begin++;
1641 	}
1642 
1643 	*thin_end = begin;
1644 	return 0;
1645 }
1646 
1647 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1648 			      dm_block_t begin, dm_block_t end,
1649 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1650 			      dm_block_t *pool_begin, bool *maybe_shared)
1651 {
1652 	int r = -EINVAL;
1653 	struct dm_pool_metadata *pmd = td->pmd;
1654 
1655 	down_read(&pmd->root_lock);
1656 	if (!pmd->fail_io) {
1657 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1658 					pool_begin, maybe_shared);
1659 	}
1660 	up_read(&pmd->root_lock);
1661 
1662 	return r;
1663 }
1664 
1665 static int __insert(struct dm_thin_device *td, dm_block_t block,
1666 		    dm_block_t data_block)
1667 {
1668 	int r, inserted;
1669 	__le64 value;
1670 	struct dm_pool_metadata *pmd = td->pmd;
1671 	dm_block_t keys[2] = { td->id, block };
1672 
1673 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1674 	__dm_bless_for_disk(&value);
1675 
1676 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1677 				   &pmd->root, &inserted);
1678 	if (r)
1679 		return r;
1680 
1681 	td->changed = true;
1682 	if (inserted)
1683 		td->mapped_blocks++;
1684 
1685 	return 0;
1686 }
1687 
1688 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1689 			 dm_block_t data_block)
1690 {
1691 	int r = -EINVAL;
1692 
1693 	pmd_write_lock(td->pmd);
1694 	if (!td->pmd->fail_io)
1695 		r = __insert(td, block, data_block);
1696 	pmd_write_unlock(td->pmd);
1697 
1698 	return r;
1699 }
1700 
1701 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1702 {
1703 	int r;
1704 	unsigned int count, total_count = 0;
1705 	struct dm_pool_metadata *pmd = td->pmd;
1706 	dm_block_t keys[1] = { td->id };
1707 	__le64 value;
1708 	dm_block_t mapping_root;
1709 
1710 	/*
1711 	 * Find the mapping tree
1712 	 */
1713 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1714 	if (r)
1715 		return r;
1716 
1717 	/*
1718 	 * Remove from the mapping tree, taking care to inc the
1719 	 * ref count so it doesn't get deleted.
1720 	 */
1721 	mapping_root = le64_to_cpu(value);
1722 	dm_tm_inc(pmd->tm, mapping_root);
1723 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1724 	if (r)
1725 		return r;
1726 
1727 	/*
1728 	 * Remove leaves stops at the first unmapped entry, so we have to
1729 	 * loop round finding mapped ranges.
1730 	 */
1731 	while (begin < end) {
1732 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1733 		if (r == -ENODATA)
1734 			break;
1735 
1736 		if (r)
1737 			return r;
1738 
1739 		if (begin >= end)
1740 			break;
1741 
1742 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1743 		if (r)
1744 			return r;
1745 
1746 		total_count += count;
1747 	}
1748 
1749 	td->mapped_blocks -= total_count;
1750 	td->changed = true;
1751 
1752 	/*
1753 	 * Reinsert the mapping tree.
1754 	 */
1755 	value = cpu_to_le64(mapping_root);
1756 	__dm_bless_for_disk(&value);
1757 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1758 }
1759 
1760 int dm_thin_remove_range(struct dm_thin_device *td,
1761 			 dm_block_t begin, dm_block_t end)
1762 {
1763 	int r = -EINVAL;
1764 
1765 	pmd_write_lock(td->pmd);
1766 	if (!td->pmd->fail_io)
1767 		r = __remove_range(td, begin, end);
1768 	pmd_write_unlock(td->pmd);
1769 
1770 	return r;
1771 }
1772 
1773 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1774 {
1775 	int r = -EINVAL;
1776 	uint32_t ref_count;
1777 
1778 	down_read(&pmd->root_lock);
1779 	if (!pmd->fail_io) {
1780 		r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1781 		if (!r)
1782 			*result = (ref_count > 1);
1783 	}
1784 	up_read(&pmd->root_lock);
1785 
1786 	return r;
1787 }
1788 
1789 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1790 {
1791 	int r = -EINVAL;
1792 
1793 	pmd_write_lock(pmd);
1794 	if (!pmd->fail_io)
1795 		r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1796 	pmd_write_unlock(pmd);
1797 
1798 	return r;
1799 }
1800 
1801 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1802 {
1803 	int r = -EINVAL;
1804 
1805 	pmd_write_lock(pmd);
1806 	if (!pmd->fail_io)
1807 		r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1808 	pmd_write_unlock(pmd);
1809 
1810 	return r;
1811 }
1812 
1813 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1814 {
1815 	int r;
1816 
1817 	down_read(&td->pmd->root_lock);
1818 	r = td->changed;
1819 	up_read(&td->pmd->root_lock);
1820 
1821 	return r;
1822 }
1823 
1824 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1825 {
1826 	bool r = false;
1827 	struct dm_thin_device *td, *tmp;
1828 
1829 	down_read(&pmd->root_lock);
1830 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1831 		if (td->changed) {
1832 			r = td->changed;
1833 			break;
1834 		}
1835 	}
1836 	up_read(&pmd->root_lock);
1837 
1838 	return r;
1839 }
1840 
1841 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1842 {
1843 	bool r;
1844 
1845 	down_read(&td->pmd->root_lock);
1846 	r = td->aborted_with_changes;
1847 	up_read(&td->pmd->root_lock);
1848 
1849 	return r;
1850 }
1851 
1852 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1853 {
1854 	int r = -EINVAL;
1855 
1856 	pmd_write_lock(pmd);
1857 	if (!pmd->fail_io)
1858 		r = dm_sm_new_block(pmd->data_sm, result);
1859 	pmd_write_unlock(pmd);
1860 
1861 	return r;
1862 }
1863 
1864 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1865 {
1866 	int r = -EINVAL;
1867 
1868 	/*
1869 	 * Care is taken to not have commit be what
1870 	 * triggers putting the thin-pool in-service.
1871 	 */
1872 	pmd_write_lock_in_core(pmd);
1873 	if (pmd->fail_io)
1874 		goto out;
1875 
1876 	r = __commit_transaction(pmd);
1877 	if (r < 0)
1878 		goto out;
1879 
1880 	/*
1881 	 * Open the next transaction.
1882 	 */
1883 	r = __begin_transaction(pmd);
1884 out:
1885 	pmd_write_unlock(pmd);
1886 	return r;
1887 }
1888 
1889 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1890 {
1891 	struct dm_thin_device *td;
1892 
1893 	list_for_each_entry(td, &pmd->thin_devices, list)
1894 		td->aborted_with_changes = td->changed;
1895 }
1896 
1897 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1898 {
1899 	int r = -EINVAL;
1900 
1901 	/* fail_io is double-checked with pmd->root_lock held below */
1902 	if (unlikely(pmd->fail_io))
1903 		return r;
1904 
1905 	pmd_write_lock(pmd);
1906 	if (pmd->fail_io) {
1907 		pmd_write_unlock(pmd);
1908 		return r;
1909 	}
1910 	__set_abort_with_changes_flags(pmd);
1911 
1912 	/* destroy data_sm/metadata_sm/nb_tm/tm */
1913 	__destroy_persistent_data_objects(pmd, false);
1914 
1915 	/* reset bm */
1916 	dm_block_manager_reset(pmd->bm);
1917 
1918 	/* rebuild data_sm/metadata_sm/nb_tm/tm */
1919 	r = __open_or_format_metadata(pmd, false);
1920 	if (r)
1921 		pmd->fail_io = true;
1922 	pmd_write_unlock(pmd);
1923 	return r;
1924 }
1925 
1926 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1927 {
1928 	int r = -EINVAL;
1929 
1930 	down_read(&pmd->root_lock);
1931 	if (!pmd->fail_io)
1932 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1933 	up_read(&pmd->root_lock);
1934 
1935 	return r;
1936 }
1937 
1938 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1939 					  dm_block_t *result)
1940 {
1941 	int r = -EINVAL;
1942 
1943 	down_read(&pmd->root_lock);
1944 	if (!pmd->fail_io)
1945 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1946 
1947 	if (!r) {
1948 		if (*result < pmd->metadata_reserve)
1949 			*result = 0;
1950 		else
1951 			*result -= pmd->metadata_reserve;
1952 	}
1953 	up_read(&pmd->root_lock);
1954 
1955 	return r;
1956 }
1957 
1958 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1959 				  dm_block_t *result)
1960 {
1961 	int r = -EINVAL;
1962 
1963 	down_read(&pmd->root_lock);
1964 	if (!pmd->fail_io)
1965 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1966 	up_read(&pmd->root_lock);
1967 
1968 	return r;
1969 }
1970 
1971 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1972 {
1973 	int r = -EINVAL;
1974 
1975 	down_read(&pmd->root_lock);
1976 	if (!pmd->fail_io)
1977 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1978 	up_read(&pmd->root_lock);
1979 
1980 	return r;
1981 }
1982 
1983 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1984 {
1985 	int r = -EINVAL;
1986 	struct dm_pool_metadata *pmd = td->pmd;
1987 
1988 	down_read(&pmd->root_lock);
1989 	if (!pmd->fail_io) {
1990 		*result = td->mapped_blocks;
1991 		r = 0;
1992 	}
1993 	up_read(&pmd->root_lock);
1994 
1995 	return r;
1996 }
1997 
1998 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1999 {
2000 	int r;
2001 	__le64 value_le;
2002 	dm_block_t thin_root;
2003 	struct dm_pool_metadata *pmd = td->pmd;
2004 
2005 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2006 	if (r)
2007 		return r;
2008 
2009 	thin_root = le64_to_cpu(value_le);
2010 
2011 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2012 }
2013 
2014 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2015 				     dm_block_t *result)
2016 {
2017 	int r = -EINVAL;
2018 	struct dm_pool_metadata *pmd = td->pmd;
2019 
2020 	down_read(&pmd->root_lock);
2021 	if (!pmd->fail_io)
2022 		r = __highest_block(td, result);
2023 	up_read(&pmd->root_lock);
2024 
2025 	return r;
2026 }
2027 
2028 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2029 {
2030 	int r;
2031 	dm_block_t old_count;
2032 
2033 	r = dm_sm_get_nr_blocks(sm, &old_count);
2034 	if (r)
2035 		return r;
2036 
2037 	if (new_count == old_count)
2038 		return 0;
2039 
2040 	if (new_count < old_count) {
2041 		DMERR("cannot reduce size of space map");
2042 		return -EINVAL;
2043 	}
2044 
2045 	return dm_sm_extend(sm, new_count - old_count);
2046 }
2047 
2048 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2049 {
2050 	int r = -EINVAL;
2051 
2052 	pmd_write_lock(pmd);
2053 	if (!pmd->fail_io)
2054 		r = __resize_space_map(pmd->data_sm, new_count);
2055 	pmd_write_unlock(pmd);
2056 
2057 	return r;
2058 }
2059 
2060 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2061 {
2062 	int r = -EINVAL;
2063 
2064 	pmd_write_lock(pmd);
2065 	if (!pmd->fail_io) {
2066 		r = __resize_space_map(pmd->metadata_sm, new_count);
2067 		if (!r)
2068 			__set_metadata_reserve(pmd);
2069 	}
2070 	pmd_write_unlock(pmd);
2071 
2072 	return r;
2073 }
2074 
2075 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2076 {
2077 	pmd_write_lock_in_core(pmd);
2078 	dm_bm_set_read_only(pmd->bm);
2079 	pmd_write_unlock(pmd);
2080 }
2081 
2082 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2083 {
2084 	pmd_write_lock_in_core(pmd);
2085 	dm_bm_set_read_write(pmd->bm);
2086 	pmd_write_unlock(pmd);
2087 }
2088 
2089 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2090 					dm_block_t threshold,
2091 					dm_sm_threshold_fn fn,
2092 					void *context)
2093 {
2094 	int r = -EINVAL;
2095 
2096 	pmd_write_lock_in_core(pmd);
2097 	if (!pmd->fail_io) {
2098 		r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2099 						      threshold, fn, context);
2100 	}
2101 	pmd_write_unlock(pmd);
2102 
2103 	return r;
2104 }
2105 
2106 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2107 					  dm_pool_pre_commit_fn fn,
2108 					  void *context)
2109 {
2110 	pmd_write_lock_in_core(pmd);
2111 	pmd->pre_commit_fn = fn;
2112 	pmd->pre_commit_context = context;
2113 	pmd_write_unlock(pmd);
2114 }
2115 
2116 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2117 {
2118 	int r = -EINVAL;
2119 	struct dm_block *sblock;
2120 	struct thin_disk_superblock *disk_super;
2121 
2122 	pmd_write_lock(pmd);
2123 	if (pmd->fail_io)
2124 		goto out;
2125 
2126 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2127 
2128 	r = superblock_lock(pmd, &sblock);
2129 	if (r) {
2130 		DMERR("couldn't lock superblock");
2131 		goto out;
2132 	}
2133 
2134 	disk_super = dm_block_data(sblock);
2135 	disk_super->flags = cpu_to_le32(pmd->flags);
2136 
2137 	dm_bm_unlock(sblock);
2138 out:
2139 	pmd_write_unlock(pmd);
2140 	return r;
2141 }
2142 
2143 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2144 {
2145 	bool needs_check;
2146 
2147 	down_read(&pmd->root_lock);
2148 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2149 	up_read(&pmd->root_lock);
2150 
2151 	return needs_check;
2152 }
2153 
2154 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2155 {
2156 	down_read(&pmd->root_lock);
2157 	if (!pmd->fail_io)
2158 		dm_tm_issue_prefetches(pmd->tm);
2159 	up_read(&pmd->root_lock);
2160 }
2161