1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <asm/atomic.h> 19 20 #define MAX_DEPTH 16 21 #define NODE_SIZE L1_CACHE_BYTES 22 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 23 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 24 25 struct dm_table { 26 struct mapped_device *md; 27 atomic_t holders; 28 29 /* btree table */ 30 unsigned int depth; 31 unsigned int counts[MAX_DEPTH]; /* in nodes */ 32 sector_t *index[MAX_DEPTH]; 33 34 unsigned int num_targets; 35 unsigned int num_allocated; 36 sector_t *highs; 37 struct dm_target *targets; 38 39 /* 40 * Indicates the rw permissions for the new logical 41 * device. This should be a combination of FMODE_READ 42 * and FMODE_WRITE. 43 */ 44 int mode; 45 46 /* a list of devices used by this table */ 47 struct list_head devices; 48 49 /* 50 * These are optimistic limits taken from all the 51 * targets, some targets will need smaller limits. 52 */ 53 struct io_restrictions limits; 54 55 /* events get handed up using this callback */ 56 void (*event_fn)(void *); 57 void *event_context; 58 }; 59 60 /* 61 * Similar to ceiling(log_size(n)) 62 */ 63 static unsigned int int_log(unsigned int n, unsigned int base) 64 { 65 int result = 0; 66 67 while (n > 1) { 68 n = dm_div_up(n, base); 69 result++; 70 } 71 72 return result; 73 } 74 75 /* 76 * Returns the minimum that is _not_ zero, unless both are zero. 77 */ 78 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 79 80 /* 81 * Combine two io_restrictions, always taking the lower value. 82 */ 83 static void combine_restrictions_low(struct io_restrictions *lhs, 84 struct io_restrictions *rhs) 85 { 86 lhs->max_sectors = 87 min_not_zero(lhs->max_sectors, rhs->max_sectors); 88 89 lhs->max_phys_segments = 90 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 91 92 lhs->max_hw_segments = 93 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 94 95 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 96 97 lhs->max_segment_size = 98 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 99 100 lhs->seg_boundary_mask = 101 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 102 103 lhs->no_cluster |= rhs->no_cluster; 104 } 105 106 /* 107 * Calculate the index of the child node of the n'th node k'th key. 108 */ 109 static inline unsigned int get_child(unsigned int n, unsigned int k) 110 { 111 return (n * CHILDREN_PER_NODE) + k; 112 } 113 114 /* 115 * Return the n'th node of level l from table t. 116 */ 117 static inline sector_t *get_node(struct dm_table *t, 118 unsigned int l, unsigned int n) 119 { 120 return t->index[l] + (n * KEYS_PER_NODE); 121 } 122 123 /* 124 * Return the highest key that you could lookup from the n'th 125 * node on level l of the btree. 126 */ 127 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 128 { 129 for (; l < t->depth - 1; l++) 130 n = get_child(n, CHILDREN_PER_NODE - 1); 131 132 if (n >= t->counts[l]) 133 return (sector_t) - 1; 134 135 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 136 } 137 138 /* 139 * Fills in a level of the btree based on the highs of the level 140 * below it. 141 */ 142 static int setup_btree_index(unsigned int l, struct dm_table *t) 143 { 144 unsigned int n, k; 145 sector_t *node; 146 147 for (n = 0U; n < t->counts[l]; n++) { 148 node = get_node(t, l, n); 149 150 for (k = 0U; k < KEYS_PER_NODE; k++) 151 node[k] = high(t, l + 1, get_child(n, k)); 152 } 153 154 return 0; 155 } 156 157 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 158 { 159 unsigned long size; 160 void *addr; 161 162 /* 163 * Check that we're not going to overflow. 164 */ 165 if (nmemb > (ULONG_MAX / elem_size)) 166 return NULL; 167 168 size = nmemb * elem_size; 169 addr = vmalloc(size); 170 if (addr) 171 memset(addr, 0, size); 172 173 return addr; 174 } 175 176 /* 177 * highs, and targets are managed as dynamic arrays during a 178 * table load. 179 */ 180 static int alloc_targets(struct dm_table *t, unsigned int num) 181 { 182 sector_t *n_highs; 183 struct dm_target *n_targets; 184 int n = t->num_targets; 185 186 /* 187 * Allocate both the target array and offset array at once. 188 */ 189 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 190 sizeof(sector_t)); 191 if (!n_highs) 192 return -ENOMEM; 193 194 n_targets = (struct dm_target *) (n_highs + num); 195 196 if (n) { 197 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 198 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 199 } 200 201 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 202 vfree(t->highs); 203 204 t->num_allocated = num; 205 t->highs = n_highs; 206 t->targets = n_targets; 207 208 return 0; 209 } 210 211 int dm_table_create(struct dm_table **result, int mode, 212 unsigned num_targets, struct mapped_device *md) 213 { 214 struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL); 215 216 if (!t) 217 return -ENOMEM; 218 219 memset(t, 0, sizeof(*t)); 220 INIT_LIST_HEAD(&t->devices); 221 atomic_set(&t->holders, 1); 222 223 if (!num_targets) 224 num_targets = KEYS_PER_NODE; 225 226 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 227 228 if (alloc_targets(t, num_targets)) { 229 kfree(t); 230 t = NULL; 231 return -ENOMEM; 232 } 233 234 t->mode = mode; 235 t->md = md; 236 *result = t; 237 return 0; 238 } 239 240 static void free_devices(struct list_head *devices) 241 { 242 struct list_head *tmp, *next; 243 244 for (tmp = devices->next; tmp != devices; tmp = next) { 245 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list); 246 next = tmp->next; 247 kfree(dd); 248 } 249 } 250 251 static void table_destroy(struct dm_table *t) 252 { 253 unsigned int i; 254 255 /* free the indexes (see dm_table_complete) */ 256 if (t->depth >= 2) 257 vfree(t->index[t->depth - 2]); 258 259 /* free the targets */ 260 for (i = 0; i < t->num_targets; i++) { 261 struct dm_target *tgt = t->targets + i; 262 263 if (tgt->type->dtr) 264 tgt->type->dtr(tgt); 265 266 dm_put_target_type(tgt->type); 267 } 268 269 vfree(t->highs); 270 271 /* free the device list */ 272 if (t->devices.next != &t->devices) { 273 DMWARN("devices still present during destroy: " 274 "dm_table_remove_device calls missing"); 275 276 free_devices(&t->devices); 277 } 278 279 kfree(t); 280 } 281 282 void dm_table_get(struct dm_table *t) 283 { 284 atomic_inc(&t->holders); 285 } 286 287 void dm_table_put(struct dm_table *t) 288 { 289 if (!t) 290 return; 291 292 if (atomic_dec_and_test(&t->holders)) 293 table_destroy(t); 294 } 295 296 /* 297 * Checks to see if we need to extend highs or targets. 298 */ 299 static inline int check_space(struct dm_table *t) 300 { 301 if (t->num_targets >= t->num_allocated) 302 return alloc_targets(t, t->num_allocated * 2); 303 304 return 0; 305 } 306 307 /* 308 * Convert a device path to a dev_t. 309 */ 310 static int lookup_device(const char *path, dev_t *dev) 311 { 312 int r; 313 struct nameidata nd; 314 struct inode *inode; 315 316 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd))) 317 return r; 318 319 inode = nd.dentry->d_inode; 320 if (!inode) { 321 r = -ENOENT; 322 goto out; 323 } 324 325 if (!S_ISBLK(inode->i_mode)) { 326 r = -ENOTBLK; 327 goto out; 328 } 329 330 *dev = inode->i_rdev; 331 332 out: 333 path_release(&nd); 334 return r; 335 } 336 337 /* 338 * See if we've already got a device in the list. 339 */ 340 static struct dm_dev *find_device(struct list_head *l, dev_t dev) 341 { 342 struct dm_dev *dd; 343 344 list_for_each_entry (dd, l, list) 345 if (dd->bdev->bd_dev == dev) 346 return dd; 347 348 return NULL; 349 } 350 351 /* 352 * Open a device so we can use it as a map destination. 353 */ 354 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md) 355 { 356 static char *_claim_ptr = "I belong to device-mapper"; 357 struct block_device *bdev; 358 359 int r; 360 361 BUG_ON(d->bdev); 362 363 bdev = open_by_devnum(dev, d->mode); 364 if (IS_ERR(bdev)) 365 return PTR_ERR(bdev); 366 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 367 if (r) 368 blkdev_put(bdev); 369 else 370 d->bdev = bdev; 371 return r; 372 } 373 374 /* 375 * Close a device that we've been using. 376 */ 377 static void close_dev(struct dm_dev *d, struct mapped_device *md) 378 { 379 if (!d->bdev) 380 return; 381 382 bd_release_from_disk(d->bdev, dm_disk(md)); 383 blkdev_put(d->bdev); 384 d->bdev = NULL; 385 } 386 387 /* 388 * If possible (ie. blk_size[major] is set), this checks an area 389 * of a destination device is valid. 390 */ 391 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len) 392 { 393 sector_t dev_size; 394 dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT; 395 return ((start < dev_size) && (len <= (dev_size - start))); 396 } 397 398 /* 399 * This upgrades the mode on an already open dm_dev. Being 400 * careful to leave things as they were if we fail to reopen the 401 * device. 402 */ 403 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md) 404 { 405 int r; 406 struct dm_dev dd_copy; 407 dev_t dev = dd->bdev->bd_dev; 408 409 dd_copy = *dd; 410 411 dd->mode |= new_mode; 412 dd->bdev = NULL; 413 r = open_dev(dd, dev, md); 414 if (!r) 415 close_dev(&dd_copy, md); 416 else 417 *dd = dd_copy; 418 419 return r; 420 } 421 422 /* 423 * Add a device to the list, or just increment the usage count if 424 * it's already present. 425 */ 426 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 427 const char *path, sector_t start, sector_t len, 428 int mode, struct dm_dev **result) 429 { 430 int r; 431 dev_t dev; 432 struct dm_dev *dd; 433 unsigned int major, minor; 434 435 BUG_ON(!t); 436 437 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 438 /* Extract the major/minor numbers */ 439 dev = MKDEV(major, minor); 440 if (MAJOR(dev) != major || MINOR(dev) != minor) 441 return -EOVERFLOW; 442 } else { 443 /* convert the path to a device */ 444 if ((r = lookup_device(path, &dev))) 445 return r; 446 } 447 448 dd = find_device(&t->devices, dev); 449 if (!dd) { 450 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 451 if (!dd) 452 return -ENOMEM; 453 454 dd->mode = mode; 455 dd->bdev = NULL; 456 457 if ((r = open_dev(dd, dev, t->md))) { 458 kfree(dd); 459 return r; 460 } 461 462 format_dev_t(dd->name, dev); 463 464 atomic_set(&dd->count, 0); 465 list_add(&dd->list, &t->devices); 466 467 } else if (dd->mode != (mode | dd->mode)) { 468 r = upgrade_mode(dd, mode, t->md); 469 if (r) 470 return r; 471 } 472 atomic_inc(&dd->count); 473 474 if (!check_device_area(dd, start, len)) { 475 DMWARN("device %s too small for target", path); 476 dm_put_device(ti, dd); 477 return -EINVAL; 478 } 479 480 *result = dd; 481 482 return 0; 483 } 484 485 486 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 487 sector_t len, int mode, struct dm_dev **result) 488 { 489 int r = __table_get_device(ti->table, ti, path, 490 start, len, mode, result); 491 if (!r) { 492 request_queue_t *q = bdev_get_queue((*result)->bdev); 493 struct io_restrictions *rs = &ti->limits; 494 495 /* 496 * Combine the device limits low. 497 * 498 * FIXME: if we move an io_restriction struct 499 * into q this would just be a call to 500 * combine_restrictions_low() 501 */ 502 rs->max_sectors = 503 min_not_zero(rs->max_sectors, q->max_sectors); 504 505 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM 506 * currently doesn't honor MD's merge_bvec_fn routine. 507 * In this case, we'll force DM to use PAGE_SIZE or 508 * smaller I/O, just to be safe. A better fix is in the 509 * works, but add this for the time being so it will at 510 * least operate correctly. 511 */ 512 if (q->merge_bvec_fn) 513 rs->max_sectors = 514 min_not_zero(rs->max_sectors, 515 (unsigned int) (PAGE_SIZE >> 9)); 516 517 rs->max_phys_segments = 518 min_not_zero(rs->max_phys_segments, 519 q->max_phys_segments); 520 521 rs->max_hw_segments = 522 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 523 524 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 525 526 rs->max_segment_size = 527 min_not_zero(rs->max_segment_size, q->max_segment_size); 528 529 rs->seg_boundary_mask = 530 min_not_zero(rs->seg_boundary_mask, 531 q->seg_boundary_mask); 532 533 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 534 } 535 536 return r; 537 } 538 539 /* 540 * Decrement a devices use count and remove it if necessary. 541 */ 542 void dm_put_device(struct dm_target *ti, struct dm_dev *dd) 543 { 544 if (atomic_dec_and_test(&dd->count)) { 545 close_dev(dd, ti->table->md); 546 list_del(&dd->list); 547 kfree(dd); 548 } 549 } 550 551 /* 552 * Checks to see if the target joins onto the end of the table. 553 */ 554 static int adjoin(struct dm_table *table, struct dm_target *ti) 555 { 556 struct dm_target *prev; 557 558 if (!table->num_targets) 559 return !ti->begin; 560 561 prev = &table->targets[table->num_targets - 1]; 562 return (ti->begin == (prev->begin + prev->len)); 563 } 564 565 /* 566 * Used to dynamically allocate the arg array. 567 */ 568 static char **realloc_argv(unsigned *array_size, char **old_argv) 569 { 570 char **argv; 571 unsigned new_size; 572 573 new_size = *array_size ? *array_size * 2 : 64; 574 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 575 if (argv) { 576 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 577 *array_size = new_size; 578 } 579 580 kfree(old_argv); 581 return argv; 582 } 583 584 /* 585 * Destructively splits up the argument list to pass to ctr. 586 */ 587 int dm_split_args(int *argc, char ***argvp, char *input) 588 { 589 char *start, *end = input, *out, **argv = NULL; 590 unsigned array_size = 0; 591 592 *argc = 0; 593 argv = realloc_argv(&array_size, argv); 594 if (!argv) 595 return -ENOMEM; 596 597 while (1) { 598 start = end; 599 600 /* Skip whitespace */ 601 while (*start && isspace(*start)) 602 start++; 603 604 if (!*start) 605 break; /* success, we hit the end */ 606 607 /* 'out' is used to remove any back-quotes */ 608 end = out = start; 609 while (*end) { 610 /* Everything apart from '\0' can be quoted */ 611 if (*end == '\\' && *(end + 1)) { 612 *out++ = *(end + 1); 613 end += 2; 614 continue; 615 } 616 617 if (isspace(*end)) 618 break; /* end of token */ 619 620 *out++ = *end++; 621 } 622 623 /* have we already filled the array ? */ 624 if ((*argc + 1) > array_size) { 625 argv = realloc_argv(&array_size, argv); 626 if (!argv) 627 return -ENOMEM; 628 } 629 630 /* we know this is whitespace */ 631 if (*end) 632 end++; 633 634 /* terminate the string and put it in the array */ 635 *out = '\0'; 636 argv[*argc] = start; 637 (*argc)++; 638 } 639 640 *argvp = argv; 641 return 0; 642 } 643 644 static void check_for_valid_limits(struct io_restrictions *rs) 645 { 646 if (!rs->max_sectors) 647 rs->max_sectors = SAFE_MAX_SECTORS; 648 if (!rs->max_phys_segments) 649 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 650 if (!rs->max_hw_segments) 651 rs->max_hw_segments = MAX_HW_SEGMENTS; 652 if (!rs->hardsect_size) 653 rs->hardsect_size = 1 << SECTOR_SHIFT; 654 if (!rs->max_segment_size) 655 rs->max_segment_size = MAX_SEGMENT_SIZE; 656 if (!rs->seg_boundary_mask) 657 rs->seg_boundary_mask = -1; 658 } 659 660 int dm_table_add_target(struct dm_table *t, const char *type, 661 sector_t start, sector_t len, char *params) 662 { 663 int r = -EINVAL, argc; 664 char **argv; 665 struct dm_target *tgt; 666 667 if ((r = check_space(t))) 668 return r; 669 670 tgt = t->targets + t->num_targets; 671 memset(tgt, 0, sizeof(*tgt)); 672 673 if (!len) { 674 tgt->error = "zero-length target"; 675 DMERR("%s", tgt->error); 676 return -EINVAL; 677 } 678 679 tgt->type = dm_get_target_type(type); 680 if (!tgt->type) { 681 tgt->error = "unknown target type"; 682 DMERR("%s", tgt->error); 683 return -EINVAL; 684 } 685 686 tgt->table = t; 687 tgt->begin = start; 688 tgt->len = len; 689 tgt->error = "Unknown error"; 690 691 /* 692 * Does this target adjoin the previous one ? 693 */ 694 if (!adjoin(t, tgt)) { 695 tgt->error = "Gap in table"; 696 r = -EINVAL; 697 goto bad; 698 } 699 700 r = dm_split_args(&argc, &argv, params); 701 if (r) { 702 tgt->error = "couldn't split parameters (insufficient memory)"; 703 goto bad; 704 } 705 706 r = tgt->type->ctr(tgt, argc, argv); 707 kfree(argv); 708 if (r) 709 goto bad; 710 711 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 712 713 /* FIXME: the plan is to combine high here and then have 714 * the merge fn apply the target level restrictions. */ 715 combine_restrictions_low(&t->limits, &tgt->limits); 716 return 0; 717 718 bad: 719 DMERR("%s", tgt->error); 720 dm_put_target_type(tgt->type); 721 return r; 722 } 723 724 static int setup_indexes(struct dm_table *t) 725 { 726 int i; 727 unsigned int total = 0; 728 sector_t *indexes; 729 730 /* allocate the space for *all* the indexes */ 731 for (i = t->depth - 2; i >= 0; i--) { 732 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 733 total += t->counts[i]; 734 } 735 736 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 737 if (!indexes) 738 return -ENOMEM; 739 740 /* set up internal nodes, bottom-up */ 741 for (i = t->depth - 2, total = 0; i >= 0; i--) { 742 t->index[i] = indexes; 743 indexes += (KEYS_PER_NODE * t->counts[i]); 744 setup_btree_index(i, t); 745 } 746 747 return 0; 748 } 749 750 /* 751 * Builds the btree to index the map. 752 */ 753 int dm_table_complete(struct dm_table *t) 754 { 755 int r = 0; 756 unsigned int leaf_nodes; 757 758 check_for_valid_limits(&t->limits); 759 760 /* how many indexes will the btree have ? */ 761 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 762 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 763 764 /* leaf layer has already been set up */ 765 t->counts[t->depth - 1] = leaf_nodes; 766 t->index[t->depth - 1] = t->highs; 767 768 if (t->depth >= 2) 769 r = setup_indexes(t); 770 771 return r; 772 } 773 774 static DEFINE_MUTEX(_event_lock); 775 void dm_table_event_callback(struct dm_table *t, 776 void (*fn)(void *), void *context) 777 { 778 mutex_lock(&_event_lock); 779 t->event_fn = fn; 780 t->event_context = context; 781 mutex_unlock(&_event_lock); 782 } 783 784 void dm_table_event(struct dm_table *t) 785 { 786 /* 787 * You can no longer call dm_table_event() from interrupt 788 * context, use a bottom half instead. 789 */ 790 BUG_ON(in_interrupt()); 791 792 mutex_lock(&_event_lock); 793 if (t->event_fn) 794 t->event_fn(t->event_context); 795 mutex_unlock(&_event_lock); 796 } 797 798 sector_t dm_table_get_size(struct dm_table *t) 799 { 800 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 801 } 802 803 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 804 { 805 if (index > t->num_targets) 806 return NULL; 807 808 return t->targets + index; 809 } 810 811 /* 812 * Search the btree for the correct target. 813 */ 814 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 815 { 816 unsigned int l, n = 0, k = 0; 817 sector_t *node; 818 819 for (l = 0; l < t->depth; l++) { 820 n = get_child(n, k); 821 node = get_node(t, l, n); 822 823 for (k = 0; k < KEYS_PER_NODE; k++) 824 if (node[k] >= sector) 825 break; 826 } 827 828 return &t->targets[(KEYS_PER_NODE * n) + k]; 829 } 830 831 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 832 { 833 /* 834 * Make sure we obey the optimistic sub devices 835 * restrictions. 836 */ 837 blk_queue_max_sectors(q, t->limits.max_sectors); 838 q->max_phys_segments = t->limits.max_phys_segments; 839 q->max_hw_segments = t->limits.max_hw_segments; 840 q->hardsect_size = t->limits.hardsect_size; 841 q->max_segment_size = t->limits.max_segment_size; 842 q->seg_boundary_mask = t->limits.seg_boundary_mask; 843 if (t->limits.no_cluster) 844 q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER); 845 else 846 q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER); 847 848 } 849 850 unsigned int dm_table_get_num_targets(struct dm_table *t) 851 { 852 return t->num_targets; 853 } 854 855 struct list_head *dm_table_get_devices(struct dm_table *t) 856 { 857 return &t->devices; 858 } 859 860 int dm_table_get_mode(struct dm_table *t) 861 { 862 return t->mode; 863 } 864 865 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 866 { 867 int i = t->num_targets; 868 struct dm_target *ti = t->targets; 869 870 while (i--) { 871 if (postsuspend) { 872 if (ti->type->postsuspend) 873 ti->type->postsuspend(ti); 874 } else if (ti->type->presuspend) 875 ti->type->presuspend(ti); 876 877 ti++; 878 } 879 } 880 881 void dm_table_presuspend_targets(struct dm_table *t) 882 { 883 if (!t) 884 return; 885 886 return suspend_targets(t, 0); 887 } 888 889 void dm_table_postsuspend_targets(struct dm_table *t) 890 { 891 if (!t) 892 return; 893 894 return suspend_targets(t, 1); 895 } 896 897 void dm_table_resume_targets(struct dm_table *t) 898 { 899 int i; 900 901 for (i = 0; i < t->num_targets; i++) { 902 struct dm_target *ti = t->targets + i; 903 904 if (ti->type->resume) 905 ti->type->resume(ti); 906 } 907 } 908 909 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 910 { 911 struct list_head *d, *devices; 912 int r = 0; 913 914 devices = dm_table_get_devices(t); 915 for (d = devices->next; d != devices; d = d->next) { 916 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 917 request_queue_t *q = bdev_get_queue(dd->bdev); 918 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 919 } 920 921 return r; 922 } 923 924 void dm_table_unplug_all(struct dm_table *t) 925 { 926 struct list_head *d, *devices = dm_table_get_devices(t); 927 928 for (d = devices->next; d != devices; d = d->next) { 929 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 930 request_queue_t *q = bdev_get_queue(dd->bdev); 931 932 if (q->unplug_fn) 933 q->unplug_fn(q); 934 } 935 } 936 937 int dm_table_flush_all(struct dm_table *t) 938 { 939 struct list_head *d, *devices = dm_table_get_devices(t); 940 int ret = 0; 941 942 for (d = devices->next; d != devices; d = d->next) { 943 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 944 request_queue_t *q = bdev_get_queue(dd->bdev); 945 int err; 946 947 if (!q->issue_flush_fn) 948 err = -EOPNOTSUPP; 949 else 950 err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL); 951 952 if (!ret) 953 ret = err; 954 } 955 956 return ret; 957 } 958 959 struct mapped_device *dm_table_get_md(struct dm_table *t) 960 { 961 dm_get(t->md); 962 963 return t->md; 964 } 965 966 EXPORT_SYMBOL(dm_vcalloc); 967 EXPORT_SYMBOL(dm_get_device); 968 EXPORT_SYMBOL(dm_put_device); 969 EXPORT_SYMBOL(dm_table_event); 970 EXPORT_SYMBOL(dm_table_get_size); 971 EXPORT_SYMBOL(dm_table_get_mode); 972 EXPORT_SYMBOL(dm_table_get_md); 973 EXPORT_SYMBOL(dm_table_put); 974 EXPORT_SYMBOL(dm_table_get); 975 EXPORT_SYMBOL(dm_table_unplug_all); 976 EXPORT_SYMBOL(dm_table_flush_all); 977