1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define NODE_SIZE L1_CACHE_BYTES 28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 30 31 /* 32 * Similar to ceiling(log_size(n)) 33 */ 34 static unsigned int int_log(unsigned int n, unsigned int base) 35 { 36 int result = 0; 37 38 while (n > 1) { 39 n = dm_div_up(n, base); 40 result++; 41 } 42 43 return result; 44 } 45 46 /* 47 * Calculate the index of the child node of the n'th node k'th key. 48 */ 49 static inline unsigned int get_child(unsigned int n, unsigned int k) 50 { 51 return (n * CHILDREN_PER_NODE) + k; 52 } 53 54 /* 55 * Return the n'th node of level l from table t. 56 */ 57 static inline sector_t *get_node(struct dm_table *t, 58 unsigned int l, unsigned int n) 59 { 60 return t->index[l] + (n * KEYS_PER_NODE); 61 } 62 63 /* 64 * Return the highest key that you could lookup from the n'th 65 * node on level l of the btree. 66 */ 67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 68 { 69 for (; l < t->depth - 1; l++) 70 n = get_child(n, CHILDREN_PER_NODE - 1); 71 72 if (n >= t->counts[l]) 73 return (sector_t) - 1; 74 75 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 76 } 77 78 /* 79 * Fills in a level of the btree based on the highs of the level 80 * below it. 81 */ 82 static int setup_btree_index(unsigned int l, struct dm_table *t) 83 { 84 unsigned int n, k; 85 sector_t *node; 86 87 for (n = 0U; n < t->counts[l]; n++) { 88 node = get_node(t, l, n); 89 90 for (k = 0U; k < KEYS_PER_NODE; k++) 91 node[k] = high(t, l + 1, get_child(n, k)); 92 } 93 94 return 0; 95 } 96 97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 98 { 99 unsigned long size; 100 void *addr; 101 102 /* 103 * Check that we're not going to overflow. 104 */ 105 if (nmemb > (ULONG_MAX / elem_size)) 106 return NULL; 107 108 size = nmemb * elem_size; 109 addr = vzalloc(size); 110 111 return addr; 112 } 113 EXPORT_SYMBOL(dm_vcalloc); 114 115 /* 116 * highs, and targets are managed as dynamic arrays during a 117 * table load. 118 */ 119 static int alloc_targets(struct dm_table *t, unsigned int num) 120 { 121 sector_t *n_highs; 122 struct dm_target *n_targets; 123 124 /* 125 * Allocate both the target array and offset array at once. 126 */ 127 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 128 sizeof(sector_t)); 129 if (!n_highs) 130 return -ENOMEM; 131 132 n_targets = (struct dm_target *) (n_highs + num); 133 134 memset(n_highs, -1, sizeof(*n_highs) * num); 135 vfree(t->highs); 136 137 t->num_allocated = num; 138 t->highs = n_highs; 139 t->targets = n_targets; 140 141 return 0; 142 } 143 144 int dm_table_create(struct dm_table **result, fmode_t mode, 145 unsigned num_targets, struct mapped_device *md) 146 { 147 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 148 149 if (!t) 150 return -ENOMEM; 151 152 INIT_LIST_HEAD(&t->devices); 153 154 if (!num_targets) 155 num_targets = KEYS_PER_NODE; 156 157 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 158 159 if (!num_targets) { 160 kfree(t); 161 return -ENOMEM; 162 } 163 164 if (alloc_targets(t, num_targets)) { 165 kfree(t); 166 return -ENOMEM; 167 } 168 169 t->type = DM_TYPE_NONE; 170 t->mode = mode; 171 t->md = md; 172 *result = t; 173 return 0; 174 } 175 176 static void free_devices(struct list_head *devices, struct mapped_device *md) 177 { 178 struct list_head *tmp, *next; 179 180 list_for_each_safe(tmp, next, devices) { 181 struct dm_dev_internal *dd = 182 list_entry(tmp, struct dm_dev_internal, list); 183 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 184 dm_device_name(md), dd->dm_dev->name); 185 dm_put_table_device(md, dd->dm_dev); 186 kfree(dd); 187 } 188 } 189 190 void dm_table_destroy(struct dm_table *t) 191 { 192 unsigned int i; 193 194 if (!t) 195 return; 196 197 /* free the indexes */ 198 if (t->depth >= 2) 199 vfree(t->index[t->depth - 2]); 200 201 /* free the targets */ 202 for (i = 0; i < t->num_targets; i++) { 203 struct dm_target *tgt = t->targets + i; 204 205 if (tgt->type->dtr) 206 tgt->type->dtr(tgt); 207 208 dm_put_target_type(tgt->type); 209 } 210 211 vfree(t->highs); 212 213 /* free the device list */ 214 free_devices(&t->devices, t->md); 215 216 dm_free_md_mempools(t->mempools); 217 218 kfree(t); 219 } 220 221 /* 222 * See if we've already got a device in the list. 223 */ 224 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 225 { 226 struct dm_dev_internal *dd; 227 228 list_for_each_entry (dd, l, list) 229 if (dd->dm_dev->bdev->bd_dev == dev) 230 return dd; 231 232 return NULL; 233 } 234 235 /* 236 * If possible, this checks an area of a destination device is invalid. 237 */ 238 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 239 sector_t start, sector_t len, void *data) 240 { 241 struct queue_limits *limits = data; 242 struct block_device *bdev = dev->bdev; 243 sector_t dev_size = 244 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 245 unsigned short logical_block_size_sectors = 246 limits->logical_block_size >> SECTOR_SHIFT; 247 char b[BDEVNAME_SIZE]; 248 249 if (!dev_size) 250 return 0; 251 252 if ((start >= dev_size) || (start + len > dev_size)) { 253 DMWARN("%s: %s too small for target: " 254 "start=%llu, len=%llu, dev_size=%llu", 255 dm_device_name(ti->table->md), bdevname(bdev, b), 256 (unsigned long long)start, 257 (unsigned long long)len, 258 (unsigned long long)dev_size); 259 return 1; 260 } 261 262 /* 263 * If the target is mapped to zoned block device(s), check 264 * that the zones are not partially mapped. 265 */ 266 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 267 unsigned int zone_sectors = bdev_zone_sectors(bdev); 268 269 if (start & (zone_sectors - 1)) { 270 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 271 dm_device_name(ti->table->md), 272 (unsigned long long)start, 273 zone_sectors, bdevname(bdev, b)); 274 return 1; 275 } 276 277 /* 278 * Note: The last zone of a zoned block device may be smaller 279 * than other zones. So for a target mapping the end of a 280 * zoned block device with such a zone, len would not be zone 281 * aligned. We do not allow such last smaller zone to be part 282 * of the mapping here to ensure that mappings with multiple 283 * devices do not end up with a smaller zone in the middle of 284 * the sector range. 285 */ 286 if (len & (zone_sectors - 1)) { 287 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 288 dm_device_name(ti->table->md), 289 (unsigned long long)len, 290 zone_sectors, bdevname(bdev, b)); 291 return 1; 292 } 293 } 294 295 if (logical_block_size_sectors <= 1) 296 return 0; 297 298 if (start & (logical_block_size_sectors - 1)) { 299 DMWARN("%s: start=%llu not aligned to h/w " 300 "logical block size %u of %s", 301 dm_device_name(ti->table->md), 302 (unsigned long long)start, 303 limits->logical_block_size, bdevname(bdev, b)); 304 return 1; 305 } 306 307 if (len & (logical_block_size_sectors - 1)) { 308 DMWARN("%s: len=%llu not aligned to h/w " 309 "logical block size %u of %s", 310 dm_device_name(ti->table->md), 311 (unsigned long long)len, 312 limits->logical_block_size, bdevname(bdev, b)); 313 return 1; 314 } 315 316 return 0; 317 } 318 319 /* 320 * This upgrades the mode on an already open dm_dev, being 321 * careful to leave things as they were if we fail to reopen the 322 * device and not to touch the existing bdev field in case 323 * it is accessed concurrently. 324 */ 325 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 326 struct mapped_device *md) 327 { 328 int r; 329 struct dm_dev *old_dev, *new_dev; 330 331 old_dev = dd->dm_dev; 332 333 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 334 dd->dm_dev->mode | new_mode, &new_dev); 335 if (r) 336 return r; 337 338 dd->dm_dev = new_dev; 339 dm_put_table_device(md, old_dev); 340 341 return 0; 342 } 343 344 /* 345 * Convert the path to a device 346 */ 347 dev_t dm_get_dev_t(const char *path) 348 { 349 dev_t dev; 350 351 if (lookup_bdev(path, &dev)) 352 dev = name_to_dev_t(path); 353 return dev; 354 } 355 EXPORT_SYMBOL_GPL(dm_get_dev_t); 356 357 /* 358 * Add a device to the list, or just increment the usage count if 359 * it's already present. 360 */ 361 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 362 struct dm_dev **result) 363 { 364 int r; 365 dev_t dev; 366 struct dm_dev_internal *dd; 367 struct dm_table *t = ti->table; 368 369 BUG_ON(!t); 370 371 dev = dm_get_dev_t(path); 372 if (!dev) 373 return -ENODEV; 374 375 dd = find_device(&t->devices, dev); 376 if (!dd) { 377 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 378 if (!dd) 379 return -ENOMEM; 380 381 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 382 kfree(dd); 383 return r; 384 } 385 386 refcount_set(&dd->count, 1); 387 list_add(&dd->list, &t->devices); 388 goto out; 389 390 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 391 r = upgrade_mode(dd, mode, t->md); 392 if (r) 393 return r; 394 } 395 refcount_inc(&dd->count); 396 out: 397 *result = dd->dm_dev; 398 return 0; 399 } 400 EXPORT_SYMBOL(dm_get_device); 401 402 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 403 sector_t start, sector_t len, void *data) 404 { 405 struct queue_limits *limits = data; 406 struct block_device *bdev = dev->bdev; 407 struct request_queue *q = bdev_get_queue(bdev); 408 char b[BDEVNAME_SIZE]; 409 410 if (unlikely(!q)) { 411 DMWARN("%s: Cannot set limits for nonexistent device %s", 412 dm_device_name(ti->table->md), bdevname(bdev, b)); 413 return 0; 414 } 415 416 if (blk_stack_limits(limits, &q->limits, 417 get_start_sect(bdev) + start) < 0) 418 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 419 "physical_block_size=%u, logical_block_size=%u, " 420 "alignment_offset=%u, start=%llu", 421 dm_device_name(ti->table->md), bdevname(bdev, b), 422 q->limits.physical_block_size, 423 q->limits.logical_block_size, 424 q->limits.alignment_offset, 425 (unsigned long long) start << SECTOR_SHIFT); 426 return 0; 427 } 428 429 /* 430 * Decrement a device's use count and remove it if necessary. 431 */ 432 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 433 { 434 int found = 0; 435 struct list_head *devices = &ti->table->devices; 436 struct dm_dev_internal *dd; 437 438 list_for_each_entry(dd, devices, list) { 439 if (dd->dm_dev == d) { 440 found = 1; 441 break; 442 } 443 } 444 if (!found) { 445 DMWARN("%s: device %s not in table devices list", 446 dm_device_name(ti->table->md), d->name); 447 return; 448 } 449 if (refcount_dec_and_test(&dd->count)) { 450 dm_put_table_device(ti->table->md, d); 451 list_del(&dd->list); 452 kfree(dd); 453 } 454 } 455 EXPORT_SYMBOL(dm_put_device); 456 457 /* 458 * Checks to see if the target joins onto the end of the table. 459 */ 460 static int adjoin(struct dm_table *table, struct dm_target *ti) 461 { 462 struct dm_target *prev; 463 464 if (!table->num_targets) 465 return !ti->begin; 466 467 prev = &table->targets[table->num_targets - 1]; 468 return (ti->begin == (prev->begin + prev->len)); 469 } 470 471 /* 472 * Used to dynamically allocate the arg array. 473 * 474 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 475 * process messages even if some device is suspended. These messages have a 476 * small fixed number of arguments. 477 * 478 * On the other hand, dm-switch needs to process bulk data using messages and 479 * excessive use of GFP_NOIO could cause trouble. 480 */ 481 static char **realloc_argv(unsigned *size, char **old_argv) 482 { 483 char **argv; 484 unsigned new_size; 485 gfp_t gfp; 486 487 if (*size) { 488 new_size = *size * 2; 489 gfp = GFP_KERNEL; 490 } else { 491 new_size = 8; 492 gfp = GFP_NOIO; 493 } 494 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 495 if (argv && old_argv) { 496 memcpy(argv, old_argv, *size * sizeof(*argv)); 497 *size = new_size; 498 } 499 500 kfree(old_argv); 501 return argv; 502 } 503 504 /* 505 * Destructively splits up the argument list to pass to ctr. 506 */ 507 int dm_split_args(int *argc, char ***argvp, char *input) 508 { 509 char *start, *end = input, *out, **argv = NULL; 510 unsigned array_size = 0; 511 512 *argc = 0; 513 514 if (!input) { 515 *argvp = NULL; 516 return 0; 517 } 518 519 argv = realloc_argv(&array_size, argv); 520 if (!argv) 521 return -ENOMEM; 522 523 while (1) { 524 /* Skip whitespace */ 525 start = skip_spaces(end); 526 527 if (!*start) 528 break; /* success, we hit the end */ 529 530 /* 'out' is used to remove any back-quotes */ 531 end = out = start; 532 while (*end) { 533 /* Everything apart from '\0' can be quoted */ 534 if (*end == '\\' && *(end + 1)) { 535 *out++ = *(end + 1); 536 end += 2; 537 continue; 538 } 539 540 if (isspace(*end)) 541 break; /* end of token */ 542 543 *out++ = *end++; 544 } 545 546 /* have we already filled the array ? */ 547 if ((*argc + 1) > array_size) { 548 argv = realloc_argv(&array_size, argv); 549 if (!argv) 550 return -ENOMEM; 551 } 552 553 /* we know this is whitespace */ 554 if (*end) 555 end++; 556 557 /* terminate the string and put it in the array */ 558 *out = '\0'; 559 argv[*argc] = start; 560 (*argc)++; 561 } 562 563 *argvp = argv; 564 return 0; 565 } 566 567 /* 568 * Impose necessary and sufficient conditions on a devices's table such 569 * that any incoming bio which respects its logical_block_size can be 570 * processed successfully. If it falls across the boundary between 571 * two or more targets, the size of each piece it gets split into must 572 * be compatible with the logical_block_size of the target processing it. 573 */ 574 static int validate_hardware_logical_block_alignment(struct dm_table *table, 575 struct queue_limits *limits) 576 { 577 /* 578 * This function uses arithmetic modulo the logical_block_size 579 * (in units of 512-byte sectors). 580 */ 581 unsigned short device_logical_block_size_sects = 582 limits->logical_block_size >> SECTOR_SHIFT; 583 584 /* 585 * Offset of the start of the next table entry, mod logical_block_size. 586 */ 587 unsigned short next_target_start = 0; 588 589 /* 590 * Given an aligned bio that extends beyond the end of a 591 * target, how many sectors must the next target handle? 592 */ 593 unsigned short remaining = 0; 594 595 struct dm_target *ti; 596 struct queue_limits ti_limits; 597 unsigned i; 598 599 /* 600 * Check each entry in the table in turn. 601 */ 602 for (i = 0; i < dm_table_get_num_targets(table); i++) { 603 ti = dm_table_get_target(table, i); 604 605 blk_set_stacking_limits(&ti_limits); 606 607 /* combine all target devices' limits */ 608 if (ti->type->iterate_devices) 609 ti->type->iterate_devices(ti, dm_set_device_limits, 610 &ti_limits); 611 612 /* 613 * If the remaining sectors fall entirely within this 614 * table entry are they compatible with its logical_block_size? 615 */ 616 if (remaining < ti->len && 617 remaining & ((ti_limits.logical_block_size >> 618 SECTOR_SHIFT) - 1)) 619 break; /* Error */ 620 621 next_target_start = 622 (unsigned short) ((next_target_start + ti->len) & 623 (device_logical_block_size_sects - 1)); 624 remaining = next_target_start ? 625 device_logical_block_size_sects - next_target_start : 0; 626 } 627 628 if (remaining) { 629 DMWARN("%s: table line %u (start sect %llu len %llu) " 630 "not aligned to h/w logical block size %u", 631 dm_device_name(table->md), i, 632 (unsigned long long) ti->begin, 633 (unsigned long long) ti->len, 634 limits->logical_block_size); 635 return -EINVAL; 636 } 637 638 return 0; 639 } 640 641 int dm_table_add_target(struct dm_table *t, const char *type, 642 sector_t start, sector_t len, char *params) 643 { 644 int r = -EINVAL, argc; 645 char **argv; 646 struct dm_target *tgt; 647 648 if (t->singleton) { 649 DMERR("%s: target type %s must appear alone in table", 650 dm_device_name(t->md), t->targets->type->name); 651 return -EINVAL; 652 } 653 654 BUG_ON(t->num_targets >= t->num_allocated); 655 656 tgt = t->targets + t->num_targets; 657 memset(tgt, 0, sizeof(*tgt)); 658 659 if (!len) { 660 DMERR("%s: zero-length target", dm_device_name(t->md)); 661 return -EINVAL; 662 } 663 664 tgt->type = dm_get_target_type(type); 665 if (!tgt->type) { 666 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 667 return -EINVAL; 668 } 669 670 if (dm_target_needs_singleton(tgt->type)) { 671 if (t->num_targets) { 672 tgt->error = "singleton target type must appear alone in table"; 673 goto bad; 674 } 675 t->singleton = true; 676 } 677 678 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 679 tgt->error = "target type may not be included in a read-only table"; 680 goto bad; 681 } 682 683 if (t->immutable_target_type) { 684 if (t->immutable_target_type != tgt->type) { 685 tgt->error = "immutable target type cannot be mixed with other target types"; 686 goto bad; 687 } 688 } else if (dm_target_is_immutable(tgt->type)) { 689 if (t->num_targets) { 690 tgt->error = "immutable target type cannot be mixed with other target types"; 691 goto bad; 692 } 693 t->immutable_target_type = tgt->type; 694 } 695 696 if (dm_target_has_integrity(tgt->type)) 697 t->integrity_added = 1; 698 699 tgt->table = t; 700 tgt->begin = start; 701 tgt->len = len; 702 tgt->error = "Unknown error"; 703 704 /* 705 * Does this target adjoin the previous one ? 706 */ 707 if (!adjoin(t, tgt)) { 708 tgt->error = "Gap in table"; 709 goto bad; 710 } 711 712 r = dm_split_args(&argc, &argv, params); 713 if (r) { 714 tgt->error = "couldn't split parameters (insufficient memory)"; 715 goto bad; 716 } 717 718 r = tgt->type->ctr(tgt, argc, argv); 719 kfree(argv); 720 if (r) 721 goto bad; 722 723 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 724 725 if (!tgt->num_discard_bios && tgt->discards_supported) 726 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 727 dm_device_name(t->md), type); 728 729 return 0; 730 731 bad: 732 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 733 dm_put_target_type(tgt->type); 734 return r; 735 } 736 737 /* 738 * Target argument parsing helpers. 739 */ 740 static int validate_next_arg(const struct dm_arg *arg, 741 struct dm_arg_set *arg_set, 742 unsigned *value, char **error, unsigned grouped) 743 { 744 const char *arg_str = dm_shift_arg(arg_set); 745 char dummy; 746 747 if (!arg_str || 748 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 749 (*value < arg->min) || 750 (*value > arg->max) || 751 (grouped && arg_set->argc < *value)) { 752 *error = arg->error; 753 return -EINVAL; 754 } 755 756 return 0; 757 } 758 759 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 760 unsigned *value, char **error) 761 { 762 return validate_next_arg(arg, arg_set, value, error, 0); 763 } 764 EXPORT_SYMBOL(dm_read_arg); 765 766 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 767 unsigned *value, char **error) 768 { 769 return validate_next_arg(arg, arg_set, value, error, 1); 770 } 771 EXPORT_SYMBOL(dm_read_arg_group); 772 773 const char *dm_shift_arg(struct dm_arg_set *as) 774 { 775 char *r; 776 777 if (as->argc) { 778 as->argc--; 779 r = *as->argv; 780 as->argv++; 781 return r; 782 } 783 784 return NULL; 785 } 786 EXPORT_SYMBOL(dm_shift_arg); 787 788 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 789 { 790 BUG_ON(as->argc < num_args); 791 as->argc -= num_args; 792 as->argv += num_args; 793 } 794 EXPORT_SYMBOL(dm_consume_args); 795 796 static bool __table_type_bio_based(enum dm_queue_mode table_type) 797 { 798 return (table_type == DM_TYPE_BIO_BASED || 799 table_type == DM_TYPE_DAX_BIO_BASED); 800 } 801 802 static bool __table_type_request_based(enum dm_queue_mode table_type) 803 { 804 return table_type == DM_TYPE_REQUEST_BASED; 805 } 806 807 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 808 { 809 t->type = type; 810 } 811 EXPORT_SYMBOL_GPL(dm_table_set_type); 812 813 /* validate the dax capability of the target device span */ 814 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 815 sector_t start, sector_t len, void *data) 816 { 817 int blocksize = *(int *) data, id; 818 bool rc; 819 820 id = dax_read_lock(); 821 rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len); 822 dax_read_unlock(id); 823 824 return rc; 825 } 826 827 /* Check devices support synchronous DAX */ 828 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev, 829 sector_t start, sector_t len, void *data) 830 { 831 return dev->dax_dev && dax_synchronous(dev->dax_dev); 832 } 833 834 bool dm_table_supports_dax(struct dm_table *t, 835 iterate_devices_callout_fn iterate_fn, int *blocksize) 836 { 837 struct dm_target *ti; 838 unsigned i; 839 840 /* Ensure that all targets support DAX. */ 841 for (i = 0; i < dm_table_get_num_targets(t); i++) { 842 ti = dm_table_get_target(t, i); 843 844 if (!ti->type->direct_access) 845 return false; 846 847 if (!ti->type->iterate_devices || 848 !ti->type->iterate_devices(ti, iterate_fn, blocksize)) 849 return false; 850 } 851 852 return true; 853 } 854 855 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 856 sector_t start, sector_t len, void *data) 857 { 858 struct block_device *bdev = dev->bdev; 859 struct request_queue *q = bdev_get_queue(bdev); 860 861 /* request-based cannot stack on partitions! */ 862 if (bdev_is_partition(bdev)) 863 return false; 864 865 return queue_is_mq(q); 866 } 867 868 static int dm_table_determine_type(struct dm_table *t) 869 { 870 unsigned i; 871 unsigned bio_based = 0, request_based = 0, hybrid = 0; 872 struct dm_target *tgt; 873 struct list_head *devices = dm_table_get_devices(t); 874 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 875 int page_size = PAGE_SIZE; 876 877 if (t->type != DM_TYPE_NONE) { 878 /* target already set the table's type */ 879 if (t->type == DM_TYPE_BIO_BASED) { 880 /* possibly upgrade to a variant of bio-based */ 881 goto verify_bio_based; 882 } 883 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 884 goto verify_rq_based; 885 } 886 887 for (i = 0; i < t->num_targets; i++) { 888 tgt = t->targets + i; 889 if (dm_target_hybrid(tgt)) 890 hybrid = 1; 891 else if (dm_target_request_based(tgt)) 892 request_based = 1; 893 else 894 bio_based = 1; 895 896 if (bio_based && request_based) { 897 DMERR("Inconsistent table: different target types" 898 " can't be mixed up"); 899 return -EINVAL; 900 } 901 } 902 903 if (hybrid && !bio_based && !request_based) { 904 /* 905 * The targets can work either way. 906 * Determine the type from the live device. 907 * Default to bio-based if device is new. 908 */ 909 if (__table_type_request_based(live_md_type)) 910 request_based = 1; 911 else 912 bio_based = 1; 913 } 914 915 if (bio_based) { 916 verify_bio_based: 917 /* We must use this table as bio-based */ 918 t->type = DM_TYPE_BIO_BASED; 919 if (dm_table_supports_dax(t, device_supports_dax, &page_size) || 920 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 921 t->type = DM_TYPE_DAX_BIO_BASED; 922 } 923 return 0; 924 } 925 926 BUG_ON(!request_based); /* No targets in this table */ 927 928 t->type = DM_TYPE_REQUEST_BASED; 929 930 verify_rq_based: 931 /* 932 * Request-based dm supports only tables that have a single target now. 933 * To support multiple targets, request splitting support is needed, 934 * and that needs lots of changes in the block-layer. 935 * (e.g. request completion process for partial completion.) 936 */ 937 if (t->num_targets > 1) { 938 DMERR("request-based DM doesn't support multiple targets"); 939 return -EINVAL; 940 } 941 942 if (list_empty(devices)) { 943 int srcu_idx; 944 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 945 946 /* inherit live table's type */ 947 if (live_table) 948 t->type = live_table->type; 949 dm_put_live_table(t->md, srcu_idx); 950 return 0; 951 } 952 953 tgt = dm_table_get_immutable_target(t); 954 if (!tgt) { 955 DMERR("table load rejected: immutable target is required"); 956 return -EINVAL; 957 } else if (tgt->max_io_len) { 958 DMERR("table load rejected: immutable target that splits IO is not supported"); 959 return -EINVAL; 960 } 961 962 /* Non-request-stackable devices can't be used for request-based dm */ 963 if (!tgt->type->iterate_devices || 964 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 965 DMERR("table load rejected: including non-request-stackable devices"); 966 return -EINVAL; 967 } 968 969 return 0; 970 } 971 972 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 973 { 974 return t->type; 975 } 976 977 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 978 { 979 return t->immutable_target_type; 980 } 981 982 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 983 { 984 /* Immutable target is implicitly a singleton */ 985 if (t->num_targets > 1 || 986 !dm_target_is_immutable(t->targets[0].type)) 987 return NULL; 988 989 return t->targets; 990 } 991 992 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 993 { 994 struct dm_target *ti; 995 unsigned i; 996 997 for (i = 0; i < dm_table_get_num_targets(t); i++) { 998 ti = dm_table_get_target(t, i); 999 if (dm_target_is_wildcard(ti->type)) 1000 return ti; 1001 } 1002 1003 return NULL; 1004 } 1005 1006 bool dm_table_bio_based(struct dm_table *t) 1007 { 1008 return __table_type_bio_based(dm_table_get_type(t)); 1009 } 1010 1011 bool dm_table_request_based(struct dm_table *t) 1012 { 1013 return __table_type_request_based(dm_table_get_type(t)); 1014 } 1015 1016 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1017 { 1018 enum dm_queue_mode type = dm_table_get_type(t); 1019 unsigned per_io_data_size = 0; 1020 unsigned min_pool_size = 0; 1021 struct dm_target *ti; 1022 unsigned i; 1023 1024 if (unlikely(type == DM_TYPE_NONE)) { 1025 DMWARN("no table type is set, can't allocate mempools"); 1026 return -EINVAL; 1027 } 1028 1029 if (__table_type_bio_based(type)) 1030 for (i = 0; i < t->num_targets; i++) { 1031 ti = t->targets + i; 1032 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1033 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1034 } 1035 1036 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1037 per_io_data_size, min_pool_size); 1038 if (!t->mempools) 1039 return -ENOMEM; 1040 1041 return 0; 1042 } 1043 1044 void dm_table_free_md_mempools(struct dm_table *t) 1045 { 1046 dm_free_md_mempools(t->mempools); 1047 t->mempools = NULL; 1048 } 1049 1050 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1051 { 1052 return t->mempools; 1053 } 1054 1055 static int setup_indexes(struct dm_table *t) 1056 { 1057 int i; 1058 unsigned int total = 0; 1059 sector_t *indexes; 1060 1061 /* allocate the space for *all* the indexes */ 1062 for (i = t->depth - 2; i >= 0; i--) { 1063 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1064 total += t->counts[i]; 1065 } 1066 1067 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1068 if (!indexes) 1069 return -ENOMEM; 1070 1071 /* set up internal nodes, bottom-up */ 1072 for (i = t->depth - 2; i >= 0; i--) { 1073 t->index[i] = indexes; 1074 indexes += (KEYS_PER_NODE * t->counts[i]); 1075 setup_btree_index(i, t); 1076 } 1077 1078 return 0; 1079 } 1080 1081 /* 1082 * Builds the btree to index the map. 1083 */ 1084 static int dm_table_build_index(struct dm_table *t) 1085 { 1086 int r = 0; 1087 unsigned int leaf_nodes; 1088 1089 /* how many indexes will the btree have ? */ 1090 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1091 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1092 1093 /* leaf layer has already been set up */ 1094 t->counts[t->depth - 1] = leaf_nodes; 1095 t->index[t->depth - 1] = t->highs; 1096 1097 if (t->depth >= 2) 1098 r = setup_indexes(t); 1099 1100 return r; 1101 } 1102 1103 static bool integrity_profile_exists(struct gendisk *disk) 1104 { 1105 return !!blk_get_integrity(disk); 1106 } 1107 1108 /* 1109 * Get a disk whose integrity profile reflects the table's profile. 1110 * Returns NULL if integrity support was inconsistent or unavailable. 1111 */ 1112 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1113 { 1114 struct list_head *devices = dm_table_get_devices(t); 1115 struct dm_dev_internal *dd = NULL; 1116 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1117 unsigned i; 1118 1119 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1120 struct dm_target *ti = dm_table_get_target(t, i); 1121 if (!dm_target_passes_integrity(ti->type)) 1122 goto no_integrity; 1123 } 1124 1125 list_for_each_entry(dd, devices, list) { 1126 template_disk = dd->dm_dev->bdev->bd_disk; 1127 if (!integrity_profile_exists(template_disk)) 1128 goto no_integrity; 1129 else if (prev_disk && 1130 blk_integrity_compare(prev_disk, template_disk) < 0) 1131 goto no_integrity; 1132 prev_disk = template_disk; 1133 } 1134 1135 return template_disk; 1136 1137 no_integrity: 1138 if (prev_disk) 1139 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1140 dm_device_name(t->md), 1141 prev_disk->disk_name, 1142 template_disk->disk_name); 1143 return NULL; 1144 } 1145 1146 /* 1147 * Register the mapped device for blk_integrity support if the 1148 * underlying devices have an integrity profile. But all devices may 1149 * not have matching profiles (checking all devices isn't reliable 1150 * during table load because this table may use other DM device(s) which 1151 * must be resumed before they will have an initialized integity 1152 * profile). Consequently, stacked DM devices force a 2 stage integrity 1153 * profile validation: First pass during table load, final pass during 1154 * resume. 1155 */ 1156 static int dm_table_register_integrity(struct dm_table *t) 1157 { 1158 struct mapped_device *md = t->md; 1159 struct gendisk *template_disk = NULL; 1160 1161 /* If target handles integrity itself do not register it here. */ 1162 if (t->integrity_added) 1163 return 0; 1164 1165 template_disk = dm_table_get_integrity_disk(t); 1166 if (!template_disk) 1167 return 0; 1168 1169 if (!integrity_profile_exists(dm_disk(md))) { 1170 t->integrity_supported = true; 1171 /* 1172 * Register integrity profile during table load; we can do 1173 * this because the final profile must match during resume. 1174 */ 1175 blk_integrity_register(dm_disk(md), 1176 blk_get_integrity(template_disk)); 1177 return 0; 1178 } 1179 1180 /* 1181 * If DM device already has an initialized integrity 1182 * profile the new profile should not conflict. 1183 */ 1184 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1185 DMWARN("%s: conflict with existing integrity profile: " 1186 "%s profile mismatch", 1187 dm_device_name(t->md), 1188 template_disk->disk_name); 1189 return 1; 1190 } 1191 1192 /* Preserve existing integrity profile */ 1193 t->integrity_supported = true; 1194 return 0; 1195 } 1196 1197 /* 1198 * Prepares the table for use by building the indices, 1199 * setting the type, and allocating mempools. 1200 */ 1201 int dm_table_complete(struct dm_table *t) 1202 { 1203 int r; 1204 1205 r = dm_table_determine_type(t); 1206 if (r) { 1207 DMERR("unable to determine table type"); 1208 return r; 1209 } 1210 1211 r = dm_table_build_index(t); 1212 if (r) { 1213 DMERR("unable to build btrees"); 1214 return r; 1215 } 1216 1217 r = dm_table_register_integrity(t); 1218 if (r) { 1219 DMERR("could not register integrity profile."); 1220 return r; 1221 } 1222 1223 r = dm_table_alloc_md_mempools(t, t->md); 1224 if (r) 1225 DMERR("unable to allocate mempools"); 1226 1227 return r; 1228 } 1229 1230 static DEFINE_MUTEX(_event_lock); 1231 void dm_table_event_callback(struct dm_table *t, 1232 void (*fn)(void *), void *context) 1233 { 1234 mutex_lock(&_event_lock); 1235 t->event_fn = fn; 1236 t->event_context = context; 1237 mutex_unlock(&_event_lock); 1238 } 1239 1240 void dm_table_event(struct dm_table *t) 1241 { 1242 mutex_lock(&_event_lock); 1243 if (t->event_fn) 1244 t->event_fn(t->event_context); 1245 mutex_unlock(&_event_lock); 1246 } 1247 EXPORT_SYMBOL(dm_table_event); 1248 1249 inline sector_t dm_table_get_size(struct dm_table *t) 1250 { 1251 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1252 } 1253 EXPORT_SYMBOL(dm_table_get_size); 1254 1255 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1256 { 1257 if (index >= t->num_targets) 1258 return NULL; 1259 1260 return t->targets + index; 1261 } 1262 1263 /* 1264 * Search the btree for the correct target. 1265 * 1266 * Caller should check returned pointer for NULL 1267 * to trap I/O beyond end of device. 1268 */ 1269 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1270 { 1271 unsigned int l, n = 0, k = 0; 1272 sector_t *node; 1273 1274 if (unlikely(sector >= dm_table_get_size(t))) 1275 return NULL; 1276 1277 for (l = 0; l < t->depth; l++) { 1278 n = get_child(n, k); 1279 node = get_node(t, l, n); 1280 1281 for (k = 0; k < KEYS_PER_NODE; k++) 1282 if (node[k] >= sector) 1283 break; 1284 } 1285 1286 return &t->targets[(KEYS_PER_NODE * n) + k]; 1287 } 1288 1289 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1290 sector_t start, sector_t len, void *data) 1291 { 1292 unsigned *num_devices = data; 1293 1294 (*num_devices)++; 1295 1296 return 0; 1297 } 1298 1299 /* 1300 * Check whether a table has no data devices attached using each 1301 * target's iterate_devices method. 1302 * Returns false if the result is unknown because a target doesn't 1303 * support iterate_devices. 1304 */ 1305 bool dm_table_has_no_data_devices(struct dm_table *table) 1306 { 1307 struct dm_target *ti; 1308 unsigned i, num_devices; 1309 1310 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1311 ti = dm_table_get_target(table, i); 1312 1313 if (!ti->type->iterate_devices) 1314 return false; 1315 1316 num_devices = 0; 1317 ti->type->iterate_devices(ti, count_device, &num_devices); 1318 if (num_devices) 1319 return false; 1320 } 1321 1322 return true; 1323 } 1324 1325 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1326 sector_t start, sector_t len, void *data) 1327 { 1328 struct request_queue *q = bdev_get_queue(dev->bdev); 1329 enum blk_zoned_model *zoned_model = data; 1330 1331 return q && blk_queue_zoned_model(q) == *zoned_model; 1332 } 1333 1334 static bool dm_table_supports_zoned_model(struct dm_table *t, 1335 enum blk_zoned_model zoned_model) 1336 { 1337 struct dm_target *ti; 1338 unsigned i; 1339 1340 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1341 ti = dm_table_get_target(t, i); 1342 1343 if (zoned_model == BLK_ZONED_HM && 1344 !dm_target_supports_zoned_hm(ti->type)) 1345 return false; 1346 1347 if (!ti->type->iterate_devices || 1348 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1349 return false; 1350 } 1351 1352 return true; 1353 } 1354 1355 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1356 sector_t start, sector_t len, void *data) 1357 { 1358 struct request_queue *q = bdev_get_queue(dev->bdev); 1359 unsigned int *zone_sectors = data; 1360 1361 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1362 } 1363 1364 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1365 unsigned int zone_sectors) 1366 { 1367 struct dm_target *ti; 1368 unsigned i; 1369 1370 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1371 ti = dm_table_get_target(t, i); 1372 1373 if (!ti->type->iterate_devices || 1374 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1375 return false; 1376 } 1377 1378 return true; 1379 } 1380 1381 static int validate_hardware_zoned_model(struct dm_table *table, 1382 enum blk_zoned_model zoned_model, 1383 unsigned int zone_sectors) 1384 { 1385 if (zoned_model == BLK_ZONED_NONE) 1386 return 0; 1387 1388 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1389 DMERR("%s: zoned model is not consistent across all devices", 1390 dm_device_name(table->md)); 1391 return -EINVAL; 1392 } 1393 1394 /* Check zone size validity and compatibility */ 1395 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1396 return -EINVAL; 1397 1398 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1399 DMERR("%s: zone sectors is not consistent across all devices", 1400 dm_device_name(table->md)); 1401 return -EINVAL; 1402 } 1403 1404 return 0; 1405 } 1406 1407 /* 1408 * Establish the new table's queue_limits and validate them. 1409 */ 1410 int dm_calculate_queue_limits(struct dm_table *table, 1411 struct queue_limits *limits) 1412 { 1413 struct dm_target *ti; 1414 struct queue_limits ti_limits; 1415 unsigned i; 1416 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1417 unsigned int zone_sectors = 0; 1418 1419 blk_set_stacking_limits(limits); 1420 1421 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1422 blk_set_stacking_limits(&ti_limits); 1423 1424 ti = dm_table_get_target(table, i); 1425 1426 if (!ti->type->iterate_devices) 1427 goto combine_limits; 1428 1429 /* 1430 * Combine queue limits of all the devices this target uses. 1431 */ 1432 ti->type->iterate_devices(ti, dm_set_device_limits, 1433 &ti_limits); 1434 1435 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1436 /* 1437 * After stacking all limits, validate all devices 1438 * in table support this zoned model and zone sectors. 1439 */ 1440 zoned_model = ti_limits.zoned; 1441 zone_sectors = ti_limits.chunk_sectors; 1442 } 1443 1444 /* Set I/O hints portion of queue limits */ 1445 if (ti->type->io_hints) 1446 ti->type->io_hints(ti, &ti_limits); 1447 1448 /* 1449 * Check each device area is consistent with the target's 1450 * overall queue limits. 1451 */ 1452 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1453 &ti_limits)) 1454 return -EINVAL; 1455 1456 combine_limits: 1457 /* 1458 * Merge this target's queue limits into the overall limits 1459 * for the table. 1460 */ 1461 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1462 DMWARN("%s: adding target device " 1463 "(start sect %llu len %llu) " 1464 "caused an alignment inconsistency", 1465 dm_device_name(table->md), 1466 (unsigned long long) ti->begin, 1467 (unsigned long long) ti->len); 1468 } 1469 1470 /* 1471 * Verify that the zoned model and zone sectors, as determined before 1472 * any .io_hints override, are the same across all devices in the table. 1473 * - this is especially relevant if .io_hints is emulating a disk-managed 1474 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1475 * BUT... 1476 */ 1477 if (limits->zoned != BLK_ZONED_NONE) { 1478 /* 1479 * ...IF the above limits stacking determined a zoned model 1480 * validate that all of the table's devices conform to it. 1481 */ 1482 zoned_model = limits->zoned; 1483 zone_sectors = limits->chunk_sectors; 1484 } 1485 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1486 return -EINVAL; 1487 1488 return validate_hardware_logical_block_alignment(table, limits); 1489 } 1490 1491 /* 1492 * Verify that all devices have an integrity profile that matches the 1493 * DM device's registered integrity profile. If the profiles don't 1494 * match then unregister the DM device's integrity profile. 1495 */ 1496 static void dm_table_verify_integrity(struct dm_table *t) 1497 { 1498 struct gendisk *template_disk = NULL; 1499 1500 if (t->integrity_added) 1501 return; 1502 1503 if (t->integrity_supported) { 1504 /* 1505 * Verify that the original integrity profile 1506 * matches all the devices in this table. 1507 */ 1508 template_disk = dm_table_get_integrity_disk(t); 1509 if (template_disk && 1510 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1511 return; 1512 } 1513 1514 if (integrity_profile_exists(dm_disk(t->md))) { 1515 DMWARN("%s: unable to establish an integrity profile", 1516 dm_device_name(t->md)); 1517 blk_integrity_unregister(dm_disk(t->md)); 1518 } 1519 } 1520 1521 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1522 sector_t start, sector_t len, void *data) 1523 { 1524 unsigned long flush = (unsigned long) data; 1525 struct request_queue *q = bdev_get_queue(dev->bdev); 1526 1527 return q && (q->queue_flags & flush); 1528 } 1529 1530 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1531 { 1532 struct dm_target *ti; 1533 unsigned i; 1534 1535 /* 1536 * Require at least one underlying device to support flushes. 1537 * t->devices includes internal dm devices such as mirror logs 1538 * so we need to use iterate_devices here, which targets 1539 * supporting flushes must provide. 1540 */ 1541 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1542 ti = dm_table_get_target(t, i); 1543 1544 if (!ti->num_flush_bios) 1545 continue; 1546 1547 if (ti->flush_supported) 1548 return true; 1549 1550 if (ti->type->iterate_devices && 1551 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1552 return true; 1553 } 1554 1555 return false; 1556 } 1557 1558 static int device_dax_write_cache_enabled(struct dm_target *ti, 1559 struct dm_dev *dev, sector_t start, 1560 sector_t len, void *data) 1561 { 1562 struct dax_device *dax_dev = dev->dax_dev; 1563 1564 if (!dax_dev) 1565 return false; 1566 1567 if (dax_write_cache_enabled(dax_dev)) 1568 return true; 1569 return false; 1570 } 1571 1572 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1573 { 1574 struct dm_target *ti; 1575 unsigned i; 1576 1577 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1578 ti = dm_table_get_target(t, i); 1579 1580 if (ti->type->iterate_devices && 1581 ti->type->iterate_devices(ti, 1582 device_dax_write_cache_enabled, NULL)) 1583 return true; 1584 } 1585 1586 return false; 1587 } 1588 1589 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1590 sector_t start, sector_t len, void *data) 1591 { 1592 struct request_queue *q = bdev_get_queue(dev->bdev); 1593 1594 return q && blk_queue_nonrot(q); 1595 } 1596 1597 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1598 sector_t start, sector_t len, void *data) 1599 { 1600 struct request_queue *q = bdev_get_queue(dev->bdev); 1601 1602 return q && !blk_queue_add_random(q); 1603 } 1604 1605 static bool dm_table_all_devices_attribute(struct dm_table *t, 1606 iterate_devices_callout_fn func) 1607 { 1608 struct dm_target *ti; 1609 unsigned i; 1610 1611 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1612 ti = dm_table_get_target(t, i); 1613 1614 if (!ti->type->iterate_devices || 1615 !ti->type->iterate_devices(ti, func, NULL)) 1616 return false; 1617 } 1618 1619 return true; 1620 } 1621 1622 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1623 sector_t start, sector_t len, void *data) 1624 { 1625 struct request_queue *q = bdev_get_queue(dev->bdev); 1626 1627 return q && !q->limits.max_write_same_sectors; 1628 } 1629 1630 static bool dm_table_supports_write_same(struct dm_table *t) 1631 { 1632 struct dm_target *ti; 1633 unsigned i; 1634 1635 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1636 ti = dm_table_get_target(t, i); 1637 1638 if (!ti->num_write_same_bios) 1639 return false; 1640 1641 if (!ti->type->iterate_devices || 1642 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1643 return false; 1644 } 1645 1646 return true; 1647 } 1648 1649 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1650 sector_t start, sector_t len, void *data) 1651 { 1652 struct request_queue *q = bdev_get_queue(dev->bdev); 1653 1654 return q && !q->limits.max_write_zeroes_sectors; 1655 } 1656 1657 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1658 { 1659 struct dm_target *ti; 1660 unsigned i = 0; 1661 1662 while (i < dm_table_get_num_targets(t)) { 1663 ti = dm_table_get_target(t, i++); 1664 1665 if (!ti->num_write_zeroes_bios) 1666 return false; 1667 1668 if (!ti->type->iterate_devices || 1669 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1670 return false; 1671 } 1672 1673 return true; 1674 } 1675 1676 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1677 sector_t start, sector_t len, void *data) 1678 { 1679 struct request_queue *q = bdev_get_queue(dev->bdev); 1680 1681 return q && !blk_queue_nowait(q); 1682 } 1683 1684 static bool dm_table_supports_nowait(struct dm_table *t) 1685 { 1686 struct dm_target *ti; 1687 unsigned i = 0; 1688 1689 while (i < dm_table_get_num_targets(t)) { 1690 ti = dm_table_get_target(t, i++); 1691 1692 if (!dm_target_supports_nowait(ti->type)) 1693 return false; 1694 1695 if (!ti->type->iterate_devices || 1696 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1697 return false; 1698 } 1699 1700 return true; 1701 } 1702 1703 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1704 sector_t start, sector_t len, void *data) 1705 { 1706 struct request_queue *q = bdev_get_queue(dev->bdev); 1707 1708 return q && !blk_queue_discard(q); 1709 } 1710 1711 static bool dm_table_supports_discards(struct dm_table *t) 1712 { 1713 struct dm_target *ti; 1714 unsigned i; 1715 1716 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1717 ti = dm_table_get_target(t, i); 1718 1719 if (!ti->num_discard_bios) 1720 return false; 1721 1722 /* 1723 * Either the target provides discard support (as implied by setting 1724 * 'discards_supported') or it relies on _all_ data devices having 1725 * discard support. 1726 */ 1727 if (!ti->discards_supported && 1728 (!ti->type->iterate_devices || 1729 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1730 return false; 1731 } 1732 1733 return true; 1734 } 1735 1736 static int device_not_secure_erase_capable(struct dm_target *ti, 1737 struct dm_dev *dev, sector_t start, 1738 sector_t len, void *data) 1739 { 1740 struct request_queue *q = bdev_get_queue(dev->bdev); 1741 1742 return q && !blk_queue_secure_erase(q); 1743 } 1744 1745 static bool dm_table_supports_secure_erase(struct dm_table *t) 1746 { 1747 struct dm_target *ti; 1748 unsigned int i; 1749 1750 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1751 ti = dm_table_get_target(t, i); 1752 1753 if (!ti->num_secure_erase_bios) 1754 return false; 1755 1756 if (!ti->type->iterate_devices || 1757 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1758 return false; 1759 } 1760 1761 return true; 1762 } 1763 1764 static int device_requires_stable_pages(struct dm_target *ti, 1765 struct dm_dev *dev, sector_t start, 1766 sector_t len, void *data) 1767 { 1768 struct request_queue *q = bdev_get_queue(dev->bdev); 1769 1770 return q && blk_queue_stable_writes(q); 1771 } 1772 1773 /* 1774 * If any underlying device requires stable pages, a table must require 1775 * them as well. Only targets that support iterate_devices are considered: 1776 * don't want error, zero, etc to require stable pages. 1777 */ 1778 static bool dm_table_requires_stable_pages(struct dm_table *t) 1779 { 1780 struct dm_target *ti; 1781 unsigned i; 1782 1783 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1784 ti = dm_table_get_target(t, i); 1785 1786 if (ti->type->iterate_devices && 1787 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL)) 1788 return true; 1789 } 1790 1791 return false; 1792 } 1793 1794 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1795 struct queue_limits *limits) 1796 { 1797 bool wc = false, fua = false; 1798 int page_size = PAGE_SIZE; 1799 1800 /* 1801 * Copy table's limits to the DM device's request_queue 1802 */ 1803 q->limits = *limits; 1804 1805 if (dm_table_supports_nowait(t)) 1806 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1807 else 1808 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1809 1810 if (!dm_table_supports_discards(t)) { 1811 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1812 /* Must also clear discard limits... */ 1813 q->limits.max_discard_sectors = 0; 1814 q->limits.max_hw_discard_sectors = 0; 1815 q->limits.discard_granularity = 0; 1816 q->limits.discard_alignment = 0; 1817 q->limits.discard_misaligned = 0; 1818 } else 1819 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1820 1821 if (dm_table_supports_secure_erase(t)) 1822 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1823 1824 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1825 wc = true; 1826 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1827 fua = true; 1828 } 1829 blk_queue_write_cache(q, wc, fua); 1830 1831 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) { 1832 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1833 if (dm_table_supports_dax(t, device_dax_synchronous, NULL)) 1834 set_dax_synchronous(t->md->dax_dev); 1835 } 1836 else 1837 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1838 1839 if (dm_table_supports_dax_write_cache(t)) 1840 dax_write_cache(t->md->dax_dev, true); 1841 1842 /* Ensure that all underlying devices are non-rotational. */ 1843 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1844 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1845 else 1846 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1847 1848 if (!dm_table_supports_write_same(t)) 1849 q->limits.max_write_same_sectors = 0; 1850 if (!dm_table_supports_write_zeroes(t)) 1851 q->limits.max_write_zeroes_sectors = 0; 1852 1853 dm_table_verify_integrity(t); 1854 1855 /* 1856 * Some devices don't use blk_integrity but still want stable pages 1857 * because they do their own checksumming. 1858 */ 1859 if (dm_table_requires_stable_pages(t)) 1860 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 1861 else 1862 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 1863 1864 /* 1865 * Determine whether or not this queue's I/O timings contribute 1866 * to the entropy pool, Only request-based targets use this. 1867 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1868 * have it set. 1869 */ 1870 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1871 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1872 1873 /* 1874 * For a zoned target, the number of zones should be updated for the 1875 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based 1876 * target, this is all that is needed. 1877 */ 1878 #ifdef CONFIG_BLK_DEV_ZONED 1879 if (blk_queue_is_zoned(q)) { 1880 WARN_ON_ONCE(queue_is_mq(q)); 1881 q->nr_zones = blkdev_nr_zones(t->md->disk); 1882 } 1883 #endif 1884 1885 blk_queue_update_readahead(q); 1886 } 1887 1888 unsigned int dm_table_get_num_targets(struct dm_table *t) 1889 { 1890 return t->num_targets; 1891 } 1892 1893 struct list_head *dm_table_get_devices(struct dm_table *t) 1894 { 1895 return &t->devices; 1896 } 1897 1898 fmode_t dm_table_get_mode(struct dm_table *t) 1899 { 1900 return t->mode; 1901 } 1902 EXPORT_SYMBOL(dm_table_get_mode); 1903 1904 enum suspend_mode { 1905 PRESUSPEND, 1906 PRESUSPEND_UNDO, 1907 POSTSUSPEND, 1908 }; 1909 1910 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1911 { 1912 int i = t->num_targets; 1913 struct dm_target *ti = t->targets; 1914 1915 lockdep_assert_held(&t->md->suspend_lock); 1916 1917 while (i--) { 1918 switch (mode) { 1919 case PRESUSPEND: 1920 if (ti->type->presuspend) 1921 ti->type->presuspend(ti); 1922 break; 1923 case PRESUSPEND_UNDO: 1924 if (ti->type->presuspend_undo) 1925 ti->type->presuspend_undo(ti); 1926 break; 1927 case POSTSUSPEND: 1928 if (ti->type->postsuspend) 1929 ti->type->postsuspend(ti); 1930 break; 1931 } 1932 ti++; 1933 } 1934 } 1935 1936 void dm_table_presuspend_targets(struct dm_table *t) 1937 { 1938 if (!t) 1939 return; 1940 1941 suspend_targets(t, PRESUSPEND); 1942 } 1943 1944 void dm_table_presuspend_undo_targets(struct dm_table *t) 1945 { 1946 if (!t) 1947 return; 1948 1949 suspend_targets(t, PRESUSPEND_UNDO); 1950 } 1951 1952 void dm_table_postsuspend_targets(struct dm_table *t) 1953 { 1954 if (!t) 1955 return; 1956 1957 suspend_targets(t, POSTSUSPEND); 1958 } 1959 1960 int dm_table_resume_targets(struct dm_table *t) 1961 { 1962 int i, r = 0; 1963 1964 lockdep_assert_held(&t->md->suspend_lock); 1965 1966 for (i = 0; i < t->num_targets; i++) { 1967 struct dm_target *ti = t->targets + i; 1968 1969 if (!ti->type->preresume) 1970 continue; 1971 1972 r = ti->type->preresume(ti); 1973 if (r) { 1974 DMERR("%s: %s: preresume failed, error = %d", 1975 dm_device_name(t->md), ti->type->name, r); 1976 return r; 1977 } 1978 } 1979 1980 for (i = 0; i < t->num_targets; i++) { 1981 struct dm_target *ti = t->targets + i; 1982 1983 if (ti->type->resume) 1984 ti->type->resume(ti); 1985 } 1986 1987 return 0; 1988 } 1989 1990 struct mapped_device *dm_table_get_md(struct dm_table *t) 1991 { 1992 return t->md; 1993 } 1994 EXPORT_SYMBOL(dm_table_get_md); 1995 1996 const char *dm_table_device_name(struct dm_table *t) 1997 { 1998 return dm_device_name(t->md); 1999 } 2000 EXPORT_SYMBOL_GPL(dm_table_device_name); 2001 2002 void dm_table_run_md_queue_async(struct dm_table *t) 2003 { 2004 if (!dm_table_request_based(t)) 2005 return; 2006 2007 if (t->md->queue) 2008 blk_mq_run_hw_queues(t->md->queue, true); 2009 } 2010 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2011 2012