1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 40 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define SECTOR_TO_BLOCK_SHIFT 3 81 82 /* 83 * For btree insert: 84 * 3 for btree insert + 85 * 2 for btree lookup used within space map 86 * For btree remove: 87 * 2 for shadow spine + 88 * 4 for rebalance 3 child node 89 */ 90 #define THIN_MAX_CONCURRENT_LOCKS 6 91 92 /* This should be plenty */ 93 #define SPACE_MAP_ROOT_SIZE 128 94 95 /* 96 * Little endian on-disk superblock and device details. 97 */ 98 struct thin_disk_superblock { 99 __le32 csum; /* Checksum of superblock except for this field. */ 100 __le32 flags; 101 __le64 blocknr; /* This block number, dm_block_t. */ 102 103 __u8 uuid[16]; 104 __le64 magic; 105 __le32 version; 106 __le32 time; 107 108 __le64 trans_id; 109 110 /* 111 * Root held by userspace transactions. 112 */ 113 __le64 held_root; 114 115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 117 118 /* 119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 120 */ 121 __le64 data_mapping_root; 122 123 /* 124 * Device detail root mapping dev_id -> device_details 125 */ 126 __le64 device_details_root; 127 128 __le32 data_block_size; /* In 512-byte sectors. */ 129 130 __le32 metadata_block_size; /* In 512-byte sectors. */ 131 __le64 metadata_nr_blocks; 132 133 __le32 compat_flags; 134 __le32 compat_ro_flags; 135 __le32 incompat_flags; 136 } __packed; 137 138 struct disk_device_details { 139 __le64 mapped_blocks; 140 __le64 transaction_id; /* When created. */ 141 __le32 creation_time; 142 __le32 snapshotted_time; 143 } __packed; 144 145 struct dm_pool_metadata { 146 struct hlist_node hash; 147 148 struct block_device *bdev; 149 struct dm_block_manager *bm; 150 struct dm_space_map *metadata_sm; 151 struct dm_space_map *data_sm; 152 struct dm_transaction_manager *tm; 153 struct dm_transaction_manager *nb_tm; 154 155 /* 156 * Two-level btree. 157 * First level holds thin_dev_t. 158 * Second level holds mappings. 159 */ 160 struct dm_btree_info info; 161 162 /* 163 * Non-blocking version of the above. 164 */ 165 struct dm_btree_info nb_info; 166 167 /* 168 * Just the top level for deleting whole devices. 169 */ 170 struct dm_btree_info tl_info; 171 172 /* 173 * Just the bottom level for creating new devices. 174 */ 175 struct dm_btree_info bl_info; 176 177 /* 178 * Describes the device details btree. 179 */ 180 struct dm_btree_info details_info; 181 182 struct rw_semaphore root_lock; 183 uint32_t time; 184 dm_block_t root; 185 dm_block_t details_root; 186 struct list_head thin_devices; 187 uint64_t trans_id; 188 unsigned long flags; 189 sector_t data_block_size; 190 191 /* 192 * Pre-commit callback. 193 * 194 * This allows the thin provisioning target to run a callback before 195 * the metadata are committed. 196 */ 197 dm_pool_pre_commit_fn pre_commit_fn; 198 void *pre_commit_context; 199 200 /* 201 * We reserve a section of the metadata for commit overhead. 202 * All reported space does *not* include this. 203 */ 204 dm_block_t metadata_reserve; 205 206 /* 207 * Set if a transaction has to be aborted but the attempt to roll back 208 * to the previous (good) transaction failed. The only pool metadata 209 * operation possible in this state is the closing of the device. 210 */ 211 bool fail_io:1; 212 213 /* 214 * Set once a thin-pool has been accessed through one of the interfaces 215 * that imply the pool is in-service (e.g. thin devices created/deleted, 216 * thin-pool message, metadata snapshots, etc). 217 */ 218 bool in_service:1; 219 220 /* 221 * Reading the space map roots can fail, so we read it into these 222 * buffers before the superblock is locked and updated. 223 */ 224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 226 }; 227 228 struct dm_thin_device { 229 struct list_head list; 230 struct dm_pool_metadata *pmd; 231 dm_thin_id id; 232 233 int open_count; 234 bool changed:1; 235 bool aborted_with_changes:1; 236 uint64_t mapped_blocks; 237 uint64_t transaction_id; 238 uint32_t creation_time; 239 uint32_t snapshotted_time; 240 }; 241 242 /*---------------------------------------------------------------- 243 * superblock validator 244 *--------------------------------------------------------------*/ 245 246 #define SUPERBLOCK_CSUM_XOR 160774 247 248 static void sb_prepare_for_write(struct dm_block_validator *v, 249 struct dm_block *b, 250 size_t block_size) 251 { 252 struct thin_disk_superblock *disk_super = dm_block_data(b); 253 254 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 256 block_size - sizeof(__le32), 257 SUPERBLOCK_CSUM_XOR)); 258 } 259 260 static int sb_check(struct dm_block_validator *v, 261 struct dm_block *b, 262 size_t block_size) 263 { 264 struct thin_disk_superblock *disk_super = dm_block_data(b); 265 __le32 csum_le; 266 267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 268 DMERR("sb_check failed: blocknr %llu: " 269 "wanted %llu", le64_to_cpu(disk_super->blocknr), 270 (unsigned long long)dm_block_location(b)); 271 return -ENOTBLK; 272 } 273 274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 275 DMERR("sb_check failed: magic %llu: " 276 "wanted %llu", le64_to_cpu(disk_super->magic), 277 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 278 return -EILSEQ; 279 } 280 281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 282 block_size - sizeof(__le32), 283 SUPERBLOCK_CSUM_XOR)); 284 if (csum_le != disk_super->csum) { 285 DMERR("sb_check failed: csum %u: wanted %u", 286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 287 return -EILSEQ; 288 } 289 290 return 0; 291 } 292 293 static struct dm_block_validator sb_validator = { 294 .name = "superblock", 295 .prepare_for_write = sb_prepare_for_write, 296 .check = sb_check 297 }; 298 299 /*---------------------------------------------------------------- 300 * Methods for the btree value types 301 *--------------------------------------------------------------*/ 302 303 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 304 { 305 return (b << 24) | t; 306 } 307 308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 309 { 310 *b = v >> 24; 311 *t = v & ((1 << 24) - 1); 312 } 313 314 /* 315 * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as 316 * possible. 'with_runs' reads contiguous runs of blocks, and calls the 317 * given sm function. 318 */ 319 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t); 320 321 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn) 322 { 323 uint64_t b, begin, end; 324 uint32_t t; 325 bool in_run = false; 326 unsigned i; 327 328 for (i = 0; i < count; i++, value_le++) { 329 /* We know value_le is 8 byte aligned */ 330 unpack_block_time(le64_to_cpu(*value_le), &b, &t); 331 332 if (in_run) { 333 if (b == end) { 334 end++; 335 } else { 336 fn(sm, begin, end); 337 begin = b; 338 end = b + 1; 339 } 340 } else { 341 in_run = true; 342 begin = b; 343 end = b + 1; 344 } 345 } 346 347 if (in_run) 348 fn(sm, begin, end); 349 } 350 351 static void data_block_inc(void *context, const void *value_le, unsigned count) 352 { 353 with_runs((struct dm_space_map *) context, 354 (const __le64 *) value_le, count, dm_sm_inc_blocks); 355 } 356 357 static void data_block_dec(void *context, const void *value_le, unsigned count) 358 { 359 with_runs((struct dm_space_map *) context, 360 (const __le64 *) value_le, count, dm_sm_dec_blocks); 361 } 362 363 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 364 { 365 __le64 v1_le, v2_le; 366 uint64_t b1, b2; 367 uint32_t t; 368 369 memcpy(&v1_le, value1_le, sizeof(v1_le)); 370 memcpy(&v2_le, value2_le, sizeof(v2_le)); 371 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 372 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 373 374 return b1 == b2; 375 } 376 377 static void subtree_inc(void *context, const void *value, unsigned count) 378 { 379 struct dm_btree_info *info = context; 380 const __le64 *root_le = value; 381 unsigned i; 382 383 for (i = 0; i < count; i++, root_le++) 384 dm_tm_inc(info->tm, le64_to_cpu(*root_le)); 385 } 386 387 static void subtree_dec(void *context, const void *value, unsigned count) 388 { 389 struct dm_btree_info *info = context; 390 const __le64 *root_le = value; 391 unsigned i; 392 393 for (i = 0; i < count; i++, root_le++) 394 if (dm_btree_del(info, le64_to_cpu(*root_le))) 395 DMERR("btree delete failed"); 396 } 397 398 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 399 { 400 __le64 v1_le, v2_le; 401 memcpy(&v1_le, value1_le, sizeof(v1_le)); 402 memcpy(&v2_le, value2_le, sizeof(v2_le)); 403 404 return v1_le == v2_le; 405 } 406 407 /*----------------------------------------------------------------*/ 408 409 /* 410 * Variant that is used for in-core only changes or code that 411 * shouldn't put the pool in service on its own (e.g. commit). 412 */ 413 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd) 414 __acquires(pmd->root_lock) 415 { 416 down_write(&pmd->root_lock); 417 } 418 419 static inline void pmd_write_lock(struct dm_pool_metadata *pmd) 420 { 421 pmd_write_lock_in_core(pmd); 422 if (unlikely(!pmd->in_service)) 423 pmd->in_service = true; 424 } 425 426 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd) 427 __releases(pmd->root_lock) 428 { 429 up_write(&pmd->root_lock); 430 } 431 432 /*----------------------------------------------------------------*/ 433 434 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 435 struct dm_block **sblock) 436 { 437 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 438 &sb_validator, sblock); 439 } 440 441 static int superblock_lock(struct dm_pool_metadata *pmd, 442 struct dm_block **sblock) 443 { 444 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 445 &sb_validator, sblock); 446 } 447 448 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 449 { 450 int r; 451 unsigned i; 452 struct dm_block *b; 453 __le64 *data_le, zero = cpu_to_le64(0); 454 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 455 456 /* 457 * We can't use a validator here - it may be all zeroes. 458 */ 459 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 460 if (r) 461 return r; 462 463 data_le = dm_block_data(b); 464 *result = 1; 465 for (i = 0; i < block_size; i++) { 466 if (data_le[i] != zero) { 467 *result = 0; 468 break; 469 } 470 } 471 472 dm_bm_unlock(b); 473 474 return 0; 475 } 476 477 static void __setup_btree_details(struct dm_pool_metadata *pmd) 478 { 479 pmd->info.tm = pmd->tm; 480 pmd->info.levels = 2; 481 pmd->info.value_type.context = pmd->data_sm; 482 pmd->info.value_type.size = sizeof(__le64); 483 pmd->info.value_type.inc = data_block_inc; 484 pmd->info.value_type.dec = data_block_dec; 485 pmd->info.value_type.equal = data_block_equal; 486 487 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 488 pmd->nb_info.tm = pmd->nb_tm; 489 490 pmd->tl_info.tm = pmd->tm; 491 pmd->tl_info.levels = 1; 492 pmd->tl_info.value_type.context = &pmd->bl_info; 493 pmd->tl_info.value_type.size = sizeof(__le64); 494 pmd->tl_info.value_type.inc = subtree_inc; 495 pmd->tl_info.value_type.dec = subtree_dec; 496 pmd->tl_info.value_type.equal = subtree_equal; 497 498 pmd->bl_info.tm = pmd->tm; 499 pmd->bl_info.levels = 1; 500 pmd->bl_info.value_type.context = pmd->data_sm; 501 pmd->bl_info.value_type.size = sizeof(__le64); 502 pmd->bl_info.value_type.inc = data_block_inc; 503 pmd->bl_info.value_type.dec = data_block_dec; 504 pmd->bl_info.value_type.equal = data_block_equal; 505 506 pmd->details_info.tm = pmd->tm; 507 pmd->details_info.levels = 1; 508 pmd->details_info.value_type.context = NULL; 509 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 510 pmd->details_info.value_type.inc = NULL; 511 pmd->details_info.value_type.dec = NULL; 512 pmd->details_info.value_type.equal = NULL; 513 } 514 515 static int save_sm_roots(struct dm_pool_metadata *pmd) 516 { 517 int r; 518 size_t len; 519 520 r = dm_sm_root_size(pmd->metadata_sm, &len); 521 if (r < 0) 522 return r; 523 524 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 525 if (r < 0) 526 return r; 527 528 r = dm_sm_root_size(pmd->data_sm, &len); 529 if (r < 0) 530 return r; 531 532 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 533 } 534 535 static void copy_sm_roots(struct dm_pool_metadata *pmd, 536 struct thin_disk_superblock *disk) 537 { 538 memcpy(&disk->metadata_space_map_root, 539 &pmd->metadata_space_map_root, 540 sizeof(pmd->metadata_space_map_root)); 541 542 memcpy(&disk->data_space_map_root, 543 &pmd->data_space_map_root, 544 sizeof(pmd->data_space_map_root)); 545 } 546 547 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 548 { 549 int r; 550 struct dm_block *sblock; 551 struct thin_disk_superblock *disk_super; 552 sector_t bdev_size = bdev_nr_sectors(pmd->bdev); 553 554 if (bdev_size > THIN_METADATA_MAX_SECTORS) 555 bdev_size = THIN_METADATA_MAX_SECTORS; 556 557 r = dm_sm_commit(pmd->data_sm); 558 if (r < 0) 559 return r; 560 561 r = dm_tm_pre_commit(pmd->tm); 562 if (r < 0) 563 return r; 564 565 r = save_sm_roots(pmd); 566 if (r < 0) 567 return r; 568 569 r = superblock_lock_zero(pmd, &sblock); 570 if (r) 571 return r; 572 573 disk_super = dm_block_data(sblock); 574 disk_super->flags = 0; 575 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 576 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 577 disk_super->version = cpu_to_le32(THIN_VERSION); 578 disk_super->time = 0; 579 disk_super->trans_id = 0; 580 disk_super->held_root = 0; 581 582 copy_sm_roots(pmd, disk_super); 583 584 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 585 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 586 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 587 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 588 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 589 590 return dm_tm_commit(pmd->tm, sblock); 591 } 592 593 static int __format_metadata(struct dm_pool_metadata *pmd) 594 { 595 int r; 596 597 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 598 &pmd->tm, &pmd->metadata_sm); 599 if (r < 0) { 600 DMERR("tm_create_with_sm failed"); 601 return r; 602 } 603 604 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 605 if (IS_ERR(pmd->data_sm)) { 606 DMERR("sm_disk_create failed"); 607 r = PTR_ERR(pmd->data_sm); 608 goto bad_cleanup_tm; 609 } 610 611 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 612 if (!pmd->nb_tm) { 613 DMERR("could not create non-blocking clone tm"); 614 r = -ENOMEM; 615 goto bad_cleanup_data_sm; 616 } 617 618 __setup_btree_details(pmd); 619 620 r = dm_btree_empty(&pmd->info, &pmd->root); 621 if (r < 0) 622 goto bad_cleanup_nb_tm; 623 624 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 625 if (r < 0) { 626 DMERR("couldn't create devices root"); 627 goto bad_cleanup_nb_tm; 628 } 629 630 r = __write_initial_superblock(pmd); 631 if (r) 632 goto bad_cleanup_nb_tm; 633 634 return 0; 635 636 bad_cleanup_nb_tm: 637 dm_tm_destroy(pmd->nb_tm); 638 bad_cleanup_data_sm: 639 dm_sm_destroy(pmd->data_sm); 640 bad_cleanup_tm: 641 dm_tm_destroy(pmd->tm); 642 dm_sm_destroy(pmd->metadata_sm); 643 644 return r; 645 } 646 647 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 648 struct dm_pool_metadata *pmd) 649 { 650 uint32_t features; 651 652 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 653 if (features) { 654 DMERR("could not access metadata due to unsupported optional features (%lx).", 655 (unsigned long)features); 656 return -EINVAL; 657 } 658 659 /* 660 * Check for read-only metadata to skip the following RDWR checks. 661 */ 662 if (bdev_read_only(pmd->bdev)) 663 return 0; 664 665 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 666 if (features) { 667 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 668 (unsigned long)features); 669 return -EINVAL; 670 } 671 672 return 0; 673 } 674 675 static int __open_metadata(struct dm_pool_metadata *pmd) 676 { 677 int r; 678 struct dm_block *sblock; 679 struct thin_disk_superblock *disk_super; 680 681 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 682 &sb_validator, &sblock); 683 if (r < 0) { 684 DMERR("couldn't read superblock"); 685 return r; 686 } 687 688 disk_super = dm_block_data(sblock); 689 690 /* Verify the data block size hasn't changed */ 691 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { 692 DMERR("changing the data block size (from %u to %llu) is not supported", 693 le32_to_cpu(disk_super->data_block_size), 694 (unsigned long long)pmd->data_block_size); 695 r = -EINVAL; 696 goto bad_unlock_sblock; 697 } 698 699 r = __check_incompat_features(disk_super, pmd); 700 if (r < 0) 701 goto bad_unlock_sblock; 702 703 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 704 disk_super->metadata_space_map_root, 705 sizeof(disk_super->metadata_space_map_root), 706 &pmd->tm, &pmd->metadata_sm); 707 if (r < 0) { 708 DMERR("tm_open_with_sm failed"); 709 goto bad_unlock_sblock; 710 } 711 712 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 713 sizeof(disk_super->data_space_map_root)); 714 if (IS_ERR(pmd->data_sm)) { 715 DMERR("sm_disk_open failed"); 716 r = PTR_ERR(pmd->data_sm); 717 goto bad_cleanup_tm; 718 } 719 720 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 721 if (!pmd->nb_tm) { 722 DMERR("could not create non-blocking clone tm"); 723 r = -ENOMEM; 724 goto bad_cleanup_data_sm; 725 } 726 727 __setup_btree_details(pmd); 728 dm_bm_unlock(sblock); 729 730 return 0; 731 732 bad_cleanup_data_sm: 733 dm_sm_destroy(pmd->data_sm); 734 bad_cleanup_tm: 735 dm_tm_destroy(pmd->tm); 736 dm_sm_destroy(pmd->metadata_sm); 737 bad_unlock_sblock: 738 dm_bm_unlock(sblock); 739 740 return r; 741 } 742 743 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 744 { 745 int r, unformatted; 746 747 r = __superblock_all_zeroes(pmd->bm, &unformatted); 748 if (r) 749 return r; 750 751 if (unformatted) 752 return format_device ? __format_metadata(pmd) : -EPERM; 753 754 return __open_metadata(pmd); 755 } 756 757 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 758 { 759 int r; 760 761 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 762 THIN_MAX_CONCURRENT_LOCKS); 763 if (IS_ERR(pmd->bm)) { 764 DMERR("could not create block manager"); 765 r = PTR_ERR(pmd->bm); 766 pmd->bm = NULL; 767 return r; 768 } 769 770 r = __open_or_format_metadata(pmd, format_device); 771 if (r) { 772 dm_block_manager_destroy(pmd->bm); 773 pmd->bm = NULL; 774 } 775 776 return r; 777 } 778 779 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) 780 { 781 dm_sm_destroy(pmd->data_sm); 782 dm_sm_destroy(pmd->metadata_sm); 783 dm_tm_destroy(pmd->nb_tm); 784 dm_tm_destroy(pmd->tm); 785 dm_block_manager_destroy(pmd->bm); 786 } 787 788 static int __begin_transaction(struct dm_pool_metadata *pmd) 789 { 790 int r; 791 struct thin_disk_superblock *disk_super; 792 struct dm_block *sblock; 793 794 /* 795 * We re-read the superblock every time. Shouldn't need to do this 796 * really. 797 */ 798 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 799 &sb_validator, &sblock); 800 if (r) 801 return r; 802 803 disk_super = dm_block_data(sblock); 804 pmd->time = le32_to_cpu(disk_super->time); 805 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 806 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 807 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 808 pmd->flags = le32_to_cpu(disk_super->flags); 809 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 810 811 dm_bm_unlock(sblock); 812 return 0; 813 } 814 815 static int __write_changed_details(struct dm_pool_metadata *pmd) 816 { 817 int r; 818 struct dm_thin_device *td, *tmp; 819 struct disk_device_details details; 820 uint64_t key; 821 822 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 823 if (!td->changed) 824 continue; 825 826 key = td->id; 827 828 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 829 details.transaction_id = cpu_to_le64(td->transaction_id); 830 details.creation_time = cpu_to_le32(td->creation_time); 831 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 832 __dm_bless_for_disk(&details); 833 834 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 835 &key, &details, &pmd->details_root); 836 if (r) 837 return r; 838 839 if (td->open_count) 840 td->changed = false; 841 else { 842 list_del(&td->list); 843 kfree(td); 844 } 845 } 846 847 return 0; 848 } 849 850 static int __commit_transaction(struct dm_pool_metadata *pmd) 851 { 852 int r; 853 struct thin_disk_superblock *disk_super; 854 struct dm_block *sblock; 855 856 /* 857 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 858 */ 859 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 860 BUG_ON(!rwsem_is_locked(&pmd->root_lock)); 861 862 if (unlikely(!pmd->in_service)) 863 return 0; 864 865 if (pmd->pre_commit_fn) { 866 r = pmd->pre_commit_fn(pmd->pre_commit_context); 867 if (r < 0) { 868 DMERR("pre-commit callback failed"); 869 return r; 870 } 871 } 872 873 r = __write_changed_details(pmd); 874 if (r < 0) 875 return r; 876 877 r = dm_sm_commit(pmd->data_sm); 878 if (r < 0) 879 return r; 880 881 r = dm_tm_pre_commit(pmd->tm); 882 if (r < 0) 883 return r; 884 885 r = save_sm_roots(pmd); 886 if (r < 0) 887 return r; 888 889 r = superblock_lock(pmd, &sblock); 890 if (r) 891 return r; 892 893 disk_super = dm_block_data(sblock); 894 disk_super->time = cpu_to_le32(pmd->time); 895 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 896 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 897 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 898 disk_super->flags = cpu_to_le32(pmd->flags); 899 900 copy_sm_roots(pmd, disk_super); 901 902 return dm_tm_commit(pmd->tm, sblock); 903 } 904 905 static void __set_metadata_reserve(struct dm_pool_metadata *pmd) 906 { 907 int r; 908 dm_block_t total; 909 dm_block_t max_blocks = 4096; /* 16M */ 910 911 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total); 912 if (r) { 913 DMERR("could not get size of metadata device"); 914 pmd->metadata_reserve = max_blocks; 915 } else 916 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10)); 917 } 918 919 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 920 sector_t data_block_size, 921 bool format_device) 922 { 923 int r; 924 struct dm_pool_metadata *pmd; 925 926 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 927 if (!pmd) { 928 DMERR("could not allocate metadata struct"); 929 return ERR_PTR(-ENOMEM); 930 } 931 932 init_rwsem(&pmd->root_lock); 933 pmd->time = 0; 934 INIT_LIST_HEAD(&pmd->thin_devices); 935 pmd->fail_io = false; 936 pmd->in_service = false; 937 pmd->bdev = bdev; 938 pmd->data_block_size = data_block_size; 939 pmd->pre_commit_fn = NULL; 940 pmd->pre_commit_context = NULL; 941 942 r = __create_persistent_data_objects(pmd, format_device); 943 if (r) { 944 kfree(pmd); 945 return ERR_PTR(r); 946 } 947 948 r = __begin_transaction(pmd); 949 if (r < 0) { 950 if (dm_pool_metadata_close(pmd) < 0) 951 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 952 return ERR_PTR(r); 953 } 954 955 __set_metadata_reserve(pmd); 956 957 return pmd; 958 } 959 960 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 961 { 962 int r; 963 unsigned open_devices = 0; 964 struct dm_thin_device *td, *tmp; 965 966 down_read(&pmd->root_lock); 967 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 968 if (td->open_count) 969 open_devices++; 970 else { 971 list_del(&td->list); 972 kfree(td); 973 } 974 } 975 up_read(&pmd->root_lock); 976 977 if (open_devices) { 978 DMERR("attempt to close pmd when %u device(s) are still open", 979 open_devices); 980 return -EBUSY; 981 } 982 983 pmd_write_lock_in_core(pmd); 984 if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) { 985 r = __commit_transaction(pmd); 986 if (r < 0) 987 DMWARN("%s: __commit_transaction() failed, error = %d", 988 __func__, r); 989 } 990 pmd_write_unlock(pmd); 991 if (!pmd->fail_io) 992 __destroy_persistent_data_objects(pmd); 993 994 kfree(pmd); 995 return 0; 996 } 997 998 /* 999 * __open_device: Returns @td corresponding to device with id @dev, 1000 * creating it if @create is set and incrementing @td->open_count. 1001 * On failure, @td is undefined. 1002 */ 1003 static int __open_device(struct dm_pool_metadata *pmd, 1004 dm_thin_id dev, int create, 1005 struct dm_thin_device **td) 1006 { 1007 int r, changed = 0; 1008 struct dm_thin_device *td2; 1009 uint64_t key = dev; 1010 struct disk_device_details details_le; 1011 1012 /* 1013 * If the device is already open, return it. 1014 */ 1015 list_for_each_entry(td2, &pmd->thin_devices, list) 1016 if (td2->id == dev) { 1017 /* 1018 * May not create an already-open device. 1019 */ 1020 if (create) 1021 return -EEXIST; 1022 1023 td2->open_count++; 1024 *td = td2; 1025 return 0; 1026 } 1027 1028 /* 1029 * Check the device exists. 1030 */ 1031 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1032 &key, &details_le); 1033 if (r) { 1034 if (r != -ENODATA || !create) 1035 return r; 1036 1037 /* 1038 * Create new device. 1039 */ 1040 changed = 1; 1041 details_le.mapped_blocks = 0; 1042 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 1043 details_le.creation_time = cpu_to_le32(pmd->time); 1044 details_le.snapshotted_time = cpu_to_le32(pmd->time); 1045 } 1046 1047 *td = kmalloc(sizeof(**td), GFP_NOIO); 1048 if (!*td) 1049 return -ENOMEM; 1050 1051 (*td)->pmd = pmd; 1052 (*td)->id = dev; 1053 (*td)->open_count = 1; 1054 (*td)->changed = changed; 1055 (*td)->aborted_with_changes = false; 1056 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 1057 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 1058 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 1059 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 1060 1061 list_add(&(*td)->list, &pmd->thin_devices); 1062 1063 return 0; 1064 } 1065 1066 static void __close_device(struct dm_thin_device *td) 1067 { 1068 --td->open_count; 1069 } 1070 1071 static int __create_thin(struct dm_pool_metadata *pmd, 1072 dm_thin_id dev) 1073 { 1074 int r; 1075 dm_block_t dev_root; 1076 uint64_t key = dev; 1077 struct dm_thin_device *td; 1078 __le64 value; 1079 1080 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1081 &key, NULL); 1082 if (!r) 1083 return -EEXIST; 1084 1085 /* 1086 * Create an empty btree for the mappings. 1087 */ 1088 r = dm_btree_empty(&pmd->bl_info, &dev_root); 1089 if (r) 1090 return r; 1091 1092 /* 1093 * Insert it into the main mapping tree. 1094 */ 1095 value = cpu_to_le64(dev_root); 1096 __dm_bless_for_disk(&value); 1097 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1098 if (r) { 1099 dm_btree_del(&pmd->bl_info, dev_root); 1100 return r; 1101 } 1102 1103 r = __open_device(pmd, dev, 1, &td); 1104 if (r) { 1105 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1106 dm_btree_del(&pmd->bl_info, dev_root); 1107 return r; 1108 } 1109 __close_device(td); 1110 1111 return r; 1112 } 1113 1114 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1115 { 1116 int r = -EINVAL; 1117 1118 pmd_write_lock(pmd); 1119 if (!pmd->fail_io) 1120 r = __create_thin(pmd, dev); 1121 pmd_write_unlock(pmd); 1122 1123 return r; 1124 } 1125 1126 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1127 struct dm_thin_device *snap, 1128 dm_thin_id origin, uint32_t time) 1129 { 1130 int r; 1131 struct dm_thin_device *td; 1132 1133 r = __open_device(pmd, origin, 0, &td); 1134 if (r) 1135 return r; 1136 1137 td->changed = true; 1138 td->snapshotted_time = time; 1139 1140 snap->mapped_blocks = td->mapped_blocks; 1141 snap->snapshotted_time = time; 1142 __close_device(td); 1143 1144 return 0; 1145 } 1146 1147 static int __create_snap(struct dm_pool_metadata *pmd, 1148 dm_thin_id dev, dm_thin_id origin) 1149 { 1150 int r; 1151 dm_block_t origin_root; 1152 uint64_t key = origin, dev_key = dev; 1153 struct dm_thin_device *td; 1154 __le64 value; 1155 1156 /* check this device is unused */ 1157 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1158 &dev_key, NULL); 1159 if (!r) 1160 return -EEXIST; 1161 1162 /* find the mapping tree for the origin */ 1163 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1164 if (r) 1165 return r; 1166 origin_root = le64_to_cpu(value); 1167 1168 /* clone the origin, an inc will do */ 1169 dm_tm_inc(pmd->tm, origin_root); 1170 1171 /* insert into the main mapping tree */ 1172 value = cpu_to_le64(origin_root); 1173 __dm_bless_for_disk(&value); 1174 key = dev; 1175 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1176 if (r) { 1177 dm_tm_dec(pmd->tm, origin_root); 1178 return r; 1179 } 1180 1181 pmd->time++; 1182 1183 r = __open_device(pmd, dev, 1, &td); 1184 if (r) 1185 goto bad; 1186 1187 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1188 __close_device(td); 1189 1190 if (r) 1191 goto bad; 1192 1193 return 0; 1194 1195 bad: 1196 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1197 dm_btree_remove(&pmd->details_info, pmd->details_root, 1198 &key, &pmd->details_root); 1199 return r; 1200 } 1201 1202 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1203 dm_thin_id dev, 1204 dm_thin_id origin) 1205 { 1206 int r = -EINVAL; 1207 1208 pmd_write_lock(pmd); 1209 if (!pmd->fail_io) 1210 r = __create_snap(pmd, dev, origin); 1211 pmd_write_unlock(pmd); 1212 1213 return r; 1214 } 1215 1216 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1217 { 1218 int r; 1219 uint64_t key = dev; 1220 struct dm_thin_device *td; 1221 1222 /* TODO: failure should mark the transaction invalid */ 1223 r = __open_device(pmd, dev, 0, &td); 1224 if (r) 1225 return r; 1226 1227 if (td->open_count > 1) { 1228 __close_device(td); 1229 return -EBUSY; 1230 } 1231 1232 list_del(&td->list); 1233 kfree(td); 1234 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1235 &key, &pmd->details_root); 1236 if (r) 1237 return r; 1238 1239 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1240 if (r) 1241 return r; 1242 1243 return 0; 1244 } 1245 1246 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1247 dm_thin_id dev) 1248 { 1249 int r = -EINVAL; 1250 1251 pmd_write_lock(pmd); 1252 if (!pmd->fail_io) 1253 r = __delete_device(pmd, dev); 1254 pmd_write_unlock(pmd); 1255 1256 return r; 1257 } 1258 1259 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1260 uint64_t current_id, 1261 uint64_t new_id) 1262 { 1263 int r = -EINVAL; 1264 1265 pmd_write_lock(pmd); 1266 1267 if (pmd->fail_io) 1268 goto out; 1269 1270 if (pmd->trans_id != current_id) { 1271 DMERR("mismatched transaction id"); 1272 goto out; 1273 } 1274 1275 pmd->trans_id = new_id; 1276 r = 0; 1277 1278 out: 1279 pmd_write_unlock(pmd); 1280 1281 return r; 1282 } 1283 1284 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1285 uint64_t *result) 1286 { 1287 int r = -EINVAL; 1288 1289 down_read(&pmd->root_lock); 1290 if (!pmd->fail_io) { 1291 *result = pmd->trans_id; 1292 r = 0; 1293 } 1294 up_read(&pmd->root_lock); 1295 1296 return r; 1297 } 1298 1299 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1300 { 1301 int r, inc; 1302 struct thin_disk_superblock *disk_super; 1303 struct dm_block *copy, *sblock; 1304 dm_block_t held_root; 1305 1306 /* 1307 * We commit to ensure the btree roots which we increment in a 1308 * moment are up to date. 1309 */ 1310 r = __commit_transaction(pmd); 1311 if (r < 0) { 1312 DMWARN("%s: __commit_transaction() failed, error = %d", 1313 __func__, r); 1314 return r; 1315 } 1316 1317 /* 1318 * Copy the superblock. 1319 */ 1320 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1321 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1322 &sb_validator, ©, &inc); 1323 if (r) 1324 return r; 1325 1326 BUG_ON(!inc); 1327 1328 held_root = dm_block_location(copy); 1329 disk_super = dm_block_data(copy); 1330 1331 if (le64_to_cpu(disk_super->held_root)) { 1332 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1333 1334 dm_tm_dec(pmd->tm, held_root); 1335 dm_tm_unlock(pmd->tm, copy); 1336 return -EBUSY; 1337 } 1338 1339 /* 1340 * Wipe the spacemap since we're not publishing this. 1341 */ 1342 memset(&disk_super->data_space_map_root, 0, 1343 sizeof(disk_super->data_space_map_root)); 1344 memset(&disk_super->metadata_space_map_root, 0, 1345 sizeof(disk_super->metadata_space_map_root)); 1346 1347 /* 1348 * Increment the data structures that need to be preserved. 1349 */ 1350 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1351 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1352 dm_tm_unlock(pmd->tm, copy); 1353 1354 /* 1355 * Write the held root into the superblock. 1356 */ 1357 r = superblock_lock(pmd, &sblock); 1358 if (r) { 1359 dm_tm_dec(pmd->tm, held_root); 1360 return r; 1361 } 1362 1363 disk_super = dm_block_data(sblock); 1364 disk_super->held_root = cpu_to_le64(held_root); 1365 dm_bm_unlock(sblock); 1366 return 0; 1367 } 1368 1369 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1370 { 1371 int r = -EINVAL; 1372 1373 pmd_write_lock(pmd); 1374 if (!pmd->fail_io) 1375 r = __reserve_metadata_snap(pmd); 1376 pmd_write_unlock(pmd); 1377 1378 return r; 1379 } 1380 1381 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1382 { 1383 int r; 1384 struct thin_disk_superblock *disk_super; 1385 struct dm_block *sblock, *copy; 1386 dm_block_t held_root; 1387 1388 r = superblock_lock(pmd, &sblock); 1389 if (r) 1390 return r; 1391 1392 disk_super = dm_block_data(sblock); 1393 held_root = le64_to_cpu(disk_super->held_root); 1394 disk_super->held_root = cpu_to_le64(0); 1395 1396 dm_bm_unlock(sblock); 1397 1398 if (!held_root) { 1399 DMWARN("No pool metadata snapshot found: nothing to release."); 1400 return -EINVAL; 1401 } 1402 1403 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1404 if (r) 1405 return r; 1406 1407 disk_super = dm_block_data(copy); 1408 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); 1409 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); 1410 dm_sm_dec_block(pmd->metadata_sm, held_root); 1411 1412 dm_tm_unlock(pmd->tm, copy); 1413 1414 return 0; 1415 } 1416 1417 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1418 { 1419 int r = -EINVAL; 1420 1421 pmd_write_lock(pmd); 1422 if (!pmd->fail_io) 1423 r = __release_metadata_snap(pmd); 1424 pmd_write_unlock(pmd); 1425 1426 return r; 1427 } 1428 1429 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1430 dm_block_t *result) 1431 { 1432 int r; 1433 struct thin_disk_superblock *disk_super; 1434 struct dm_block *sblock; 1435 1436 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1437 &sb_validator, &sblock); 1438 if (r) 1439 return r; 1440 1441 disk_super = dm_block_data(sblock); 1442 *result = le64_to_cpu(disk_super->held_root); 1443 1444 dm_bm_unlock(sblock); 1445 1446 return 0; 1447 } 1448 1449 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1450 dm_block_t *result) 1451 { 1452 int r = -EINVAL; 1453 1454 down_read(&pmd->root_lock); 1455 if (!pmd->fail_io) 1456 r = __get_metadata_snap(pmd, result); 1457 up_read(&pmd->root_lock); 1458 1459 return r; 1460 } 1461 1462 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1463 struct dm_thin_device **td) 1464 { 1465 int r = -EINVAL; 1466 1467 pmd_write_lock_in_core(pmd); 1468 if (!pmd->fail_io) 1469 r = __open_device(pmd, dev, 0, td); 1470 pmd_write_unlock(pmd); 1471 1472 return r; 1473 } 1474 1475 int dm_pool_close_thin_device(struct dm_thin_device *td) 1476 { 1477 pmd_write_lock_in_core(td->pmd); 1478 __close_device(td); 1479 pmd_write_unlock(td->pmd); 1480 1481 return 0; 1482 } 1483 1484 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1485 { 1486 return td->id; 1487 } 1488 1489 /* 1490 * Check whether @time (of block creation) is older than @td's last snapshot. 1491 * If so then the associated block is shared with the last snapshot device. 1492 * Any block on a device created *after* the device last got snapshotted is 1493 * necessarily not shared. 1494 */ 1495 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1496 { 1497 return td->snapshotted_time > time; 1498 } 1499 1500 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value, 1501 struct dm_thin_lookup_result *result) 1502 { 1503 uint64_t block_time = 0; 1504 dm_block_t exception_block; 1505 uint32_t exception_time; 1506 1507 block_time = le64_to_cpu(value); 1508 unpack_block_time(block_time, &exception_block, &exception_time); 1509 result->block = exception_block; 1510 result->shared = __snapshotted_since(td, exception_time); 1511 } 1512 1513 static int __find_block(struct dm_thin_device *td, dm_block_t block, 1514 int can_issue_io, struct dm_thin_lookup_result *result) 1515 { 1516 int r; 1517 __le64 value; 1518 struct dm_pool_metadata *pmd = td->pmd; 1519 dm_block_t keys[2] = { td->id, block }; 1520 struct dm_btree_info *info; 1521 1522 if (can_issue_io) { 1523 info = &pmd->info; 1524 } else 1525 info = &pmd->nb_info; 1526 1527 r = dm_btree_lookup(info, pmd->root, keys, &value); 1528 if (!r) 1529 unpack_lookup_result(td, value, result); 1530 1531 return r; 1532 } 1533 1534 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1535 int can_issue_io, struct dm_thin_lookup_result *result) 1536 { 1537 int r; 1538 struct dm_pool_metadata *pmd = td->pmd; 1539 1540 down_read(&pmd->root_lock); 1541 if (pmd->fail_io) { 1542 up_read(&pmd->root_lock); 1543 return -EINVAL; 1544 } 1545 1546 r = __find_block(td, block, can_issue_io, result); 1547 1548 up_read(&pmd->root_lock); 1549 return r; 1550 } 1551 1552 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block, 1553 dm_block_t *vblock, 1554 struct dm_thin_lookup_result *result) 1555 { 1556 int r; 1557 __le64 value; 1558 struct dm_pool_metadata *pmd = td->pmd; 1559 dm_block_t keys[2] = { td->id, block }; 1560 1561 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value); 1562 if (!r) 1563 unpack_lookup_result(td, value, result); 1564 1565 return r; 1566 } 1567 1568 static int __find_mapped_range(struct dm_thin_device *td, 1569 dm_block_t begin, dm_block_t end, 1570 dm_block_t *thin_begin, dm_block_t *thin_end, 1571 dm_block_t *pool_begin, bool *maybe_shared) 1572 { 1573 int r; 1574 dm_block_t pool_end; 1575 struct dm_thin_lookup_result lookup; 1576 1577 if (end < begin) 1578 return -ENODATA; 1579 1580 r = __find_next_mapped_block(td, begin, &begin, &lookup); 1581 if (r) 1582 return r; 1583 1584 if (begin >= end) 1585 return -ENODATA; 1586 1587 *thin_begin = begin; 1588 *pool_begin = lookup.block; 1589 *maybe_shared = lookup.shared; 1590 1591 begin++; 1592 pool_end = *pool_begin + 1; 1593 while (begin != end) { 1594 r = __find_block(td, begin, true, &lookup); 1595 if (r) { 1596 if (r == -ENODATA) 1597 break; 1598 else 1599 return r; 1600 } 1601 1602 if ((lookup.block != pool_end) || 1603 (lookup.shared != *maybe_shared)) 1604 break; 1605 1606 pool_end++; 1607 begin++; 1608 } 1609 1610 *thin_end = begin; 1611 return 0; 1612 } 1613 1614 int dm_thin_find_mapped_range(struct dm_thin_device *td, 1615 dm_block_t begin, dm_block_t end, 1616 dm_block_t *thin_begin, dm_block_t *thin_end, 1617 dm_block_t *pool_begin, bool *maybe_shared) 1618 { 1619 int r = -EINVAL; 1620 struct dm_pool_metadata *pmd = td->pmd; 1621 1622 down_read(&pmd->root_lock); 1623 if (!pmd->fail_io) { 1624 r = __find_mapped_range(td, begin, end, thin_begin, thin_end, 1625 pool_begin, maybe_shared); 1626 } 1627 up_read(&pmd->root_lock); 1628 1629 return r; 1630 } 1631 1632 static int __insert(struct dm_thin_device *td, dm_block_t block, 1633 dm_block_t data_block) 1634 { 1635 int r, inserted; 1636 __le64 value; 1637 struct dm_pool_metadata *pmd = td->pmd; 1638 dm_block_t keys[2] = { td->id, block }; 1639 1640 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1641 __dm_bless_for_disk(&value); 1642 1643 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1644 &pmd->root, &inserted); 1645 if (r) 1646 return r; 1647 1648 td->changed = true; 1649 if (inserted) 1650 td->mapped_blocks++; 1651 1652 return 0; 1653 } 1654 1655 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1656 dm_block_t data_block) 1657 { 1658 int r = -EINVAL; 1659 1660 pmd_write_lock(td->pmd); 1661 if (!td->pmd->fail_io) 1662 r = __insert(td, block, data_block); 1663 pmd_write_unlock(td->pmd); 1664 1665 return r; 1666 } 1667 1668 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) 1669 { 1670 int r; 1671 unsigned count, total_count = 0; 1672 struct dm_pool_metadata *pmd = td->pmd; 1673 dm_block_t keys[1] = { td->id }; 1674 __le64 value; 1675 dm_block_t mapping_root; 1676 1677 /* 1678 * Find the mapping tree 1679 */ 1680 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); 1681 if (r) 1682 return r; 1683 1684 /* 1685 * Remove from the mapping tree, taking care to inc the 1686 * ref count so it doesn't get deleted. 1687 */ 1688 mapping_root = le64_to_cpu(value); 1689 dm_tm_inc(pmd->tm, mapping_root); 1690 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); 1691 if (r) 1692 return r; 1693 1694 /* 1695 * Remove leaves stops at the first unmapped entry, so we have to 1696 * loop round finding mapped ranges. 1697 */ 1698 while (begin < end) { 1699 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value); 1700 if (r == -ENODATA) 1701 break; 1702 1703 if (r) 1704 return r; 1705 1706 if (begin >= end) 1707 break; 1708 1709 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); 1710 if (r) 1711 return r; 1712 1713 total_count += count; 1714 } 1715 1716 td->mapped_blocks -= total_count; 1717 td->changed = true; 1718 1719 /* 1720 * Reinsert the mapping tree. 1721 */ 1722 value = cpu_to_le64(mapping_root); 1723 __dm_bless_for_disk(&value); 1724 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); 1725 } 1726 1727 int dm_thin_remove_range(struct dm_thin_device *td, 1728 dm_block_t begin, dm_block_t end) 1729 { 1730 int r = -EINVAL; 1731 1732 pmd_write_lock(td->pmd); 1733 if (!td->pmd->fail_io) 1734 r = __remove_range(td, begin, end); 1735 pmd_write_unlock(td->pmd); 1736 1737 return r; 1738 } 1739 1740 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1741 { 1742 int r; 1743 uint32_t ref_count; 1744 1745 down_read(&pmd->root_lock); 1746 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1747 if (!r) 1748 *result = (ref_count > 1); 1749 up_read(&pmd->root_lock); 1750 1751 return r; 1752 } 1753 1754 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1755 { 1756 int r = 0; 1757 1758 pmd_write_lock(pmd); 1759 r = dm_sm_inc_blocks(pmd->data_sm, b, e); 1760 pmd_write_unlock(pmd); 1761 1762 return r; 1763 } 1764 1765 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1766 { 1767 int r = 0; 1768 1769 pmd_write_lock(pmd); 1770 r = dm_sm_dec_blocks(pmd->data_sm, b, e); 1771 pmd_write_unlock(pmd); 1772 1773 return r; 1774 } 1775 1776 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1777 { 1778 int r; 1779 1780 down_read(&td->pmd->root_lock); 1781 r = td->changed; 1782 up_read(&td->pmd->root_lock); 1783 1784 return r; 1785 } 1786 1787 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1788 { 1789 bool r = false; 1790 struct dm_thin_device *td, *tmp; 1791 1792 down_read(&pmd->root_lock); 1793 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1794 if (td->changed) { 1795 r = td->changed; 1796 break; 1797 } 1798 } 1799 up_read(&pmd->root_lock); 1800 1801 return r; 1802 } 1803 1804 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1805 { 1806 bool r; 1807 1808 down_read(&td->pmd->root_lock); 1809 r = td->aborted_with_changes; 1810 up_read(&td->pmd->root_lock); 1811 1812 return r; 1813 } 1814 1815 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1816 { 1817 int r = -EINVAL; 1818 1819 pmd_write_lock(pmd); 1820 if (!pmd->fail_io) 1821 r = dm_sm_new_block(pmd->data_sm, result); 1822 pmd_write_unlock(pmd); 1823 1824 return r; 1825 } 1826 1827 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1828 { 1829 int r = -EINVAL; 1830 1831 /* 1832 * Care is taken to not have commit be what 1833 * triggers putting the thin-pool in-service. 1834 */ 1835 pmd_write_lock_in_core(pmd); 1836 if (pmd->fail_io) 1837 goto out; 1838 1839 r = __commit_transaction(pmd); 1840 if (r < 0) 1841 goto out; 1842 1843 /* 1844 * Open the next transaction. 1845 */ 1846 r = __begin_transaction(pmd); 1847 out: 1848 pmd_write_unlock(pmd); 1849 return r; 1850 } 1851 1852 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1853 { 1854 struct dm_thin_device *td; 1855 1856 list_for_each_entry(td, &pmd->thin_devices, list) 1857 td->aborted_with_changes = td->changed; 1858 } 1859 1860 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1861 { 1862 int r = -EINVAL; 1863 1864 pmd_write_lock(pmd); 1865 if (pmd->fail_io) 1866 goto out; 1867 1868 __set_abort_with_changes_flags(pmd); 1869 __destroy_persistent_data_objects(pmd); 1870 r = __create_persistent_data_objects(pmd, false); 1871 if (r) 1872 pmd->fail_io = true; 1873 1874 out: 1875 pmd_write_unlock(pmd); 1876 1877 return r; 1878 } 1879 1880 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1881 { 1882 int r = -EINVAL; 1883 1884 down_read(&pmd->root_lock); 1885 if (!pmd->fail_io) 1886 r = dm_sm_get_nr_free(pmd->data_sm, result); 1887 up_read(&pmd->root_lock); 1888 1889 return r; 1890 } 1891 1892 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1893 dm_block_t *result) 1894 { 1895 int r = -EINVAL; 1896 1897 down_read(&pmd->root_lock); 1898 if (!pmd->fail_io) 1899 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1900 1901 if (!r) { 1902 if (*result < pmd->metadata_reserve) 1903 *result = 0; 1904 else 1905 *result -= pmd->metadata_reserve; 1906 } 1907 up_read(&pmd->root_lock); 1908 1909 return r; 1910 } 1911 1912 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1913 dm_block_t *result) 1914 { 1915 int r = -EINVAL; 1916 1917 down_read(&pmd->root_lock); 1918 if (!pmd->fail_io) 1919 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1920 up_read(&pmd->root_lock); 1921 1922 return r; 1923 } 1924 1925 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1926 { 1927 int r = -EINVAL; 1928 1929 down_read(&pmd->root_lock); 1930 if (!pmd->fail_io) 1931 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1932 up_read(&pmd->root_lock); 1933 1934 return r; 1935 } 1936 1937 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1938 { 1939 int r = -EINVAL; 1940 struct dm_pool_metadata *pmd = td->pmd; 1941 1942 down_read(&pmd->root_lock); 1943 if (!pmd->fail_io) { 1944 *result = td->mapped_blocks; 1945 r = 0; 1946 } 1947 up_read(&pmd->root_lock); 1948 1949 return r; 1950 } 1951 1952 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1953 { 1954 int r; 1955 __le64 value_le; 1956 dm_block_t thin_root; 1957 struct dm_pool_metadata *pmd = td->pmd; 1958 1959 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 1960 if (r) 1961 return r; 1962 1963 thin_root = le64_to_cpu(value_le); 1964 1965 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 1966 } 1967 1968 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 1969 dm_block_t *result) 1970 { 1971 int r = -EINVAL; 1972 struct dm_pool_metadata *pmd = td->pmd; 1973 1974 down_read(&pmd->root_lock); 1975 if (!pmd->fail_io) 1976 r = __highest_block(td, result); 1977 up_read(&pmd->root_lock); 1978 1979 return r; 1980 } 1981 1982 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 1983 { 1984 int r; 1985 dm_block_t old_count; 1986 1987 r = dm_sm_get_nr_blocks(sm, &old_count); 1988 if (r) 1989 return r; 1990 1991 if (new_count == old_count) 1992 return 0; 1993 1994 if (new_count < old_count) { 1995 DMERR("cannot reduce size of space map"); 1996 return -EINVAL; 1997 } 1998 1999 return dm_sm_extend(sm, new_count - old_count); 2000 } 2001 2002 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2003 { 2004 int r = -EINVAL; 2005 2006 pmd_write_lock(pmd); 2007 if (!pmd->fail_io) 2008 r = __resize_space_map(pmd->data_sm, new_count); 2009 pmd_write_unlock(pmd); 2010 2011 return r; 2012 } 2013 2014 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2015 { 2016 int r = -EINVAL; 2017 2018 pmd_write_lock(pmd); 2019 if (!pmd->fail_io) { 2020 r = __resize_space_map(pmd->metadata_sm, new_count); 2021 if (!r) 2022 __set_metadata_reserve(pmd); 2023 } 2024 pmd_write_unlock(pmd); 2025 2026 return r; 2027 } 2028 2029 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 2030 { 2031 pmd_write_lock_in_core(pmd); 2032 dm_bm_set_read_only(pmd->bm); 2033 pmd_write_unlock(pmd); 2034 } 2035 2036 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 2037 { 2038 pmd_write_lock_in_core(pmd); 2039 dm_bm_set_read_write(pmd->bm); 2040 pmd_write_unlock(pmd); 2041 } 2042 2043 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 2044 dm_block_t threshold, 2045 dm_sm_threshold_fn fn, 2046 void *context) 2047 { 2048 int r = -EINVAL; 2049 2050 pmd_write_lock_in_core(pmd); 2051 if (!pmd->fail_io) { 2052 r = dm_sm_register_threshold_callback(pmd->metadata_sm, 2053 threshold, fn, context); 2054 } 2055 pmd_write_unlock(pmd); 2056 2057 return r; 2058 } 2059 2060 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd, 2061 dm_pool_pre_commit_fn fn, 2062 void *context) 2063 { 2064 pmd_write_lock_in_core(pmd); 2065 pmd->pre_commit_fn = fn; 2066 pmd->pre_commit_context = context; 2067 pmd_write_unlock(pmd); 2068 } 2069 2070 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 2071 { 2072 int r = -EINVAL; 2073 struct dm_block *sblock; 2074 struct thin_disk_superblock *disk_super; 2075 2076 pmd_write_lock(pmd); 2077 if (pmd->fail_io) 2078 goto out; 2079 2080 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 2081 2082 r = superblock_lock(pmd, &sblock); 2083 if (r) { 2084 DMERR("couldn't lock superblock"); 2085 goto out; 2086 } 2087 2088 disk_super = dm_block_data(sblock); 2089 disk_super->flags = cpu_to_le32(pmd->flags); 2090 2091 dm_bm_unlock(sblock); 2092 out: 2093 pmd_write_unlock(pmd); 2094 return r; 2095 } 2096 2097 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 2098 { 2099 bool needs_check; 2100 2101 down_read(&pmd->root_lock); 2102 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 2103 up_read(&pmd->root_lock); 2104 2105 return needs_check; 2106 } 2107 2108 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) 2109 { 2110 down_read(&pmd->root_lock); 2111 if (!pmd->fail_io) 2112 dm_tm_issue_prefetches(pmd->tm); 2113 up_read(&pmd->root_lock); 2114 } 2115