1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t; 133 134 if (num_targets > DM_MAX_TARGETS) 135 return -EOVERFLOW; 136 137 t = kzalloc(sizeof(*t), GFP_KERNEL); 138 139 if (!t) 140 return -ENOMEM; 141 142 INIT_LIST_HEAD(&t->devices); 143 init_rwsem(&t->devices_lock); 144 145 if (!num_targets) 146 num_targets = KEYS_PER_NODE; 147 148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 149 150 if (!num_targets) { 151 kfree(t); 152 return -EOVERFLOW; 153 } 154 155 if (alloc_targets(t, num_targets)) { 156 kfree(t); 157 return -ENOMEM; 158 } 159 160 t->type = DM_TYPE_NONE; 161 t->mode = mode; 162 t->md = md; 163 t->flush_bypasses_map = true; 164 *result = t; 165 return 0; 166 } 167 168 static void free_devices(struct list_head *devices, struct mapped_device *md) 169 { 170 struct list_head *tmp, *next; 171 172 list_for_each_safe(tmp, next, devices) { 173 struct dm_dev_internal *dd = 174 list_entry(tmp, struct dm_dev_internal, list); 175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 176 dm_device_name(md), dd->dm_dev->name); 177 dm_put_table_device(md, dd->dm_dev); 178 kfree(dd); 179 } 180 } 181 182 static void dm_table_destroy_crypto_profile(struct dm_table *t); 183 184 void dm_table_destroy(struct dm_table *t) 185 { 186 if (!t) 187 return; 188 189 /* free the indexes */ 190 if (t->depth >= 2) 191 kvfree(t->index[t->depth - 2]); 192 193 /* free the targets */ 194 for (unsigned int i = 0; i < t->num_targets; i++) { 195 struct dm_target *ti = dm_table_get_target(t, i); 196 197 if (ti->type->dtr) 198 ti->type->dtr(ti); 199 200 dm_put_target_type(ti->type); 201 } 202 203 kvfree(t->highs); 204 205 /* free the device list */ 206 free_devices(&t->devices, t->md); 207 208 dm_free_md_mempools(t->mempools); 209 210 dm_table_destroy_crypto_profile(t); 211 212 kfree(t); 213 } 214 215 /* 216 * See if we've already got a device in the list. 217 */ 218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 219 { 220 struct dm_dev_internal *dd; 221 222 list_for_each_entry(dd, l, list) 223 if (dd->dm_dev->bdev->bd_dev == dev) 224 return dd; 225 226 return NULL; 227 } 228 229 /* 230 * If possible, this checks an area of a destination device is invalid. 231 */ 232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 233 sector_t start, sector_t len, void *data) 234 { 235 struct queue_limits *limits = data; 236 struct block_device *bdev = dev->bdev; 237 sector_t dev_size = bdev_nr_sectors(bdev); 238 unsigned short logical_block_size_sectors = 239 limits->logical_block_size >> SECTOR_SHIFT; 240 241 if (!dev_size) 242 return 0; 243 244 if ((start >= dev_size) || (start + len > dev_size)) { 245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 246 dm_device_name(ti->table->md), bdev, 247 (unsigned long long)start, 248 (unsigned long long)len, 249 (unsigned long long)dev_size); 250 return 1; 251 } 252 253 /* 254 * If the target is mapped to zoned block device(s), check 255 * that the zones are not partially mapped. 256 */ 257 if (bdev_is_zoned(bdev)) { 258 unsigned int zone_sectors = bdev_zone_sectors(bdev); 259 260 if (start & (zone_sectors - 1)) { 261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 262 dm_device_name(ti->table->md), 263 (unsigned long long)start, 264 zone_sectors, bdev); 265 return 1; 266 } 267 268 /* 269 * Note: The last zone of a zoned block device may be smaller 270 * than other zones. So for a target mapping the end of a 271 * zoned block device with such a zone, len would not be zone 272 * aligned. We do not allow such last smaller zone to be part 273 * of the mapping here to ensure that mappings with multiple 274 * devices do not end up with a smaller zone in the middle of 275 * the sector range. 276 */ 277 if (len & (zone_sectors - 1)) { 278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 279 dm_device_name(ti->table->md), 280 (unsigned long long)len, 281 zone_sectors, bdev); 282 return 1; 283 } 284 } 285 286 if (logical_block_size_sectors <= 1) 287 return 0; 288 289 if (start & (logical_block_size_sectors - 1)) { 290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 291 dm_device_name(ti->table->md), 292 (unsigned long long)start, 293 limits->logical_block_size, bdev); 294 return 1; 295 } 296 297 if (len & (logical_block_size_sectors - 1)) { 298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 299 dm_device_name(ti->table->md), 300 (unsigned long long)len, 301 limits->logical_block_size, bdev); 302 return 1; 303 } 304 305 return 0; 306 } 307 308 /* 309 * This upgrades the mode on an already open dm_dev, being 310 * careful to leave things as they were if we fail to reopen the 311 * device and not to touch the existing bdev field in case 312 * it is accessed concurrently. 313 */ 314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 315 struct mapped_device *md) 316 { 317 int r; 318 struct dm_dev *old_dev, *new_dev; 319 320 old_dev = dd->dm_dev; 321 322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 323 dd->dm_dev->mode | new_mode, &new_dev); 324 if (r) 325 return r; 326 327 dd->dm_dev = new_dev; 328 dm_put_table_device(md, old_dev); 329 330 return 0; 331 } 332 333 /* 334 * Note: the __ref annotation is because this function can call the __init 335 * marked early_lookup_bdev when called during early boot code from dm-init.c. 336 */ 337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p) 338 { 339 int r; 340 dev_t dev; 341 unsigned int major, minor; 342 char dummy; 343 344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 345 /* Extract the major/minor numbers */ 346 dev = MKDEV(major, minor); 347 if (MAJOR(dev) != major || MINOR(dev) != minor) 348 return -EOVERFLOW; 349 } else { 350 r = lookup_bdev(path, &dev); 351 #ifndef MODULE 352 if (r && system_state < SYSTEM_RUNNING) 353 r = early_lookup_bdev(path, &dev); 354 #endif 355 if (r) 356 return r; 357 } 358 *dev_p = dev; 359 return 0; 360 } 361 EXPORT_SYMBOL(dm_devt_from_path); 362 363 /* 364 * Add a device to the list, or just increment the usage count if 365 * it's already present. 366 */ 367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 368 struct dm_dev **result) 369 { 370 int r; 371 dev_t dev; 372 struct dm_dev_internal *dd; 373 struct dm_table *t = ti->table; 374 375 BUG_ON(!t); 376 377 r = dm_devt_from_path(path, &dev); 378 if (r) 379 return r; 380 381 if (dev == disk_devt(t->md->disk)) 382 return -EINVAL; 383 384 down_write(&t->devices_lock); 385 386 dd = find_device(&t->devices, dev); 387 if (!dd) { 388 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 389 if (!dd) { 390 r = -ENOMEM; 391 goto unlock_ret_r; 392 } 393 394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 395 if (r) { 396 kfree(dd); 397 goto unlock_ret_r; 398 } 399 400 refcount_set(&dd->count, 1); 401 list_add(&dd->list, &t->devices); 402 goto out; 403 404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 405 r = upgrade_mode(dd, mode, t->md); 406 if (r) 407 goto unlock_ret_r; 408 } 409 refcount_inc(&dd->count); 410 out: 411 up_write(&t->devices_lock); 412 *result = dd->dm_dev; 413 return 0; 414 415 unlock_ret_r: 416 up_write(&t->devices_lock); 417 return r; 418 } 419 EXPORT_SYMBOL(dm_get_device); 420 421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 422 sector_t start, sector_t len, void *data) 423 { 424 struct queue_limits *limits = data; 425 struct block_device *bdev = dev->bdev; 426 struct request_queue *q = bdev_get_queue(bdev); 427 428 if (unlikely(!q)) { 429 DMWARN("%s: Cannot set limits for nonexistent device %pg", 430 dm_device_name(ti->table->md), bdev); 431 return 0; 432 } 433 434 if (blk_stack_limits(limits, &q->limits, 435 get_start_sect(bdev) + start) < 0) 436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 437 "physical_block_size=%u, logical_block_size=%u, " 438 "alignment_offset=%u, start=%llu", 439 dm_device_name(ti->table->md), bdev, 440 q->limits.physical_block_size, 441 q->limits.logical_block_size, 442 q->limits.alignment_offset, 443 (unsigned long long) start << SECTOR_SHIFT); 444 445 /* 446 * Only stack the integrity profile if the target doesn't have native 447 * integrity support. 448 */ 449 if (!dm_target_has_integrity(ti->type)) 450 queue_limits_stack_integrity_bdev(limits, bdev); 451 return 0; 452 } 453 454 /* 455 * Decrement a device's use count and remove it if necessary. 456 */ 457 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 458 { 459 int found = 0; 460 struct dm_table *t = ti->table; 461 struct list_head *devices = &t->devices; 462 struct dm_dev_internal *dd; 463 464 down_write(&t->devices_lock); 465 466 list_for_each_entry(dd, devices, list) { 467 if (dd->dm_dev == d) { 468 found = 1; 469 break; 470 } 471 } 472 if (!found) { 473 DMERR("%s: device %s not in table devices list", 474 dm_device_name(t->md), d->name); 475 goto unlock_ret; 476 } 477 if (refcount_dec_and_test(&dd->count)) { 478 dm_put_table_device(t->md, d); 479 list_del(&dd->list); 480 kfree(dd); 481 } 482 483 unlock_ret: 484 up_write(&t->devices_lock); 485 } 486 EXPORT_SYMBOL(dm_put_device); 487 488 /* 489 * Checks to see if the target joins onto the end of the table. 490 */ 491 static int adjoin(struct dm_table *t, struct dm_target *ti) 492 { 493 struct dm_target *prev; 494 495 if (!t->num_targets) 496 return !ti->begin; 497 498 prev = &t->targets[t->num_targets - 1]; 499 return (ti->begin == (prev->begin + prev->len)); 500 } 501 502 /* 503 * Used to dynamically allocate the arg array. 504 * 505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 506 * process messages even if some device is suspended. These messages have a 507 * small fixed number of arguments. 508 * 509 * On the other hand, dm-switch needs to process bulk data using messages and 510 * excessive use of GFP_NOIO could cause trouble. 511 */ 512 static char **realloc_argv(unsigned int *size, char **old_argv) 513 { 514 char **argv; 515 unsigned int new_size; 516 gfp_t gfp; 517 518 if (*size) { 519 new_size = *size * 2; 520 gfp = GFP_KERNEL; 521 } else { 522 new_size = 8; 523 gfp = GFP_NOIO; 524 } 525 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 526 if (argv && old_argv) { 527 memcpy(argv, old_argv, *size * sizeof(*argv)); 528 *size = new_size; 529 } 530 531 kfree(old_argv); 532 return argv; 533 } 534 535 /* 536 * Destructively splits up the argument list to pass to ctr. 537 */ 538 int dm_split_args(int *argc, char ***argvp, char *input) 539 { 540 char *start, *end = input, *out, **argv = NULL; 541 unsigned int array_size = 0; 542 543 *argc = 0; 544 545 if (!input) { 546 *argvp = NULL; 547 return 0; 548 } 549 550 argv = realloc_argv(&array_size, argv); 551 if (!argv) 552 return -ENOMEM; 553 554 while (1) { 555 /* Skip whitespace */ 556 start = skip_spaces(end); 557 558 if (!*start) 559 break; /* success, we hit the end */ 560 561 /* 'out' is used to remove any back-quotes */ 562 end = out = start; 563 while (*end) { 564 /* Everything apart from '\0' can be quoted */ 565 if (*end == '\\' && *(end + 1)) { 566 *out++ = *(end + 1); 567 end += 2; 568 continue; 569 } 570 571 if (isspace(*end)) 572 break; /* end of token */ 573 574 *out++ = *end++; 575 } 576 577 /* have we already filled the array ? */ 578 if ((*argc + 1) > array_size) { 579 argv = realloc_argv(&array_size, argv); 580 if (!argv) 581 return -ENOMEM; 582 } 583 584 /* we know this is whitespace */ 585 if (*end) 586 end++; 587 588 /* terminate the string and put it in the array */ 589 *out = '\0'; 590 argv[*argc] = start; 591 (*argc)++; 592 } 593 594 *argvp = argv; 595 return 0; 596 } 597 598 static void dm_set_stacking_limits(struct queue_limits *limits) 599 { 600 blk_set_stacking_limits(limits); 601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL; 602 } 603 604 /* 605 * Impose necessary and sufficient conditions on a devices's table such 606 * that any incoming bio which respects its logical_block_size can be 607 * processed successfully. If it falls across the boundary between 608 * two or more targets, the size of each piece it gets split into must 609 * be compatible with the logical_block_size of the target processing it. 610 */ 611 static int validate_hardware_logical_block_alignment(struct dm_table *t, 612 struct queue_limits *limits) 613 { 614 /* 615 * This function uses arithmetic modulo the logical_block_size 616 * (in units of 512-byte sectors). 617 */ 618 unsigned short device_logical_block_size_sects = 619 limits->logical_block_size >> SECTOR_SHIFT; 620 621 /* 622 * Offset of the start of the next table entry, mod logical_block_size. 623 */ 624 unsigned short next_target_start = 0; 625 626 /* 627 * Given an aligned bio that extends beyond the end of a 628 * target, how many sectors must the next target handle? 629 */ 630 unsigned short remaining = 0; 631 632 struct dm_target *ti; 633 struct queue_limits ti_limits; 634 unsigned int i; 635 636 /* 637 * Check each entry in the table in turn. 638 */ 639 for (i = 0; i < t->num_targets; i++) { 640 ti = dm_table_get_target(t, i); 641 642 dm_set_stacking_limits(&ti_limits); 643 644 /* combine all target devices' limits */ 645 if (ti->type->iterate_devices) 646 ti->type->iterate_devices(ti, dm_set_device_limits, 647 &ti_limits); 648 649 /* 650 * If the remaining sectors fall entirely within this 651 * table entry are they compatible with its logical_block_size? 652 */ 653 if (remaining < ti->len && 654 remaining & ((ti_limits.logical_block_size >> 655 SECTOR_SHIFT) - 1)) 656 break; /* Error */ 657 658 next_target_start = 659 (unsigned short) ((next_target_start + ti->len) & 660 (device_logical_block_size_sects - 1)); 661 remaining = next_target_start ? 662 device_logical_block_size_sects - next_target_start : 0; 663 } 664 665 if (remaining) { 666 DMERR("%s: table line %u (start sect %llu len %llu) " 667 "not aligned to h/w logical block size %u", 668 dm_device_name(t->md), i, 669 (unsigned long long) ti->begin, 670 (unsigned long long) ti->len, 671 limits->logical_block_size); 672 return -EINVAL; 673 } 674 675 return 0; 676 } 677 678 int dm_table_add_target(struct dm_table *t, const char *type, 679 sector_t start, sector_t len, char *params) 680 { 681 int r = -EINVAL, argc; 682 char **argv; 683 struct dm_target *ti; 684 685 if (t->singleton) { 686 DMERR("%s: target type %s must appear alone in table", 687 dm_device_name(t->md), t->targets->type->name); 688 return -EINVAL; 689 } 690 691 BUG_ON(t->num_targets >= t->num_allocated); 692 693 ti = t->targets + t->num_targets; 694 memset(ti, 0, sizeof(*ti)); 695 696 if (!len) { 697 DMERR("%s: zero-length target", dm_device_name(t->md)); 698 return -EINVAL; 699 } 700 701 ti->type = dm_get_target_type(type); 702 if (!ti->type) { 703 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 704 return -EINVAL; 705 } 706 707 if (dm_target_needs_singleton(ti->type)) { 708 if (t->num_targets) { 709 ti->error = "singleton target type must appear alone in table"; 710 goto bad; 711 } 712 t->singleton = true; 713 } 714 715 if (dm_target_always_writeable(ti->type) && 716 !(t->mode & BLK_OPEN_WRITE)) { 717 ti->error = "target type may not be included in a read-only table"; 718 goto bad; 719 } 720 721 if (t->immutable_target_type) { 722 if (t->immutable_target_type != ti->type) { 723 ti->error = "immutable target type cannot be mixed with other target types"; 724 goto bad; 725 } 726 } else if (dm_target_is_immutable(ti->type)) { 727 if (t->num_targets) { 728 ti->error = "immutable target type cannot be mixed with other target types"; 729 goto bad; 730 } 731 t->immutable_target_type = ti->type; 732 } 733 734 ti->table = t; 735 ti->begin = start; 736 ti->len = len; 737 ti->error = "Unknown error"; 738 739 /* 740 * Does this target adjoin the previous one ? 741 */ 742 if (!adjoin(t, ti)) { 743 ti->error = "Gap in table"; 744 goto bad; 745 } 746 747 r = dm_split_args(&argc, &argv, params); 748 if (r) { 749 ti->error = "couldn't split parameters"; 750 goto bad; 751 } 752 753 r = ti->type->ctr(ti, argc, argv); 754 kfree(argv); 755 if (r) 756 goto bad; 757 758 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 759 760 if (!ti->num_discard_bios && ti->discards_supported) 761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 762 dm_device_name(t->md), type); 763 764 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 765 static_branch_enable(&swap_bios_enabled); 766 767 if (!ti->flush_bypasses_map) 768 t->flush_bypasses_map = false; 769 770 return 0; 771 772 bad: 773 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 774 dm_put_target_type(ti->type); 775 return r; 776 } 777 778 /* 779 * Target argument parsing helpers. 780 */ 781 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 782 unsigned int *value, char **error, unsigned int grouped) 783 { 784 const char *arg_str = dm_shift_arg(arg_set); 785 char dummy; 786 787 if (!arg_str || 788 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 789 (*value < arg->min) || 790 (*value > arg->max) || 791 (grouped && arg_set->argc < *value)) { 792 *error = arg->error; 793 return -EINVAL; 794 } 795 796 return 0; 797 } 798 799 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 800 unsigned int *value, char **error) 801 { 802 return validate_next_arg(arg, arg_set, value, error, 0); 803 } 804 EXPORT_SYMBOL(dm_read_arg); 805 806 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 807 unsigned int *value, char **error) 808 { 809 return validate_next_arg(arg, arg_set, value, error, 1); 810 } 811 EXPORT_SYMBOL(dm_read_arg_group); 812 813 const char *dm_shift_arg(struct dm_arg_set *as) 814 { 815 char *r; 816 817 if (as->argc) { 818 as->argc--; 819 r = *as->argv; 820 as->argv++; 821 return r; 822 } 823 824 return NULL; 825 } 826 EXPORT_SYMBOL(dm_shift_arg); 827 828 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 829 { 830 BUG_ON(as->argc < num_args); 831 as->argc -= num_args; 832 as->argv += num_args; 833 } 834 EXPORT_SYMBOL(dm_consume_args); 835 836 static bool __table_type_bio_based(enum dm_queue_mode table_type) 837 { 838 return (table_type == DM_TYPE_BIO_BASED || 839 table_type == DM_TYPE_DAX_BIO_BASED); 840 } 841 842 static bool __table_type_request_based(enum dm_queue_mode table_type) 843 { 844 return table_type == DM_TYPE_REQUEST_BASED; 845 } 846 847 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 848 { 849 t->type = type; 850 } 851 EXPORT_SYMBOL_GPL(dm_table_set_type); 852 853 /* validate the dax capability of the target device span */ 854 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 855 sector_t start, sector_t len, void *data) 856 { 857 if (dev->dax_dev) 858 return false; 859 860 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 861 return true; 862 } 863 864 /* Check devices support synchronous DAX */ 865 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 866 sector_t start, sector_t len, void *data) 867 { 868 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 869 } 870 871 static bool dm_table_supports_dax(struct dm_table *t, 872 iterate_devices_callout_fn iterate_fn) 873 { 874 /* Ensure that all targets support DAX. */ 875 for (unsigned int i = 0; i < t->num_targets; i++) { 876 struct dm_target *ti = dm_table_get_target(t, i); 877 878 if (!ti->type->direct_access) 879 return false; 880 881 if (dm_target_is_wildcard(ti->type) || 882 !ti->type->iterate_devices || 883 ti->type->iterate_devices(ti, iterate_fn, NULL)) 884 return false; 885 } 886 887 return true; 888 } 889 890 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 891 sector_t start, sector_t len, void *data) 892 { 893 struct block_device *bdev = dev->bdev; 894 struct request_queue *q = bdev_get_queue(bdev); 895 896 /* request-based cannot stack on partitions! */ 897 if (bdev_is_partition(bdev)) 898 return false; 899 900 return queue_is_mq(q); 901 } 902 903 static int dm_table_determine_type(struct dm_table *t) 904 { 905 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 906 struct dm_target *ti; 907 struct list_head *devices = dm_table_get_devices(t); 908 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 909 910 if (t->type != DM_TYPE_NONE) { 911 /* target already set the table's type */ 912 if (t->type == DM_TYPE_BIO_BASED) { 913 /* possibly upgrade to a variant of bio-based */ 914 goto verify_bio_based; 915 } 916 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 917 goto verify_rq_based; 918 } 919 920 for (unsigned int i = 0; i < t->num_targets; i++) { 921 ti = dm_table_get_target(t, i); 922 if (dm_target_hybrid(ti)) 923 hybrid = 1; 924 else if (dm_target_request_based(ti)) 925 request_based = 1; 926 else 927 bio_based = 1; 928 929 if (bio_based && request_based) { 930 DMERR("Inconsistent table: different target types can't be mixed up"); 931 return -EINVAL; 932 } 933 } 934 935 if (hybrid && !bio_based && !request_based) { 936 /* 937 * The targets can work either way. 938 * Determine the type from the live device. 939 * Default to bio-based if device is new. 940 */ 941 if (__table_type_request_based(live_md_type)) 942 request_based = 1; 943 else 944 bio_based = 1; 945 } 946 947 if (bio_based) { 948 verify_bio_based: 949 /* We must use this table as bio-based */ 950 t->type = DM_TYPE_BIO_BASED; 951 if (dm_table_supports_dax(t, device_not_dax_capable) || 952 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 953 t->type = DM_TYPE_DAX_BIO_BASED; 954 } 955 return 0; 956 } 957 958 BUG_ON(!request_based); /* No targets in this table */ 959 960 t->type = DM_TYPE_REQUEST_BASED; 961 962 verify_rq_based: 963 /* 964 * Request-based dm supports only tables that have a single target now. 965 * To support multiple targets, request splitting support is needed, 966 * and that needs lots of changes in the block-layer. 967 * (e.g. request completion process for partial completion.) 968 */ 969 if (t->num_targets > 1) { 970 DMERR("request-based DM doesn't support multiple targets"); 971 return -EINVAL; 972 } 973 974 if (list_empty(devices)) { 975 int srcu_idx; 976 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 977 978 /* inherit live table's type */ 979 if (live_table) 980 t->type = live_table->type; 981 dm_put_live_table(t->md, srcu_idx); 982 return 0; 983 } 984 985 ti = dm_table_get_immutable_target(t); 986 if (!ti) { 987 DMERR("table load rejected: immutable target is required"); 988 return -EINVAL; 989 } else if (ti->max_io_len) { 990 DMERR("table load rejected: immutable target that splits IO is not supported"); 991 return -EINVAL; 992 } 993 994 /* Non-request-stackable devices can't be used for request-based dm */ 995 if (!ti->type->iterate_devices || 996 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 997 DMERR("table load rejected: including non-request-stackable devices"); 998 return -EINVAL; 999 } 1000 1001 return 0; 1002 } 1003 1004 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1005 { 1006 return t->type; 1007 } 1008 1009 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1010 { 1011 return t->immutable_target_type; 1012 } 1013 1014 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1015 { 1016 /* Immutable target is implicitly a singleton */ 1017 if (t->num_targets > 1 || 1018 !dm_target_is_immutable(t->targets[0].type)) 1019 return NULL; 1020 1021 return t->targets; 1022 } 1023 1024 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1025 { 1026 for (unsigned int i = 0; i < t->num_targets; i++) { 1027 struct dm_target *ti = dm_table_get_target(t, i); 1028 1029 if (dm_target_is_wildcard(ti->type)) 1030 return ti; 1031 } 1032 1033 return NULL; 1034 } 1035 1036 bool dm_table_bio_based(struct dm_table *t) 1037 { 1038 return __table_type_bio_based(dm_table_get_type(t)); 1039 } 1040 1041 bool dm_table_request_based(struct dm_table *t) 1042 { 1043 return __table_type_request_based(dm_table_get_type(t)); 1044 } 1045 1046 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1047 { 1048 enum dm_queue_mode type = dm_table_get_type(t); 1049 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1050 unsigned int min_pool_size = 0, pool_size; 1051 struct dm_md_mempools *pools; 1052 unsigned int bioset_flags = 0; 1053 bool mempool_needs_integrity = t->integrity_supported; 1054 1055 if (unlikely(type == DM_TYPE_NONE)) { 1056 DMERR("no table type is set, can't allocate mempools"); 1057 return -EINVAL; 1058 } 1059 1060 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1061 if (!pools) 1062 return -ENOMEM; 1063 1064 if (type == DM_TYPE_REQUEST_BASED) { 1065 pool_size = dm_get_reserved_rq_based_ios(); 1066 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1067 goto init_bs; 1068 } 1069 1070 if (md->queue->limits.features & BLK_FEAT_POLL) 1071 bioset_flags |= BIOSET_PERCPU_CACHE; 1072 1073 for (unsigned int i = 0; i < t->num_targets; i++) { 1074 struct dm_target *ti = dm_table_get_target(t, i); 1075 1076 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1077 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1078 1079 mempool_needs_integrity |= ti->mempool_needs_integrity; 1080 } 1081 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1082 front_pad = roundup(per_io_data_size, 1083 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1084 1085 io_front_pad = roundup(per_io_data_size, 1086 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1087 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags)) 1088 goto out_free_pools; 1089 if (mempool_needs_integrity && 1090 bioset_integrity_create(&pools->io_bs, pool_size)) 1091 goto out_free_pools; 1092 init_bs: 1093 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1094 goto out_free_pools; 1095 if (mempool_needs_integrity && 1096 bioset_integrity_create(&pools->bs, pool_size)) 1097 goto out_free_pools; 1098 1099 t->mempools = pools; 1100 return 0; 1101 1102 out_free_pools: 1103 dm_free_md_mempools(pools); 1104 return -ENOMEM; 1105 } 1106 1107 static int setup_indexes(struct dm_table *t) 1108 { 1109 int i; 1110 unsigned int total = 0; 1111 sector_t *indexes; 1112 1113 /* allocate the space for *all* the indexes */ 1114 for (i = t->depth - 2; i >= 0; i--) { 1115 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1116 total += t->counts[i]; 1117 } 1118 1119 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1120 if (!indexes) 1121 return -ENOMEM; 1122 1123 /* set up internal nodes, bottom-up */ 1124 for (i = t->depth - 2; i >= 0; i--) { 1125 t->index[i] = indexes; 1126 indexes += (KEYS_PER_NODE * t->counts[i]); 1127 setup_btree_index(i, t); 1128 } 1129 1130 return 0; 1131 } 1132 1133 /* 1134 * Builds the btree to index the map. 1135 */ 1136 static int dm_table_build_index(struct dm_table *t) 1137 { 1138 int r = 0; 1139 unsigned int leaf_nodes; 1140 1141 /* how many indexes will the btree have ? */ 1142 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1143 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1144 1145 /* leaf layer has already been set up */ 1146 t->counts[t->depth - 1] = leaf_nodes; 1147 t->index[t->depth - 1] = t->highs; 1148 1149 if (t->depth >= 2) 1150 r = setup_indexes(t); 1151 1152 return r; 1153 } 1154 1155 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1156 1157 struct dm_crypto_profile { 1158 struct blk_crypto_profile profile; 1159 struct mapped_device *md; 1160 }; 1161 1162 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1163 sector_t start, sector_t len, void *data) 1164 { 1165 const struct blk_crypto_key *key = data; 1166 1167 blk_crypto_evict_key(dev->bdev, key); 1168 return 0; 1169 } 1170 1171 /* 1172 * When an inline encryption key is evicted from a device-mapper device, evict 1173 * it from all the underlying devices. 1174 */ 1175 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1176 const struct blk_crypto_key *key, unsigned int slot) 1177 { 1178 struct mapped_device *md = 1179 container_of(profile, struct dm_crypto_profile, profile)->md; 1180 struct dm_table *t; 1181 int srcu_idx; 1182 1183 t = dm_get_live_table(md, &srcu_idx); 1184 if (!t) 1185 return 0; 1186 1187 for (unsigned int i = 0; i < t->num_targets; i++) { 1188 struct dm_target *ti = dm_table_get_target(t, i); 1189 1190 if (!ti->type->iterate_devices) 1191 continue; 1192 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1193 (void *)key); 1194 } 1195 1196 dm_put_live_table(md, srcu_idx); 1197 return 0; 1198 } 1199 1200 static int 1201 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1202 sector_t start, sector_t len, void *data) 1203 { 1204 struct blk_crypto_profile *parent = data; 1205 struct blk_crypto_profile *child = 1206 bdev_get_queue(dev->bdev)->crypto_profile; 1207 1208 blk_crypto_intersect_capabilities(parent, child); 1209 return 0; 1210 } 1211 1212 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1213 { 1214 struct dm_crypto_profile *dmcp = container_of(profile, 1215 struct dm_crypto_profile, 1216 profile); 1217 1218 if (!profile) 1219 return; 1220 1221 blk_crypto_profile_destroy(profile); 1222 kfree(dmcp); 1223 } 1224 1225 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1226 { 1227 dm_destroy_crypto_profile(t->crypto_profile); 1228 t->crypto_profile = NULL; 1229 } 1230 1231 /* 1232 * Constructs and initializes t->crypto_profile with a crypto profile that 1233 * represents the common set of crypto capabilities of the devices described by 1234 * the dm_table. However, if the constructed crypto profile doesn't support all 1235 * crypto capabilities that are supported by the current mapped_device, it 1236 * returns an error instead, since we don't support removing crypto capabilities 1237 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1238 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1239 */ 1240 static int dm_table_construct_crypto_profile(struct dm_table *t) 1241 { 1242 struct dm_crypto_profile *dmcp; 1243 struct blk_crypto_profile *profile; 1244 unsigned int i; 1245 bool empty_profile = true; 1246 1247 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1248 if (!dmcp) 1249 return -ENOMEM; 1250 dmcp->md = t->md; 1251 1252 profile = &dmcp->profile; 1253 blk_crypto_profile_init(profile, 0); 1254 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1255 profile->max_dun_bytes_supported = UINT_MAX; 1256 memset(profile->modes_supported, 0xFF, 1257 sizeof(profile->modes_supported)); 1258 1259 for (i = 0; i < t->num_targets; i++) { 1260 struct dm_target *ti = dm_table_get_target(t, i); 1261 1262 if (!dm_target_passes_crypto(ti->type)) { 1263 blk_crypto_intersect_capabilities(profile, NULL); 1264 break; 1265 } 1266 if (!ti->type->iterate_devices) 1267 continue; 1268 ti->type->iterate_devices(ti, 1269 device_intersect_crypto_capabilities, 1270 profile); 1271 } 1272 1273 if (t->md->queue && 1274 !blk_crypto_has_capabilities(profile, 1275 t->md->queue->crypto_profile)) { 1276 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1277 dm_destroy_crypto_profile(profile); 1278 return -EINVAL; 1279 } 1280 1281 /* 1282 * If the new profile doesn't actually support any crypto capabilities, 1283 * we may as well represent it with a NULL profile. 1284 */ 1285 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1286 if (profile->modes_supported[i]) { 1287 empty_profile = false; 1288 break; 1289 } 1290 } 1291 1292 if (empty_profile) { 1293 dm_destroy_crypto_profile(profile); 1294 profile = NULL; 1295 } 1296 1297 /* 1298 * t->crypto_profile is only set temporarily while the table is being 1299 * set up, and it gets set to NULL after the profile has been 1300 * transferred to the request_queue. 1301 */ 1302 t->crypto_profile = profile; 1303 1304 return 0; 1305 } 1306 1307 static void dm_update_crypto_profile(struct request_queue *q, 1308 struct dm_table *t) 1309 { 1310 if (!t->crypto_profile) 1311 return; 1312 1313 /* Make the crypto profile less restrictive. */ 1314 if (!q->crypto_profile) { 1315 blk_crypto_register(t->crypto_profile, q); 1316 } else { 1317 blk_crypto_update_capabilities(q->crypto_profile, 1318 t->crypto_profile); 1319 dm_destroy_crypto_profile(t->crypto_profile); 1320 } 1321 t->crypto_profile = NULL; 1322 } 1323 1324 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1325 1326 static int dm_table_construct_crypto_profile(struct dm_table *t) 1327 { 1328 return 0; 1329 } 1330 1331 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1332 { 1333 } 1334 1335 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1336 { 1337 } 1338 1339 static void dm_update_crypto_profile(struct request_queue *q, 1340 struct dm_table *t) 1341 { 1342 } 1343 1344 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1345 1346 /* 1347 * Prepares the table for use by building the indices, 1348 * setting the type, and allocating mempools. 1349 */ 1350 int dm_table_complete(struct dm_table *t) 1351 { 1352 int r; 1353 1354 r = dm_table_determine_type(t); 1355 if (r) { 1356 DMERR("unable to determine table type"); 1357 return r; 1358 } 1359 1360 r = dm_table_build_index(t); 1361 if (r) { 1362 DMERR("unable to build btrees"); 1363 return r; 1364 } 1365 1366 r = dm_table_construct_crypto_profile(t); 1367 if (r) { 1368 DMERR("could not construct crypto profile."); 1369 return r; 1370 } 1371 1372 r = dm_table_alloc_md_mempools(t, t->md); 1373 if (r) 1374 DMERR("unable to allocate mempools"); 1375 1376 return r; 1377 } 1378 1379 static DEFINE_MUTEX(_event_lock); 1380 void dm_table_event_callback(struct dm_table *t, 1381 void (*fn)(void *), void *context) 1382 { 1383 mutex_lock(&_event_lock); 1384 t->event_fn = fn; 1385 t->event_context = context; 1386 mutex_unlock(&_event_lock); 1387 } 1388 1389 void dm_table_event(struct dm_table *t) 1390 { 1391 mutex_lock(&_event_lock); 1392 if (t->event_fn) 1393 t->event_fn(t->event_context); 1394 mutex_unlock(&_event_lock); 1395 } 1396 EXPORT_SYMBOL(dm_table_event); 1397 1398 inline sector_t dm_table_get_size(struct dm_table *t) 1399 { 1400 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1401 } 1402 EXPORT_SYMBOL(dm_table_get_size); 1403 1404 /* 1405 * Search the btree for the correct target. 1406 * 1407 * Caller should check returned pointer for NULL 1408 * to trap I/O beyond end of device. 1409 */ 1410 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1411 { 1412 unsigned int l, n = 0, k = 0; 1413 sector_t *node; 1414 1415 if (unlikely(sector >= dm_table_get_size(t))) 1416 return NULL; 1417 1418 for (l = 0; l < t->depth; l++) { 1419 n = get_child(n, k); 1420 node = get_node(t, l, n); 1421 1422 for (k = 0; k < KEYS_PER_NODE; k++) 1423 if (node[k] >= sector) 1424 break; 1425 } 1426 1427 return &t->targets[(KEYS_PER_NODE * n) + k]; 1428 } 1429 1430 /* 1431 * type->iterate_devices() should be called when the sanity check needs to 1432 * iterate and check all underlying data devices. iterate_devices() will 1433 * iterate all underlying data devices until it encounters a non-zero return 1434 * code, returned by whether the input iterate_devices_callout_fn, or 1435 * iterate_devices() itself internally. 1436 * 1437 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1438 * iterate multiple underlying devices internally, in which case a non-zero 1439 * return code returned by iterate_devices_callout_fn will stop the iteration 1440 * in advance. 1441 * 1442 * Cases requiring _any_ underlying device supporting some kind of attribute, 1443 * should use the iteration structure like dm_table_any_dev_attr(), or call 1444 * it directly. @func should handle semantics of positive examples, e.g. 1445 * capable of something. 1446 * 1447 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1448 * should use the iteration structure like dm_table_supports_nowait() or 1449 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1450 * uses an @anti_func that handle semantics of counter examples, e.g. not 1451 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1452 */ 1453 static bool dm_table_any_dev_attr(struct dm_table *t, 1454 iterate_devices_callout_fn func, void *data) 1455 { 1456 for (unsigned int i = 0; i < t->num_targets; i++) { 1457 struct dm_target *ti = dm_table_get_target(t, i); 1458 1459 if (ti->type->iterate_devices && 1460 ti->type->iterate_devices(ti, func, data)) 1461 return true; 1462 } 1463 1464 return false; 1465 } 1466 1467 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1468 sector_t start, sector_t len, void *data) 1469 { 1470 unsigned int *num_devices = data; 1471 1472 (*num_devices)++; 1473 1474 return 0; 1475 } 1476 1477 /* 1478 * Check whether a table has no data devices attached using each 1479 * target's iterate_devices method. 1480 * Returns false if the result is unknown because a target doesn't 1481 * support iterate_devices. 1482 */ 1483 bool dm_table_has_no_data_devices(struct dm_table *t) 1484 { 1485 for (unsigned int i = 0; i < t->num_targets; i++) { 1486 struct dm_target *ti = dm_table_get_target(t, i); 1487 unsigned int num_devices = 0; 1488 1489 if (!ti->type->iterate_devices) 1490 return false; 1491 1492 ti->type->iterate_devices(ti, count_device, &num_devices); 1493 if (num_devices) 1494 return false; 1495 } 1496 1497 return true; 1498 } 1499 1500 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1501 sector_t start, sector_t len, void *data) 1502 { 1503 bool *zoned = data; 1504 1505 return bdev_is_zoned(dev->bdev) != *zoned; 1506 } 1507 1508 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1509 sector_t start, sector_t len, void *data) 1510 { 1511 return bdev_is_zoned(dev->bdev); 1512 } 1513 1514 /* 1515 * Check the device zoned model based on the target feature flag. If the target 1516 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1517 * also accepted but all devices must have the same zoned model. If the target 1518 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1519 * zoned model with all zoned devices having the same zone size. 1520 */ 1521 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1522 { 1523 for (unsigned int i = 0; i < t->num_targets; i++) { 1524 struct dm_target *ti = dm_table_get_target(t, i); 1525 1526 /* 1527 * For the wildcard target (dm-error), if we do not have a 1528 * backing device, we must always return false. If we have a 1529 * backing device, the result must depend on checking zoned 1530 * model, like for any other target. So for this, check directly 1531 * if the target backing device is zoned as we get "false" when 1532 * dm-error was set without a backing device. 1533 */ 1534 if (dm_target_is_wildcard(ti->type) && 1535 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1536 return false; 1537 1538 if (dm_target_supports_zoned_hm(ti->type)) { 1539 if (!ti->type->iterate_devices || 1540 ti->type->iterate_devices(ti, device_not_zoned, 1541 &zoned)) 1542 return false; 1543 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1544 if (zoned) 1545 return false; 1546 } 1547 } 1548 1549 return true; 1550 } 1551 1552 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1553 sector_t start, sector_t len, void *data) 1554 { 1555 unsigned int *zone_sectors = data; 1556 1557 if (!bdev_is_zoned(dev->bdev)) 1558 return 0; 1559 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1560 } 1561 1562 /* 1563 * Check consistency of zoned model and zone sectors across all targets. For 1564 * zone sectors, if the destination device is a zoned block device, it shall 1565 * have the specified zone_sectors. 1566 */ 1567 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1568 unsigned int zone_sectors) 1569 { 1570 if (!zoned) 1571 return 0; 1572 1573 if (!dm_table_supports_zoned(t, zoned)) { 1574 DMERR("%s: zoned model is not consistent across all devices", 1575 dm_device_name(t->md)); 1576 return -EINVAL; 1577 } 1578 1579 /* Check zone size validity and compatibility */ 1580 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1581 return -EINVAL; 1582 1583 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1584 DMERR("%s: zone sectors is not consistent across all zoned devices", 1585 dm_device_name(t->md)); 1586 return -EINVAL; 1587 } 1588 1589 return 0; 1590 } 1591 1592 /* 1593 * Establish the new table's queue_limits and validate them. 1594 */ 1595 int dm_calculate_queue_limits(struct dm_table *t, 1596 struct queue_limits *limits) 1597 { 1598 struct queue_limits ti_limits; 1599 unsigned int zone_sectors = 0; 1600 bool zoned = false; 1601 1602 dm_set_stacking_limits(limits); 1603 1604 t->integrity_supported = true; 1605 for (unsigned int i = 0; i < t->num_targets; i++) { 1606 struct dm_target *ti = dm_table_get_target(t, i); 1607 1608 if (!dm_target_passes_integrity(ti->type)) 1609 t->integrity_supported = false; 1610 } 1611 1612 for (unsigned int i = 0; i < t->num_targets; i++) { 1613 struct dm_target *ti = dm_table_get_target(t, i); 1614 1615 dm_set_stacking_limits(&ti_limits); 1616 1617 if (!ti->type->iterate_devices) { 1618 /* Set I/O hints portion of queue limits */ 1619 if (ti->type->io_hints) 1620 ti->type->io_hints(ti, &ti_limits); 1621 goto combine_limits; 1622 } 1623 1624 /* 1625 * Combine queue limits of all the devices this target uses. 1626 */ 1627 ti->type->iterate_devices(ti, dm_set_device_limits, 1628 &ti_limits); 1629 1630 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) { 1631 /* 1632 * After stacking all limits, validate all devices 1633 * in table support this zoned model and zone sectors. 1634 */ 1635 zoned = (ti_limits.features & BLK_FEAT_ZONED); 1636 zone_sectors = ti_limits.chunk_sectors; 1637 } 1638 1639 /* Set I/O hints portion of queue limits */ 1640 if (ti->type->io_hints) 1641 ti->type->io_hints(ti, &ti_limits); 1642 1643 /* 1644 * Check each device area is consistent with the target's 1645 * overall queue limits. 1646 */ 1647 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1648 &ti_limits)) 1649 return -EINVAL; 1650 1651 combine_limits: 1652 /* 1653 * Merge this target's queue limits into the overall limits 1654 * for the table. 1655 */ 1656 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1657 DMWARN("%s: adding target device (start sect %llu len %llu) " 1658 "caused an alignment inconsistency", 1659 dm_device_name(t->md), 1660 (unsigned long long) ti->begin, 1661 (unsigned long long) ti->len); 1662 1663 if (t->integrity_supported || 1664 dm_target_has_integrity(ti->type)) { 1665 if (!queue_limits_stack_integrity(limits, &ti_limits)) { 1666 DMWARN("%s: adding target device (start sect %llu len %llu) " 1667 "disabled integrity support due to incompatibility", 1668 dm_device_name(t->md), 1669 (unsigned long long) ti->begin, 1670 (unsigned long long) ti->len); 1671 t->integrity_supported = false; 1672 } 1673 } 1674 } 1675 1676 /* 1677 * Verify that the zoned model and zone sectors, as determined before 1678 * any .io_hints override, are the same across all devices in the table. 1679 * - this is especially relevant if .io_hints is emulating a disk-managed 1680 * zoned model on host-managed zoned block devices. 1681 * BUT... 1682 */ 1683 if (limits->features & BLK_FEAT_ZONED) { 1684 /* 1685 * ...IF the above limits stacking determined a zoned model 1686 * validate that all of the table's devices conform to it. 1687 */ 1688 zoned = limits->features & BLK_FEAT_ZONED; 1689 zone_sectors = limits->chunk_sectors; 1690 } 1691 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1692 return -EINVAL; 1693 1694 return validate_hardware_logical_block_alignment(t, limits); 1695 } 1696 1697 /* 1698 * Check if a target requires flush support even if none of the underlying 1699 * devices need it (e.g. to persist target-specific metadata). 1700 */ 1701 static bool dm_table_supports_flush(struct dm_table *t) 1702 { 1703 for (unsigned int i = 0; i < t->num_targets; i++) { 1704 struct dm_target *ti = dm_table_get_target(t, i); 1705 1706 if (ti->num_flush_bios && ti->flush_supported) 1707 return true; 1708 } 1709 1710 return false; 1711 } 1712 1713 static int device_dax_write_cache_enabled(struct dm_target *ti, 1714 struct dm_dev *dev, sector_t start, 1715 sector_t len, void *data) 1716 { 1717 struct dax_device *dax_dev = dev->dax_dev; 1718 1719 if (!dax_dev) 1720 return false; 1721 1722 if (dax_write_cache_enabled(dax_dev)) 1723 return true; 1724 return false; 1725 } 1726 1727 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1728 sector_t start, sector_t len, void *data) 1729 { 1730 struct request_queue *q = bdev_get_queue(dev->bdev); 1731 1732 return !q->limits.max_write_zeroes_sectors; 1733 } 1734 1735 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1736 { 1737 for (unsigned int i = 0; i < t->num_targets; i++) { 1738 struct dm_target *ti = dm_table_get_target(t, i); 1739 1740 if (!ti->num_write_zeroes_bios) 1741 return false; 1742 1743 if (!ti->type->iterate_devices || 1744 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1745 return false; 1746 } 1747 1748 return true; 1749 } 1750 1751 static bool dm_table_supports_nowait(struct dm_table *t) 1752 { 1753 for (unsigned int i = 0; i < t->num_targets; i++) { 1754 struct dm_target *ti = dm_table_get_target(t, i); 1755 1756 if (!dm_target_supports_nowait(ti->type)) 1757 return false; 1758 } 1759 1760 return true; 1761 } 1762 1763 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1764 sector_t start, sector_t len, void *data) 1765 { 1766 return !bdev_max_discard_sectors(dev->bdev); 1767 } 1768 1769 static bool dm_table_supports_discards(struct dm_table *t) 1770 { 1771 for (unsigned int i = 0; i < t->num_targets; i++) { 1772 struct dm_target *ti = dm_table_get_target(t, i); 1773 1774 if (!ti->num_discard_bios) 1775 return false; 1776 1777 /* 1778 * Either the target provides discard support (as implied by setting 1779 * 'discards_supported') or it relies on _all_ data devices having 1780 * discard support. 1781 */ 1782 if (!ti->discards_supported && 1783 (!ti->type->iterate_devices || 1784 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1785 return false; 1786 } 1787 1788 return true; 1789 } 1790 1791 static int device_not_secure_erase_capable(struct dm_target *ti, 1792 struct dm_dev *dev, sector_t start, 1793 sector_t len, void *data) 1794 { 1795 return !bdev_max_secure_erase_sectors(dev->bdev); 1796 } 1797 1798 static bool dm_table_supports_secure_erase(struct dm_table *t) 1799 { 1800 for (unsigned int i = 0; i < t->num_targets; i++) { 1801 struct dm_target *ti = dm_table_get_target(t, i); 1802 1803 if (!ti->num_secure_erase_bios) 1804 return false; 1805 1806 if (!ti->type->iterate_devices || 1807 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1808 return false; 1809 } 1810 1811 return true; 1812 } 1813 1814 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1815 struct queue_limits *limits) 1816 { 1817 int r; 1818 1819 if (!dm_table_supports_nowait(t)) 1820 limits->features &= ~BLK_FEAT_NOWAIT; 1821 1822 /* 1823 * The current polling impementation does not support request based 1824 * stacking. 1825 */ 1826 if (!__table_type_bio_based(t->type)) 1827 limits->features &= ~BLK_FEAT_POLL; 1828 1829 if (!dm_table_supports_discards(t)) { 1830 limits->max_hw_discard_sectors = 0; 1831 limits->discard_granularity = 0; 1832 limits->discard_alignment = 0; 1833 } 1834 1835 if (!dm_table_supports_write_zeroes(t)) 1836 limits->max_write_zeroes_sectors = 0; 1837 1838 if (!dm_table_supports_secure_erase(t)) 1839 limits->max_secure_erase_sectors = 0; 1840 1841 if (dm_table_supports_flush(t)) 1842 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 1843 1844 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1845 limits->features |= BLK_FEAT_DAX; 1846 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1847 set_dax_synchronous(t->md->dax_dev); 1848 } else 1849 limits->features &= ~BLK_FEAT_DAX; 1850 1851 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1852 dax_write_cache(t->md->dax_dev, true); 1853 1854 /* For a zoned table, setup the zone related queue attributes. */ 1855 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1856 (limits->features & BLK_FEAT_ZONED)) { 1857 r = dm_set_zones_restrictions(t, q, limits); 1858 if (r) 1859 return r; 1860 } 1861 1862 r = queue_limits_set(q, limits); 1863 if (r) 1864 return r; 1865 1866 /* 1867 * Now that the limits are set, check the zones mapped by the table 1868 * and setup the resources for zone append emulation if necessary. 1869 */ 1870 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1871 (limits->features & BLK_FEAT_ZONED)) { 1872 r = dm_revalidate_zones(t, q); 1873 if (r) 1874 return r; 1875 } 1876 1877 dm_update_crypto_profile(q, t); 1878 return 0; 1879 } 1880 1881 struct list_head *dm_table_get_devices(struct dm_table *t) 1882 { 1883 return &t->devices; 1884 } 1885 1886 blk_mode_t dm_table_get_mode(struct dm_table *t) 1887 { 1888 return t->mode; 1889 } 1890 EXPORT_SYMBOL(dm_table_get_mode); 1891 1892 enum suspend_mode { 1893 PRESUSPEND, 1894 PRESUSPEND_UNDO, 1895 POSTSUSPEND, 1896 }; 1897 1898 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1899 { 1900 lockdep_assert_held(&t->md->suspend_lock); 1901 1902 for (unsigned int i = 0; i < t->num_targets; i++) { 1903 struct dm_target *ti = dm_table_get_target(t, i); 1904 1905 switch (mode) { 1906 case PRESUSPEND: 1907 if (ti->type->presuspend) 1908 ti->type->presuspend(ti); 1909 break; 1910 case PRESUSPEND_UNDO: 1911 if (ti->type->presuspend_undo) 1912 ti->type->presuspend_undo(ti); 1913 break; 1914 case POSTSUSPEND: 1915 if (ti->type->postsuspend) 1916 ti->type->postsuspend(ti); 1917 break; 1918 } 1919 } 1920 } 1921 1922 void dm_table_presuspend_targets(struct dm_table *t) 1923 { 1924 if (!t) 1925 return; 1926 1927 suspend_targets(t, PRESUSPEND); 1928 } 1929 1930 void dm_table_presuspend_undo_targets(struct dm_table *t) 1931 { 1932 if (!t) 1933 return; 1934 1935 suspend_targets(t, PRESUSPEND_UNDO); 1936 } 1937 1938 void dm_table_postsuspend_targets(struct dm_table *t) 1939 { 1940 if (!t) 1941 return; 1942 1943 suspend_targets(t, POSTSUSPEND); 1944 } 1945 1946 int dm_table_resume_targets(struct dm_table *t) 1947 { 1948 unsigned int i; 1949 int r = 0; 1950 1951 lockdep_assert_held(&t->md->suspend_lock); 1952 1953 for (i = 0; i < t->num_targets; i++) { 1954 struct dm_target *ti = dm_table_get_target(t, i); 1955 1956 if (!ti->type->preresume) 1957 continue; 1958 1959 r = ti->type->preresume(ti); 1960 if (r) { 1961 DMERR("%s: %s: preresume failed, error = %d", 1962 dm_device_name(t->md), ti->type->name, r); 1963 return r; 1964 } 1965 } 1966 1967 for (i = 0; i < t->num_targets; i++) { 1968 struct dm_target *ti = dm_table_get_target(t, i); 1969 1970 if (ti->type->resume) 1971 ti->type->resume(ti); 1972 } 1973 1974 return 0; 1975 } 1976 1977 struct mapped_device *dm_table_get_md(struct dm_table *t) 1978 { 1979 return t->md; 1980 } 1981 EXPORT_SYMBOL(dm_table_get_md); 1982 1983 const char *dm_table_device_name(struct dm_table *t) 1984 { 1985 return dm_device_name(t->md); 1986 } 1987 EXPORT_SYMBOL_GPL(dm_table_device_name); 1988 1989 void dm_table_run_md_queue_async(struct dm_table *t) 1990 { 1991 if (!dm_table_request_based(t)) 1992 return; 1993 1994 if (t->md->queue) 1995 blk_mq_run_hw_queues(t->md->queue, true); 1996 } 1997 EXPORT_SYMBOL(dm_table_run_md_queue_async); 1998 1999