xref: /linux/drivers/md/dm-thin-metadata.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82 
83 /*
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  */
87 #define THIN_MAX_CONCURRENT_LOCKS 5
88 
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
91 
92 /*
93  * Little endian on-disk superblock and device details.
94  */
95 struct thin_disk_superblock {
96 	__le32 csum;	/* Checksum of superblock except for this field. */
97 	__le32 flags;
98 	__le64 blocknr;	/* This block number, dm_block_t. */
99 
100 	__u8 uuid[16];
101 	__le64 magic;
102 	__le32 version;
103 	__le32 time;
104 
105 	__le64 trans_id;
106 
107 	/*
108 	 * Root held by userspace transactions.
109 	 */
110 	__le64 held_root;
111 
112 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
114 
115 	/*
116 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117 	 */
118 	__le64 data_mapping_root;
119 
120 	/*
121 	 * Device detail root mapping dev_id -> device_details
122 	 */
123 	__le64 device_details_root;
124 
125 	__le32 data_block_size;		/* In 512-byte sectors. */
126 
127 	__le32 metadata_block_size;	/* In 512-byte sectors. */
128 	__le64 metadata_nr_blocks;
129 
130 	__le32 compat_flags;
131 	__le32 compat_ro_flags;
132 	__le32 incompat_flags;
133 } __packed;
134 
135 struct disk_device_details {
136 	__le64 mapped_blocks;
137 	__le64 transaction_id;		/* When created. */
138 	__le32 creation_time;
139 	__le32 snapshotted_time;
140 } __packed;
141 
142 struct dm_pool_metadata {
143 	struct hlist_node hash;
144 
145 	struct block_device *bdev;
146 	struct dm_block_manager *bm;
147 	struct dm_space_map *metadata_sm;
148 	struct dm_space_map *data_sm;
149 	struct dm_transaction_manager *tm;
150 	struct dm_transaction_manager *nb_tm;
151 
152 	/*
153 	 * Two-level btree.
154 	 * First level holds thin_dev_t.
155 	 * Second level holds mappings.
156 	 */
157 	struct dm_btree_info info;
158 
159 	/*
160 	 * Non-blocking version of the above.
161 	 */
162 	struct dm_btree_info nb_info;
163 
164 	/*
165 	 * Just the top level for deleting whole devices.
166 	 */
167 	struct dm_btree_info tl_info;
168 
169 	/*
170 	 * Just the bottom level for creating new devices.
171 	 */
172 	struct dm_btree_info bl_info;
173 
174 	/*
175 	 * Describes the device details btree.
176 	 */
177 	struct dm_btree_info details_info;
178 
179 	struct rw_semaphore root_lock;
180 	uint32_t time;
181 	dm_block_t root;
182 	dm_block_t details_root;
183 	struct list_head thin_devices;
184 	uint64_t trans_id;
185 	unsigned long flags;
186 	sector_t data_block_size;
187 
188 	/*
189 	 * Set if a transaction has to be aborted but the attempt to roll back
190 	 * to the previous (good) transaction failed.  The only pool metadata
191 	 * operation possible in this state is the closing of the device.
192 	 */
193 	bool fail_io:1;
194 
195 	/*
196 	 * Reading the space map roots can fail, so we read it into these
197 	 * buffers before the superblock is locked and updated.
198 	 */
199 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
200 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
201 };
202 
203 struct dm_thin_device {
204 	struct list_head list;
205 	struct dm_pool_metadata *pmd;
206 	dm_thin_id id;
207 
208 	int open_count;
209 	bool changed:1;
210 	bool aborted_with_changes:1;
211 	uint64_t mapped_blocks;
212 	uint64_t transaction_id;
213 	uint32_t creation_time;
214 	uint32_t snapshotted_time;
215 };
216 
217 /*----------------------------------------------------------------
218  * superblock validator
219  *--------------------------------------------------------------*/
220 
221 #define SUPERBLOCK_CSUM_XOR 160774
222 
223 static void sb_prepare_for_write(struct dm_block_validator *v,
224 				 struct dm_block *b,
225 				 size_t block_size)
226 {
227 	struct thin_disk_superblock *disk_super = dm_block_data(b);
228 
229 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
230 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
231 						      block_size - sizeof(__le32),
232 						      SUPERBLOCK_CSUM_XOR));
233 }
234 
235 static int sb_check(struct dm_block_validator *v,
236 		    struct dm_block *b,
237 		    size_t block_size)
238 {
239 	struct thin_disk_superblock *disk_super = dm_block_data(b);
240 	__le32 csum_le;
241 
242 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
243 		DMERR("sb_check failed: blocknr %llu: "
244 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
245 		      (unsigned long long)dm_block_location(b));
246 		return -ENOTBLK;
247 	}
248 
249 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
250 		DMERR("sb_check failed: magic %llu: "
251 		      "wanted %llu", le64_to_cpu(disk_super->magic),
252 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
253 		return -EILSEQ;
254 	}
255 
256 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
257 					     block_size - sizeof(__le32),
258 					     SUPERBLOCK_CSUM_XOR));
259 	if (csum_le != disk_super->csum) {
260 		DMERR("sb_check failed: csum %u: wanted %u",
261 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
262 		return -EILSEQ;
263 	}
264 
265 	return 0;
266 }
267 
268 static struct dm_block_validator sb_validator = {
269 	.name = "superblock",
270 	.prepare_for_write = sb_prepare_for_write,
271 	.check = sb_check
272 };
273 
274 /*----------------------------------------------------------------
275  * Methods for the btree value types
276  *--------------------------------------------------------------*/
277 
278 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
279 {
280 	return (b << 24) | t;
281 }
282 
283 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
284 {
285 	*b = v >> 24;
286 	*t = v & ((1 << 24) - 1);
287 }
288 
289 static void data_block_inc(void *context, const void *value_le)
290 {
291 	struct dm_space_map *sm = context;
292 	__le64 v_le;
293 	uint64_t b;
294 	uint32_t t;
295 
296 	memcpy(&v_le, value_le, sizeof(v_le));
297 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
298 	dm_sm_inc_block(sm, b);
299 }
300 
301 static void data_block_dec(void *context, const void *value_le)
302 {
303 	struct dm_space_map *sm = context;
304 	__le64 v_le;
305 	uint64_t b;
306 	uint32_t t;
307 
308 	memcpy(&v_le, value_le, sizeof(v_le));
309 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
310 	dm_sm_dec_block(sm, b);
311 }
312 
313 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
314 {
315 	__le64 v1_le, v2_le;
316 	uint64_t b1, b2;
317 	uint32_t t;
318 
319 	memcpy(&v1_le, value1_le, sizeof(v1_le));
320 	memcpy(&v2_le, value2_le, sizeof(v2_le));
321 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
322 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
323 
324 	return b1 == b2;
325 }
326 
327 static void subtree_inc(void *context, const void *value)
328 {
329 	struct dm_btree_info *info = context;
330 	__le64 root_le;
331 	uint64_t root;
332 
333 	memcpy(&root_le, value, sizeof(root_le));
334 	root = le64_to_cpu(root_le);
335 	dm_tm_inc(info->tm, root);
336 }
337 
338 static void subtree_dec(void *context, const void *value)
339 {
340 	struct dm_btree_info *info = context;
341 	__le64 root_le;
342 	uint64_t root;
343 
344 	memcpy(&root_le, value, sizeof(root_le));
345 	root = le64_to_cpu(root_le);
346 	if (dm_btree_del(info, root))
347 		DMERR("btree delete failed\n");
348 }
349 
350 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
351 {
352 	__le64 v1_le, v2_le;
353 	memcpy(&v1_le, value1_le, sizeof(v1_le));
354 	memcpy(&v2_le, value2_le, sizeof(v2_le));
355 
356 	return v1_le == v2_le;
357 }
358 
359 /*----------------------------------------------------------------*/
360 
361 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
362 				struct dm_block **sblock)
363 {
364 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
365 				     &sb_validator, sblock);
366 }
367 
368 static int superblock_lock(struct dm_pool_metadata *pmd,
369 			   struct dm_block **sblock)
370 {
371 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
372 				&sb_validator, sblock);
373 }
374 
375 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
376 {
377 	int r;
378 	unsigned i;
379 	struct dm_block *b;
380 	__le64 *data_le, zero = cpu_to_le64(0);
381 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
382 
383 	/*
384 	 * We can't use a validator here - it may be all zeroes.
385 	 */
386 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
387 	if (r)
388 		return r;
389 
390 	data_le = dm_block_data(b);
391 	*result = 1;
392 	for (i = 0; i < block_size; i++) {
393 		if (data_le[i] != zero) {
394 			*result = 0;
395 			break;
396 		}
397 	}
398 
399 	return dm_bm_unlock(b);
400 }
401 
402 static void __setup_btree_details(struct dm_pool_metadata *pmd)
403 {
404 	pmd->info.tm = pmd->tm;
405 	pmd->info.levels = 2;
406 	pmd->info.value_type.context = pmd->data_sm;
407 	pmd->info.value_type.size = sizeof(__le64);
408 	pmd->info.value_type.inc = data_block_inc;
409 	pmd->info.value_type.dec = data_block_dec;
410 	pmd->info.value_type.equal = data_block_equal;
411 
412 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
413 	pmd->nb_info.tm = pmd->nb_tm;
414 
415 	pmd->tl_info.tm = pmd->tm;
416 	pmd->tl_info.levels = 1;
417 	pmd->tl_info.value_type.context = &pmd->bl_info;
418 	pmd->tl_info.value_type.size = sizeof(__le64);
419 	pmd->tl_info.value_type.inc = subtree_inc;
420 	pmd->tl_info.value_type.dec = subtree_dec;
421 	pmd->tl_info.value_type.equal = subtree_equal;
422 
423 	pmd->bl_info.tm = pmd->tm;
424 	pmd->bl_info.levels = 1;
425 	pmd->bl_info.value_type.context = pmd->data_sm;
426 	pmd->bl_info.value_type.size = sizeof(__le64);
427 	pmd->bl_info.value_type.inc = data_block_inc;
428 	pmd->bl_info.value_type.dec = data_block_dec;
429 	pmd->bl_info.value_type.equal = data_block_equal;
430 
431 	pmd->details_info.tm = pmd->tm;
432 	pmd->details_info.levels = 1;
433 	pmd->details_info.value_type.context = NULL;
434 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
435 	pmd->details_info.value_type.inc = NULL;
436 	pmd->details_info.value_type.dec = NULL;
437 	pmd->details_info.value_type.equal = NULL;
438 }
439 
440 static int save_sm_roots(struct dm_pool_metadata *pmd)
441 {
442 	int r;
443 	size_t len;
444 
445 	r = dm_sm_root_size(pmd->metadata_sm, &len);
446 	if (r < 0)
447 		return r;
448 
449 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
450 	if (r < 0)
451 		return r;
452 
453 	r = dm_sm_root_size(pmd->data_sm, &len);
454 	if (r < 0)
455 		return r;
456 
457 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
458 }
459 
460 static void copy_sm_roots(struct dm_pool_metadata *pmd,
461 			  struct thin_disk_superblock *disk)
462 {
463 	memcpy(&disk->metadata_space_map_root,
464 	       &pmd->metadata_space_map_root,
465 	       sizeof(pmd->metadata_space_map_root));
466 
467 	memcpy(&disk->data_space_map_root,
468 	       &pmd->data_space_map_root,
469 	       sizeof(pmd->data_space_map_root));
470 }
471 
472 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
473 {
474 	int r;
475 	struct dm_block *sblock;
476 	struct thin_disk_superblock *disk_super;
477 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
478 
479 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
480 		bdev_size = THIN_METADATA_MAX_SECTORS;
481 
482 	r = dm_sm_commit(pmd->data_sm);
483 	if (r < 0)
484 		return r;
485 
486 	r = save_sm_roots(pmd);
487 	if (r < 0)
488 		return r;
489 
490 	r = dm_tm_pre_commit(pmd->tm);
491 	if (r < 0)
492 		return r;
493 
494 	r = superblock_lock_zero(pmd, &sblock);
495 	if (r)
496 		return r;
497 
498 	disk_super = dm_block_data(sblock);
499 	disk_super->flags = 0;
500 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
501 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
502 	disk_super->version = cpu_to_le32(THIN_VERSION);
503 	disk_super->time = 0;
504 	disk_super->trans_id = 0;
505 	disk_super->held_root = 0;
506 
507 	copy_sm_roots(pmd, disk_super);
508 
509 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
510 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
511 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
512 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
513 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
514 
515 	return dm_tm_commit(pmd->tm, sblock);
516 }
517 
518 static int __format_metadata(struct dm_pool_metadata *pmd)
519 {
520 	int r;
521 
522 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
523 				 &pmd->tm, &pmd->metadata_sm);
524 	if (r < 0) {
525 		DMERR("tm_create_with_sm failed");
526 		return r;
527 	}
528 
529 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
530 	if (IS_ERR(pmd->data_sm)) {
531 		DMERR("sm_disk_create failed");
532 		r = PTR_ERR(pmd->data_sm);
533 		goto bad_cleanup_tm;
534 	}
535 
536 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
537 	if (!pmd->nb_tm) {
538 		DMERR("could not create non-blocking clone tm");
539 		r = -ENOMEM;
540 		goto bad_cleanup_data_sm;
541 	}
542 
543 	__setup_btree_details(pmd);
544 
545 	r = dm_btree_empty(&pmd->info, &pmd->root);
546 	if (r < 0)
547 		goto bad_cleanup_nb_tm;
548 
549 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
550 	if (r < 0) {
551 		DMERR("couldn't create devices root");
552 		goto bad_cleanup_nb_tm;
553 	}
554 
555 	r = __write_initial_superblock(pmd);
556 	if (r)
557 		goto bad_cleanup_nb_tm;
558 
559 	return 0;
560 
561 bad_cleanup_nb_tm:
562 	dm_tm_destroy(pmd->nb_tm);
563 bad_cleanup_data_sm:
564 	dm_sm_destroy(pmd->data_sm);
565 bad_cleanup_tm:
566 	dm_tm_destroy(pmd->tm);
567 	dm_sm_destroy(pmd->metadata_sm);
568 
569 	return r;
570 }
571 
572 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
573 				     struct dm_pool_metadata *pmd)
574 {
575 	uint32_t features;
576 
577 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
578 	if (features) {
579 		DMERR("could not access metadata due to unsupported optional features (%lx).",
580 		      (unsigned long)features);
581 		return -EINVAL;
582 	}
583 
584 	/*
585 	 * Check for read-only metadata to skip the following RDWR checks.
586 	 */
587 	if (get_disk_ro(pmd->bdev->bd_disk))
588 		return 0;
589 
590 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
591 	if (features) {
592 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
593 		      (unsigned long)features);
594 		return -EINVAL;
595 	}
596 
597 	return 0;
598 }
599 
600 static int __open_metadata(struct dm_pool_metadata *pmd)
601 {
602 	int r;
603 	struct dm_block *sblock;
604 	struct thin_disk_superblock *disk_super;
605 
606 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
607 			    &sb_validator, &sblock);
608 	if (r < 0) {
609 		DMERR("couldn't read superblock");
610 		return r;
611 	}
612 
613 	disk_super = dm_block_data(sblock);
614 
615 	/* Verify the data block size hasn't changed */
616 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
617 		DMERR("changing the data block size (from %u to %llu) is not supported",
618 		      le32_to_cpu(disk_super->data_block_size),
619 		      (unsigned long long)pmd->data_block_size);
620 		r = -EINVAL;
621 		goto bad_unlock_sblock;
622 	}
623 
624 	r = __check_incompat_features(disk_super, pmd);
625 	if (r < 0)
626 		goto bad_unlock_sblock;
627 
628 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
629 			       disk_super->metadata_space_map_root,
630 			       sizeof(disk_super->metadata_space_map_root),
631 			       &pmd->tm, &pmd->metadata_sm);
632 	if (r < 0) {
633 		DMERR("tm_open_with_sm failed");
634 		goto bad_unlock_sblock;
635 	}
636 
637 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
638 				       sizeof(disk_super->data_space_map_root));
639 	if (IS_ERR(pmd->data_sm)) {
640 		DMERR("sm_disk_open failed");
641 		r = PTR_ERR(pmd->data_sm);
642 		goto bad_cleanup_tm;
643 	}
644 
645 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
646 	if (!pmd->nb_tm) {
647 		DMERR("could not create non-blocking clone tm");
648 		r = -ENOMEM;
649 		goto bad_cleanup_data_sm;
650 	}
651 
652 	__setup_btree_details(pmd);
653 	return dm_bm_unlock(sblock);
654 
655 bad_cleanup_data_sm:
656 	dm_sm_destroy(pmd->data_sm);
657 bad_cleanup_tm:
658 	dm_tm_destroy(pmd->tm);
659 	dm_sm_destroy(pmd->metadata_sm);
660 bad_unlock_sblock:
661 	dm_bm_unlock(sblock);
662 
663 	return r;
664 }
665 
666 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
667 {
668 	int r, unformatted;
669 
670 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
671 	if (r)
672 		return r;
673 
674 	if (unformatted)
675 		return format_device ? __format_metadata(pmd) : -EPERM;
676 
677 	return __open_metadata(pmd);
678 }
679 
680 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
681 {
682 	int r;
683 
684 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
685 					  THIN_METADATA_CACHE_SIZE,
686 					  THIN_MAX_CONCURRENT_LOCKS);
687 	if (IS_ERR(pmd->bm)) {
688 		DMERR("could not create block manager");
689 		return PTR_ERR(pmd->bm);
690 	}
691 
692 	r = __open_or_format_metadata(pmd, format_device);
693 	if (r)
694 		dm_block_manager_destroy(pmd->bm);
695 
696 	return r;
697 }
698 
699 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
700 {
701 	dm_sm_destroy(pmd->data_sm);
702 	dm_sm_destroy(pmd->metadata_sm);
703 	dm_tm_destroy(pmd->nb_tm);
704 	dm_tm_destroy(pmd->tm);
705 	dm_block_manager_destroy(pmd->bm);
706 }
707 
708 static int __begin_transaction(struct dm_pool_metadata *pmd)
709 {
710 	int r;
711 	struct thin_disk_superblock *disk_super;
712 	struct dm_block *sblock;
713 
714 	/*
715 	 * We re-read the superblock every time.  Shouldn't need to do this
716 	 * really.
717 	 */
718 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
719 			    &sb_validator, &sblock);
720 	if (r)
721 		return r;
722 
723 	disk_super = dm_block_data(sblock);
724 	pmd->time = le32_to_cpu(disk_super->time);
725 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
726 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
727 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
728 	pmd->flags = le32_to_cpu(disk_super->flags);
729 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
730 
731 	dm_bm_unlock(sblock);
732 	return 0;
733 }
734 
735 static int __write_changed_details(struct dm_pool_metadata *pmd)
736 {
737 	int r;
738 	struct dm_thin_device *td, *tmp;
739 	struct disk_device_details details;
740 	uint64_t key;
741 
742 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
743 		if (!td->changed)
744 			continue;
745 
746 		key = td->id;
747 
748 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
749 		details.transaction_id = cpu_to_le64(td->transaction_id);
750 		details.creation_time = cpu_to_le32(td->creation_time);
751 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
752 		__dm_bless_for_disk(&details);
753 
754 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
755 				    &key, &details, &pmd->details_root);
756 		if (r)
757 			return r;
758 
759 		if (td->open_count)
760 			td->changed = 0;
761 		else {
762 			list_del(&td->list);
763 			kfree(td);
764 		}
765 	}
766 
767 	return 0;
768 }
769 
770 static int __commit_transaction(struct dm_pool_metadata *pmd)
771 {
772 	int r;
773 	size_t metadata_len, data_len;
774 	struct thin_disk_superblock *disk_super;
775 	struct dm_block *sblock;
776 
777 	/*
778 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
779 	 */
780 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
781 
782 	r = __write_changed_details(pmd);
783 	if (r < 0)
784 		return r;
785 
786 	r = dm_sm_commit(pmd->data_sm);
787 	if (r < 0)
788 		return r;
789 
790 	r = dm_tm_pre_commit(pmd->tm);
791 	if (r < 0)
792 		return r;
793 
794 	r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
795 	if (r < 0)
796 		return r;
797 
798 	r = dm_sm_root_size(pmd->data_sm, &data_len);
799 	if (r < 0)
800 		return r;
801 
802 	r = save_sm_roots(pmd);
803 	if (r < 0)
804 		return r;
805 
806 	r = superblock_lock(pmd, &sblock);
807 	if (r)
808 		return r;
809 
810 	disk_super = dm_block_data(sblock);
811 	disk_super->time = cpu_to_le32(pmd->time);
812 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
813 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
814 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
815 	disk_super->flags = cpu_to_le32(pmd->flags);
816 
817 	copy_sm_roots(pmd, disk_super);
818 
819 	return dm_tm_commit(pmd->tm, sblock);
820 }
821 
822 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
823 					       sector_t data_block_size,
824 					       bool format_device)
825 {
826 	int r;
827 	struct dm_pool_metadata *pmd;
828 
829 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
830 	if (!pmd) {
831 		DMERR("could not allocate metadata struct");
832 		return ERR_PTR(-ENOMEM);
833 	}
834 
835 	init_rwsem(&pmd->root_lock);
836 	pmd->time = 0;
837 	INIT_LIST_HEAD(&pmd->thin_devices);
838 	pmd->fail_io = false;
839 	pmd->bdev = bdev;
840 	pmd->data_block_size = data_block_size;
841 
842 	r = __create_persistent_data_objects(pmd, format_device);
843 	if (r) {
844 		kfree(pmd);
845 		return ERR_PTR(r);
846 	}
847 
848 	r = __begin_transaction(pmd);
849 	if (r < 0) {
850 		if (dm_pool_metadata_close(pmd) < 0)
851 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
852 		return ERR_PTR(r);
853 	}
854 
855 	return pmd;
856 }
857 
858 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
859 {
860 	int r;
861 	unsigned open_devices = 0;
862 	struct dm_thin_device *td, *tmp;
863 
864 	down_read(&pmd->root_lock);
865 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
866 		if (td->open_count)
867 			open_devices++;
868 		else {
869 			list_del(&td->list);
870 			kfree(td);
871 		}
872 	}
873 	up_read(&pmd->root_lock);
874 
875 	if (open_devices) {
876 		DMERR("attempt to close pmd when %u device(s) are still open",
877 		       open_devices);
878 		return -EBUSY;
879 	}
880 
881 	if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
882 		r = __commit_transaction(pmd);
883 		if (r < 0)
884 			DMWARN("%s: __commit_transaction() failed, error = %d",
885 			       __func__, r);
886 	}
887 
888 	if (!pmd->fail_io)
889 		__destroy_persistent_data_objects(pmd);
890 
891 	kfree(pmd);
892 	return 0;
893 }
894 
895 /*
896  * __open_device: Returns @td corresponding to device with id @dev,
897  * creating it if @create is set and incrementing @td->open_count.
898  * On failure, @td is undefined.
899  */
900 static int __open_device(struct dm_pool_metadata *pmd,
901 			 dm_thin_id dev, int create,
902 			 struct dm_thin_device **td)
903 {
904 	int r, changed = 0;
905 	struct dm_thin_device *td2;
906 	uint64_t key = dev;
907 	struct disk_device_details details_le;
908 
909 	/*
910 	 * If the device is already open, return it.
911 	 */
912 	list_for_each_entry(td2, &pmd->thin_devices, list)
913 		if (td2->id == dev) {
914 			/*
915 			 * May not create an already-open device.
916 			 */
917 			if (create)
918 				return -EEXIST;
919 
920 			td2->open_count++;
921 			*td = td2;
922 			return 0;
923 		}
924 
925 	/*
926 	 * Check the device exists.
927 	 */
928 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
929 			    &key, &details_le);
930 	if (r) {
931 		if (r != -ENODATA || !create)
932 			return r;
933 
934 		/*
935 		 * Create new device.
936 		 */
937 		changed = 1;
938 		details_le.mapped_blocks = 0;
939 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
940 		details_le.creation_time = cpu_to_le32(pmd->time);
941 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
942 	}
943 
944 	*td = kmalloc(sizeof(**td), GFP_NOIO);
945 	if (!*td)
946 		return -ENOMEM;
947 
948 	(*td)->pmd = pmd;
949 	(*td)->id = dev;
950 	(*td)->open_count = 1;
951 	(*td)->changed = changed;
952 	(*td)->aborted_with_changes = false;
953 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
954 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
955 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
956 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
957 
958 	list_add(&(*td)->list, &pmd->thin_devices);
959 
960 	return 0;
961 }
962 
963 static void __close_device(struct dm_thin_device *td)
964 {
965 	--td->open_count;
966 }
967 
968 static int __create_thin(struct dm_pool_metadata *pmd,
969 			 dm_thin_id dev)
970 {
971 	int r;
972 	dm_block_t dev_root;
973 	uint64_t key = dev;
974 	struct disk_device_details details_le;
975 	struct dm_thin_device *td;
976 	__le64 value;
977 
978 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
979 			    &key, &details_le);
980 	if (!r)
981 		return -EEXIST;
982 
983 	/*
984 	 * Create an empty btree for the mappings.
985 	 */
986 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
987 	if (r)
988 		return r;
989 
990 	/*
991 	 * Insert it into the main mapping tree.
992 	 */
993 	value = cpu_to_le64(dev_root);
994 	__dm_bless_for_disk(&value);
995 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
996 	if (r) {
997 		dm_btree_del(&pmd->bl_info, dev_root);
998 		return r;
999 	}
1000 
1001 	r = __open_device(pmd, dev, 1, &td);
1002 	if (r) {
1003 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1004 		dm_btree_del(&pmd->bl_info, dev_root);
1005 		return r;
1006 	}
1007 	__close_device(td);
1008 
1009 	return r;
1010 }
1011 
1012 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1013 {
1014 	int r = -EINVAL;
1015 
1016 	down_write(&pmd->root_lock);
1017 	if (!pmd->fail_io)
1018 		r = __create_thin(pmd, dev);
1019 	up_write(&pmd->root_lock);
1020 
1021 	return r;
1022 }
1023 
1024 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1025 				  struct dm_thin_device *snap,
1026 				  dm_thin_id origin, uint32_t time)
1027 {
1028 	int r;
1029 	struct dm_thin_device *td;
1030 
1031 	r = __open_device(pmd, origin, 0, &td);
1032 	if (r)
1033 		return r;
1034 
1035 	td->changed = 1;
1036 	td->snapshotted_time = time;
1037 
1038 	snap->mapped_blocks = td->mapped_blocks;
1039 	snap->snapshotted_time = time;
1040 	__close_device(td);
1041 
1042 	return 0;
1043 }
1044 
1045 static int __create_snap(struct dm_pool_metadata *pmd,
1046 			 dm_thin_id dev, dm_thin_id origin)
1047 {
1048 	int r;
1049 	dm_block_t origin_root;
1050 	uint64_t key = origin, dev_key = dev;
1051 	struct dm_thin_device *td;
1052 	struct disk_device_details details_le;
1053 	__le64 value;
1054 
1055 	/* check this device is unused */
1056 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1057 			    &dev_key, &details_le);
1058 	if (!r)
1059 		return -EEXIST;
1060 
1061 	/* find the mapping tree for the origin */
1062 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1063 	if (r)
1064 		return r;
1065 	origin_root = le64_to_cpu(value);
1066 
1067 	/* clone the origin, an inc will do */
1068 	dm_tm_inc(pmd->tm, origin_root);
1069 
1070 	/* insert into the main mapping tree */
1071 	value = cpu_to_le64(origin_root);
1072 	__dm_bless_for_disk(&value);
1073 	key = dev;
1074 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1075 	if (r) {
1076 		dm_tm_dec(pmd->tm, origin_root);
1077 		return r;
1078 	}
1079 
1080 	pmd->time++;
1081 
1082 	r = __open_device(pmd, dev, 1, &td);
1083 	if (r)
1084 		goto bad;
1085 
1086 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1087 	__close_device(td);
1088 
1089 	if (r)
1090 		goto bad;
1091 
1092 	return 0;
1093 
1094 bad:
1095 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1096 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1097 			&key, &pmd->details_root);
1098 	return r;
1099 }
1100 
1101 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1102 				 dm_thin_id dev,
1103 				 dm_thin_id origin)
1104 {
1105 	int r = -EINVAL;
1106 
1107 	down_write(&pmd->root_lock);
1108 	if (!pmd->fail_io)
1109 		r = __create_snap(pmd, dev, origin);
1110 	up_write(&pmd->root_lock);
1111 
1112 	return r;
1113 }
1114 
1115 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1116 {
1117 	int r;
1118 	uint64_t key = dev;
1119 	struct dm_thin_device *td;
1120 
1121 	/* TODO: failure should mark the transaction invalid */
1122 	r = __open_device(pmd, dev, 0, &td);
1123 	if (r)
1124 		return r;
1125 
1126 	if (td->open_count > 1) {
1127 		__close_device(td);
1128 		return -EBUSY;
1129 	}
1130 
1131 	list_del(&td->list);
1132 	kfree(td);
1133 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1134 			    &key, &pmd->details_root);
1135 	if (r)
1136 		return r;
1137 
1138 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1139 	if (r)
1140 		return r;
1141 
1142 	return 0;
1143 }
1144 
1145 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1146 			       dm_thin_id dev)
1147 {
1148 	int r = -EINVAL;
1149 
1150 	down_write(&pmd->root_lock);
1151 	if (!pmd->fail_io)
1152 		r = __delete_device(pmd, dev);
1153 	up_write(&pmd->root_lock);
1154 
1155 	return r;
1156 }
1157 
1158 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1159 					uint64_t current_id,
1160 					uint64_t new_id)
1161 {
1162 	int r = -EINVAL;
1163 
1164 	down_write(&pmd->root_lock);
1165 
1166 	if (pmd->fail_io)
1167 		goto out;
1168 
1169 	if (pmd->trans_id != current_id) {
1170 		DMERR("mismatched transaction id");
1171 		goto out;
1172 	}
1173 
1174 	pmd->trans_id = new_id;
1175 	r = 0;
1176 
1177 out:
1178 	up_write(&pmd->root_lock);
1179 
1180 	return r;
1181 }
1182 
1183 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1184 					uint64_t *result)
1185 {
1186 	int r = -EINVAL;
1187 
1188 	down_read(&pmd->root_lock);
1189 	if (!pmd->fail_io) {
1190 		*result = pmd->trans_id;
1191 		r = 0;
1192 	}
1193 	up_read(&pmd->root_lock);
1194 
1195 	return r;
1196 }
1197 
1198 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1199 {
1200 	int r, inc;
1201 	struct thin_disk_superblock *disk_super;
1202 	struct dm_block *copy, *sblock;
1203 	dm_block_t held_root;
1204 
1205 	/*
1206 	 * Copy the superblock.
1207 	 */
1208 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1209 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1210 			       &sb_validator, &copy, &inc);
1211 	if (r)
1212 		return r;
1213 
1214 	BUG_ON(!inc);
1215 
1216 	held_root = dm_block_location(copy);
1217 	disk_super = dm_block_data(copy);
1218 
1219 	if (le64_to_cpu(disk_super->held_root)) {
1220 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1221 
1222 		dm_tm_dec(pmd->tm, held_root);
1223 		dm_tm_unlock(pmd->tm, copy);
1224 		return -EBUSY;
1225 	}
1226 
1227 	/*
1228 	 * Wipe the spacemap since we're not publishing this.
1229 	 */
1230 	memset(&disk_super->data_space_map_root, 0,
1231 	       sizeof(disk_super->data_space_map_root));
1232 	memset(&disk_super->metadata_space_map_root, 0,
1233 	       sizeof(disk_super->metadata_space_map_root));
1234 
1235 	/*
1236 	 * Increment the data structures that need to be preserved.
1237 	 */
1238 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1239 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1240 	dm_tm_unlock(pmd->tm, copy);
1241 
1242 	/*
1243 	 * Write the held root into the superblock.
1244 	 */
1245 	r = superblock_lock(pmd, &sblock);
1246 	if (r) {
1247 		dm_tm_dec(pmd->tm, held_root);
1248 		return r;
1249 	}
1250 
1251 	disk_super = dm_block_data(sblock);
1252 	disk_super->held_root = cpu_to_le64(held_root);
1253 	dm_bm_unlock(sblock);
1254 	return 0;
1255 }
1256 
1257 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1258 {
1259 	int r = -EINVAL;
1260 
1261 	down_write(&pmd->root_lock);
1262 	if (!pmd->fail_io)
1263 		r = __reserve_metadata_snap(pmd);
1264 	up_write(&pmd->root_lock);
1265 
1266 	return r;
1267 }
1268 
1269 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1270 {
1271 	int r;
1272 	struct thin_disk_superblock *disk_super;
1273 	struct dm_block *sblock, *copy;
1274 	dm_block_t held_root;
1275 
1276 	r = superblock_lock(pmd, &sblock);
1277 	if (r)
1278 		return r;
1279 
1280 	disk_super = dm_block_data(sblock);
1281 	held_root = le64_to_cpu(disk_super->held_root);
1282 	disk_super->held_root = cpu_to_le64(0);
1283 
1284 	dm_bm_unlock(sblock);
1285 
1286 	if (!held_root) {
1287 		DMWARN("No pool metadata snapshot found: nothing to release.");
1288 		return -EINVAL;
1289 	}
1290 
1291 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1292 	if (r)
1293 		return r;
1294 
1295 	disk_super = dm_block_data(copy);
1296 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1297 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1298 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1299 
1300 	return dm_tm_unlock(pmd->tm, copy);
1301 }
1302 
1303 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1304 {
1305 	int r = -EINVAL;
1306 
1307 	down_write(&pmd->root_lock);
1308 	if (!pmd->fail_io)
1309 		r = __release_metadata_snap(pmd);
1310 	up_write(&pmd->root_lock);
1311 
1312 	return r;
1313 }
1314 
1315 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1316 			       dm_block_t *result)
1317 {
1318 	int r;
1319 	struct thin_disk_superblock *disk_super;
1320 	struct dm_block *sblock;
1321 
1322 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1323 			    &sb_validator, &sblock);
1324 	if (r)
1325 		return r;
1326 
1327 	disk_super = dm_block_data(sblock);
1328 	*result = le64_to_cpu(disk_super->held_root);
1329 
1330 	return dm_bm_unlock(sblock);
1331 }
1332 
1333 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1334 			      dm_block_t *result)
1335 {
1336 	int r = -EINVAL;
1337 
1338 	down_read(&pmd->root_lock);
1339 	if (!pmd->fail_io)
1340 		r = __get_metadata_snap(pmd, result);
1341 	up_read(&pmd->root_lock);
1342 
1343 	return r;
1344 }
1345 
1346 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1347 			     struct dm_thin_device **td)
1348 {
1349 	int r = -EINVAL;
1350 
1351 	down_write(&pmd->root_lock);
1352 	if (!pmd->fail_io)
1353 		r = __open_device(pmd, dev, 0, td);
1354 	up_write(&pmd->root_lock);
1355 
1356 	return r;
1357 }
1358 
1359 int dm_pool_close_thin_device(struct dm_thin_device *td)
1360 {
1361 	down_write(&td->pmd->root_lock);
1362 	__close_device(td);
1363 	up_write(&td->pmd->root_lock);
1364 
1365 	return 0;
1366 }
1367 
1368 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1369 {
1370 	return td->id;
1371 }
1372 
1373 /*
1374  * Check whether @time (of block creation) is older than @td's last snapshot.
1375  * If so then the associated block is shared with the last snapshot device.
1376  * Any block on a device created *after* the device last got snapshotted is
1377  * necessarily not shared.
1378  */
1379 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1380 {
1381 	return td->snapshotted_time > time;
1382 }
1383 
1384 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1385 		       int can_issue_io, struct dm_thin_lookup_result *result)
1386 {
1387 	int r;
1388 	__le64 value;
1389 	struct dm_pool_metadata *pmd = td->pmd;
1390 	dm_block_t keys[2] = { td->id, block };
1391 	struct dm_btree_info *info;
1392 
1393 	down_read(&pmd->root_lock);
1394 	if (pmd->fail_io) {
1395 		up_read(&pmd->root_lock);
1396 		return -EINVAL;
1397 	}
1398 
1399 	if (can_issue_io) {
1400 		info = &pmd->info;
1401 	} else
1402 		info = &pmd->nb_info;
1403 
1404 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1405 	if (!r) {
1406 		uint64_t block_time = 0;
1407 		dm_block_t exception_block;
1408 		uint32_t exception_time;
1409 
1410 		block_time = le64_to_cpu(value);
1411 		unpack_block_time(block_time, &exception_block,
1412 				  &exception_time);
1413 		result->block = exception_block;
1414 		result->shared = __snapshotted_since(td, exception_time);
1415 	}
1416 
1417 	up_read(&pmd->root_lock);
1418 	return r;
1419 }
1420 
1421 /* FIXME: write a more efficient one in btree */
1422 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1423 			      dm_block_t begin, dm_block_t end,
1424 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1425 			      dm_block_t *pool_begin, bool *maybe_shared)
1426 {
1427 	int r;
1428 	dm_block_t pool_end;
1429 	struct dm_thin_lookup_result lookup;
1430 
1431 	if (end < begin)
1432 		return -ENODATA;
1433 
1434 	/*
1435 	 * Find first mapped block.
1436 	 */
1437 	while (begin < end) {
1438 		r = dm_thin_find_block(td, begin, true, &lookup);
1439 		if (r) {
1440 			if (r != -ENODATA)
1441 				return r;
1442 		} else
1443 			break;
1444 
1445 		begin++;
1446 	}
1447 
1448 	if (begin == end)
1449 		return -ENODATA;
1450 
1451 	*thin_begin = begin;
1452 	*pool_begin = lookup.block;
1453 	*maybe_shared = lookup.shared;
1454 
1455 	begin++;
1456 	pool_end = *pool_begin + 1;
1457 	while (begin != end) {
1458 		r = dm_thin_find_block(td, begin, true, &lookup);
1459 		if (r) {
1460 			if (r == -ENODATA)
1461 				break;
1462 			else
1463 				return r;
1464 		}
1465 
1466 		if ((lookup.block != pool_end) ||
1467 		    (lookup.shared != *maybe_shared))
1468 			break;
1469 
1470 		pool_end++;
1471 		begin++;
1472 	}
1473 
1474 	*thin_end = begin;
1475 	return 0;
1476 }
1477 
1478 static int __insert(struct dm_thin_device *td, dm_block_t block,
1479 		    dm_block_t data_block)
1480 {
1481 	int r, inserted;
1482 	__le64 value;
1483 	struct dm_pool_metadata *pmd = td->pmd;
1484 	dm_block_t keys[2] = { td->id, block };
1485 
1486 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1487 	__dm_bless_for_disk(&value);
1488 
1489 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1490 				   &pmd->root, &inserted);
1491 	if (r)
1492 		return r;
1493 
1494 	td->changed = 1;
1495 	if (inserted)
1496 		td->mapped_blocks++;
1497 
1498 	return 0;
1499 }
1500 
1501 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1502 			 dm_block_t data_block)
1503 {
1504 	int r = -EINVAL;
1505 
1506 	down_write(&td->pmd->root_lock);
1507 	if (!td->pmd->fail_io)
1508 		r = __insert(td, block, data_block);
1509 	up_write(&td->pmd->root_lock);
1510 
1511 	return r;
1512 }
1513 
1514 static int __remove(struct dm_thin_device *td, dm_block_t block)
1515 {
1516 	int r;
1517 	struct dm_pool_metadata *pmd = td->pmd;
1518 	dm_block_t keys[2] = { td->id, block };
1519 
1520 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1521 	if (r)
1522 		return r;
1523 
1524 	td->mapped_blocks--;
1525 	td->changed = 1;
1526 
1527 	return 0;
1528 }
1529 
1530 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1531 {
1532 	int r;
1533 	unsigned count;
1534 	struct dm_pool_metadata *pmd = td->pmd;
1535 	dm_block_t keys[1] = { td->id };
1536 	__le64 value;
1537 	dm_block_t mapping_root;
1538 
1539 	/*
1540 	 * Find the mapping tree
1541 	 */
1542 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1543 	if (r)
1544 		return r;
1545 
1546 	/*
1547 	 * Remove from the mapping tree, taking care to inc the
1548 	 * ref count so it doesn't get deleted.
1549 	 */
1550 	mapping_root = le64_to_cpu(value);
1551 	dm_tm_inc(pmd->tm, mapping_root);
1552 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1553 	if (r)
1554 		return r;
1555 
1556 	r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1557 	if (r)
1558 		return r;
1559 
1560 	td->mapped_blocks -= count;
1561 	td->changed = 1;
1562 
1563 	/*
1564 	 * Reinsert the mapping tree.
1565 	 */
1566 	value = cpu_to_le64(mapping_root);
1567 	__dm_bless_for_disk(&value);
1568 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1569 }
1570 
1571 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1572 {
1573 	int r = -EINVAL;
1574 
1575 	down_write(&td->pmd->root_lock);
1576 	if (!td->pmd->fail_io)
1577 		r = __remove(td, block);
1578 	up_write(&td->pmd->root_lock);
1579 
1580 	return r;
1581 }
1582 
1583 int dm_thin_remove_range(struct dm_thin_device *td,
1584 			 dm_block_t begin, dm_block_t end)
1585 {
1586 	int r = -EINVAL;
1587 
1588 	down_write(&td->pmd->root_lock);
1589 	if (!td->pmd->fail_io)
1590 		r = __remove_range(td, begin, end);
1591 	up_write(&td->pmd->root_lock);
1592 
1593 	return r;
1594 }
1595 
1596 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1597 {
1598 	int r;
1599 	uint32_t ref_count;
1600 
1601 	down_read(&pmd->root_lock);
1602 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1603 	if (!r)
1604 		*result = (ref_count != 0);
1605 	up_read(&pmd->root_lock);
1606 
1607 	return r;
1608 }
1609 
1610 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1611 {
1612 	int r;
1613 
1614 	down_read(&td->pmd->root_lock);
1615 	r = td->changed;
1616 	up_read(&td->pmd->root_lock);
1617 
1618 	return r;
1619 }
1620 
1621 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1622 {
1623 	bool r = false;
1624 	struct dm_thin_device *td, *tmp;
1625 
1626 	down_read(&pmd->root_lock);
1627 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1628 		if (td->changed) {
1629 			r = td->changed;
1630 			break;
1631 		}
1632 	}
1633 	up_read(&pmd->root_lock);
1634 
1635 	return r;
1636 }
1637 
1638 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1639 {
1640 	bool r;
1641 
1642 	down_read(&td->pmd->root_lock);
1643 	r = td->aborted_with_changes;
1644 	up_read(&td->pmd->root_lock);
1645 
1646 	return r;
1647 }
1648 
1649 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1650 {
1651 	int r = -EINVAL;
1652 
1653 	down_write(&pmd->root_lock);
1654 	if (!pmd->fail_io)
1655 		r = dm_sm_new_block(pmd->data_sm, result);
1656 	up_write(&pmd->root_lock);
1657 
1658 	return r;
1659 }
1660 
1661 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1662 {
1663 	int r = -EINVAL;
1664 
1665 	down_write(&pmd->root_lock);
1666 	if (pmd->fail_io)
1667 		goto out;
1668 
1669 	r = __commit_transaction(pmd);
1670 	if (r <= 0)
1671 		goto out;
1672 
1673 	/*
1674 	 * Open the next transaction.
1675 	 */
1676 	r = __begin_transaction(pmd);
1677 out:
1678 	up_write(&pmd->root_lock);
1679 	return r;
1680 }
1681 
1682 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1683 {
1684 	struct dm_thin_device *td;
1685 
1686 	list_for_each_entry(td, &pmd->thin_devices, list)
1687 		td->aborted_with_changes = td->changed;
1688 }
1689 
1690 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1691 {
1692 	int r = -EINVAL;
1693 
1694 	down_write(&pmd->root_lock);
1695 	if (pmd->fail_io)
1696 		goto out;
1697 
1698 	__set_abort_with_changes_flags(pmd);
1699 	__destroy_persistent_data_objects(pmd);
1700 	r = __create_persistent_data_objects(pmd, false);
1701 	if (r)
1702 		pmd->fail_io = true;
1703 
1704 out:
1705 	up_write(&pmd->root_lock);
1706 
1707 	return r;
1708 }
1709 
1710 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1711 {
1712 	int r = -EINVAL;
1713 
1714 	down_read(&pmd->root_lock);
1715 	if (!pmd->fail_io)
1716 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1717 	up_read(&pmd->root_lock);
1718 
1719 	return r;
1720 }
1721 
1722 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1723 					  dm_block_t *result)
1724 {
1725 	int r = -EINVAL;
1726 
1727 	down_read(&pmd->root_lock);
1728 	if (!pmd->fail_io)
1729 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1730 	up_read(&pmd->root_lock);
1731 
1732 	return r;
1733 }
1734 
1735 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1736 				  dm_block_t *result)
1737 {
1738 	int r = -EINVAL;
1739 
1740 	down_read(&pmd->root_lock);
1741 	if (!pmd->fail_io)
1742 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1743 	up_read(&pmd->root_lock);
1744 
1745 	return r;
1746 }
1747 
1748 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1749 {
1750 	int r = -EINVAL;
1751 
1752 	down_read(&pmd->root_lock);
1753 	if (!pmd->fail_io)
1754 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1755 	up_read(&pmd->root_lock);
1756 
1757 	return r;
1758 }
1759 
1760 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1761 {
1762 	int r = -EINVAL;
1763 	struct dm_pool_metadata *pmd = td->pmd;
1764 
1765 	down_read(&pmd->root_lock);
1766 	if (!pmd->fail_io) {
1767 		*result = td->mapped_blocks;
1768 		r = 0;
1769 	}
1770 	up_read(&pmd->root_lock);
1771 
1772 	return r;
1773 }
1774 
1775 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1776 {
1777 	int r;
1778 	__le64 value_le;
1779 	dm_block_t thin_root;
1780 	struct dm_pool_metadata *pmd = td->pmd;
1781 
1782 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1783 	if (r)
1784 		return r;
1785 
1786 	thin_root = le64_to_cpu(value_le);
1787 
1788 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1789 }
1790 
1791 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1792 				     dm_block_t *result)
1793 {
1794 	int r = -EINVAL;
1795 	struct dm_pool_metadata *pmd = td->pmd;
1796 
1797 	down_read(&pmd->root_lock);
1798 	if (!pmd->fail_io)
1799 		r = __highest_block(td, result);
1800 	up_read(&pmd->root_lock);
1801 
1802 	return r;
1803 }
1804 
1805 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1806 {
1807 	int r;
1808 	dm_block_t old_count;
1809 
1810 	r = dm_sm_get_nr_blocks(sm, &old_count);
1811 	if (r)
1812 		return r;
1813 
1814 	if (new_count == old_count)
1815 		return 0;
1816 
1817 	if (new_count < old_count) {
1818 		DMERR("cannot reduce size of space map");
1819 		return -EINVAL;
1820 	}
1821 
1822 	return dm_sm_extend(sm, new_count - old_count);
1823 }
1824 
1825 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1826 {
1827 	int r = -EINVAL;
1828 
1829 	down_write(&pmd->root_lock);
1830 	if (!pmd->fail_io)
1831 		r = __resize_space_map(pmd->data_sm, new_count);
1832 	up_write(&pmd->root_lock);
1833 
1834 	return r;
1835 }
1836 
1837 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1838 {
1839 	int r = -EINVAL;
1840 
1841 	down_write(&pmd->root_lock);
1842 	if (!pmd->fail_io)
1843 		r = __resize_space_map(pmd->metadata_sm, new_count);
1844 	up_write(&pmd->root_lock);
1845 
1846 	return r;
1847 }
1848 
1849 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1850 {
1851 	down_write(&pmd->root_lock);
1852 	dm_bm_set_read_only(pmd->bm);
1853 	up_write(&pmd->root_lock);
1854 }
1855 
1856 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1857 {
1858 	down_write(&pmd->root_lock);
1859 	dm_bm_set_read_write(pmd->bm);
1860 	up_write(&pmd->root_lock);
1861 }
1862 
1863 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1864 					dm_block_t threshold,
1865 					dm_sm_threshold_fn fn,
1866 					void *context)
1867 {
1868 	int r;
1869 
1870 	down_write(&pmd->root_lock);
1871 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1872 	up_write(&pmd->root_lock);
1873 
1874 	return r;
1875 }
1876 
1877 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1878 {
1879 	int r;
1880 	struct dm_block *sblock;
1881 	struct thin_disk_superblock *disk_super;
1882 
1883 	down_write(&pmd->root_lock);
1884 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1885 
1886 	r = superblock_lock(pmd, &sblock);
1887 	if (r) {
1888 		DMERR("couldn't read superblock");
1889 		goto out;
1890 	}
1891 
1892 	disk_super = dm_block_data(sblock);
1893 	disk_super->flags = cpu_to_le32(pmd->flags);
1894 
1895 	dm_bm_unlock(sblock);
1896 out:
1897 	up_write(&pmd->root_lock);
1898 	return r;
1899 }
1900 
1901 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1902 {
1903 	bool needs_check;
1904 
1905 	down_read(&pmd->root_lock);
1906 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1907 	up_read(&pmd->root_lock);
1908 
1909 	return needs_check;
1910 }
1911 
1912 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
1913 {
1914 	dm_tm_issue_prefetches(pmd->tm);
1915 }
1916