1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 48 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define SECTOR_TO_BLOCK_SHIFT 3 81 82 /* 83 * 3 for btree insert + 84 * 2 for btree lookup used within space map 85 */ 86 #define THIN_MAX_CONCURRENT_LOCKS 5 87 88 /* This should be plenty */ 89 #define SPACE_MAP_ROOT_SIZE 128 90 91 /* 92 * Little endian on-disk superblock and device details. 93 */ 94 struct thin_disk_superblock { 95 __le32 csum; /* Checksum of superblock except for this field. */ 96 __le32 flags; 97 __le64 blocknr; /* This block number, dm_block_t. */ 98 99 __u8 uuid[16]; 100 __le64 magic; 101 __le32 version; 102 __le32 time; 103 104 __le64 trans_id; 105 106 /* 107 * Root held by userspace transactions. 108 */ 109 __le64 held_root; 110 111 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 112 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 113 114 /* 115 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 116 */ 117 __le64 data_mapping_root; 118 119 /* 120 * Device detail root mapping dev_id -> device_details 121 */ 122 __le64 device_details_root; 123 124 __le32 data_block_size; /* In 512-byte sectors. */ 125 126 __le32 metadata_block_size; /* In 512-byte sectors. */ 127 __le64 metadata_nr_blocks; 128 129 __le32 compat_flags; 130 __le32 compat_ro_flags; 131 __le32 incompat_flags; 132 } __packed; 133 134 struct disk_device_details { 135 __le64 mapped_blocks; 136 __le64 transaction_id; /* When created. */ 137 __le32 creation_time; 138 __le32 snapshotted_time; 139 } __packed; 140 141 struct dm_pool_metadata { 142 struct hlist_node hash; 143 144 struct block_device *bdev; 145 struct dm_block_manager *bm; 146 struct dm_space_map *metadata_sm; 147 struct dm_space_map *data_sm; 148 struct dm_transaction_manager *tm; 149 struct dm_transaction_manager *nb_tm; 150 151 /* 152 * Two-level btree. 153 * First level holds thin_dev_t. 154 * Second level holds mappings. 155 */ 156 struct dm_btree_info info; 157 158 /* 159 * Non-blocking version of the above. 160 */ 161 struct dm_btree_info nb_info; 162 163 /* 164 * Just the top level for deleting whole devices. 165 */ 166 struct dm_btree_info tl_info; 167 168 /* 169 * Just the bottom level for creating new devices. 170 */ 171 struct dm_btree_info bl_info; 172 173 /* 174 * Describes the device details btree. 175 */ 176 struct dm_btree_info details_info; 177 178 struct rw_semaphore root_lock; 179 uint32_t time; 180 dm_block_t root; 181 dm_block_t details_root; 182 struct list_head thin_devices; 183 uint64_t trans_id; 184 unsigned long flags; 185 sector_t data_block_size; 186 187 /* 188 * Set if a transaction has to be aborted but the attempt to roll back 189 * to the previous (good) transaction failed. The only pool metadata 190 * operation possible in this state is the closing of the device. 191 */ 192 bool fail_io:1; 193 194 /* 195 * Reading the space map roots can fail, so we read it into these 196 * buffers before the superblock is locked and updated. 197 */ 198 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 199 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 200 }; 201 202 struct dm_thin_device { 203 struct list_head list; 204 struct dm_pool_metadata *pmd; 205 dm_thin_id id; 206 207 int open_count; 208 bool changed:1; 209 bool aborted_with_changes:1; 210 uint64_t mapped_blocks; 211 uint64_t transaction_id; 212 uint32_t creation_time; 213 uint32_t snapshotted_time; 214 }; 215 216 /*---------------------------------------------------------------- 217 * superblock validator 218 *--------------------------------------------------------------*/ 219 220 #define SUPERBLOCK_CSUM_XOR 160774 221 222 static void sb_prepare_for_write(struct dm_block_validator *v, 223 struct dm_block *b, 224 size_t block_size) 225 { 226 struct thin_disk_superblock *disk_super = dm_block_data(b); 227 228 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 229 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 230 block_size - sizeof(__le32), 231 SUPERBLOCK_CSUM_XOR)); 232 } 233 234 static int sb_check(struct dm_block_validator *v, 235 struct dm_block *b, 236 size_t block_size) 237 { 238 struct thin_disk_superblock *disk_super = dm_block_data(b); 239 __le32 csum_le; 240 241 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 242 DMERR("sb_check failed: blocknr %llu: " 243 "wanted %llu", le64_to_cpu(disk_super->blocknr), 244 (unsigned long long)dm_block_location(b)); 245 return -ENOTBLK; 246 } 247 248 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 249 DMERR("sb_check failed: magic %llu: " 250 "wanted %llu", le64_to_cpu(disk_super->magic), 251 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 252 return -EILSEQ; 253 } 254 255 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 256 block_size - sizeof(__le32), 257 SUPERBLOCK_CSUM_XOR)); 258 if (csum_le != disk_super->csum) { 259 DMERR("sb_check failed: csum %u: wanted %u", 260 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 261 return -EILSEQ; 262 } 263 264 return 0; 265 } 266 267 static struct dm_block_validator sb_validator = { 268 .name = "superblock", 269 .prepare_for_write = sb_prepare_for_write, 270 .check = sb_check 271 }; 272 273 /*---------------------------------------------------------------- 274 * Methods for the btree value types 275 *--------------------------------------------------------------*/ 276 277 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 278 { 279 return (b << 24) | t; 280 } 281 282 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 283 { 284 *b = v >> 24; 285 *t = v & ((1 << 24) - 1); 286 } 287 288 static void data_block_inc(void *context, const void *value_le) 289 { 290 struct dm_space_map *sm = context; 291 __le64 v_le; 292 uint64_t b; 293 uint32_t t; 294 295 memcpy(&v_le, value_le, sizeof(v_le)); 296 unpack_block_time(le64_to_cpu(v_le), &b, &t); 297 dm_sm_inc_block(sm, b); 298 } 299 300 static void data_block_dec(void *context, const void *value_le) 301 { 302 struct dm_space_map *sm = context; 303 __le64 v_le; 304 uint64_t b; 305 uint32_t t; 306 307 memcpy(&v_le, value_le, sizeof(v_le)); 308 unpack_block_time(le64_to_cpu(v_le), &b, &t); 309 dm_sm_dec_block(sm, b); 310 } 311 312 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 313 { 314 __le64 v1_le, v2_le; 315 uint64_t b1, b2; 316 uint32_t t; 317 318 memcpy(&v1_le, value1_le, sizeof(v1_le)); 319 memcpy(&v2_le, value2_le, sizeof(v2_le)); 320 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 321 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 322 323 return b1 == b2; 324 } 325 326 static void subtree_inc(void *context, const void *value) 327 { 328 struct dm_btree_info *info = context; 329 __le64 root_le; 330 uint64_t root; 331 332 memcpy(&root_le, value, sizeof(root_le)); 333 root = le64_to_cpu(root_le); 334 dm_tm_inc(info->tm, root); 335 } 336 337 static void subtree_dec(void *context, const void *value) 338 { 339 struct dm_btree_info *info = context; 340 __le64 root_le; 341 uint64_t root; 342 343 memcpy(&root_le, value, sizeof(root_le)); 344 root = le64_to_cpu(root_le); 345 if (dm_btree_del(info, root)) 346 DMERR("btree delete failed"); 347 } 348 349 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 350 { 351 __le64 v1_le, v2_le; 352 memcpy(&v1_le, value1_le, sizeof(v1_le)); 353 memcpy(&v2_le, value2_le, sizeof(v2_le)); 354 355 return v1_le == v2_le; 356 } 357 358 /*----------------------------------------------------------------*/ 359 360 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 361 struct dm_block **sblock) 362 { 363 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 364 &sb_validator, sblock); 365 } 366 367 static int superblock_lock(struct dm_pool_metadata *pmd, 368 struct dm_block **sblock) 369 { 370 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 371 &sb_validator, sblock); 372 } 373 374 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 375 { 376 int r; 377 unsigned i; 378 struct dm_block *b; 379 __le64 *data_le, zero = cpu_to_le64(0); 380 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 381 382 /* 383 * We can't use a validator here - it may be all zeroes. 384 */ 385 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 386 if (r) 387 return r; 388 389 data_le = dm_block_data(b); 390 *result = 1; 391 for (i = 0; i < block_size; i++) { 392 if (data_le[i] != zero) { 393 *result = 0; 394 break; 395 } 396 } 397 398 dm_bm_unlock(b); 399 400 return 0; 401 } 402 403 static void __setup_btree_details(struct dm_pool_metadata *pmd) 404 { 405 pmd->info.tm = pmd->tm; 406 pmd->info.levels = 2; 407 pmd->info.value_type.context = pmd->data_sm; 408 pmd->info.value_type.size = sizeof(__le64); 409 pmd->info.value_type.inc = data_block_inc; 410 pmd->info.value_type.dec = data_block_dec; 411 pmd->info.value_type.equal = data_block_equal; 412 413 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 414 pmd->nb_info.tm = pmd->nb_tm; 415 416 pmd->tl_info.tm = pmd->tm; 417 pmd->tl_info.levels = 1; 418 pmd->tl_info.value_type.context = &pmd->bl_info; 419 pmd->tl_info.value_type.size = sizeof(__le64); 420 pmd->tl_info.value_type.inc = subtree_inc; 421 pmd->tl_info.value_type.dec = subtree_dec; 422 pmd->tl_info.value_type.equal = subtree_equal; 423 424 pmd->bl_info.tm = pmd->tm; 425 pmd->bl_info.levels = 1; 426 pmd->bl_info.value_type.context = pmd->data_sm; 427 pmd->bl_info.value_type.size = sizeof(__le64); 428 pmd->bl_info.value_type.inc = data_block_inc; 429 pmd->bl_info.value_type.dec = data_block_dec; 430 pmd->bl_info.value_type.equal = data_block_equal; 431 432 pmd->details_info.tm = pmd->tm; 433 pmd->details_info.levels = 1; 434 pmd->details_info.value_type.context = NULL; 435 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 436 pmd->details_info.value_type.inc = NULL; 437 pmd->details_info.value_type.dec = NULL; 438 pmd->details_info.value_type.equal = NULL; 439 } 440 441 static int save_sm_roots(struct dm_pool_metadata *pmd) 442 { 443 int r; 444 size_t len; 445 446 r = dm_sm_root_size(pmd->metadata_sm, &len); 447 if (r < 0) 448 return r; 449 450 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 451 if (r < 0) 452 return r; 453 454 r = dm_sm_root_size(pmd->data_sm, &len); 455 if (r < 0) 456 return r; 457 458 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 459 } 460 461 static void copy_sm_roots(struct dm_pool_metadata *pmd, 462 struct thin_disk_superblock *disk) 463 { 464 memcpy(&disk->metadata_space_map_root, 465 &pmd->metadata_space_map_root, 466 sizeof(pmd->metadata_space_map_root)); 467 468 memcpy(&disk->data_space_map_root, 469 &pmd->data_space_map_root, 470 sizeof(pmd->data_space_map_root)); 471 } 472 473 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 474 { 475 int r; 476 struct dm_block *sblock; 477 struct thin_disk_superblock *disk_super; 478 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; 479 480 if (bdev_size > THIN_METADATA_MAX_SECTORS) 481 bdev_size = THIN_METADATA_MAX_SECTORS; 482 483 r = dm_sm_commit(pmd->data_sm); 484 if (r < 0) 485 return r; 486 487 r = save_sm_roots(pmd); 488 if (r < 0) 489 return r; 490 491 r = dm_tm_pre_commit(pmd->tm); 492 if (r < 0) 493 return r; 494 495 r = superblock_lock_zero(pmd, &sblock); 496 if (r) 497 return r; 498 499 disk_super = dm_block_data(sblock); 500 disk_super->flags = 0; 501 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 502 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 503 disk_super->version = cpu_to_le32(THIN_VERSION); 504 disk_super->time = 0; 505 disk_super->trans_id = 0; 506 disk_super->held_root = 0; 507 508 copy_sm_roots(pmd, disk_super); 509 510 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 511 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 512 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 513 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 514 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 515 516 return dm_tm_commit(pmd->tm, sblock); 517 } 518 519 static int __format_metadata(struct dm_pool_metadata *pmd) 520 { 521 int r; 522 523 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 524 &pmd->tm, &pmd->metadata_sm); 525 if (r < 0) { 526 DMERR("tm_create_with_sm failed"); 527 return r; 528 } 529 530 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 531 if (IS_ERR(pmd->data_sm)) { 532 DMERR("sm_disk_create failed"); 533 r = PTR_ERR(pmd->data_sm); 534 goto bad_cleanup_tm; 535 } 536 537 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 538 if (!pmd->nb_tm) { 539 DMERR("could not create non-blocking clone tm"); 540 r = -ENOMEM; 541 goto bad_cleanup_data_sm; 542 } 543 544 __setup_btree_details(pmd); 545 546 r = dm_btree_empty(&pmd->info, &pmd->root); 547 if (r < 0) 548 goto bad_cleanup_nb_tm; 549 550 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 551 if (r < 0) { 552 DMERR("couldn't create devices root"); 553 goto bad_cleanup_nb_tm; 554 } 555 556 r = __write_initial_superblock(pmd); 557 if (r) 558 goto bad_cleanup_nb_tm; 559 560 return 0; 561 562 bad_cleanup_nb_tm: 563 dm_tm_destroy(pmd->nb_tm); 564 bad_cleanup_data_sm: 565 dm_sm_destroy(pmd->data_sm); 566 bad_cleanup_tm: 567 dm_tm_destroy(pmd->tm); 568 dm_sm_destroy(pmd->metadata_sm); 569 570 return r; 571 } 572 573 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 574 struct dm_pool_metadata *pmd) 575 { 576 uint32_t features; 577 578 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 579 if (features) { 580 DMERR("could not access metadata due to unsupported optional features (%lx).", 581 (unsigned long)features); 582 return -EINVAL; 583 } 584 585 /* 586 * Check for read-only metadata to skip the following RDWR checks. 587 */ 588 if (get_disk_ro(pmd->bdev->bd_disk)) 589 return 0; 590 591 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 592 if (features) { 593 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 594 (unsigned long)features); 595 return -EINVAL; 596 } 597 598 return 0; 599 } 600 601 static int __open_metadata(struct dm_pool_metadata *pmd) 602 { 603 int r; 604 struct dm_block *sblock; 605 struct thin_disk_superblock *disk_super; 606 607 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 608 &sb_validator, &sblock); 609 if (r < 0) { 610 DMERR("couldn't read superblock"); 611 return r; 612 } 613 614 disk_super = dm_block_data(sblock); 615 616 /* Verify the data block size hasn't changed */ 617 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { 618 DMERR("changing the data block size (from %u to %llu) is not supported", 619 le32_to_cpu(disk_super->data_block_size), 620 (unsigned long long)pmd->data_block_size); 621 r = -EINVAL; 622 goto bad_unlock_sblock; 623 } 624 625 r = __check_incompat_features(disk_super, pmd); 626 if (r < 0) 627 goto bad_unlock_sblock; 628 629 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 630 disk_super->metadata_space_map_root, 631 sizeof(disk_super->metadata_space_map_root), 632 &pmd->tm, &pmd->metadata_sm); 633 if (r < 0) { 634 DMERR("tm_open_with_sm failed"); 635 goto bad_unlock_sblock; 636 } 637 638 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 639 sizeof(disk_super->data_space_map_root)); 640 if (IS_ERR(pmd->data_sm)) { 641 DMERR("sm_disk_open failed"); 642 r = PTR_ERR(pmd->data_sm); 643 goto bad_cleanup_tm; 644 } 645 646 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 647 if (!pmd->nb_tm) { 648 DMERR("could not create non-blocking clone tm"); 649 r = -ENOMEM; 650 goto bad_cleanup_data_sm; 651 } 652 653 __setup_btree_details(pmd); 654 dm_bm_unlock(sblock); 655 656 return 0; 657 658 bad_cleanup_data_sm: 659 dm_sm_destroy(pmd->data_sm); 660 bad_cleanup_tm: 661 dm_tm_destroy(pmd->tm); 662 dm_sm_destroy(pmd->metadata_sm); 663 bad_unlock_sblock: 664 dm_bm_unlock(sblock); 665 666 return r; 667 } 668 669 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 670 { 671 int r, unformatted; 672 673 r = __superblock_all_zeroes(pmd->bm, &unformatted); 674 if (r) 675 return r; 676 677 if (unformatted) 678 return format_device ? __format_metadata(pmd) : -EPERM; 679 680 return __open_metadata(pmd); 681 } 682 683 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 684 { 685 int r; 686 687 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 688 THIN_MAX_CONCURRENT_LOCKS); 689 if (IS_ERR(pmd->bm)) { 690 DMERR("could not create block manager"); 691 return PTR_ERR(pmd->bm); 692 } 693 694 r = __open_or_format_metadata(pmd, format_device); 695 if (r) 696 dm_block_manager_destroy(pmd->bm); 697 698 return r; 699 } 700 701 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) 702 { 703 dm_sm_destroy(pmd->data_sm); 704 dm_sm_destroy(pmd->metadata_sm); 705 dm_tm_destroy(pmd->nb_tm); 706 dm_tm_destroy(pmd->tm); 707 dm_block_manager_destroy(pmd->bm); 708 } 709 710 static int __begin_transaction(struct dm_pool_metadata *pmd) 711 { 712 int r; 713 struct thin_disk_superblock *disk_super; 714 struct dm_block *sblock; 715 716 /* 717 * We re-read the superblock every time. Shouldn't need to do this 718 * really. 719 */ 720 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 721 &sb_validator, &sblock); 722 if (r) 723 return r; 724 725 disk_super = dm_block_data(sblock); 726 pmd->time = le32_to_cpu(disk_super->time); 727 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 728 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 729 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 730 pmd->flags = le32_to_cpu(disk_super->flags); 731 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 732 733 dm_bm_unlock(sblock); 734 return 0; 735 } 736 737 static int __write_changed_details(struct dm_pool_metadata *pmd) 738 { 739 int r; 740 struct dm_thin_device *td, *tmp; 741 struct disk_device_details details; 742 uint64_t key; 743 744 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 745 if (!td->changed) 746 continue; 747 748 key = td->id; 749 750 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 751 details.transaction_id = cpu_to_le64(td->transaction_id); 752 details.creation_time = cpu_to_le32(td->creation_time); 753 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 754 __dm_bless_for_disk(&details); 755 756 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 757 &key, &details, &pmd->details_root); 758 if (r) 759 return r; 760 761 if (td->open_count) 762 td->changed = 0; 763 else { 764 list_del(&td->list); 765 kfree(td); 766 } 767 } 768 769 return 0; 770 } 771 772 static int __commit_transaction(struct dm_pool_metadata *pmd) 773 { 774 int r; 775 size_t metadata_len, data_len; 776 struct thin_disk_superblock *disk_super; 777 struct dm_block *sblock; 778 779 /* 780 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 781 */ 782 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 783 784 r = __write_changed_details(pmd); 785 if (r < 0) 786 return r; 787 788 r = dm_sm_commit(pmd->data_sm); 789 if (r < 0) 790 return r; 791 792 r = dm_tm_pre_commit(pmd->tm); 793 if (r < 0) 794 return r; 795 796 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len); 797 if (r < 0) 798 return r; 799 800 r = dm_sm_root_size(pmd->data_sm, &data_len); 801 if (r < 0) 802 return r; 803 804 r = save_sm_roots(pmd); 805 if (r < 0) 806 return r; 807 808 r = superblock_lock(pmd, &sblock); 809 if (r) 810 return r; 811 812 disk_super = dm_block_data(sblock); 813 disk_super->time = cpu_to_le32(pmd->time); 814 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 815 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 816 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 817 disk_super->flags = cpu_to_le32(pmd->flags); 818 819 copy_sm_roots(pmd, disk_super); 820 821 return dm_tm_commit(pmd->tm, sblock); 822 } 823 824 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 825 sector_t data_block_size, 826 bool format_device) 827 { 828 int r; 829 struct dm_pool_metadata *pmd; 830 831 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 832 if (!pmd) { 833 DMERR("could not allocate metadata struct"); 834 return ERR_PTR(-ENOMEM); 835 } 836 837 init_rwsem(&pmd->root_lock); 838 pmd->time = 0; 839 INIT_LIST_HEAD(&pmd->thin_devices); 840 pmd->fail_io = false; 841 pmd->bdev = bdev; 842 pmd->data_block_size = data_block_size; 843 844 r = __create_persistent_data_objects(pmd, format_device); 845 if (r) { 846 kfree(pmd); 847 return ERR_PTR(r); 848 } 849 850 r = __begin_transaction(pmd); 851 if (r < 0) { 852 if (dm_pool_metadata_close(pmd) < 0) 853 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 854 return ERR_PTR(r); 855 } 856 857 return pmd; 858 } 859 860 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 861 { 862 int r; 863 unsigned open_devices = 0; 864 struct dm_thin_device *td, *tmp; 865 866 down_read(&pmd->root_lock); 867 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 868 if (td->open_count) 869 open_devices++; 870 else { 871 list_del(&td->list); 872 kfree(td); 873 } 874 } 875 up_read(&pmd->root_lock); 876 877 if (open_devices) { 878 DMERR("attempt to close pmd when %u device(s) are still open", 879 open_devices); 880 return -EBUSY; 881 } 882 883 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) { 884 r = __commit_transaction(pmd); 885 if (r < 0) 886 DMWARN("%s: __commit_transaction() failed, error = %d", 887 __func__, r); 888 } 889 890 if (!pmd->fail_io) 891 __destroy_persistent_data_objects(pmd); 892 893 kfree(pmd); 894 return 0; 895 } 896 897 /* 898 * __open_device: Returns @td corresponding to device with id @dev, 899 * creating it if @create is set and incrementing @td->open_count. 900 * On failure, @td is undefined. 901 */ 902 static int __open_device(struct dm_pool_metadata *pmd, 903 dm_thin_id dev, int create, 904 struct dm_thin_device **td) 905 { 906 int r, changed = 0; 907 struct dm_thin_device *td2; 908 uint64_t key = dev; 909 struct disk_device_details details_le; 910 911 /* 912 * If the device is already open, return it. 913 */ 914 list_for_each_entry(td2, &pmd->thin_devices, list) 915 if (td2->id == dev) { 916 /* 917 * May not create an already-open device. 918 */ 919 if (create) 920 return -EEXIST; 921 922 td2->open_count++; 923 *td = td2; 924 return 0; 925 } 926 927 /* 928 * Check the device exists. 929 */ 930 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 931 &key, &details_le); 932 if (r) { 933 if (r != -ENODATA || !create) 934 return r; 935 936 /* 937 * Create new device. 938 */ 939 changed = 1; 940 details_le.mapped_blocks = 0; 941 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 942 details_le.creation_time = cpu_to_le32(pmd->time); 943 details_le.snapshotted_time = cpu_to_le32(pmd->time); 944 } 945 946 *td = kmalloc(sizeof(**td), GFP_NOIO); 947 if (!*td) 948 return -ENOMEM; 949 950 (*td)->pmd = pmd; 951 (*td)->id = dev; 952 (*td)->open_count = 1; 953 (*td)->changed = changed; 954 (*td)->aborted_with_changes = false; 955 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 956 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 957 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 958 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 959 960 list_add(&(*td)->list, &pmd->thin_devices); 961 962 return 0; 963 } 964 965 static void __close_device(struct dm_thin_device *td) 966 { 967 --td->open_count; 968 } 969 970 static int __create_thin(struct dm_pool_metadata *pmd, 971 dm_thin_id dev) 972 { 973 int r; 974 dm_block_t dev_root; 975 uint64_t key = dev; 976 struct disk_device_details details_le; 977 struct dm_thin_device *td; 978 __le64 value; 979 980 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 981 &key, &details_le); 982 if (!r) 983 return -EEXIST; 984 985 /* 986 * Create an empty btree for the mappings. 987 */ 988 r = dm_btree_empty(&pmd->bl_info, &dev_root); 989 if (r) 990 return r; 991 992 /* 993 * Insert it into the main mapping tree. 994 */ 995 value = cpu_to_le64(dev_root); 996 __dm_bless_for_disk(&value); 997 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 998 if (r) { 999 dm_btree_del(&pmd->bl_info, dev_root); 1000 return r; 1001 } 1002 1003 r = __open_device(pmd, dev, 1, &td); 1004 if (r) { 1005 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1006 dm_btree_del(&pmd->bl_info, dev_root); 1007 return r; 1008 } 1009 __close_device(td); 1010 1011 return r; 1012 } 1013 1014 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1015 { 1016 int r = -EINVAL; 1017 1018 down_write(&pmd->root_lock); 1019 if (!pmd->fail_io) 1020 r = __create_thin(pmd, dev); 1021 up_write(&pmd->root_lock); 1022 1023 return r; 1024 } 1025 1026 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1027 struct dm_thin_device *snap, 1028 dm_thin_id origin, uint32_t time) 1029 { 1030 int r; 1031 struct dm_thin_device *td; 1032 1033 r = __open_device(pmd, origin, 0, &td); 1034 if (r) 1035 return r; 1036 1037 td->changed = 1; 1038 td->snapshotted_time = time; 1039 1040 snap->mapped_blocks = td->mapped_blocks; 1041 snap->snapshotted_time = time; 1042 __close_device(td); 1043 1044 return 0; 1045 } 1046 1047 static int __create_snap(struct dm_pool_metadata *pmd, 1048 dm_thin_id dev, dm_thin_id origin) 1049 { 1050 int r; 1051 dm_block_t origin_root; 1052 uint64_t key = origin, dev_key = dev; 1053 struct dm_thin_device *td; 1054 struct disk_device_details details_le; 1055 __le64 value; 1056 1057 /* check this device is unused */ 1058 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1059 &dev_key, &details_le); 1060 if (!r) 1061 return -EEXIST; 1062 1063 /* find the mapping tree for the origin */ 1064 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1065 if (r) 1066 return r; 1067 origin_root = le64_to_cpu(value); 1068 1069 /* clone the origin, an inc will do */ 1070 dm_tm_inc(pmd->tm, origin_root); 1071 1072 /* insert into the main mapping tree */ 1073 value = cpu_to_le64(origin_root); 1074 __dm_bless_for_disk(&value); 1075 key = dev; 1076 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1077 if (r) { 1078 dm_tm_dec(pmd->tm, origin_root); 1079 return r; 1080 } 1081 1082 pmd->time++; 1083 1084 r = __open_device(pmd, dev, 1, &td); 1085 if (r) 1086 goto bad; 1087 1088 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1089 __close_device(td); 1090 1091 if (r) 1092 goto bad; 1093 1094 return 0; 1095 1096 bad: 1097 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1098 dm_btree_remove(&pmd->details_info, pmd->details_root, 1099 &key, &pmd->details_root); 1100 return r; 1101 } 1102 1103 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1104 dm_thin_id dev, 1105 dm_thin_id origin) 1106 { 1107 int r = -EINVAL; 1108 1109 down_write(&pmd->root_lock); 1110 if (!pmd->fail_io) 1111 r = __create_snap(pmd, dev, origin); 1112 up_write(&pmd->root_lock); 1113 1114 return r; 1115 } 1116 1117 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1118 { 1119 int r; 1120 uint64_t key = dev; 1121 struct dm_thin_device *td; 1122 1123 /* TODO: failure should mark the transaction invalid */ 1124 r = __open_device(pmd, dev, 0, &td); 1125 if (r) 1126 return r; 1127 1128 if (td->open_count > 1) { 1129 __close_device(td); 1130 return -EBUSY; 1131 } 1132 1133 list_del(&td->list); 1134 kfree(td); 1135 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1136 &key, &pmd->details_root); 1137 if (r) 1138 return r; 1139 1140 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1141 if (r) 1142 return r; 1143 1144 return 0; 1145 } 1146 1147 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1148 dm_thin_id dev) 1149 { 1150 int r = -EINVAL; 1151 1152 down_write(&pmd->root_lock); 1153 if (!pmd->fail_io) 1154 r = __delete_device(pmd, dev); 1155 up_write(&pmd->root_lock); 1156 1157 return r; 1158 } 1159 1160 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1161 uint64_t current_id, 1162 uint64_t new_id) 1163 { 1164 int r = -EINVAL; 1165 1166 down_write(&pmd->root_lock); 1167 1168 if (pmd->fail_io) 1169 goto out; 1170 1171 if (pmd->trans_id != current_id) { 1172 DMERR("mismatched transaction id"); 1173 goto out; 1174 } 1175 1176 pmd->trans_id = new_id; 1177 r = 0; 1178 1179 out: 1180 up_write(&pmd->root_lock); 1181 1182 return r; 1183 } 1184 1185 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1186 uint64_t *result) 1187 { 1188 int r = -EINVAL; 1189 1190 down_read(&pmd->root_lock); 1191 if (!pmd->fail_io) { 1192 *result = pmd->trans_id; 1193 r = 0; 1194 } 1195 up_read(&pmd->root_lock); 1196 1197 return r; 1198 } 1199 1200 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1201 { 1202 int r, inc; 1203 struct thin_disk_superblock *disk_super; 1204 struct dm_block *copy, *sblock; 1205 dm_block_t held_root; 1206 1207 /* 1208 * We commit to ensure the btree roots which we increment in a 1209 * moment are up to date. 1210 */ 1211 __commit_transaction(pmd); 1212 1213 /* 1214 * Copy the superblock. 1215 */ 1216 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1217 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1218 &sb_validator, ©, &inc); 1219 if (r) 1220 return r; 1221 1222 BUG_ON(!inc); 1223 1224 held_root = dm_block_location(copy); 1225 disk_super = dm_block_data(copy); 1226 1227 if (le64_to_cpu(disk_super->held_root)) { 1228 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1229 1230 dm_tm_dec(pmd->tm, held_root); 1231 dm_tm_unlock(pmd->tm, copy); 1232 return -EBUSY; 1233 } 1234 1235 /* 1236 * Wipe the spacemap since we're not publishing this. 1237 */ 1238 memset(&disk_super->data_space_map_root, 0, 1239 sizeof(disk_super->data_space_map_root)); 1240 memset(&disk_super->metadata_space_map_root, 0, 1241 sizeof(disk_super->metadata_space_map_root)); 1242 1243 /* 1244 * Increment the data structures that need to be preserved. 1245 */ 1246 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1247 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1248 dm_tm_unlock(pmd->tm, copy); 1249 1250 /* 1251 * Write the held root into the superblock. 1252 */ 1253 r = superblock_lock(pmd, &sblock); 1254 if (r) { 1255 dm_tm_dec(pmd->tm, held_root); 1256 return r; 1257 } 1258 1259 disk_super = dm_block_data(sblock); 1260 disk_super->held_root = cpu_to_le64(held_root); 1261 dm_bm_unlock(sblock); 1262 return 0; 1263 } 1264 1265 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1266 { 1267 int r = -EINVAL; 1268 1269 down_write(&pmd->root_lock); 1270 if (!pmd->fail_io) 1271 r = __reserve_metadata_snap(pmd); 1272 up_write(&pmd->root_lock); 1273 1274 return r; 1275 } 1276 1277 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1278 { 1279 int r; 1280 struct thin_disk_superblock *disk_super; 1281 struct dm_block *sblock, *copy; 1282 dm_block_t held_root; 1283 1284 r = superblock_lock(pmd, &sblock); 1285 if (r) 1286 return r; 1287 1288 disk_super = dm_block_data(sblock); 1289 held_root = le64_to_cpu(disk_super->held_root); 1290 disk_super->held_root = cpu_to_le64(0); 1291 1292 dm_bm_unlock(sblock); 1293 1294 if (!held_root) { 1295 DMWARN("No pool metadata snapshot found: nothing to release."); 1296 return -EINVAL; 1297 } 1298 1299 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1300 if (r) 1301 return r; 1302 1303 disk_super = dm_block_data(copy); 1304 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); 1305 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); 1306 dm_sm_dec_block(pmd->metadata_sm, held_root); 1307 1308 dm_tm_unlock(pmd->tm, copy); 1309 1310 return 0; 1311 } 1312 1313 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1314 { 1315 int r = -EINVAL; 1316 1317 down_write(&pmd->root_lock); 1318 if (!pmd->fail_io) 1319 r = __release_metadata_snap(pmd); 1320 up_write(&pmd->root_lock); 1321 1322 return r; 1323 } 1324 1325 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1326 dm_block_t *result) 1327 { 1328 int r; 1329 struct thin_disk_superblock *disk_super; 1330 struct dm_block *sblock; 1331 1332 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1333 &sb_validator, &sblock); 1334 if (r) 1335 return r; 1336 1337 disk_super = dm_block_data(sblock); 1338 *result = le64_to_cpu(disk_super->held_root); 1339 1340 dm_bm_unlock(sblock); 1341 1342 return 0; 1343 } 1344 1345 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1346 dm_block_t *result) 1347 { 1348 int r = -EINVAL; 1349 1350 down_read(&pmd->root_lock); 1351 if (!pmd->fail_io) 1352 r = __get_metadata_snap(pmd, result); 1353 up_read(&pmd->root_lock); 1354 1355 return r; 1356 } 1357 1358 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1359 struct dm_thin_device **td) 1360 { 1361 int r = -EINVAL; 1362 1363 down_write(&pmd->root_lock); 1364 if (!pmd->fail_io) 1365 r = __open_device(pmd, dev, 0, td); 1366 up_write(&pmd->root_lock); 1367 1368 return r; 1369 } 1370 1371 int dm_pool_close_thin_device(struct dm_thin_device *td) 1372 { 1373 down_write(&td->pmd->root_lock); 1374 __close_device(td); 1375 up_write(&td->pmd->root_lock); 1376 1377 return 0; 1378 } 1379 1380 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1381 { 1382 return td->id; 1383 } 1384 1385 /* 1386 * Check whether @time (of block creation) is older than @td's last snapshot. 1387 * If so then the associated block is shared with the last snapshot device. 1388 * Any block on a device created *after* the device last got snapshotted is 1389 * necessarily not shared. 1390 */ 1391 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1392 { 1393 return td->snapshotted_time > time; 1394 } 1395 1396 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value, 1397 struct dm_thin_lookup_result *result) 1398 { 1399 uint64_t block_time = 0; 1400 dm_block_t exception_block; 1401 uint32_t exception_time; 1402 1403 block_time = le64_to_cpu(value); 1404 unpack_block_time(block_time, &exception_block, &exception_time); 1405 result->block = exception_block; 1406 result->shared = __snapshotted_since(td, exception_time); 1407 } 1408 1409 static int __find_block(struct dm_thin_device *td, dm_block_t block, 1410 int can_issue_io, struct dm_thin_lookup_result *result) 1411 { 1412 int r; 1413 __le64 value; 1414 struct dm_pool_metadata *pmd = td->pmd; 1415 dm_block_t keys[2] = { td->id, block }; 1416 struct dm_btree_info *info; 1417 1418 if (can_issue_io) { 1419 info = &pmd->info; 1420 } else 1421 info = &pmd->nb_info; 1422 1423 r = dm_btree_lookup(info, pmd->root, keys, &value); 1424 if (!r) 1425 unpack_lookup_result(td, value, result); 1426 1427 return r; 1428 } 1429 1430 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1431 int can_issue_io, struct dm_thin_lookup_result *result) 1432 { 1433 int r; 1434 struct dm_pool_metadata *pmd = td->pmd; 1435 1436 down_read(&pmd->root_lock); 1437 if (pmd->fail_io) { 1438 up_read(&pmd->root_lock); 1439 return -EINVAL; 1440 } 1441 1442 r = __find_block(td, block, can_issue_io, result); 1443 1444 up_read(&pmd->root_lock); 1445 return r; 1446 } 1447 1448 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block, 1449 dm_block_t *vblock, 1450 struct dm_thin_lookup_result *result) 1451 { 1452 int r; 1453 __le64 value; 1454 struct dm_pool_metadata *pmd = td->pmd; 1455 dm_block_t keys[2] = { td->id, block }; 1456 1457 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value); 1458 if (!r) 1459 unpack_lookup_result(td, value, result); 1460 1461 return r; 1462 } 1463 1464 static int __find_mapped_range(struct dm_thin_device *td, 1465 dm_block_t begin, dm_block_t end, 1466 dm_block_t *thin_begin, dm_block_t *thin_end, 1467 dm_block_t *pool_begin, bool *maybe_shared) 1468 { 1469 int r; 1470 dm_block_t pool_end; 1471 struct dm_thin_lookup_result lookup; 1472 1473 if (end < begin) 1474 return -ENODATA; 1475 1476 r = __find_next_mapped_block(td, begin, &begin, &lookup); 1477 if (r) 1478 return r; 1479 1480 if (begin >= end) 1481 return -ENODATA; 1482 1483 *thin_begin = begin; 1484 *pool_begin = lookup.block; 1485 *maybe_shared = lookup.shared; 1486 1487 begin++; 1488 pool_end = *pool_begin + 1; 1489 while (begin != end) { 1490 r = __find_block(td, begin, true, &lookup); 1491 if (r) { 1492 if (r == -ENODATA) 1493 break; 1494 else 1495 return r; 1496 } 1497 1498 if ((lookup.block != pool_end) || 1499 (lookup.shared != *maybe_shared)) 1500 break; 1501 1502 pool_end++; 1503 begin++; 1504 } 1505 1506 *thin_end = begin; 1507 return 0; 1508 } 1509 1510 int dm_thin_find_mapped_range(struct dm_thin_device *td, 1511 dm_block_t begin, dm_block_t end, 1512 dm_block_t *thin_begin, dm_block_t *thin_end, 1513 dm_block_t *pool_begin, bool *maybe_shared) 1514 { 1515 int r = -EINVAL; 1516 struct dm_pool_metadata *pmd = td->pmd; 1517 1518 down_read(&pmd->root_lock); 1519 if (!pmd->fail_io) { 1520 r = __find_mapped_range(td, begin, end, thin_begin, thin_end, 1521 pool_begin, maybe_shared); 1522 } 1523 up_read(&pmd->root_lock); 1524 1525 return r; 1526 } 1527 1528 static int __insert(struct dm_thin_device *td, dm_block_t block, 1529 dm_block_t data_block) 1530 { 1531 int r, inserted; 1532 __le64 value; 1533 struct dm_pool_metadata *pmd = td->pmd; 1534 dm_block_t keys[2] = { td->id, block }; 1535 1536 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1537 __dm_bless_for_disk(&value); 1538 1539 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1540 &pmd->root, &inserted); 1541 if (r) 1542 return r; 1543 1544 td->changed = 1; 1545 if (inserted) 1546 td->mapped_blocks++; 1547 1548 return 0; 1549 } 1550 1551 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1552 dm_block_t data_block) 1553 { 1554 int r = -EINVAL; 1555 1556 down_write(&td->pmd->root_lock); 1557 if (!td->pmd->fail_io) 1558 r = __insert(td, block, data_block); 1559 up_write(&td->pmd->root_lock); 1560 1561 return r; 1562 } 1563 1564 static int __remove(struct dm_thin_device *td, dm_block_t block) 1565 { 1566 int r; 1567 struct dm_pool_metadata *pmd = td->pmd; 1568 dm_block_t keys[2] = { td->id, block }; 1569 1570 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root); 1571 if (r) 1572 return r; 1573 1574 td->mapped_blocks--; 1575 td->changed = 1; 1576 1577 return 0; 1578 } 1579 1580 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) 1581 { 1582 int r; 1583 unsigned count, total_count = 0; 1584 struct dm_pool_metadata *pmd = td->pmd; 1585 dm_block_t keys[1] = { td->id }; 1586 __le64 value; 1587 dm_block_t mapping_root; 1588 1589 /* 1590 * Find the mapping tree 1591 */ 1592 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); 1593 if (r) 1594 return r; 1595 1596 /* 1597 * Remove from the mapping tree, taking care to inc the 1598 * ref count so it doesn't get deleted. 1599 */ 1600 mapping_root = le64_to_cpu(value); 1601 dm_tm_inc(pmd->tm, mapping_root); 1602 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); 1603 if (r) 1604 return r; 1605 1606 /* 1607 * Remove leaves stops at the first unmapped entry, so we have to 1608 * loop round finding mapped ranges. 1609 */ 1610 while (begin < end) { 1611 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value); 1612 if (r == -ENODATA) 1613 break; 1614 1615 if (r) 1616 return r; 1617 1618 if (begin >= end) 1619 break; 1620 1621 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); 1622 if (r) 1623 return r; 1624 1625 total_count += count; 1626 } 1627 1628 td->mapped_blocks -= total_count; 1629 td->changed = 1; 1630 1631 /* 1632 * Reinsert the mapping tree. 1633 */ 1634 value = cpu_to_le64(mapping_root); 1635 __dm_bless_for_disk(&value); 1636 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); 1637 } 1638 1639 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) 1640 { 1641 int r = -EINVAL; 1642 1643 down_write(&td->pmd->root_lock); 1644 if (!td->pmd->fail_io) 1645 r = __remove(td, block); 1646 up_write(&td->pmd->root_lock); 1647 1648 return r; 1649 } 1650 1651 int dm_thin_remove_range(struct dm_thin_device *td, 1652 dm_block_t begin, dm_block_t end) 1653 { 1654 int r = -EINVAL; 1655 1656 down_write(&td->pmd->root_lock); 1657 if (!td->pmd->fail_io) 1658 r = __remove_range(td, begin, end); 1659 up_write(&td->pmd->root_lock); 1660 1661 return r; 1662 } 1663 1664 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1665 { 1666 int r; 1667 uint32_t ref_count; 1668 1669 down_read(&pmd->root_lock); 1670 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1671 if (!r) 1672 *result = (ref_count != 0); 1673 up_read(&pmd->root_lock); 1674 1675 return r; 1676 } 1677 1678 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1679 { 1680 int r = 0; 1681 1682 down_write(&pmd->root_lock); 1683 for (; b != e; b++) { 1684 r = dm_sm_inc_block(pmd->data_sm, b); 1685 if (r) 1686 break; 1687 } 1688 up_write(&pmd->root_lock); 1689 1690 return r; 1691 } 1692 1693 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1694 { 1695 int r = 0; 1696 1697 down_write(&pmd->root_lock); 1698 for (; b != e; b++) { 1699 r = dm_sm_dec_block(pmd->data_sm, b); 1700 if (r) 1701 break; 1702 } 1703 up_write(&pmd->root_lock); 1704 1705 return r; 1706 } 1707 1708 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1709 { 1710 int r; 1711 1712 down_read(&td->pmd->root_lock); 1713 r = td->changed; 1714 up_read(&td->pmd->root_lock); 1715 1716 return r; 1717 } 1718 1719 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1720 { 1721 bool r = false; 1722 struct dm_thin_device *td, *tmp; 1723 1724 down_read(&pmd->root_lock); 1725 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1726 if (td->changed) { 1727 r = td->changed; 1728 break; 1729 } 1730 } 1731 up_read(&pmd->root_lock); 1732 1733 return r; 1734 } 1735 1736 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1737 { 1738 bool r; 1739 1740 down_read(&td->pmd->root_lock); 1741 r = td->aborted_with_changes; 1742 up_read(&td->pmd->root_lock); 1743 1744 return r; 1745 } 1746 1747 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1748 { 1749 int r = -EINVAL; 1750 1751 down_write(&pmd->root_lock); 1752 if (!pmd->fail_io) 1753 r = dm_sm_new_block(pmd->data_sm, result); 1754 up_write(&pmd->root_lock); 1755 1756 return r; 1757 } 1758 1759 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1760 { 1761 int r = -EINVAL; 1762 1763 down_write(&pmd->root_lock); 1764 if (pmd->fail_io) 1765 goto out; 1766 1767 r = __commit_transaction(pmd); 1768 if (r <= 0) 1769 goto out; 1770 1771 /* 1772 * Open the next transaction. 1773 */ 1774 r = __begin_transaction(pmd); 1775 out: 1776 up_write(&pmd->root_lock); 1777 return r; 1778 } 1779 1780 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1781 { 1782 struct dm_thin_device *td; 1783 1784 list_for_each_entry(td, &pmd->thin_devices, list) 1785 td->aborted_with_changes = td->changed; 1786 } 1787 1788 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1789 { 1790 int r = -EINVAL; 1791 1792 down_write(&pmd->root_lock); 1793 if (pmd->fail_io) 1794 goto out; 1795 1796 __set_abort_with_changes_flags(pmd); 1797 __destroy_persistent_data_objects(pmd); 1798 r = __create_persistent_data_objects(pmd, false); 1799 if (r) 1800 pmd->fail_io = true; 1801 1802 out: 1803 up_write(&pmd->root_lock); 1804 1805 return r; 1806 } 1807 1808 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1809 { 1810 int r = -EINVAL; 1811 1812 down_read(&pmd->root_lock); 1813 if (!pmd->fail_io) 1814 r = dm_sm_get_nr_free(pmd->data_sm, result); 1815 up_read(&pmd->root_lock); 1816 1817 return r; 1818 } 1819 1820 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1821 dm_block_t *result) 1822 { 1823 int r = -EINVAL; 1824 1825 down_read(&pmd->root_lock); 1826 if (!pmd->fail_io) 1827 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1828 up_read(&pmd->root_lock); 1829 1830 return r; 1831 } 1832 1833 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1834 dm_block_t *result) 1835 { 1836 int r = -EINVAL; 1837 1838 down_read(&pmd->root_lock); 1839 if (!pmd->fail_io) 1840 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1841 up_read(&pmd->root_lock); 1842 1843 return r; 1844 } 1845 1846 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1847 { 1848 int r = -EINVAL; 1849 1850 down_read(&pmd->root_lock); 1851 if (!pmd->fail_io) 1852 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1853 up_read(&pmd->root_lock); 1854 1855 return r; 1856 } 1857 1858 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1859 { 1860 int r = -EINVAL; 1861 struct dm_pool_metadata *pmd = td->pmd; 1862 1863 down_read(&pmd->root_lock); 1864 if (!pmd->fail_io) { 1865 *result = td->mapped_blocks; 1866 r = 0; 1867 } 1868 up_read(&pmd->root_lock); 1869 1870 return r; 1871 } 1872 1873 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1874 { 1875 int r; 1876 __le64 value_le; 1877 dm_block_t thin_root; 1878 struct dm_pool_metadata *pmd = td->pmd; 1879 1880 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 1881 if (r) 1882 return r; 1883 1884 thin_root = le64_to_cpu(value_le); 1885 1886 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 1887 } 1888 1889 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 1890 dm_block_t *result) 1891 { 1892 int r = -EINVAL; 1893 struct dm_pool_metadata *pmd = td->pmd; 1894 1895 down_read(&pmd->root_lock); 1896 if (!pmd->fail_io) 1897 r = __highest_block(td, result); 1898 up_read(&pmd->root_lock); 1899 1900 return r; 1901 } 1902 1903 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 1904 { 1905 int r; 1906 dm_block_t old_count; 1907 1908 r = dm_sm_get_nr_blocks(sm, &old_count); 1909 if (r) 1910 return r; 1911 1912 if (new_count == old_count) 1913 return 0; 1914 1915 if (new_count < old_count) { 1916 DMERR("cannot reduce size of space map"); 1917 return -EINVAL; 1918 } 1919 1920 return dm_sm_extend(sm, new_count - old_count); 1921 } 1922 1923 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 1924 { 1925 int r = -EINVAL; 1926 1927 down_write(&pmd->root_lock); 1928 if (!pmd->fail_io) 1929 r = __resize_space_map(pmd->data_sm, new_count); 1930 up_write(&pmd->root_lock); 1931 1932 return r; 1933 } 1934 1935 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 1936 { 1937 int r = -EINVAL; 1938 1939 down_write(&pmd->root_lock); 1940 if (!pmd->fail_io) 1941 r = __resize_space_map(pmd->metadata_sm, new_count); 1942 up_write(&pmd->root_lock); 1943 1944 return r; 1945 } 1946 1947 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 1948 { 1949 down_write(&pmd->root_lock); 1950 dm_bm_set_read_only(pmd->bm); 1951 up_write(&pmd->root_lock); 1952 } 1953 1954 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 1955 { 1956 down_write(&pmd->root_lock); 1957 dm_bm_set_read_write(pmd->bm); 1958 up_write(&pmd->root_lock); 1959 } 1960 1961 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 1962 dm_block_t threshold, 1963 dm_sm_threshold_fn fn, 1964 void *context) 1965 { 1966 int r; 1967 1968 down_write(&pmd->root_lock); 1969 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); 1970 up_write(&pmd->root_lock); 1971 1972 return r; 1973 } 1974 1975 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 1976 { 1977 int r; 1978 struct dm_block *sblock; 1979 struct thin_disk_superblock *disk_super; 1980 1981 down_write(&pmd->root_lock); 1982 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 1983 1984 r = superblock_lock(pmd, &sblock); 1985 if (r) { 1986 DMERR("couldn't read superblock"); 1987 goto out; 1988 } 1989 1990 disk_super = dm_block_data(sblock); 1991 disk_super->flags = cpu_to_le32(pmd->flags); 1992 1993 dm_bm_unlock(sblock); 1994 out: 1995 up_write(&pmd->root_lock); 1996 return r; 1997 } 1998 1999 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 2000 { 2001 bool needs_check; 2002 2003 down_read(&pmd->root_lock); 2004 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 2005 up_read(&pmd->root_lock); 2006 2007 return needs_check; 2008 } 2009 2010 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) 2011 { 2012 down_read(&pmd->root_lock); 2013 if (!pmd->fail_io) 2014 dm_tm_issue_prefetches(pmd->tm); 2015 up_read(&pmd->root_lock); 2016 } 2017