1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t; 133 134 if (num_targets > DM_MAX_TARGETS) 135 return -EOVERFLOW; 136 137 t = kzalloc(sizeof(*t), GFP_KERNEL); 138 139 if (!t) 140 return -ENOMEM; 141 142 INIT_LIST_HEAD(&t->devices); 143 init_rwsem(&t->devices_lock); 144 145 if (!num_targets) 146 num_targets = KEYS_PER_NODE; 147 148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 149 150 if (!num_targets) { 151 kfree(t); 152 return -EOVERFLOW; 153 } 154 155 if (alloc_targets(t, num_targets)) { 156 kfree(t); 157 return -ENOMEM; 158 } 159 160 t->type = DM_TYPE_NONE; 161 t->mode = mode; 162 t->md = md; 163 t->flush_bypasses_map = true; 164 *result = t; 165 return 0; 166 } 167 168 static void free_devices(struct list_head *devices, struct mapped_device *md) 169 { 170 struct list_head *tmp, *next; 171 172 list_for_each_safe(tmp, next, devices) { 173 struct dm_dev_internal *dd = 174 list_entry(tmp, struct dm_dev_internal, list); 175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 176 dm_device_name(md), dd->dm_dev->name); 177 dm_put_table_device(md, dd->dm_dev); 178 kfree(dd); 179 } 180 } 181 182 static void dm_table_destroy_crypto_profile(struct dm_table *t); 183 184 void dm_table_destroy(struct dm_table *t) 185 { 186 if (!t) 187 return; 188 189 /* free the indexes */ 190 if (t->depth >= 2) 191 kvfree(t->index[t->depth - 2]); 192 193 /* free the targets */ 194 for (unsigned int i = 0; i < t->num_targets; i++) { 195 struct dm_target *ti = dm_table_get_target(t, i); 196 197 if (ti->type->dtr) 198 ti->type->dtr(ti); 199 200 dm_put_target_type(ti->type); 201 } 202 203 kvfree(t->highs); 204 205 /* free the device list */ 206 free_devices(&t->devices, t->md); 207 208 dm_free_md_mempools(t->mempools); 209 210 dm_table_destroy_crypto_profile(t); 211 212 kfree(t); 213 } 214 215 /* 216 * See if we've already got a device in the list. 217 */ 218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 219 { 220 struct dm_dev_internal *dd; 221 222 list_for_each_entry(dd, l, list) 223 if (dd->dm_dev->bdev->bd_dev == dev) 224 return dd; 225 226 return NULL; 227 } 228 229 /* 230 * If possible, this checks an area of a destination device is invalid. 231 */ 232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 233 sector_t start, sector_t len, void *data) 234 { 235 struct queue_limits *limits = data; 236 struct block_device *bdev = dev->bdev; 237 sector_t dev_size = bdev_nr_sectors(bdev); 238 unsigned short logical_block_size_sectors = 239 limits->logical_block_size >> SECTOR_SHIFT; 240 241 if (!dev_size) 242 return 0; 243 244 if ((start >= dev_size) || (start + len > dev_size)) { 245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 246 dm_device_name(ti->table->md), bdev, 247 (unsigned long long)start, 248 (unsigned long long)len, 249 (unsigned long long)dev_size); 250 return 1; 251 } 252 253 /* 254 * If the target is mapped to zoned block device(s), check 255 * that the zones are not partially mapped. 256 */ 257 if (bdev_is_zoned(bdev)) { 258 unsigned int zone_sectors = bdev_zone_sectors(bdev); 259 260 if (start & (zone_sectors - 1)) { 261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 262 dm_device_name(ti->table->md), 263 (unsigned long long)start, 264 zone_sectors, bdev); 265 return 1; 266 } 267 268 /* 269 * Note: The last zone of a zoned block device may be smaller 270 * than other zones. So for a target mapping the end of a 271 * zoned block device with such a zone, len would not be zone 272 * aligned. We do not allow such last smaller zone to be part 273 * of the mapping here to ensure that mappings with multiple 274 * devices do not end up with a smaller zone in the middle of 275 * the sector range. 276 */ 277 if (len & (zone_sectors - 1)) { 278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 279 dm_device_name(ti->table->md), 280 (unsigned long long)len, 281 zone_sectors, bdev); 282 return 1; 283 } 284 } 285 286 if (logical_block_size_sectors <= 1) 287 return 0; 288 289 if (start & (logical_block_size_sectors - 1)) { 290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 291 dm_device_name(ti->table->md), 292 (unsigned long long)start, 293 limits->logical_block_size, bdev); 294 return 1; 295 } 296 297 if (len & (logical_block_size_sectors - 1)) { 298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 299 dm_device_name(ti->table->md), 300 (unsigned long long)len, 301 limits->logical_block_size, bdev); 302 return 1; 303 } 304 305 return 0; 306 } 307 308 /* 309 * This upgrades the mode on an already open dm_dev, being 310 * careful to leave things as they were if we fail to reopen the 311 * device and not to touch the existing bdev field in case 312 * it is accessed concurrently. 313 */ 314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 315 struct mapped_device *md) 316 { 317 int r; 318 struct dm_dev *old_dev, *new_dev; 319 320 old_dev = dd->dm_dev; 321 322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 323 dd->dm_dev->mode | new_mode, &new_dev); 324 if (r) 325 return r; 326 327 dd->dm_dev = new_dev; 328 dm_put_table_device(md, old_dev); 329 330 return 0; 331 } 332 333 /* 334 * Note: the __ref annotation is because this function can call the __init 335 * marked early_lookup_bdev when called during early boot code from dm-init.c. 336 */ 337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p) 338 { 339 int r; 340 dev_t dev; 341 unsigned int major, minor; 342 char dummy; 343 344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 345 /* Extract the major/minor numbers */ 346 dev = MKDEV(major, minor); 347 if (MAJOR(dev) != major || MINOR(dev) != minor) 348 return -EOVERFLOW; 349 } else { 350 r = lookup_bdev(path, &dev); 351 #ifndef MODULE 352 if (r && system_state < SYSTEM_RUNNING) 353 r = early_lookup_bdev(path, &dev); 354 #endif 355 if (r) 356 return r; 357 } 358 *dev_p = dev; 359 return 0; 360 } 361 EXPORT_SYMBOL(dm_devt_from_path); 362 363 /* 364 * Add a device to the list, or just increment the usage count if 365 * it's already present. 366 */ 367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 368 struct dm_dev **result) 369 { 370 int r; 371 dev_t dev; 372 struct dm_dev_internal *dd; 373 struct dm_table *t = ti->table; 374 375 BUG_ON(!t); 376 377 r = dm_devt_from_path(path, &dev); 378 if (r) 379 return r; 380 381 if (dev == disk_devt(t->md->disk)) 382 return -EINVAL; 383 384 down_write(&t->devices_lock); 385 386 dd = find_device(&t->devices, dev); 387 if (!dd) { 388 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 389 if (!dd) { 390 r = -ENOMEM; 391 goto unlock_ret_r; 392 } 393 394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 395 if (r) { 396 kfree(dd); 397 goto unlock_ret_r; 398 } 399 400 refcount_set(&dd->count, 1); 401 list_add(&dd->list, &t->devices); 402 goto out; 403 404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 405 r = upgrade_mode(dd, mode, t->md); 406 if (r) 407 goto unlock_ret_r; 408 } 409 refcount_inc(&dd->count); 410 out: 411 up_write(&t->devices_lock); 412 *result = dd->dm_dev; 413 return 0; 414 415 unlock_ret_r: 416 up_write(&t->devices_lock); 417 return r; 418 } 419 EXPORT_SYMBOL(dm_get_device); 420 421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 422 sector_t start, sector_t len, void *data) 423 { 424 struct queue_limits *limits = data; 425 struct block_device *bdev = dev->bdev; 426 struct request_queue *q = bdev_get_queue(bdev); 427 428 if (unlikely(!q)) { 429 DMWARN("%s: Cannot set limits for nonexistent device %pg", 430 dm_device_name(ti->table->md), bdev); 431 return 0; 432 } 433 434 if (blk_stack_limits(limits, &q->limits, 435 get_start_sect(bdev) + start) < 0) 436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 437 "physical_block_size=%u, logical_block_size=%u, " 438 "alignment_offset=%u, start=%llu", 439 dm_device_name(ti->table->md), bdev, 440 q->limits.physical_block_size, 441 q->limits.logical_block_size, 442 q->limits.alignment_offset, 443 (unsigned long long) start << SECTOR_SHIFT); 444 445 /* 446 * Only stack the integrity profile if the target doesn't have native 447 * integrity support. 448 */ 449 if (!dm_target_has_integrity(ti->type)) 450 queue_limits_stack_integrity_bdev(limits, bdev); 451 return 0; 452 } 453 454 /* 455 * Decrement a device's use count and remove it if necessary. 456 */ 457 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 458 { 459 int found = 0; 460 struct dm_table *t = ti->table; 461 struct list_head *devices = &t->devices; 462 struct dm_dev_internal *dd; 463 464 down_write(&t->devices_lock); 465 466 list_for_each_entry(dd, devices, list) { 467 if (dd->dm_dev == d) { 468 found = 1; 469 break; 470 } 471 } 472 if (!found) { 473 DMERR("%s: device %s not in table devices list", 474 dm_device_name(t->md), d->name); 475 goto unlock_ret; 476 } 477 if (refcount_dec_and_test(&dd->count)) { 478 dm_put_table_device(t->md, d); 479 list_del(&dd->list); 480 kfree(dd); 481 } 482 483 unlock_ret: 484 up_write(&t->devices_lock); 485 } 486 EXPORT_SYMBOL(dm_put_device); 487 488 /* 489 * Checks to see if the target joins onto the end of the table. 490 */ 491 static int adjoin(struct dm_table *t, struct dm_target *ti) 492 { 493 struct dm_target *prev; 494 495 if (!t->num_targets) 496 return !ti->begin; 497 498 prev = &t->targets[t->num_targets - 1]; 499 return (ti->begin == (prev->begin + prev->len)); 500 } 501 502 /* 503 * Used to dynamically allocate the arg array. 504 * 505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 506 * process messages even if some device is suspended. These messages have a 507 * small fixed number of arguments. 508 * 509 * On the other hand, dm-switch needs to process bulk data using messages and 510 * excessive use of GFP_NOIO could cause trouble. 511 */ 512 static char **realloc_argv(unsigned int *size, char **old_argv) 513 { 514 char **argv; 515 unsigned int new_size; 516 gfp_t gfp; 517 518 if (*size) { 519 new_size = *size * 2; 520 gfp = GFP_KERNEL; 521 } else { 522 new_size = 8; 523 gfp = GFP_NOIO; 524 } 525 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 526 if (argv && old_argv) { 527 memcpy(argv, old_argv, *size * sizeof(*argv)); 528 *size = new_size; 529 } 530 531 kfree(old_argv); 532 return argv; 533 } 534 535 /* 536 * Destructively splits up the argument list to pass to ctr. 537 */ 538 int dm_split_args(int *argc, char ***argvp, char *input) 539 { 540 char *start, *end = input, *out, **argv = NULL; 541 unsigned int array_size = 0; 542 543 *argc = 0; 544 545 if (!input) { 546 *argvp = NULL; 547 return 0; 548 } 549 550 argv = realloc_argv(&array_size, argv); 551 if (!argv) 552 return -ENOMEM; 553 554 while (1) { 555 /* Skip whitespace */ 556 start = skip_spaces(end); 557 558 if (!*start) 559 break; /* success, we hit the end */ 560 561 /* 'out' is used to remove any back-quotes */ 562 end = out = start; 563 while (*end) { 564 /* Everything apart from '\0' can be quoted */ 565 if (*end == '\\' && *(end + 1)) { 566 *out++ = *(end + 1); 567 end += 2; 568 continue; 569 } 570 571 if (isspace(*end)) 572 break; /* end of token */ 573 574 *out++ = *end++; 575 } 576 577 /* have we already filled the array ? */ 578 if ((*argc + 1) > array_size) { 579 argv = realloc_argv(&array_size, argv); 580 if (!argv) 581 return -ENOMEM; 582 } 583 584 /* we know this is whitespace */ 585 if (*end) 586 end++; 587 588 /* terminate the string and put it in the array */ 589 *out = '\0'; 590 argv[*argc] = start; 591 (*argc)++; 592 } 593 594 *argvp = argv; 595 return 0; 596 } 597 598 static void dm_set_stacking_limits(struct queue_limits *limits) 599 { 600 blk_set_stacking_limits(limits); 601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL; 602 } 603 604 /* 605 * Impose necessary and sufficient conditions on a devices's table such 606 * that any incoming bio which respects its logical_block_size can be 607 * processed successfully. If it falls across the boundary between 608 * two or more targets, the size of each piece it gets split into must 609 * be compatible with the logical_block_size of the target processing it. 610 */ 611 static int validate_hardware_logical_block_alignment(struct dm_table *t, 612 struct queue_limits *limits) 613 { 614 /* 615 * This function uses arithmetic modulo the logical_block_size 616 * (in units of 512-byte sectors). 617 */ 618 unsigned short device_logical_block_size_sects = 619 limits->logical_block_size >> SECTOR_SHIFT; 620 621 /* 622 * Offset of the start of the next table entry, mod logical_block_size. 623 */ 624 unsigned short next_target_start = 0; 625 626 /* 627 * Given an aligned bio that extends beyond the end of a 628 * target, how many sectors must the next target handle? 629 */ 630 unsigned short remaining = 0; 631 632 struct dm_target *ti; 633 struct queue_limits ti_limits; 634 unsigned int i; 635 636 /* 637 * Check each entry in the table in turn. 638 */ 639 for (i = 0; i < t->num_targets; i++) { 640 ti = dm_table_get_target(t, i); 641 642 dm_set_stacking_limits(&ti_limits); 643 644 /* combine all target devices' limits */ 645 if (ti->type->iterate_devices) 646 ti->type->iterate_devices(ti, dm_set_device_limits, 647 &ti_limits); 648 649 /* 650 * If the remaining sectors fall entirely within this 651 * table entry are they compatible with its logical_block_size? 652 */ 653 if (remaining < ti->len && 654 remaining & ((ti_limits.logical_block_size >> 655 SECTOR_SHIFT) - 1)) 656 break; /* Error */ 657 658 next_target_start = 659 (unsigned short) ((next_target_start + ti->len) & 660 (device_logical_block_size_sects - 1)); 661 remaining = next_target_start ? 662 device_logical_block_size_sects - next_target_start : 0; 663 } 664 665 if (remaining) { 666 DMERR("%s: table line %u (start sect %llu len %llu) " 667 "not aligned to h/w logical block size %u", 668 dm_device_name(t->md), i, 669 (unsigned long long) ti->begin, 670 (unsigned long long) ti->len, 671 limits->logical_block_size); 672 return -EINVAL; 673 } 674 675 return 0; 676 } 677 678 int dm_table_add_target(struct dm_table *t, const char *type, 679 sector_t start, sector_t len, char *params) 680 { 681 int r = -EINVAL, argc; 682 char **argv; 683 struct dm_target *ti; 684 685 if (t->singleton) { 686 DMERR("%s: target type %s must appear alone in table", 687 dm_device_name(t->md), t->targets->type->name); 688 return -EINVAL; 689 } 690 691 BUG_ON(t->num_targets >= t->num_allocated); 692 693 ti = t->targets + t->num_targets; 694 memset(ti, 0, sizeof(*ti)); 695 696 if (!len) { 697 DMERR("%s: zero-length target", dm_device_name(t->md)); 698 return -EINVAL; 699 } 700 if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) { 701 DMERR("%s: too large device", dm_device_name(t->md)); 702 return -EINVAL; 703 } 704 705 ti->type = dm_get_target_type(type); 706 if (!ti->type) { 707 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 708 return -EINVAL; 709 } 710 711 if (dm_target_needs_singleton(ti->type)) { 712 if (t->num_targets) { 713 ti->error = "singleton target type must appear alone in table"; 714 goto bad; 715 } 716 t->singleton = true; 717 } 718 719 if (dm_target_always_writeable(ti->type) && 720 !(t->mode & BLK_OPEN_WRITE)) { 721 ti->error = "target type may not be included in a read-only table"; 722 goto bad; 723 } 724 725 if (t->immutable_target_type) { 726 if (t->immutable_target_type != ti->type) { 727 ti->error = "immutable target type cannot be mixed with other target types"; 728 goto bad; 729 } 730 } else if (dm_target_is_immutable(ti->type)) { 731 if (t->num_targets) { 732 ti->error = "immutable target type cannot be mixed with other target types"; 733 goto bad; 734 } 735 t->immutable_target_type = ti->type; 736 } 737 738 ti->table = t; 739 ti->begin = start; 740 ti->len = len; 741 ti->error = "Unknown error"; 742 743 /* 744 * Does this target adjoin the previous one ? 745 */ 746 if (!adjoin(t, ti)) { 747 ti->error = "Gap in table"; 748 goto bad; 749 } 750 751 r = dm_split_args(&argc, &argv, params); 752 if (r) { 753 ti->error = "couldn't split parameters"; 754 goto bad; 755 } 756 757 r = ti->type->ctr(ti, argc, argv); 758 kfree(argv); 759 if (r) 760 goto bad; 761 762 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 763 764 if (!ti->num_discard_bios && ti->discards_supported) 765 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 766 dm_device_name(t->md), type); 767 768 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 769 static_branch_enable(&swap_bios_enabled); 770 771 if (!ti->flush_bypasses_map) 772 t->flush_bypasses_map = false; 773 774 return 0; 775 776 bad: 777 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 778 dm_put_target_type(ti->type); 779 return r; 780 } 781 782 /* 783 * Target argument parsing helpers. 784 */ 785 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 786 unsigned int *value, char **error, unsigned int grouped) 787 { 788 const char *arg_str = dm_shift_arg(arg_set); 789 char dummy; 790 791 if (!arg_str || 792 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 793 (*value < arg->min) || 794 (*value > arg->max) || 795 (grouped && arg_set->argc < *value)) { 796 *error = arg->error; 797 return -EINVAL; 798 } 799 800 return 0; 801 } 802 803 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 804 unsigned int *value, char **error) 805 { 806 return validate_next_arg(arg, arg_set, value, error, 0); 807 } 808 EXPORT_SYMBOL(dm_read_arg); 809 810 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 811 unsigned int *value, char **error) 812 { 813 return validate_next_arg(arg, arg_set, value, error, 1); 814 } 815 EXPORT_SYMBOL(dm_read_arg_group); 816 817 const char *dm_shift_arg(struct dm_arg_set *as) 818 { 819 char *r; 820 821 if (as->argc) { 822 as->argc--; 823 r = *as->argv; 824 as->argv++; 825 return r; 826 } 827 828 return NULL; 829 } 830 EXPORT_SYMBOL(dm_shift_arg); 831 832 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 833 { 834 BUG_ON(as->argc < num_args); 835 as->argc -= num_args; 836 as->argv += num_args; 837 } 838 EXPORT_SYMBOL(dm_consume_args); 839 840 static bool __table_type_bio_based(enum dm_queue_mode table_type) 841 { 842 return (table_type == DM_TYPE_BIO_BASED || 843 table_type == DM_TYPE_DAX_BIO_BASED); 844 } 845 846 static bool __table_type_request_based(enum dm_queue_mode table_type) 847 { 848 return table_type == DM_TYPE_REQUEST_BASED; 849 } 850 851 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 852 { 853 t->type = type; 854 } 855 EXPORT_SYMBOL_GPL(dm_table_set_type); 856 857 /* validate the dax capability of the target device span */ 858 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 859 sector_t start, sector_t len, void *data) 860 { 861 if (dev->dax_dev) 862 return false; 863 864 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 865 return true; 866 } 867 868 /* Check devices support synchronous DAX */ 869 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 870 sector_t start, sector_t len, void *data) 871 { 872 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 873 } 874 875 static bool dm_table_supports_dax(struct dm_table *t, 876 iterate_devices_callout_fn iterate_fn) 877 { 878 /* Ensure that all targets support DAX. */ 879 for (unsigned int i = 0; i < t->num_targets; i++) { 880 struct dm_target *ti = dm_table_get_target(t, i); 881 882 if (!ti->type->direct_access) 883 return false; 884 885 if (dm_target_is_wildcard(ti->type) || 886 !ti->type->iterate_devices || 887 ti->type->iterate_devices(ti, iterate_fn, NULL)) 888 return false; 889 } 890 891 return true; 892 } 893 894 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 895 sector_t start, sector_t len, void *data) 896 { 897 struct block_device *bdev = dev->bdev; 898 struct request_queue *q = bdev_get_queue(bdev); 899 900 /* request-based cannot stack on partitions! */ 901 if (bdev_is_partition(bdev)) 902 return false; 903 904 return queue_is_mq(q); 905 } 906 907 static int dm_table_determine_type(struct dm_table *t) 908 { 909 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 910 struct dm_target *ti; 911 struct list_head *devices = dm_table_get_devices(t); 912 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 913 914 if (t->type != DM_TYPE_NONE) { 915 /* target already set the table's type */ 916 if (t->type == DM_TYPE_BIO_BASED) { 917 /* possibly upgrade to a variant of bio-based */ 918 goto verify_bio_based; 919 } 920 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 921 goto verify_rq_based; 922 } 923 924 for (unsigned int i = 0; i < t->num_targets; i++) { 925 ti = dm_table_get_target(t, i); 926 if (dm_target_hybrid(ti)) 927 hybrid = 1; 928 else if (dm_target_request_based(ti)) 929 request_based = 1; 930 else 931 bio_based = 1; 932 933 if (bio_based && request_based) { 934 DMERR("Inconsistent table: different target types can't be mixed up"); 935 return -EINVAL; 936 } 937 } 938 939 if (hybrid && !bio_based && !request_based) { 940 /* 941 * The targets can work either way. 942 * Determine the type from the live device. 943 * Default to bio-based if device is new. 944 */ 945 if (__table_type_request_based(live_md_type)) 946 request_based = 1; 947 else 948 bio_based = 1; 949 } 950 951 if (bio_based) { 952 verify_bio_based: 953 /* We must use this table as bio-based */ 954 t->type = DM_TYPE_BIO_BASED; 955 if (dm_table_supports_dax(t, device_not_dax_capable) || 956 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 957 t->type = DM_TYPE_DAX_BIO_BASED; 958 } 959 return 0; 960 } 961 962 BUG_ON(!request_based); /* No targets in this table */ 963 964 t->type = DM_TYPE_REQUEST_BASED; 965 966 verify_rq_based: 967 /* 968 * Request-based dm supports only tables that have a single target now. 969 * To support multiple targets, request splitting support is needed, 970 * and that needs lots of changes in the block-layer. 971 * (e.g. request completion process for partial completion.) 972 */ 973 if (t->num_targets > 1) { 974 DMERR("request-based DM doesn't support multiple targets"); 975 return -EINVAL; 976 } 977 978 if (list_empty(devices)) { 979 int srcu_idx; 980 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 981 982 /* inherit live table's type */ 983 if (live_table) 984 t->type = live_table->type; 985 dm_put_live_table(t->md, srcu_idx); 986 return 0; 987 } 988 989 ti = dm_table_get_immutable_target(t); 990 if (!ti) { 991 DMERR("table load rejected: immutable target is required"); 992 return -EINVAL; 993 } else if (ti->max_io_len) { 994 DMERR("table load rejected: immutable target that splits IO is not supported"); 995 return -EINVAL; 996 } 997 998 /* Non-request-stackable devices can't be used for request-based dm */ 999 if (!ti->type->iterate_devices || 1000 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 1001 DMERR("table load rejected: including non-request-stackable devices"); 1002 return -EINVAL; 1003 } 1004 1005 return 0; 1006 } 1007 1008 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1009 { 1010 return t->type; 1011 } 1012 1013 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1014 { 1015 return t->immutable_target_type; 1016 } 1017 1018 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1019 { 1020 /* Immutable target is implicitly a singleton */ 1021 if (t->num_targets > 1 || 1022 !dm_target_is_immutable(t->targets[0].type)) 1023 return NULL; 1024 1025 return t->targets; 1026 } 1027 1028 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1029 { 1030 for (unsigned int i = 0; i < t->num_targets; i++) { 1031 struct dm_target *ti = dm_table_get_target(t, i); 1032 1033 if (dm_target_is_wildcard(ti->type)) 1034 return ti; 1035 } 1036 1037 return NULL; 1038 } 1039 1040 bool dm_table_request_based(struct dm_table *t) 1041 { 1042 return __table_type_request_based(dm_table_get_type(t)); 1043 } 1044 1045 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1046 { 1047 enum dm_queue_mode type = dm_table_get_type(t); 1048 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1049 unsigned int min_pool_size = 0, pool_size; 1050 struct dm_md_mempools *pools; 1051 unsigned int bioset_flags = 0; 1052 bool mempool_needs_integrity = t->integrity_supported; 1053 1054 if (unlikely(type == DM_TYPE_NONE)) { 1055 DMERR("no table type is set, can't allocate mempools"); 1056 return -EINVAL; 1057 } 1058 1059 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1060 if (!pools) 1061 return -ENOMEM; 1062 1063 if (type == DM_TYPE_REQUEST_BASED) { 1064 pool_size = dm_get_reserved_rq_based_ios(); 1065 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1066 goto init_bs; 1067 } 1068 1069 if (md->queue->limits.features & BLK_FEAT_POLL) 1070 bioset_flags |= BIOSET_PERCPU_CACHE; 1071 1072 for (unsigned int i = 0; i < t->num_targets; i++) { 1073 struct dm_target *ti = dm_table_get_target(t, i); 1074 1075 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1076 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1077 1078 mempool_needs_integrity |= ti->mempool_needs_integrity; 1079 } 1080 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1081 front_pad = roundup(per_io_data_size, 1082 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1083 1084 io_front_pad = roundup(per_io_data_size, 1085 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1086 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags)) 1087 goto out_free_pools; 1088 init_bs: 1089 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1090 goto out_free_pools; 1091 1092 t->mempools = pools; 1093 return 0; 1094 1095 out_free_pools: 1096 dm_free_md_mempools(pools); 1097 return -ENOMEM; 1098 } 1099 1100 static int setup_indexes(struct dm_table *t) 1101 { 1102 int i; 1103 unsigned int total = 0; 1104 sector_t *indexes; 1105 1106 /* allocate the space for *all* the indexes */ 1107 for (i = t->depth - 2; i >= 0; i--) { 1108 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1109 total += t->counts[i]; 1110 } 1111 1112 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1113 if (!indexes) 1114 return -ENOMEM; 1115 1116 /* set up internal nodes, bottom-up */ 1117 for (i = t->depth - 2; i >= 0; i--) { 1118 t->index[i] = indexes; 1119 indexes += (KEYS_PER_NODE * t->counts[i]); 1120 setup_btree_index(i, t); 1121 } 1122 1123 return 0; 1124 } 1125 1126 /* 1127 * Builds the btree to index the map. 1128 */ 1129 static int dm_table_build_index(struct dm_table *t) 1130 { 1131 int r = 0; 1132 unsigned int leaf_nodes; 1133 1134 /* how many indexes will the btree have ? */ 1135 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1136 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1137 1138 /* leaf layer has already been set up */ 1139 t->counts[t->depth - 1] = leaf_nodes; 1140 t->index[t->depth - 1] = t->highs; 1141 1142 if (t->depth >= 2) 1143 r = setup_indexes(t); 1144 1145 return r; 1146 } 1147 1148 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1149 1150 struct dm_crypto_profile { 1151 struct blk_crypto_profile profile; 1152 struct mapped_device *md; 1153 }; 1154 1155 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1156 sector_t start, sector_t len, void *data) 1157 { 1158 const struct blk_crypto_key *key = data; 1159 1160 blk_crypto_evict_key(dev->bdev, key); 1161 return 0; 1162 } 1163 1164 /* 1165 * When an inline encryption key is evicted from a device-mapper device, evict 1166 * it from all the underlying devices. 1167 */ 1168 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1169 const struct blk_crypto_key *key, unsigned int slot) 1170 { 1171 struct mapped_device *md = 1172 container_of(profile, struct dm_crypto_profile, profile)->md; 1173 struct dm_table *t; 1174 int srcu_idx; 1175 1176 t = dm_get_live_table(md, &srcu_idx); 1177 if (!t) 1178 return 0; 1179 1180 for (unsigned int i = 0; i < t->num_targets; i++) { 1181 struct dm_target *ti = dm_table_get_target(t, i); 1182 1183 if (!ti->type->iterate_devices) 1184 continue; 1185 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1186 (void *)key); 1187 } 1188 1189 dm_put_live_table(md, srcu_idx); 1190 return 0; 1191 } 1192 1193 static int 1194 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1195 sector_t start, sector_t len, void *data) 1196 { 1197 struct blk_crypto_profile *parent = data; 1198 struct blk_crypto_profile *child = 1199 bdev_get_queue(dev->bdev)->crypto_profile; 1200 1201 blk_crypto_intersect_capabilities(parent, child); 1202 return 0; 1203 } 1204 1205 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1206 { 1207 struct dm_crypto_profile *dmcp = container_of(profile, 1208 struct dm_crypto_profile, 1209 profile); 1210 1211 if (!profile) 1212 return; 1213 1214 blk_crypto_profile_destroy(profile); 1215 kfree(dmcp); 1216 } 1217 1218 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1219 { 1220 dm_destroy_crypto_profile(t->crypto_profile); 1221 t->crypto_profile = NULL; 1222 } 1223 1224 /* 1225 * Constructs and initializes t->crypto_profile with a crypto profile that 1226 * represents the common set of crypto capabilities of the devices described by 1227 * the dm_table. However, if the constructed crypto profile doesn't support all 1228 * crypto capabilities that are supported by the current mapped_device, it 1229 * returns an error instead, since we don't support removing crypto capabilities 1230 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1231 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1232 */ 1233 static int dm_table_construct_crypto_profile(struct dm_table *t) 1234 { 1235 struct dm_crypto_profile *dmcp; 1236 struct blk_crypto_profile *profile; 1237 unsigned int i; 1238 bool empty_profile = true; 1239 1240 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1241 if (!dmcp) 1242 return -ENOMEM; 1243 dmcp->md = t->md; 1244 1245 profile = &dmcp->profile; 1246 blk_crypto_profile_init(profile, 0); 1247 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1248 profile->max_dun_bytes_supported = UINT_MAX; 1249 memset(profile->modes_supported, 0xFF, 1250 sizeof(profile->modes_supported)); 1251 profile->key_types_supported = ~0; 1252 1253 for (i = 0; i < t->num_targets; i++) { 1254 struct dm_target *ti = dm_table_get_target(t, i); 1255 1256 if (!dm_target_passes_crypto(ti->type)) { 1257 blk_crypto_intersect_capabilities(profile, NULL); 1258 break; 1259 } 1260 if (!ti->type->iterate_devices) 1261 continue; 1262 ti->type->iterate_devices(ti, 1263 device_intersect_crypto_capabilities, 1264 profile); 1265 } 1266 1267 if (t->md->queue && 1268 !blk_crypto_has_capabilities(profile, 1269 t->md->queue->crypto_profile)) { 1270 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1271 dm_destroy_crypto_profile(profile); 1272 return -EINVAL; 1273 } 1274 1275 /* 1276 * If the new profile doesn't actually support any crypto capabilities, 1277 * we may as well represent it with a NULL profile. 1278 */ 1279 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1280 if (profile->modes_supported[i]) { 1281 empty_profile = false; 1282 break; 1283 } 1284 } 1285 1286 if (empty_profile) { 1287 dm_destroy_crypto_profile(profile); 1288 profile = NULL; 1289 } 1290 1291 /* 1292 * t->crypto_profile is only set temporarily while the table is being 1293 * set up, and it gets set to NULL after the profile has been 1294 * transferred to the request_queue. 1295 */ 1296 t->crypto_profile = profile; 1297 1298 return 0; 1299 } 1300 1301 static void dm_update_crypto_profile(struct request_queue *q, 1302 struct dm_table *t) 1303 { 1304 if (!t->crypto_profile) 1305 return; 1306 1307 /* Make the crypto profile less restrictive. */ 1308 if (!q->crypto_profile) { 1309 blk_crypto_register(t->crypto_profile, q); 1310 } else { 1311 blk_crypto_update_capabilities(q->crypto_profile, 1312 t->crypto_profile); 1313 dm_destroy_crypto_profile(t->crypto_profile); 1314 } 1315 t->crypto_profile = NULL; 1316 } 1317 1318 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1319 1320 static int dm_table_construct_crypto_profile(struct dm_table *t) 1321 { 1322 return 0; 1323 } 1324 1325 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1326 { 1327 } 1328 1329 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1330 { 1331 } 1332 1333 static void dm_update_crypto_profile(struct request_queue *q, 1334 struct dm_table *t) 1335 { 1336 } 1337 1338 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1339 1340 /* 1341 * Prepares the table for use by building the indices, 1342 * setting the type, and allocating mempools. 1343 */ 1344 int dm_table_complete(struct dm_table *t) 1345 { 1346 int r; 1347 1348 r = dm_table_determine_type(t); 1349 if (r) { 1350 DMERR("unable to determine table type"); 1351 return r; 1352 } 1353 1354 r = dm_table_build_index(t); 1355 if (r) { 1356 DMERR("unable to build btrees"); 1357 return r; 1358 } 1359 1360 r = dm_table_construct_crypto_profile(t); 1361 if (r) { 1362 DMERR("could not construct crypto profile."); 1363 return r; 1364 } 1365 1366 r = dm_table_alloc_md_mempools(t, t->md); 1367 if (r) 1368 DMERR("unable to allocate mempools"); 1369 1370 return r; 1371 } 1372 1373 static DEFINE_MUTEX(_event_lock); 1374 void dm_table_event_callback(struct dm_table *t, 1375 void (*fn)(void *), void *context) 1376 { 1377 mutex_lock(&_event_lock); 1378 t->event_fn = fn; 1379 t->event_context = context; 1380 mutex_unlock(&_event_lock); 1381 } 1382 1383 void dm_table_event(struct dm_table *t) 1384 { 1385 mutex_lock(&_event_lock); 1386 if (t->event_fn) 1387 t->event_fn(t->event_context); 1388 mutex_unlock(&_event_lock); 1389 } 1390 EXPORT_SYMBOL(dm_table_event); 1391 1392 inline sector_t dm_table_get_size(struct dm_table *t) 1393 { 1394 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1395 } 1396 EXPORT_SYMBOL(dm_table_get_size); 1397 1398 /* 1399 * Search the btree for the correct target. 1400 * 1401 * Caller should check returned pointer for NULL 1402 * to trap I/O beyond end of device. 1403 */ 1404 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1405 { 1406 unsigned int l, n = 0, k = 0; 1407 sector_t *node; 1408 1409 if (unlikely(sector >= dm_table_get_size(t))) 1410 return NULL; 1411 1412 for (l = 0; l < t->depth; l++) { 1413 n = get_child(n, k); 1414 node = get_node(t, l, n); 1415 1416 for (k = 0; k < KEYS_PER_NODE; k++) 1417 if (node[k] >= sector) 1418 break; 1419 } 1420 1421 return &t->targets[(KEYS_PER_NODE * n) + k]; 1422 } 1423 1424 /* 1425 * type->iterate_devices() should be called when the sanity check needs to 1426 * iterate and check all underlying data devices. iterate_devices() will 1427 * iterate all underlying data devices until it encounters a non-zero return 1428 * code, returned by whether the input iterate_devices_callout_fn, or 1429 * iterate_devices() itself internally. 1430 * 1431 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1432 * iterate multiple underlying devices internally, in which case a non-zero 1433 * return code returned by iterate_devices_callout_fn will stop the iteration 1434 * in advance. 1435 * 1436 * Cases requiring _any_ underlying device supporting some kind of attribute, 1437 * should use the iteration structure like dm_table_any_dev_attr(), or call 1438 * it directly. @func should handle semantics of positive examples, e.g. 1439 * capable of something. 1440 * 1441 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1442 * should use the iteration structure like dm_table_supports_nowait() or 1443 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1444 * uses an @anti_func that handle semantics of counter examples, e.g. not 1445 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1446 */ 1447 static bool dm_table_any_dev_attr(struct dm_table *t, 1448 iterate_devices_callout_fn func, void *data) 1449 { 1450 for (unsigned int i = 0; i < t->num_targets; i++) { 1451 struct dm_target *ti = dm_table_get_target(t, i); 1452 1453 if (ti->type->iterate_devices && 1454 ti->type->iterate_devices(ti, func, data)) 1455 return true; 1456 } 1457 1458 return false; 1459 } 1460 1461 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1462 sector_t start, sector_t len, void *data) 1463 { 1464 unsigned int *num_devices = data; 1465 1466 (*num_devices)++; 1467 1468 return 0; 1469 } 1470 1471 /* 1472 * Check whether a table has no data devices attached using each 1473 * target's iterate_devices method. 1474 * Returns false if the result is unknown because a target doesn't 1475 * support iterate_devices. 1476 */ 1477 bool dm_table_has_no_data_devices(struct dm_table *t) 1478 { 1479 for (unsigned int i = 0; i < t->num_targets; i++) { 1480 struct dm_target *ti = dm_table_get_target(t, i); 1481 unsigned int num_devices = 0; 1482 1483 if (!ti->type->iterate_devices) 1484 return false; 1485 1486 ti->type->iterate_devices(ti, count_device, &num_devices); 1487 if (num_devices) 1488 return false; 1489 } 1490 1491 return true; 1492 } 1493 1494 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1495 sector_t start, sector_t len, void *data) 1496 { 1497 bool *zoned = data; 1498 1499 return bdev_is_zoned(dev->bdev) != *zoned; 1500 } 1501 1502 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1503 sector_t start, sector_t len, void *data) 1504 { 1505 return bdev_is_zoned(dev->bdev); 1506 } 1507 1508 /* 1509 * Check the device zoned model based on the target feature flag. If the target 1510 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1511 * also accepted but all devices must have the same zoned model. If the target 1512 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1513 * zoned model with all zoned devices having the same zone size. 1514 */ 1515 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1516 { 1517 for (unsigned int i = 0; i < t->num_targets; i++) { 1518 struct dm_target *ti = dm_table_get_target(t, i); 1519 1520 /* 1521 * For the wildcard target (dm-error), if we do not have a 1522 * backing device, we must always return false. If we have a 1523 * backing device, the result must depend on checking zoned 1524 * model, like for any other target. So for this, check directly 1525 * if the target backing device is zoned as we get "false" when 1526 * dm-error was set without a backing device. 1527 */ 1528 if (dm_target_is_wildcard(ti->type) && 1529 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1530 return false; 1531 1532 if (dm_target_supports_zoned_hm(ti->type)) { 1533 if (!ti->type->iterate_devices || 1534 ti->type->iterate_devices(ti, device_not_zoned, 1535 &zoned)) 1536 return false; 1537 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1538 if (zoned) 1539 return false; 1540 } 1541 } 1542 1543 return true; 1544 } 1545 1546 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1547 sector_t start, sector_t len, void *data) 1548 { 1549 unsigned int *zone_sectors = data; 1550 1551 if (!bdev_is_zoned(dev->bdev)) 1552 return 0; 1553 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1554 } 1555 1556 /* 1557 * Check consistency of zoned model and zone sectors across all targets. For 1558 * zone sectors, if the destination device is a zoned block device, it shall 1559 * have the specified zone_sectors. 1560 */ 1561 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1562 unsigned int zone_sectors) 1563 { 1564 if (!zoned) 1565 return 0; 1566 1567 if (!dm_table_supports_zoned(t, zoned)) { 1568 DMERR("%s: zoned model is not consistent across all devices", 1569 dm_device_name(t->md)); 1570 return -EINVAL; 1571 } 1572 1573 /* Check zone size validity and compatibility */ 1574 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1575 return -EINVAL; 1576 1577 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1578 DMERR("%s: zone sectors is not consistent across all zoned devices", 1579 dm_device_name(t->md)); 1580 return -EINVAL; 1581 } 1582 1583 return 0; 1584 } 1585 1586 /* 1587 * Establish the new table's queue_limits and validate them. 1588 */ 1589 int dm_calculate_queue_limits(struct dm_table *t, 1590 struct queue_limits *limits) 1591 { 1592 struct queue_limits ti_limits; 1593 unsigned int zone_sectors = 0; 1594 bool zoned = false; 1595 1596 dm_set_stacking_limits(limits); 1597 1598 t->integrity_supported = true; 1599 for (unsigned int i = 0; i < t->num_targets; i++) { 1600 struct dm_target *ti = dm_table_get_target(t, i); 1601 1602 if (!dm_target_passes_integrity(ti->type)) 1603 t->integrity_supported = false; 1604 } 1605 1606 for (unsigned int i = 0; i < t->num_targets; i++) { 1607 struct dm_target *ti = dm_table_get_target(t, i); 1608 1609 dm_set_stacking_limits(&ti_limits); 1610 1611 if (!ti->type->iterate_devices) { 1612 /* Set I/O hints portion of queue limits */ 1613 if (ti->type->io_hints) 1614 ti->type->io_hints(ti, &ti_limits); 1615 goto combine_limits; 1616 } 1617 1618 /* 1619 * Combine queue limits of all the devices this target uses. 1620 */ 1621 ti->type->iterate_devices(ti, dm_set_device_limits, 1622 &ti_limits); 1623 1624 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) { 1625 /* 1626 * After stacking all limits, validate all devices 1627 * in table support this zoned model and zone sectors. 1628 */ 1629 zoned = (ti_limits.features & BLK_FEAT_ZONED); 1630 zone_sectors = ti_limits.chunk_sectors; 1631 } 1632 1633 /* Set I/O hints portion of queue limits */ 1634 if (ti->type->io_hints) 1635 ti->type->io_hints(ti, &ti_limits); 1636 1637 /* 1638 * Check each device area is consistent with the target's 1639 * overall queue limits. 1640 */ 1641 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1642 &ti_limits)) 1643 return -EINVAL; 1644 1645 combine_limits: 1646 /* 1647 * Merge this target's queue limits into the overall limits 1648 * for the table. 1649 */ 1650 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1651 DMWARN("%s: adding target device (start sect %llu len %llu) " 1652 "caused an alignment inconsistency", 1653 dm_device_name(t->md), 1654 (unsigned long long) ti->begin, 1655 (unsigned long long) ti->len); 1656 1657 if (t->integrity_supported || 1658 dm_target_has_integrity(ti->type)) { 1659 if (!queue_limits_stack_integrity(limits, &ti_limits)) { 1660 DMWARN("%s: adding target device (start sect %llu len %llu) " 1661 "disabled integrity support due to incompatibility", 1662 dm_device_name(t->md), 1663 (unsigned long long) ti->begin, 1664 (unsigned long long) ti->len); 1665 t->integrity_supported = false; 1666 } 1667 } 1668 } 1669 1670 /* 1671 * Verify that the zoned model and zone sectors, as determined before 1672 * any .io_hints override, are the same across all devices in the table. 1673 * - this is especially relevant if .io_hints is emulating a disk-managed 1674 * zoned model on host-managed zoned block devices. 1675 * BUT... 1676 */ 1677 if (limits->features & BLK_FEAT_ZONED) { 1678 /* 1679 * ...IF the above limits stacking determined a zoned model 1680 * validate that all of the table's devices conform to it. 1681 */ 1682 zoned = limits->features & BLK_FEAT_ZONED; 1683 zone_sectors = limits->chunk_sectors; 1684 } 1685 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1686 return -EINVAL; 1687 1688 return validate_hardware_logical_block_alignment(t, limits); 1689 } 1690 1691 /* 1692 * Check if a target requires flush support even if none of the underlying 1693 * devices need it (e.g. to persist target-specific metadata). 1694 */ 1695 static bool dm_table_supports_flush(struct dm_table *t) 1696 { 1697 for (unsigned int i = 0; i < t->num_targets; i++) { 1698 struct dm_target *ti = dm_table_get_target(t, i); 1699 1700 if (ti->num_flush_bios && ti->flush_supported) 1701 return true; 1702 } 1703 1704 return false; 1705 } 1706 1707 static int device_dax_write_cache_enabled(struct dm_target *ti, 1708 struct dm_dev *dev, sector_t start, 1709 sector_t len, void *data) 1710 { 1711 struct dax_device *dax_dev = dev->dax_dev; 1712 1713 if (!dax_dev) 1714 return false; 1715 1716 if (dax_write_cache_enabled(dax_dev)) 1717 return true; 1718 return false; 1719 } 1720 1721 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1722 sector_t start, sector_t len, void *data) 1723 { 1724 struct request_queue *q = bdev_get_queue(dev->bdev); 1725 1726 return !q->limits.max_write_zeroes_sectors; 1727 } 1728 1729 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1730 { 1731 for (unsigned int i = 0; i < t->num_targets; i++) { 1732 struct dm_target *ti = dm_table_get_target(t, i); 1733 1734 if (!ti->num_write_zeroes_bios) 1735 return false; 1736 1737 if (!ti->type->iterate_devices || 1738 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1739 return false; 1740 } 1741 1742 return true; 1743 } 1744 1745 static bool dm_table_supports_nowait(struct dm_table *t) 1746 { 1747 for (unsigned int i = 0; i < t->num_targets; i++) { 1748 struct dm_target *ti = dm_table_get_target(t, i); 1749 1750 if (!dm_target_supports_nowait(ti->type)) 1751 return false; 1752 } 1753 1754 return true; 1755 } 1756 1757 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1758 sector_t start, sector_t len, void *data) 1759 { 1760 return !bdev_max_discard_sectors(dev->bdev); 1761 } 1762 1763 static bool dm_table_supports_discards(struct dm_table *t) 1764 { 1765 for (unsigned int i = 0; i < t->num_targets; i++) { 1766 struct dm_target *ti = dm_table_get_target(t, i); 1767 1768 if (!ti->num_discard_bios) 1769 return false; 1770 1771 /* 1772 * Either the target provides discard support (as implied by setting 1773 * 'discards_supported') or it relies on _all_ data devices having 1774 * discard support. 1775 */ 1776 if (!ti->discards_supported && 1777 (!ti->type->iterate_devices || 1778 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1779 return false; 1780 } 1781 1782 return true; 1783 } 1784 1785 static int device_not_secure_erase_capable(struct dm_target *ti, 1786 struct dm_dev *dev, sector_t start, 1787 sector_t len, void *data) 1788 { 1789 return !bdev_max_secure_erase_sectors(dev->bdev); 1790 } 1791 1792 static bool dm_table_supports_secure_erase(struct dm_table *t) 1793 { 1794 for (unsigned int i = 0; i < t->num_targets; i++) { 1795 struct dm_target *ti = dm_table_get_target(t, i); 1796 1797 if (!ti->num_secure_erase_bios) 1798 return false; 1799 1800 if (!ti->type->iterate_devices || 1801 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1802 return false; 1803 } 1804 1805 return true; 1806 } 1807 1808 static int device_not_atomic_write_capable(struct dm_target *ti, 1809 struct dm_dev *dev, sector_t start, 1810 sector_t len, void *data) 1811 { 1812 return !bdev_can_atomic_write(dev->bdev); 1813 } 1814 1815 static bool dm_table_supports_atomic_writes(struct dm_table *t) 1816 { 1817 for (unsigned int i = 0; i < t->num_targets; i++) { 1818 struct dm_target *ti = dm_table_get_target(t, i); 1819 1820 if (!dm_target_supports_atomic_writes(ti->type)) 1821 return false; 1822 1823 if (!ti->type->iterate_devices) 1824 return false; 1825 1826 if (ti->type->iterate_devices(ti, 1827 device_not_atomic_write_capable, NULL)) { 1828 return false; 1829 } 1830 } 1831 return true; 1832 } 1833 1834 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1835 struct queue_limits *limits) 1836 { 1837 int r; 1838 1839 if (!dm_table_supports_nowait(t)) 1840 limits->features &= ~BLK_FEAT_NOWAIT; 1841 1842 /* 1843 * The current polling impementation does not support request based 1844 * stacking. 1845 */ 1846 if (!__table_type_bio_based(t->type)) 1847 limits->features &= ~BLK_FEAT_POLL; 1848 1849 if (!dm_table_supports_discards(t)) { 1850 limits->max_hw_discard_sectors = 0; 1851 limits->discard_granularity = 0; 1852 limits->discard_alignment = 0; 1853 } 1854 1855 if (!dm_table_supports_write_zeroes(t)) 1856 limits->max_write_zeroes_sectors = 0; 1857 1858 if (!dm_table_supports_secure_erase(t)) 1859 limits->max_secure_erase_sectors = 0; 1860 1861 if (dm_table_supports_flush(t)) 1862 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 1863 1864 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1865 limits->features |= BLK_FEAT_DAX; 1866 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1867 set_dax_synchronous(t->md->dax_dev); 1868 } else 1869 limits->features &= ~BLK_FEAT_DAX; 1870 1871 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1872 dax_write_cache(t->md->dax_dev, true); 1873 1874 /* For a zoned table, setup the zone related queue attributes. */ 1875 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1876 (limits->features & BLK_FEAT_ZONED)) { 1877 r = dm_set_zones_restrictions(t, q, limits); 1878 if (r) 1879 return r; 1880 } 1881 1882 if (dm_table_supports_atomic_writes(t)) 1883 limits->features |= BLK_FEAT_ATOMIC_WRITES; 1884 1885 r = queue_limits_set(q, limits); 1886 if (r) 1887 return r; 1888 1889 /* 1890 * Now that the limits are set, check the zones mapped by the table 1891 * and setup the resources for zone append emulation if necessary. 1892 */ 1893 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1894 (limits->features & BLK_FEAT_ZONED)) { 1895 r = dm_revalidate_zones(t, q); 1896 if (r) 1897 return r; 1898 } 1899 1900 dm_update_crypto_profile(q, t); 1901 return 0; 1902 } 1903 1904 struct list_head *dm_table_get_devices(struct dm_table *t) 1905 { 1906 return &t->devices; 1907 } 1908 1909 blk_mode_t dm_table_get_mode(struct dm_table *t) 1910 { 1911 return t->mode; 1912 } 1913 EXPORT_SYMBOL(dm_table_get_mode); 1914 1915 enum suspend_mode { 1916 PRESUSPEND, 1917 PRESUSPEND_UNDO, 1918 POSTSUSPEND, 1919 }; 1920 1921 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1922 { 1923 lockdep_assert_held(&t->md->suspend_lock); 1924 1925 for (unsigned int i = 0; i < t->num_targets; i++) { 1926 struct dm_target *ti = dm_table_get_target(t, i); 1927 1928 switch (mode) { 1929 case PRESUSPEND: 1930 if (ti->type->presuspend) 1931 ti->type->presuspend(ti); 1932 break; 1933 case PRESUSPEND_UNDO: 1934 if (ti->type->presuspend_undo) 1935 ti->type->presuspend_undo(ti); 1936 break; 1937 case POSTSUSPEND: 1938 if (ti->type->postsuspend) 1939 ti->type->postsuspend(ti); 1940 break; 1941 } 1942 } 1943 } 1944 1945 void dm_table_presuspend_targets(struct dm_table *t) 1946 { 1947 if (!t) 1948 return; 1949 1950 suspend_targets(t, PRESUSPEND); 1951 } 1952 1953 void dm_table_presuspend_undo_targets(struct dm_table *t) 1954 { 1955 if (!t) 1956 return; 1957 1958 suspend_targets(t, PRESUSPEND_UNDO); 1959 } 1960 1961 void dm_table_postsuspend_targets(struct dm_table *t) 1962 { 1963 if (!t) 1964 return; 1965 1966 suspend_targets(t, POSTSUSPEND); 1967 } 1968 1969 int dm_table_resume_targets(struct dm_table *t) 1970 { 1971 unsigned int i; 1972 int r = 0; 1973 1974 lockdep_assert_held(&t->md->suspend_lock); 1975 1976 for (i = 0; i < t->num_targets; i++) { 1977 struct dm_target *ti = dm_table_get_target(t, i); 1978 1979 if (!ti->type->preresume) 1980 continue; 1981 1982 r = ti->type->preresume(ti); 1983 if (r) { 1984 DMERR("%s: %s: preresume failed, error = %d", 1985 dm_device_name(t->md), ti->type->name, r); 1986 return r; 1987 } 1988 } 1989 1990 for (i = 0; i < t->num_targets; i++) { 1991 struct dm_target *ti = dm_table_get_target(t, i); 1992 1993 if (ti->type->resume) 1994 ti->type->resume(ti); 1995 } 1996 1997 return 0; 1998 } 1999 2000 struct mapped_device *dm_table_get_md(struct dm_table *t) 2001 { 2002 return t->md; 2003 } 2004 EXPORT_SYMBOL(dm_table_get_md); 2005 2006 const char *dm_table_device_name(struct dm_table *t) 2007 { 2008 return dm_device_name(t->md); 2009 } 2010 EXPORT_SYMBOL_GPL(dm_table_device_name); 2011 2012 void dm_table_run_md_queue_async(struct dm_table *t) 2013 { 2014 if (!dm_table_request_based(t)) 2015 return; 2016 2017 if (t->md->queue) 2018 blk_mq_run_hw_queues(t->md->queue, true); 2019 } 2020 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2021 2022