xref: /linux/drivers/md/dm-thin-metadata.c (revision 8b83369ddcb3fb9cab5c1088987ce477565bb630)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * Pre-commit callback.
193 	 *
194 	 * This allows the thin provisioning target to run a callback before
195 	 * the metadata are committed.
196 	 */
197 	dm_pool_pre_commit_fn pre_commit_fn;
198 	void *pre_commit_context;
199 
200 	/*
201 	 * We reserve a section of the metadata for commit overhead.
202 	 * All reported space does *not* include this.
203 	 */
204 	dm_block_t metadata_reserve;
205 
206 	/*
207 	 * Set if a transaction has to be aborted but the attempt to roll back
208 	 * to the previous (good) transaction failed.  The only pool metadata
209 	 * operation possible in this state is the closing of the device.
210 	 */
211 	bool fail_io:1;
212 
213 	/*
214 	 * Set once a thin-pool has been accessed through one of the interfaces
215 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 	 * thin-pool message, metadata snapshots, etc).
217 	 */
218 	bool in_service:1;
219 
220 	/*
221 	 * Reading the space map roots can fail, so we read it into these
222 	 * buffers before the superblock is locked and updated.
223 	 */
224 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227 
228 struct dm_thin_device {
229 	struct list_head list;
230 	struct dm_pool_metadata *pmd;
231 	dm_thin_id id;
232 
233 	int open_count;
234 	bool changed:1;
235 	bool aborted_with_changes:1;
236 	uint64_t mapped_blocks;
237 	uint64_t transaction_id;
238 	uint32_t creation_time;
239 	uint32_t snapshotted_time;
240 };
241 
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245 
246 #define SUPERBLOCK_CSUM_XOR 160774
247 
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 				 struct dm_block *b,
250 				 size_t block_size)
251 {
252 	struct thin_disk_superblock *disk_super = dm_block_data(b);
253 
254 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 						      block_size - sizeof(__le32),
257 						      SUPERBLOCK_CSUM_XOR));
258 }
259 
260 static int sb_check(struct dm_block_validator *v,
261 		    struct dm_block *b,
262 		    size_t block_size)
263 {
264 	struct thin_disk_superblock *disk_super = dm_block_data(b);
265 	__le32 csum_le;
266 
267 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 		DMERR("sb_check failed: blocknr %llu: "
269 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 		      (unsigned long long)dm_block_location(b));
271 		return -ENOTBLK;
272 	}
273 
274 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 		DMERR("sb_check failed: magic %llu: "
276 		      "wanted %llu", le64_to_cpu(disk_super->magic),
277 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 		return -EILSEQ;
279 	}
280 
281 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 					     block_size - sizeof(__le32),
283 					     SUPERBLOCK_CSUM_XOR));
284 	if (csum_le != disk_super->csum) {
285 		DMERR("sb_check failed: csum %u: wanted %u",
286 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 		return -EILSEQ;
288 	}
289 
290 	return 0;
291 }
292 
293 static struct dm_block_validator sb_validator = {
294 	.name = "superblock",
295 	.prepare_for_write = sb_prepare_for_write,
296 	.check = sb_check
297 };
298 
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302 
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 	return (b << 24) | t;
306 }
307 
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 	*b = v >> 24;
311 	*t = v & ((1 << 24) - 1);
312 }
313 
314 static void data_block_inc(void *context, const void *value_le)
315 {
316 	struct dm_space_map *sm = context;
317 	__le64 v_le;
318 	uint64_t b;
319 	uint32_t t;
320 
321 	memcpy(&v_le, value_le, sizeof(v_le));
322 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
323 	dm_sm_inc_block(sm, b);
324 }
325 
326 static void data_block_dec(void *context, const void *value_le)
327 {
328 	struct dm_space_map *sm = context;
329 	__le64 v_le;
330 	uint64_t b;
331 	uint32_t t;
332 
333 	memcpy(&v_le, value_le, sizeof(v_le));
334 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
335 	dm_sm_dec_block(sm, b);
336 }
337 
338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340 	__le64 v1_le, v2_le;
341 	uint64_t b1, b2;
342 	uint32_t t;
343 
344 	memcpy(&v1_le, value1_le, sizeof(v1_le));
345 	memcpy(&v2_le, value2_le, sizeof(v2_le));
346 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348 
349 	return b1 == b2;
350 }
351 
352 static void subtree_inc(void *context, const void *value)
353 {
354 	struct dm_btree_info *info = context;
355 	__le64 root_le;
356 	uint64_t root;
357 
358 	memcpy(&root_le, value, sizeof(root_le));
359 	root = le64_to_cpu(root_le);
360 	dm_tm_inc(info->tm, root);
361 }
362 
363 static void subtree_dec(void *context, const void *value)
364 {
365 	struct dm_btree_info *info = context;
366 	__le64 root_le;
367 	uint64_t root;
368 
369 	memcpy(&root_le, value, sizeof(root_le));
370 	root = le64_to_cpu(root_le);
371 	if (dm_btree_del(info, root))
372 		DMERR("btree delete failed");
373 }
374 
375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377 	__le64 v1_le, v2_le;
378 	memcpy(&v1_le, value1_le, sizeof(v1_le));
379 	memcpy(&v2_le, value2_le, sizeof(v2_le));
380 
381 	return v1_le == v2_le;
382 }
383 
384 /*----------------------------------------------------------------*/
385 
386 /*
387  * Variant that is used for in-core only changes or code that
388  * shouldn't put the pool in service on its own (e.g. commit).
389  */
390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
391 	__acquires(pmd->root_lock)
392 {
393 	down_write(&pmd->root_lock);
394 }
395 
396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
397 {
398 	pmd_write_lock_in_core(pmd);
399 	if (unlikely(!pmd->in_service))
400 		pmd->in_service = true;
401 }
402 
403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
404 	__releases(pmd->root_lock)
405 {
406 	up_write(&pmd->root_lock);
407 }
408 
409 /*----------------------------------------------------------------*/
410 
411 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
412 				struct dm_block **sblock)
413 {
414 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
415 				     &sb_validator, sblock);
416 }
417 
418 static int superblock_lock(struct dm_pool_metadata *pmd,
419 			   struct dm_block **sblock)
420 {
421 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
422 				&sb_validator, sblock);
423 }
424 
425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
426 {
427 	int r;
428 	unsigned i;
429 	struct dm_block *b;
430 	__le64 *data_le, zero = cpu_to_le64(0);
431 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
432 
433 	/*
434 	 * We can't use a validator here - it may be all zeroes.
435 	 */
436 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
437 	if (r)
438 		return r;
439 
440 	data_le = dm_block_data(b);
441 	*result = 1;
442 	for (i = 0; i < block_size; i++) {
443 		if (data_le[i] != zero) {
444 			*result = 0;
445 			break;
446 		}
447 	}
448 
449 	dm_bm_unlock(b);
450 
451 	return 0;
452 }
453 
454 static void __setup_btree_details(struct dm_pool_metadata *pmd)
455 {
456 	pmd->info.tm = pmd->tm;
457 	pmd->info.levels = 2;
458 	pmd->info.value_type.context = pmd->data_sm;
459 	pmd->info.value_type.size = sizeof(__le64);
460 	pmd->info.value_type.inc = data_block_inc;
461 	pmd->info.value_type.dec = data_block_dec;
462 	pmd->info.value_type.equal = data_block_equal;
463 
464 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
465 	pmd->nb_info.tm = pmd->nb_tm;
466 
467 	pmd->tl_info.tm = pmd->tm;
468 	pmd->tl_info.levels = 1;
469 	pmd->tl_info.value_type.context = &pmd->bl_info;
470 	pmd->tl_info.value_type.size = sizeof(__le64);
471 	pmd->tl_info.value_type.inc = subtree_inc;
472 	pmd->tl_info.value_type.dec = subtree_dec;
473 	pmd->tl_info.value_type.equal = subtree_equal;
474 
475 	pmd->bl_info.tm = pmd->tm;
476 	pmd->bl_info.levels = 1;
477 	pmd->bl_info.value_type.context = pmd->data_sm;
478 	pmd->bl_info.value_type.size = sizeof(__le64);
479 	pmd->bl_info.value_type.inc = data_block_inc;
480 	pmd->bl_info.value_type.dec = data_block_dec;
481 	pmd->bl_info.value_type.equal = data_block_equal;
482 
483 	pmd->details_info.tm = pmd->tm;
484 	pmd->details_info.levels = 1;
485 	pmd->details_info.value_type.context = NULL;
486 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
487 	pmd->details_info.value_type.inc = NULL;
488 	pmd->details_info.value_type.dec = NULL;
489 	pmd->details_info.value_type.equal = NULL;
490 }
491 
492 static int save_sm_roots(struct dm_pool_metadata *pmd)
493 {
494 	int r;
495 	size_t len;
496 
497 	r = dm_sm_root_size(pmd->metadata_sm, &len);
498 	if (r < 0)
499 		return r;
500 
501 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
502 	if (r < 0)
503 		return r;
504 
505 	r = dm_sm_root_size(pmd->data_sm, &len);
506 	if (r < 0)
507 		return r;
508 
509 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
510 }
511 
512 static void copy_sm_roots(struct dm_pool_metadata *pmd,
513 			  struct thin_disk_superblock *disk)
514 {
515 	memcpy(&disk->metadata_space_map_root,
516 	       &pmd->metadata_space_map_root,
517 	       sizeof(pmd->metadata_space_map_root));
518 
519 	memcpy(&disk->data_space_map_root,
520 	       &pmd->data_space_map_root,
521 	       sizeof(pmd->data_space_map_root));
522 }
523 
524 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
525 {
526 	int r;
527 	struct dm_block *sblock;
528 	struct thin_disk_superblock *disk_super;
529 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
530 
531 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
532 		bdev_size = THIN_METADATA_MAX_SECTORS;
533 
534 	r = dm_sm_commit(pmd->data_sm);
535 	if (r < 0)
536 		return r;
537 
538 	r = dm_tm_pre_commit(pmd->tm);
539 	if (r < 0)
540 		return r;
541 
542 	r = save_sm_roots(pmd);
543 	if (r < 0)
544 		return r;
545 
546 	r = superblock_lock_zero(pmd, &sblock);
547 	if (r)
548 		return r;
549 
550 	disk_super = dm_block_data(sblock);
551 	disk_super->flags = 0;
552 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
553 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
554 	disk_super->version = cpu_to_le32(THIN_VERSION);
555 	disk_super->time = 0;
556 	disk_super->trans_id = 0;
557 	disk_super->held_root = 0;
558 
559 	copy_sm_roots(pmd, disk_super);
560 
561 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
562 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
563 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
564 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
565 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
566 
567 	return dm_tm_commit(pmd->tm, sblock);
568 }
569 
570 static int __format_metadata(struct dm_pool_metadata *pmd)
571 {
572 	int r;
573 
574 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
575 				 &pmd->tm, &pmd->metadata_sm);
576 	if (r < 0) {
577 		DMERR("tm_create_with_sm failed");
578 		return r;
579 	}
580 
581 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
582 	if (IS_ERR(pmd->data_sm)) {
583 		DMERR("sm_disk_create failed");
584 		r = PTR_ERR(pmd->data_sm);
585 		goto bad_cleanup_tm;
586 	}
587 
588 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
589 	if (!pmd->nb_tm) {
590 		DMERR("could not create non-blocking clone tm");
591 		r = -ENOMEM;
592 		goto bad_cleanup_data_sm;
593 	}
594 
595 	__setup_btree_details(pmd);
596 
597 	r = dm_btree_empty(&pmd->info, &pmd->root);
598 	if (r < 0)
599 		goto bad_cleanup_nb_tm;
600 
601 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
602 	if (r < 0) {
603 		DMERR("couldn't create devices root");
604 		goto bad_cleanup_nb_tm;
605 	}
606 
607 	r = __write_initial_superblock(pmd);
608 	if (r)
609 		goto bad_cleanup_nb_tm;
610 
611 	return 0;
612 
613 bad_cleanup_nb_tm:
614 	dm_tm_destroy(pmd->nb_tm);
615 bad_cleanup_data_sm:
616 	dm_sm_destroy(pmd->data_sm);
617 bad_cleanup_tm:
618 	dm_tm_destroy(pmd->tm);
619 	dm_sm_destroy(pmd->metadata_sm);
620 
621 	return r;
622 }
623 
624 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
625 				     struct dm_pool_metadata *pmd)
626 {
627 	uint32_t features;
628 
629 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
630 	if (features) {
631 		DMERR("could not access metadata due to unsupported optional features (%lx).",
632 		      (unsigned long)features);
633 		return -EINVAL;
634 	}
635 
636 	/*
637 	 * Check for read-only metadata to skip the following RDWR checks.
638 	 */
639 	if (bdev_read_only(pmd->bdev))
640 		return 0;
641 
642 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
643 	if (features) {
644 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
645 		      (unsigned long)features);
646 		return -EINVAL;
647 	}
648 
649 	return 0;
650 }
651 
652 static int __open_metadata(struct dm_pool_metadata *pmd)
653 {
654 	int r;
655 	struct dm_block *sblock;
656 	struct thin_disk_superblock *disk_super;
657 
658 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
659 			    &sb_validator, &sblock);
660 	if (r < 0) {
661 		DMERR("couldn't read superblock");
662 		return r;
663 	}
664 
665 	disk_super = dm_block_data(sblock);
666 
667 	/* Verify the data block size hasn't changed */
668 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
669 		DMERR("changing the data block size (from %u to %llu) is not supported",
670 		      le32_to_cpu(disk_super->data_block_size),
671 		      (unsigned long long)pmd->data_block_size);
672 		r = -EINVAL;
673 		goto bad_unlock_sblock;
674 	}
675 
676 	r = __check_incompat_features(disk_super, pmd);
677 	if (r < 0)
678 		goto bad_unlock_sblock;
679 
680 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
681 			       disk_super->metadata_space_map_root,
682 			       sizeof(disk_super->metadata_space_map_root),
683 			       &pmd->tm, &pmd->metadata_sm);
684 	if (r < 0) {
685 		DMERR("tm_open_with_sm failed");
686 		goto bad_unlock_sblock;
687 	}
688 
689 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
690 				       sizeof(disk_super->data_space_map_root));
691 	if (IS_ERR(pmd->data_sm)) {
692 		DMERR("sm_disk_open failed");
693 		r = PTR_ERR(pmd->data_sm);
694 		goto bad_cleanup_tm;
695 	}
696 
697 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
698 	if (!pmd->nb_tm) {
699 		DMERR("could not create non-blocking clone tm");
700 		r = -ENOMEM;
701 		goto bad_cleanup_data_sm;
702 	}
703 
704 	__setup_btree_details(pmd);
705 	dm_bm_unlock(sblock);
706 
707 	return 0;
708 
709 bad_cleanup_data_sm:
710 	dm_sm_destroy(pmd->data_sm);
711 bad_cleanup_tm:
712 	dm_tm_destroy(pmd->tm);
713 	dm_sm_destroy(pmd->metadata_sm);
714 bad_unlock_sblock:
715 	dm_bm_unlock(sblock);
716 
717 	return r;
718 }
719 
720 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
721 {
722 	int r, unformatted;
723 
724 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
725 	if (r)
726 		return r;
727 
728 	if (unformatted)
729 		return format_device ? __format_metadata(pmd) : -EPERM;
730 
731 	return __open_metadata(pmd);
732 }
733 
734 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
735 {
736 	int r;
737 
738 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
739 					  THIN_MAX_CONCURRENT_LOCKS);
740 	if (IS_ERR(pmd->bm)) {
741 		DMERR("could not create block manager");
742 		r = PTR_ERR(pmd->bm);
743 		pmd->bm = NULL;
744 		return r;
745 	}
746 
747 	r = __open_or_format_metadata(pmd, format_device);
748 	if (r) {
749 		dm_block_manager_destroy(pmd->bm);
750 		pmd->bm = NULL;
751 	}
752 
753 	return r;
754 }
755 
756 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
757 {
758 	dm_sm_destroy(pmd->data_sm);
759 	dm_sm_destroy(pmd->metadata_sm);
760 	dm_tm_destroy(pmd->nb_tm);
761 	dm_tm_destroy(pmd->tm);
762 	dm_block_manager_destroy(pmd->bm);
763 }
764 
765 static int __begin_transaction(struct dm_pool_metadata *pmd)
766 {
767 	int r;
768 	struct thin_disk_superblock *disk_super;
769 	struct dm_block *sblock;
770 
771 	/*
772 	 * We re-read the superblock every time.  Shouldn't need to do this
773 	 * really.
774 	 */
775 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
776 			    &sb_validator, &sblock);
777 	if (r)
778 		return r;
779 
780 	disk_super = dm_block_data(sblock);
781 	pmd->time = le32_to_cpu(disk_super->time);
782 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
783 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
784 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
785 	pmd->flags = le32_to_cpu(disk_super->flags);
786 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
787 
788 	dm_bm_unlock(sblock);
789 	return 0;
790 }
791 
792 static int __write_changed_details(struct dm_pool_metadata *pmd)
793 {
794 	int r;
795 	struct dm_thin_device *td, *tmp;
796 	struct disk_device_details details;
797 	uint64_t key;
798 
799 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
800 		if (!td->changed)
801 			continue;
802 
803 		key = td->id;
804 
805 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
806 		details.transaction_id = cpu_to_le64(td->transaction_id);
807 		details.creation_time = cpu_to_le32(td->creation_time);
808 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
809 		__dm_bless_for_disk(&details);
810 
811 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
812 				    &key, &details, &pmd->details_root);
813 		if (r)
814 			return r;
815 
816 		if (td->open_count)
817 			td->changed = false;
818 		else {
819 			list_del(&td->list);
820 			kfree(td);
821 		}
822 	}
823 
824 	return 0;
825 }
826 
827 static int __commit_transaction(struct dm_pool_metadata *pmd)
828 {
829 	int r;
830 	struct thin_disk_superblock *disk_super;
831 	struct dm_block *sblock;
832 
833 	/*
834 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
835 	 */
836 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
837 	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
838 
839 	if (unlikely(!pmd->in_service))
840 		return 0;
841 
842 	if (pmd->pre_commit_fn) {
843 		r = pmd->pre_commit_fn(pmd->pre_commit_context);
844 		if (r < 0) {
845 			DMERR("pre-commit callback failed");
846 			return r;
847 		}
848 	}
849 
850 	r = __write_changed_details(pmd);
851 	if (r < 0)
852 		return r;
853 
854 	r = dm_sm_commit(pmd->data_sm);
855 	if (r < 0)
856 		return r;
857 
858 	r = dm_tm_pre_commit(pmd->tm);
859 	if (r < 0)
860 		return r;
861 
862 	r = save_sm_roots(pmd);
863 	if (r < 0)
864 		return r;
865 
866 	r = superblock_lock(pmd, &sblock);
867 	if (r)
868 		return r;
869 
870 	disk_super = dm_block_data(sblock);
871 	disk_super->time = cpu_to_le32(pmd->time);
872 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
873 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
874 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
875 	disk_super->flags = cpu_to_le32(pmd->flags);
876 
877 	copy_sm_roots(pmd, disk_super);
878 
879 	return dm_tm_commit(pmd->tm, sblock);
880 }
881 
882 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
883 {
884 	int r;
885 	dm_block_t total;
886 	dm_block_t max_blocks = 4096; /* 16M */
887 
888 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
889 	if (r) {
890 		DMERR("could not get size of metadata device");
891 		pmd->metadata_reserve = max_blocks;
892 	} else
893 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
894 }
895 
896 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
897 					       sector_t data_block_size,
898 					       bool format_device)
899 {
900 	int r;
901 	struct dm_pool_metadata *pmd;
902 
903 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
904 	if (!pmd) {
905 		DMERR("could not allocate metadata struct");
906 		return ERR_PTR(-ENOMEM);
907 	}
908 
909 	init_rwsem(&pmd->root_lock);
910 	pmd->time = 0;
911 	INIT_LIST_HEAD(&pmd->thin_devices);
912 	pmd->fail_io = false;
913 	pmd->in_service = false;
914 	pmd->bdev = bdev;
915 	pmd->data_block_size = data_block_size;
916 	pmd->pre_commit_fn = NULL;
917 	pmd->pre_commit_context = NULL;
918 
919 	r = __create_persistent_data_objects(pmd, format_device);
920 	if (r) {
921 		kfree(pmd);
922 		return ERR_PTR(r);
923 	}
924 
925 	r = __begin_transaction(pmd);
926 	if (r < 0) {
927 		if (dm_pool_metadata_close(pmd) < 0)
928 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
929 		return ERR_PTR(r);
930 	}
931 
932 	__set_metadata_reserve(pmd);
933 
934 	return pmd;
935 }
936 
937 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
938 {
939 	int r;
940 	unsigned open_devices = 0;
941 	struct dm_thin_device *td, *tmp;
942 
943 	down_read(&pmd->root_lock);
944 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
945 		if (td->open_count)
946 			open_devices++;
947 		else {
948 			list_del(&td->list);
949 			kfree(td);
950 		}
951 	}
952 	up_read(&pmd->root_lock);
953 
954 	if (open_devices) {
955 		DMERR("attempt to close pmd when %u device(s) are still open",
956 		       open_devices);
957 		return -EBUSY;
958 	}
959 
960 	pmd_write_lock_in_core(pmd);
961 	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
962 		r = __commit_transaction(pmd);
963 		if (r < 0)
964 			DMWARN("%s: __commit_transaction() failed, error = %d",
965 			       __func__, r);
966 	}
967 	pmd_write_unlock(pmd);
968 	if (!pmd->fail_io)
969 		__destroy_persistent_data_objects(pmd);
970 
971 	kfree(pmd);
972 	return 0;
973 }
974 
975 /*
976  * __open_device: Returns @td corresponding to device with id @dev,
977  * creating it if @create is set and incrementing @td->open_count.
978  * On failure, @td is undefined.
979  */
980 static int __open_device(struct dm_pool_metadata *pmd,
981 			 dm_thin_id dev, int create,
982 			 struct dm_thin_device **td)
983 {
984 	int r, changed = 0;
985 	struct dm_thin_device *td2;
986 	uint64_t key = dev;
987 	struct disk_device_details details_le;
988 
989 	/*
990 	 * If the device is already open, return it.
991 	 */
992 	list_for_each_entry(td2, &pmd->thin_devices, list)
993 		if (td2->id == dev) {
994 			/*
995 			 * May not create an already-open device.
996 			 */
997 			if (create)
998 				return -EEXIST;
999 
1000 			td2->open_count++;
1001 			*td = td2;
1002 			return 0;
1003 		}
1004 
1005 	/*
1006 	 * Check the device exists.
1007 	 */
1008 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1009 			    &key, &details_le);
1010 	if (r) {
1011 		if (r != -ENODATA || !create)
1012 			return r;
1013 
1014 		/*
1015 		 * Create new device.
1016 		 */
1017 		changed = 1;
1018 		details_le.mapped_blocks = 0;
1019 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1020 		details_le.creation_time = cpu_to_le32(pmd->time);
1021 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1022 	}
1023 
1024 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1025 	if (!*td)
1026 		return -ENOMEM;
1027 
1028 	(*td)->pmd = pmd;
1029 	(*td)->id = dev;
1030 	(*td)->open_count = 1;
1031 	(*td)->changed = changed;
1032 	(*td)->aborted_with_changes = false;
1033 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1034 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1035 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1036 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1037 
1038 	list_add(&(*td)->list, &pmd->thin_devices);
1039 
1040 	return 0;
1041 }
1042 
1043 static void __close_device(struct dm_thin_device *td)
1044 {
1045 	--td->open_count;
1046 }
1047 
1048 static int __create_thin(struct dm_pool_metadata *pmd,
1049 			 dm_thin_id dev)
1050 {
1051 	int r;
1052 	dm_block_t dev_root;
1053 	uint64_t key = dev;
1054 	struct dm_thin_device *td;
1055 	__le64 value;
1056 
1057 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1058 			    &key, NULL);
1059 	if (!r)
1060 		return -EEXIST;
1061 
1062 	/*
1063 	 * Create an empty btree for the mappings.
1064 	 */
1065 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1066 	if (r)
1067 		return r;
1068 
1069 	/*
1070 	 * Insert it into the main mapping tree.
1071 	 */
1072 	value = cpu_to_le64(dev_root);
1073 	__dm_bless_for_disk(&value);
1074 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1075 	if (r) {
1076 		dm_btree_del(&pmd->bl_info, dev_root);
1077 		return r;
1078 	}
1079 
1080 	r = __open_device(pmd, dev, 1, &td);
1081 	if (r) {
1082 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1083 		dm_btree_del(&pmd->bl_info, dev_root);
1084 		return r;
1085 	}
1086 	__close_device(td);
1087 
1088 	return r;
1089 }
1090 
1091 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1092 {
1093 	int r = -EINVAL;
1094 
1095 	pmd_write_lock(pmd);
1096 	if (!pmd->fail_io)
1097 		r = __create_thin(pmd, dev);
1098 	pmd_write_unlock(pmd);
1099 
1100 	return r;
1101 }
1102 
1103 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1104 				  struct dm_thin_device *snap,
1105 				  dm_thin_id origin, uint32_t time)
1106 {
1107 	int r;
1108 	struct dm_thin_device *td;
1109 
1110 	r = __open_device(pmd, origin, 0, &td);
1111 	if (r)
1112 		return r;
1113 
1114 	td->changed = true;
1115 	td->snapshotted_time = time;
1116 
1117 	snap->mapped_blocks = td->mapped_blocks;
1118 	snap->snapshotted_time = time;
1119 	__close_device(td);
1120 
1121 	return 0;
1122 }
1123 
1124 static int __create_snap(struct dm_pool_metadata *pmd,
1125 			 dm_thin_id dev, dm_thin_id origin)
1126 {
1127 	int r;
1128 	dm_block_t origin_root;
1129 	uint64_t key = origin, dev_key = dev;
1130 	struct dm_thin_device *td;
1131 	__le64 value;
1132 
1133 	/* check this device is unused */
1134 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1135 			    &dev_key, NULL);
1136 	if (!r)
1137 		return -EEXIST;
1138 
1139 	/* find the mapping tree for the origin */
1140 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1141 	if (r)
1142 		return r;
1143 	origin_root = le64_to_cpu(value);
1144 
1145 	/* clone the origin, an inc will do */
1146 	dm_tm_inc(pmd->tm, origin_root);
1147 
1148 	/* insert into the main mapping tree */
1149 	value = cpu_to_le64(origin_root);
1150 	__dm_bless_for_disk(&value);
1151 	key = dev;
1152 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1153 	if (r) {
1154 		dm_tm_dec(pmd->tm, origin_root);
1155 		return r;
1156 	}
1157 
1158 	pmd->time++;
1159 
1160 	r = __open_device(pmd, dev, 1, &td);
1161 	if (r)
1162 		goto bad;
1163 
1164 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1165 	__close_device(td);
1166 
1167 	if (r)
1168 		goto bad;
1169 
1170 	return 0;
1171 
1172 bad:
1173 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1174 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1175 			&key, &pmd->details_root);
1176 	return r;
1177 }
1178 
1179 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1180 				 dm_thin_id dev,
1181 				 dm_thin_id origin)
1182 {
1183 	int r = -EINVAL;
1184 
1185 	pmd_write_lock(pmd);
1186 	if (!pmd->fail_io)
1187 		r = __create_snap(pmd, dev, origin);
1188 	pmd_write_unlock(pmd);
1189 
1190 	return r;
1191 }
1192 
1193 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1194 {
1195 	int r;
1196 	uint64_t key = dev;
1197 	struct dm_thin_device *td;
1198 
1199 	/* TODO: failure should mark the transaction invalid */
1200 	r = __open_device(pmd, dev, 0, &td);
1201 	if (r)
1202 		return r;
1203 
1204 	if (td->open_count > 1) {
1205 		__close_device(td);
1206 		return -EBUSY;
1207 	}
1208 
1209 	list_del(&td->list);
1210 	kfree(td);
1211 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1212 			    &key, &pmd->details_root);
1213 	if (r)
1214 		return r;
1215 
1216 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1217 	if (r)
1218 		return r;
1219 
1220 	return 0;
1221 }
1222 
1223 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1224 			       dm_thin_id dev)
1225 {
1226 	int r = -EINVAL;
1227 
1228 	pmd_write_lock(pmd);
1229 	if (!pmd->fail_io)
1230 		r = __delete_device(pmd, dev);
1231 	pmd_write_unlock(pmd);
1232 
1233 	return r;
1234 }
1235 
1236 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1237 					uint64_t current_id,
1238 					uint64_t new_id)
1239 {
1240 	int r = -EINVAL;
1241 
1242 	pmd_write_lock(pmd);
1243 
1244 	if (pmd->fail_io)
1245 		goto out;
1246 
1247 	if (pmd->trans_id != current_id) {
1248 		DMERR("mismatched transaction id");
1249 		goto out;
1250 	}
1251 
1252 	pmd->trans_id = new_id;
1253 	r = 0;
1254 
1255 out:
1256 	pmd_write_unlock(pmd);
1257 
1258 	return r;
1259 }
1260 
1261 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1262 					uint64_t *result)
1263 {
1264 	int r = -EINVAL;
1265 
1266 	down_read(&pmd->root_lock);
1267 	if (!pmd->fail_io) {
1268 		*result = pmd->trans_id;
1269 		r = 0;
1270 	}
1271 	up_read(&pmd->root_lock);
1272 
1273 	return r;
1274 }
1275 
1276 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1277 {
1278 	int r, inc;
1279 	struct thin_disk_superblock *disk_super;
1280 	struct dm_block *copy, *sblock;
1281 	dm_block_t held_root;
1282 
1283 	/*
1284 	 * We commit to ensure the btree roots which we increment in a
1285 	 * moment are up to date.
1286 	 */
1287 	r = __commit_transaction(pmd);
1288 	if (r < 0) {
1289 		DMWARN("%s: __commit_transaction() failed, error = %d",
1290 		       __func__, r);
1291 		return r;
1292 	}
1293 
1294 	/*
1295 	 * Copy the superblock.
1296 	 */
1297 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1298 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1299 			       &sb_validator, &copy, &inc);
1300 	if (r)
1301 		return r;
1302 
1303 	BUG_ON(!inc);
1304 
1305 	held_root = dm_block_location(copy);
1306 	disk_super = dm_block_data(copy);
1307 
1308 	if (le64_to_cpu(disk_super->held_root)) {
1309 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1310 
1311 		dm_tm_dec(pmd->tm, held_root);
1312 		dm_tm_unlock(pmd->tm, copy);
1313 		return -EBUSY;
1314 	}
1315 
1316 	/*
1317 	 * Wipe the spacemap since we're not publishing this.
1318 	 */
1319 	memset(&disk_super->data_space_map_root, 0,
1320 	       sizeof(disk_super->data_space_map_root));
1321 	memset(&disk_super->metadata_space_map_root, 0,
1322 	       sizeof(disk_super->metadata_space_map_root));
1323 
1324 	/*
1325 	 * Increment the data structures that need to be preserved.
1326 	 */
1327 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1328 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1329 	dm_tm_unlock(pmd->tm, copy);
1330 
1331 	/*
1332 	 * Write the held root into the superblock.
1333 	 */
1334 	r = superblock_lock(pmd, &sblock);
1335 	if (r) {
1336 		dm_tm_dec(pmd->tm, held_root);
1337 		return r;
1338 	}
1339 
1340 	disk_super = dm_block_data(sblock);
1341 	disk_super->held_root = cpu_to_le64(held_root);
1342 	dm_bm_unlock(sblock);
1343 	return 0;
1344 }
1345 
1346 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1347 {
1348 	int r = -EINVAL;
1349 
1350 	pmd_write_lock(pmd);
1351 	if (!pmd->fail_io)
1352 		r = __reserve_metadata_snap(pmd);
1353 	pmd_write_unlock(pmd);
1354 
1355 	return r;
1356 }
1357 
1358 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1359 {
1360 	int r;
1361 	struct thin_disk_superblock *disk_super;
1362 	struct dm_block *sblock, *copy;
1363 	dm_block_t held_root;
1364 
1365 	r = superblock_lock(pmd, &sblock);
1366 	if (r)
1367 		return r;
1368 
1369 	disk_super = dm_block_data(sblock);
1370 	held_root = le64_to_cpu(disk_super->held_root);
1371 	disk_super->held_root = cpu_to_le64(0);
1372 
1373 	dm_bm_unlock(sblock);
1374 
1375 	if (!held_root) {
1376 		DMWARN("No pool metadata snapshot found: nothing to release.");
1377 		return -EINVAL;
1378 	}
1379 
1380 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1381 	if (r)
1382 		return r;
1383 
1384 	disk_super = dm_block_data(copy);
1385 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1386 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1387 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1388 
1389 	dm_tm_unlock(pmd->tm, copy);
1390 
1391 	return 0;
1392 }
1393 
1394 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1395 {
1396 	int r = -EINVAL;
1397 
1398 	pmd_write_lock(pmd);
1399 	if (!pmd->fail_io)
1400 		r = __release_metadata_snap(pmd);
1401 	pmd_write_unlock(pmd);
1402 
1403 	return r;
1404 }
1405 
1406 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1407 			       dm_block_t *result)
1408 {
1409 	int r;
1410 	struct thin_disk_superblock *disk_super;
1411 	struct dm_block *sblock;
1412 
1413 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1414 			    &sb_validator, &sblock);
1415 	if (r)
1416 		return r;
1417 
1418 	disk_super = dm_block_data(sblock);
1419 	*result = le64_to_cpu(disk_super->held_root);
1420 
1421 	dm_bm_unlock(sblock);
1422 
1423 	return 0;
1424 }
1425 
1426 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1427 			      dm_block_t *result)
1428 {
1429 	int r = -EINVAL;
1430 
1431 	down_read(&pmd->root_lock);
1432 	if (!pmd->fail_io)
1433 		r = __get_metadata_snap(pmd, result);
1434 	up_read(&pmd->root_lock);
1435 
1436 	return r;
1437 }
1438 
1439 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1440 			     struct dm_thin_device **td)
1441 {
1442 	int r = -EINVAL;
1443 
1444 	pmd_write_lock_in_core(pmd);
1445 	if (!pmd->fail_io)
1446 		r = __open_device(pmd, dev, 0, td);
1447 	pmd_write_unlock(pmd);
1448 
1449 	return r;
1450 }
1451 
1452 int dm_pool_close_thin_device(struct dm_thin_device *td)
1453 {
1454 	pmd_write_lock_in_core(td->pmd);
1455 	__close_device(td);
1456 	pmd_write_unlock(td->pmd);
1457 
1458 	return 0;
1459 }
1460 
1461 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1462 {
1463 	return td->id;
1464 }
1465 
1466 /*
1467  * Check whether @time (of block creation) is older than @td's last snapshot.
1468  * If so then the associated block is shared with the last snapshot device.
1469  * Any block on a device created *after* the device last got snapshotted is
1470  * necessarily not shared.
1471  */
1472 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1473 {
1474 	return td->snapshotted_time > time;
1475 }
1476 
1477 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1478 				 struct dm_thin_lookup_result *result)
1479 {
1480 	uint64_t block_time = 0;
1481 	dm_block_t exception_block;
1482 	uint32_t exception_time;
1483 
1484 	block_time = le64_to_cpu(value);
1485 	unpack_block_time(block_time, &exception_block, &exception_time);
1486 	result->block = exception_block;
1487 	result->shared = __snapshotted_since(td, exception_time);
1488 }
1489 
1490 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1491 			int can_issue_io, struct dm_thin_lookup_result *result)
1492 {
1493 	int r;
1494 	__le64 value;
1495 	struct dm_pool_metadata *pmd = td->pmd;
1496 	dm_block_t keys[2] = { td->id, block };
1497 	struct dm_btree_info *info;
1498 
1499 	if (can_issue_io) {
1500 		info = &pmd->info;
1501 	} else
1502 		info = &pmd->nb_info;
1503 
1504 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1505 	if (!r)
1506 		unpack_lookup_result(td, value, result);
1507 
1508 	return r;
1509 }
1510 
1511 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1512 		       int can_issue_io, struct dm_thin_lookup_result *result)
1513 {
1514 	int r;
1515 	struct dm_pool_metadata *pmd = td->pmd;
1516 
1517 	down_read(&pmd->root_lock);
1518 	if (pmd->fail_io) {
1519 		up_read(&pmd->root_lock);
1520 		return -EINVAL;
1521 	}
1522 
1523 	r = __find_block(td, block, can_issue_io, result);
1524 
1525 	up_read(&pmd->root_lock);
1526 	return r;
1527 }
1528 
1529 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1530 					  dm_block_t *vblock,
1531 					  struct dm_thin_lookup_result *result)
1532 {
1533 	int r;
1534 	__le64 value;
1535 	struct dm_pool_metadata *pmd = td->pmd;
1536 	dm_block_t keys[2] = { td->id, block };
1537 
1538 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1539 	if (!r)
1540 		unpack_lookup_result(td, value, result);
1541 
1542 	return r;
1543 }
1544 
1545 static int __find_mapped_range(struct dm_thin_device *td,
1546 			       dm_block_t begin, dm_block_t end,
1547 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1548 			       dm_block_t *pool_begin, bool *maybe_shared)
1549 {
1550 	int r;
1551 	dm_block_t pool_end;
1552 	struct dm_thin_lookup_result lookup;
1553 
1554 	if (end < begin)
1555 		return -ENODATA;
1556 
1557 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1558 	if (r)
1559 		return r;
1560 
1561 	if (begin >= end)
1562 		return -ENODATA;
1563 
1564 	*thin_begin = begin;
1565 	*pool_begin = lookup.block;
1566 	*maybe_shared = lookup.shared;
1567 
1568 	begin++;
1569 	pool_end = *pool_begin + 1;
1570 	while (begin != end) {
1571 		r = __find_block(td, begin, true, &lookup);
1572 		if (r) {
1573 			if (r == -ENODATA)
1574 				break;
1575 			else
1576 				return r;
1577 		}
1578 
1579 		if ((lookup.block != pool_end) ||
1580 		    (lookup.shared != *maybe_shared))
1581 			break;
1582 
1583 		pool_end++;
1584 		begin++;
1585 	}
1586 
1587 	*thin_end = begin;
1588 	return 0;
1589 }
1590 
1591 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1592 			      dm_block_t begin, dm_block_t end,
1593 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1594 			      dm_block_t *pool_begin, bool *maybe_shared)
1595 {
1596 	int r = -EINVAL;
1597 	struct dm_pool_metadata *pmd = td->pmd;
1598 
1599 	down_read(&pmd->root_lock);
1600 	if (!pmd->fail_io) {
1601 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1602 					pool_begin, maybe_shared);
1603 	}
1604 	up_read(&pmd->root_lock);
1605 
1606 	return r;
1607 }
1608 
1609 static int __insert(struct dm_thin_device *td, dm_block_t block,
1610 		    dm_block_t data_block)
1611 {
1612 	int r, inserted;
1613 	__le64 value;
1614 	struct dm_pool_metadata *pmd = td->pmd;
1615 	dm_block_t keys[2] = { td->id, block };
1616 
1617 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1618 	__dm_bless_for_disk(&value);
1619 
1620 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1621 				   &pmd->root, &inserted);
1622 	if (r)
1623 		return r;
1624 
1625 	td->changed = true;
1626 	if (inserted)
1627 		td->mapped_blocks++;
1628 
1629 	return 0;
1630 }
1631 
1632 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1633 			 dm_block_t data_block)
1634 {
1635 	int r = -EINVAL;
1636 
1637 	pmd_write_lock(td->pmd);
1638 	if (!td->pmd->fail_io)
1639 		r = __insert(td, block, data_block);
1640 	pmd_write_unlock(td->pmd);
1641 
1642 	return r;
1643 }
1644 
1645 static int __remove(struct dm_thin_device *td, dm_block_t block)
1646 {
1647 	int r;
1648 	struct dm_pool_metadata *pmd = td->pmd;
1649 	dm_block_t keys[2] = { td->id, block };
1650 
1651 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1652 	if (r)
1653 		return r;
1654 
1655 	td->mapped_blocks--;
1656 	td->changed = true;
1657 
1658 	return 0;
1659 }
1660 
1661 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1662 {
1663 	int r;
1664 	unsigned count, total_count = 0;
1665 	struct dm_pool_metadata *pmd = td->pmd;
1666 	dm_block_t keys[1] = { td->id };
1667 	__le64 value;
1668 	dm_block_t mapping_root;
1669 
1670 	/*
1671 	 * Find the mapping tree
1672 	 */
1673 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1674 	if (r)
1675 		return r;
1676 
1677 	/*
1678 	 * Remove from the mapping tree, taking care to inc the
1679 	 * ref count so it doesn't get deleted.
1680 	 */
1681 	mapping_root = le64_to_cpu(value);
1682 	dm_tm_inc(pmd->tm, mapping_root);
1683 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1684 	if (r)
1685 		return r;
1686 
1687 	/*
1688 	 * Remove leaves stops at the first unmapped entry, so we have to
1689 	 * loop round finding mapped ranges.
1690 	 */
1691 	while (begin < end) {
1692 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1693 		if (r == -ENODATA)
1694 			break;
1695 
1696 		if (r)
1697 			return r;
1698 
1699 		if (begin >= end)
1700 			break;
1701 
1702 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1703 		if (r)
1704 			return r;
1705 
1706 		total_count += count;
1707 	}
1708 
1709 	td->mapped_blocks -= total_count;
1710 	td->changed = true;
1711 
1712 	/*
1713 	 * Reinsert the mapping tree.
1714 	 */
1715 	value = cpu_to_le64(mapping_root);
1716 	__dm_bless_for_disk(&value);
1717 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1718 }
1719 
1720 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1721 {
1722 	int r = -EINVAL;
1723 
1724 	pmd_write_lock(td->pmd);
1725 	if (!td->pmd->fail_io)
1726 		r = __remove(td, block);
1727 	pmd_write_unlock(td->pmd);
1728 
1729 	return r;
1730 }
1731 
1732 int dm_thin_remove_range(struct dm_thin_device *td,
1733 			 dm_block_t begin, dm_block_t end)
1734 {
1735 	int r = -EINVAL;
1736 
1737 	pmd_write_lock(td->pmd);
1738 	if (!td->pmd->fail_io)
1739 		r = __remove_range(td, begin, end);
1740 	pmd_write_unlock(td->pmd);
1741 
1742 	return r;
1743 }
1744 
1745 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1746 {
1747 	int r;
1748 	uint32_t ref_count;
1749 
1750 	down_read(&pmd->root_lock);
1751 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1752 	if (!r)
1753 		*result = (ref_count > 1);
1754 	up_read(&pmd->root_lock);
1755 
1756 	return r;
1757 }
1758 
1759 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1760 {
1761 	int r = 0;
1762 
1763 	pmd_write_lock(pmd);
1764 	for (; b != e; b++) {
1765 		r = dm_sm_inc_block(pmd->data_sm, b);
1766 		if (r)
1767 			break;
1768 	}
1769 	pmd_write_unlock(pmd);
1770 
1771 	return r;
1772 }
1773 
1774 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1775 {
1776 	int r = 0;
1777 
1778 	pmd_write_lock(pmd);
1779 	for (; b != e; b++) {
1780 		r = dm_sm_dec_block(pmd->data_sm, b);
1781 		if (r)
1782 			break;
1783 	}
1784 	pmd_write_unlock(pmd);
1785 
1786 	return r;
1787 }
1788 
1789 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1790 {
1791 	int r;
1792 
1793 	down_read(&td->pmd->root_lock);
1794 	r = td->changed;
1795 	up_read(&td->pmd->root_lock);
1796 
1797 	return r;
1798 }
1799 
1800 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1801 {
1802 	bool r = false;
1803 	struct dm_thin_device *td, *tmp;
1804 
1805 	down_read(&pmd->root_lock);
1806 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1807 		if (td->changed) {
1808 			r = td->changed;
1809 			break;
1810 		}
1811 	}
1812 	up_read(&pmd->root_lock);
1813 
1814 	return r;
1815 }
1816 
1817 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1818 {
1819 	bool r;
1820 
1821 	down_read(&td->pmd->root_lock);
1822 	r = td->aborted_with_changes;
1823 	up_read(&td->pmd->root_lock);
1824 
1825 	return r;
1826 }
1827 
1828 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1829 {
1830 	int r = -EINVAL;
1831 
1832 	pmd_write_lock(pmd);
1833 	if (!pmd->fail_io)
1834 		r = dm_sm_new_block(pmd->data_sm, result);
1835 	pmd_write_unlock(pmd);
1836 
1837 	return r;
1838 }
1839 
1840 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1841 {
1842 	int r = -EINVAL;
1843 
1844 	/*
1845 	 * Care is taken to not have commit be what
1846 	 * triggers putting the thin-pool in-service.
1847 	 */
1848 	pmd_write_lock_in_core(pmd);
1849 	if (pmd->fail_io)
1850 		goto out;
1851 
1852 	r = __commit_transaction(pmd);
1853 	if (r < 0)
1854 		goto out;
1855 
1856 	/*
1857 	 * Open the next transaction.
1858 	 */
1859 	r = __begin_transaction(pmd);
1860 out:
1861 	pmd_write_unlock(pmd);
1862 	return r;
1863 }
1864 
1865 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1866 {
1867 	struct dm_thin_device *td;
1868 
1869 	list_for_each_entry(td, &pmd->thin_devices, list)
1870 		td->aborted_with_changes = td->changed;
1871 }
1872 
1873 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1874 {
1875 	int r = -EINVAL;
1876 
1877 	pmd_write_lock(pmd);
1878 	if (pmd->fail_io)
1879 		goto out;
1880 
1881 	__set_abort_with_changes_flags(pmd);
1882 	__destroy_persistent_data_objects(pmd);
1883 	r = __create_persistent_data_objects(pmd, false);
1884 	if (r)
1885 		pmd->fail_io = true;
1886 
1887 out:
1888 	pmd_write_unlock(pmd);
1889 
1890 	return r;
1891 }
1892 
1893 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1894 {
1895 	int r = -EINVAL;
1896 
1897 	down_read(&pmd->root_lock);
1898 	if (!pmd->fail_io)
1899 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1900 	up_read(&pmd->root_lock);
1901 
1902 	return r;
1903 }
1904 
1905 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1906 					  dm_block_t *result)
1907 {
1908 	int r = -EINVAL;
1909 
1910 	down_read(&pmd->root_lock);
1911 	if (!pmd->fail_io)
1912 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1913 
1914 	if (!r) {
1915 		if (*result < pmd->metadata_reserve)
1916 			*result = 0;
1917 		else
1918 			*result -= pmd->metadata_reserve;
1919 	}
1920 	up_read(&pmd->root_lock);
1921 
1922 	return r;
1923 }
1924 
1925 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1926 				  dm_block_t *result)
1927 {
1928 	int r = -EINVAL;
1929 
1930 	down_read(&pmd->root_lock);
1931 	if (!pmd->fail_io)
1932 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1933 	up_read(&pmd->root_lock);
1934 
1935 	return r;
1936 }
1937 
1938 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1939 {
1940 	int r = -EINVAL;
1941 
1942 	down_read(&pmd->root_lock);
1943 	if (!pmd->fail_io)
1944 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1945 	up_read(&pmd->root_lock);
1946 
1947 	return r;
1948 }
1949 
1950 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1951 {
1952 	int r = -EINVAL;
1953 	struct dm_pool_metadata *pmd = td->pmd;
1954 
1955 	down_read(&pmd->root_lock);
1956 	if (!pmd->fail_io) {
1957 		*result = td->mapped_blocks;
1958 		r = 0;
1959 	}
1960 	up_read(&pmd->root_lock);
1961 
1962 	return r;
1963 }
1964 
1965 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1966 {
1967 	int r;
1968 	__le64 value_le;
1969 	dm_block_t thin_root;
1970 	struct dm_pool_metadata *pmd = td->pmd;
1971 
1972 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1973 	if (r)
1974 		return r;
1975 
1976 	thin_root = le64_to_cpu(value_le);
1977 
1978 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1979 }
1980 
1981 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1982 				     dm_block_t *result)
1983 {
1984 	int r = -EINVAL;
1985 	struct dm_pool_metadata *pmd = td->pmd;
1986 
1987 	down_read(&pmd->root_lock);
1988 	if (!pmd->fail_io)
1989 		r = __highest_block(td, result);
1990 	up_read(&pmd->root_lock);
1991 
1992 	return r;
1993 }
1994 
1995 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1996 {
1997 	int r;
1998 	dm_block_t old_count;
1999 
2000 	r = dm_sm_get_nr_blocks(sm, &old_count);
2001 	if (r)
2002 		return r;
2003 
2004 	if (new_count == old_count)
2005 		return 0;
2006 
2007 	if (new_count < old_count) {
2008 		DMERR("cannot reduce size of space map");
2009 		return -EINVAL;
2010 	}
2011 
2012 	return dm_sm_extend(sm, new_count - old_count);
2013 }
2014 
2015 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2016 {
2017 	int r = -EINVAL;
2018 
2019 	pmd_write_lock(pmd);
2020 	if (!pmd->fail_io)
2021 		r = __resize_space_map(pmd->data_sm, new_count);
2022 	pmd_write_unlock(pmd);
2023 
2024 	return r;
2025 }
2026 
2027 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2028 {
2029 	int r = -EINVAL;
2030 
2031 	pmd_write_lock(pmd);
2032 	if (!pmd->fail_io) {
2033 		r = __resize_space_map(pmd->metadata_sm, new_count);
2034 		if (!r)
2035 			__set_metadata_reserve(pmd);
2036 	}
2037 	pmd_write_unlock(pmd);
2038 
2039 	return r;
2040 }
2041 
2042 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2043 {
2044 	pmd_write_lock_in_core(pmd);
2045 	dm_bm_set_read_only(pmd->bm);
2046 	pmd_write_unlock(pmd);
2047 }
2048 
2049 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2050 {
2051 	pmd_write_lock_in_core(pmd);
2052 	dm_bm_set_read_write(pmd->bm);
2053 	pmd_write_unlock(pmd);
2054 }
2055 
2056 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2057 					dm_block_t threshold,
2058 					dm_sm_threshold_fn fn,
2059 					void *context)
2060 {
2061 	int r;
2062 
2063 	pmd_write_lock_in_core(pmd);
2064 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2065 	pmd_write_unlock(pmd);
2066 
2067 	return r;
2068 }
2069 
2070 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2071 					  dm_pool_pre_commit_fn fn,
2072 					  void *context)
2073 {
2074 	pmd_write_lock_in_core(pmd);
2075 	pmd->pre_commit_fn = fn;
2076 	pmd->pre_commit_context = context;
2077 	pmd_write_unlock(pmd);
2078 }
2079 
2080 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2081 {
2082 	int r = -EINVAL;
2083 	struct dm_block *sblock;
2084 	struct thin_disk_superblock *disk_super;
2085 
2086 	pmd_write_lock(pmd);
2087 	if (pmd->fail_io)
2088 		goto out;
2089 
2090 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2091 
2092 	r = superblock_lock(pmd, &sblock);
2093 	if (r) {
2094 		DMERR("couldn't lock superblock");
2095 		goto out;
2096 	}
2097 
2098 	disk_super = dm_block_data(sblock);
2099 	disk_super->flags = cpu_to_le32(pmd->flags);
2100 
2101 	dm_bm_unlock(sblock);
2102 out:
2103 	pmd_write_unlock(pmd);
2104 	return r;
2105 }
2106 
2107 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2108 {
2109 	bool needs_check;
2110 
2111 	down_read(&pmd->root_lock);
2112 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2113 	up_read(&pmd->root_lock);
2114 
2115 	return needs_check;
2116 }
2117 
2118 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2119 {
2120 	down_read(&pmd->root_lock);
2121 	if (!pmd->fail_io)
2122 		dm_tm_issue_prefetches(pmd->tm);
2123 	up_read(&pmd->root_lock);
2124 }
2125