xref: /linux/drivers/md/dm-table.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <asm/atomic.h>
20 
21 #define DM_MSG_PREFIX "table"
22 
23 #define MAX_DEPTH 16
24 #define NODE_SIZE L1_CACHE_BYTES
25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
27 
28 /*
29  * The table has always exactly one reference from either mapped_device->map
30  * or hash_cell->new_map. This reference is not counted in table->holders.
31  * A pair of dm_create_table/dm_destroy_table functions is used for table
32  * creation/destruction.
33  *
34  * Temporary references from the other code increase table->holders. A pair
35  * of dm_table_get/dm_table_put functions is used to manipulate it.
36  *
37  * When the table is about to be destroyed, we wait for table->holders to
38  * drop to zero.
39  */
40 
41 struct dm_table {
42 	struct mapped_device *md;
43 	atomic_t holders;
44 
45 	/* btree table */
46 	unsigned int depth;
47 	unsigned int counts[MAX_DEPTH];	/* in nodes */
48 	sector_t *index[MAX_DEPTH];
49 
50 	unsigned int num_targets;
51 	unsigned int num_allocated;
52 	sector_t *highs;
53 	struct dm_target *targets;
54 
55 	/*
56 	 * Indicates the rw permissions for the new logical
57 	 * device.  This should be a combination of FMODE_READ
58 	 * and FMODE_WRITE.
59 	 */
60 	fmode_t mode;
61 
62 	/* a list of devices used by this table */
63 	struct list_head devices;
64 
65 	/*
66 	 * These are optimistic limits taken from all the
67 	 * targets, some targets will need smaller limits.
68 	 */
69 	struct io_restrictions limits;
70 
71 	/* events get handed up using this callback */
72 	void (*event_fn)(void *);
73 	void *event_context;
74 };
75 
76 /*
77  * Similar to ceiling(log_size(n))
78  */
79 static unsigned int int_log(unsigned int n, unsigned int base)
80 {
81 	int result = 0;
82 
83 	while (n > 1) {
84 		n = dm_div_up(n, base);
85 		result++;
86 	}
87 
88 	return result;
89 }
90 
91 /*
92  * Returns the minimum that is _not_ zero, unless both are zero.
93  */
94 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
95 
96 /*
97  * Combine two io_restrictions, always taking the lower value.
98  */
99 static void combine_restrictions_low(struct io_restrictions *lhs,
100 				     struct io_restrictions *rhs)
101 {
102 	lhs->max_sectors =
103 		min_not_zero(lhs->max_sectors, rhs->max_sectors);
104 
105 	lhs->max_phys_segments =
106 		min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
107 
108 	lhs->max_hw_segments =
109 		min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
110 
111 	lhs->logical_block_size = max(lhs->logical_block_size,
112 				      rhs->logical_block_size);
113 
114 	lhs->max_segment_size =
115 		min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
116 
117 	lhs->max_hw_sectors =
118 		min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
119 
120 	lhs->seg_boundary_mask =
121 		min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
122 
123 	lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
124 
125 	lhs->no_cluster |= rhs->no_cluster;
126 }
127 
128 /*
129  * Calculate the index of the child node of the n'th node k'th key.
130  */
131 static inline unsigned int get_child(unsigned int n, unsigned int k)
132 {
133 	return (n * CHILDREN_PER_NODE) + k;
134 }
135 
136 /*
137  * Return the n'th node of level l from table t.
138  */
139 static inline sector_t *get_node(struct dm_table *t,
140 				 unsigned int l, unsigned int n)
141 {
142 	return t->index[l] + (n * KEYS_PER_NODE);
143 }
144 
145 /*
146  * Return the highest key that you could lookup from the n'th
147  * node on level l of the btree.
148  */
149 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
150 {
151 	for (; l < t->depth - 1; l++)
152 		n = get_child(n, CHILDREN_PER_NODE - 1);
153 
154 	if (n >= t->counts[l])
155 		return (sector_t) - 1;
156 
157 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
158 }
159 
160 /*
161  * Fills in a level of the btree based on the highs of the level
162  * below it.
163  */
164 static int setup_btree_index(unsigned int l, struct dm_table *t)
165 {
166 	unsigned int n, k;
167 	sector_t *node;
168 
169 	for (n = 0U; n < t->counts[l]; n++) {
170 		node = get_node(t, l, n);
171 
172 		for (k = 0U; k < KEYS_PER_NODE; k++)
173 			node[k] = high(t, l + 1, get_child(n, k));
174 	}
175 
176 	return 0;
177 }
178 
179 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
180 {
181 	unsigned long size;
182 	void *addr;
183 
184 	/*
185 	 * Check that we're not going to overflow.
186 	 */
187 	if (nmemb > (ULONG_MAX / elem_size))
188 		return NULL;
189 
190 	size = nmemb * elem_size;
191 	addr = vmalloc(size);
192 	if (addr)
193 		memset(addr, 0, size);
194 
195 	return addr;
196 }
197 
198 /*
199  * highs, and targets are managed as dynamic arrays during a
200  * table load.
201  */
202 static int alloc_targets(struct dm_table *t, unsigned int num)
203 {
204 	sector_t *n_highs;
205 	struct dm_target *n_targets;
206 	int n = t->num_targets;
207 
208 	/*
209 	 * Allocate both the target array and offset array at once.
210 	 * Append an empty entry to catch sectors beyond the end of
211 	 * the device.
212 	 */
213 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
214 					  sizeof(sector_t));
215 	if (!n_highs)
216 		return -ENOMEM;
217 
218 	n_targets = (struct dm_target *) (n_highs + num);
219 
220 	if (n) {
221 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
222 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
223 	}
224 
225 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
226 	vfree(t->highs);
227 
228 	t->num_allocated = num;
229 	t->highs = n_highs;
230 	t->targets = n_targets;
231 
232 	return 0;
233 }
234 
235 int dm_table_create(struct dm_table **result, fmode_t mode,
236 		    unsigned num_targets, struct mapped_device *md)
237 {
238 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
239 
240 	if (!t)
241 		return -ENOMEM;
242 
243 	INIT_LIST_HEAD(&t->devices);
244 	atomic_set(&t->holders, 0);
245 
246 	if (!num_targets)
247 		num_targets = KEYS_PER_NODE;
248 
249 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
250 
251 	if (alloc_targets(t, num_targets)) {
252 		kfree(t);
253 		t = NULL;
254 		return -ENOMEM;
255 	}
256 
257 	t->mode = mode;
258 	t->md = md;
259 	*result = t;
260 	return 0;
261 }
262 
263 static void free_devices(struct list_head *devices)
264 {
265 	struct list_head *tmp, *next;
266 
267 	list_for_each_safe(tmp, next, devices) {
268 		struct dm_dev_internal *dd =
269 		    list_entry(tmp, struct dm_dev_internal, list);
270 		kfree(dd);
271 	}
272 }
273 
274 void dm_table_destroy(struct dm_table *t)
275 {
276 	unsigned int i;
277 
278 	while (atomic_read(&t->holders))
279 		msleep(1);
280 	smp_mb();
281 
282 	/* free the indexes (see dm_table_complete) */
283 	if (t->depth >= 2)
284 		vfree(t->index[t->depth - 2]);
285 
286 	/* free the targets */
287 	for (i = 0; i < t->num_targets; i++) {
288 		struct dm_target *tgt = t->targets + i;
289 
290 		if (tgt->type->dtr)
291 			tgt->type->dtr(tgt);
292 
293 		dm_put_target_type(tgt->type);
294 	}
295 
296 	vfree(t->highs);
297 
298 	/* free the device list */
299 	if (t->devices.next != &t->devices) {
300 		DMWARN("devices still present during destroy: "
301 		       "dm_table_remove_device calls missing");
302 
303 		free_devices(&t->devices);
304 	}
305 
306 	kfree(t);
307 }
308 
309 void dm_table_get(struct dm_table *t)
310 {
311 	atomic_inc(&t->holders);
312 }
313 
314 void dm_table_put(struct dm_table *t)
315 {
316 	if (!t)
317 		return;
318 
319 	smp_mb__before_atomic_dec();
320 	atomic_dec(&t->holders);
321 }
322 
323 /*
324  * Checks to see if we need to extend highs or targets.
325  */
326 static inline int check_space(struct dm_table *t)
327 {
328 	if (t->num_targets >= t->num_allocated)
329 		return alloc_targets(t, t->num_allocated * 2);
330 
331 	return 0;
332 }
333 
334 /*
335  * See if we've already got a device in the list.
336  */
337 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
338 {
339 	struct dm_dev_internal *dd;
340 
341 	list_for_each_entry (dd, l, list)
342 		if (dd->dm_dev.bdev->bd_dev == dev)
343 			return dd;
344 
345 	return NULL;
346 }
347 
348 /*
349  * Open a device so we can use it as a map destination.
350  */
351 static int open_dev(struct dm_dev_internal *d, dev_t dev,
352 		    struct mapped_device *md)
353 {
354 	static char *_claim_ptr = "I belong to device-mapper";
355 	struct block_device *bdev;
356 
357 	int r;
358 
359 	BUG_ON(d->dm_dev.bdev);
360 
361 	bdev = open_by_devnum(dev, d->dm_dev.mode);
362 	if (IS_ERR(bdev))
363 		return PTR_ERR(bdev);
364 	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
365 	if (r)
366 		blkdev_put(bdev, d->dm_dev.mode);
367 	else
368 		d->dm_dev.bdev = bdev;
369 	return r;
370 }
371 
372 /*
373  * Close a device that we've been using.
374  */
375 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
376 {
377 	if (!d->dm_dev.bdev)
378 		return;
379 
380 	bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
381 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
382 	d->dm_dev.bdev = NULL;
383 }
384 
385 /*
386  * If possible, this checks an area of a destination device is valid.
387  */
388 static int check_device_area(struct dm_dev_internal *dd, sector_t start,
389 			     sector_t len)
390 {
391 	sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT;
392 
393 	if (!dev_size)
394 		return 1;
395 
396 	return ((start < dev_size) && (len <= (dev_size - start)));
397 }
398 
399 /*
400  * This upgrades the mode on an already open dm_dev, being
401  * careful to leave things as they were if we fail to reopen the
402  * device and not to touch the existing bdev field in case
403  * it is accessed concurrently inside dm_table_any_congested().
404  */
405 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
406 			struct mapped_device *md)
407 {
408 	int r;
409 	struct dm_dev_internal dd_new, dd_old;
410 
411 	dd_new = dd_old = *dd;
412 
413 	dd_new.dm_dev.mode |= new_mode;
414 	dd_new.dm_dev.bdev = NULL;
415 
416 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
417 	if (r)
418 		return r;
419 
420 	dd->dm_dev.mode |= new_mode;
421 	close_dev(&dd_old, md);
422 
423 	return 0;
424 }
425 
426 /*
427  * Add a device to the list, or just increment the usage count if
428  * it's already present.
429  */
430 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
431 			      const char *path, sector_t start, sector_t len,
432 			      fmode_t mode, struct dm_dev **result)
433 {
434 	int r;
435 	dev_t uninitialized_var(dev);
436 	struct dm_dev_internal *dd;
437 	unsigned int major, minor;
438 
439 	BUG_ON(!t);
440 
441 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
442 		/* Extract the major/minor numbers */
443 		dev = MKDEV(major, minor);
444 		if (MAJOR(dev) != major || MINOR(dev) != minor)
445 			return -EOVERFLOW;
446 	} else {
447 		/* convert the path to a device */
448 		struct block_device *bdev = lookup_bdev(path);
449 
450 		if (IS_ERR(bdev))
451 			return PTR_ERR(bdev);
452 		dev = bdev->bd_dev;
453 		bdput(bdev);
454 	}
455 
456 	dd = find_device(&t->devices, dev);
457 	if (!dd) {
458 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
459 		if (!dd)
460 			return -ENOMEM;
461 
462 		dd->dm_dev.mode = mode;
463 		dd->dm_dev.bdev = NULL;
464 
465 		if ((r = open_dev(dd, dev, t->md))) {
466 			kfree(dd);
467 			return r;
468 		}
469 
470 		format_dev_t(dd->dm_dev.name, dev);
471 
472 		atomic_set(&dd->count, 0);
473 		list_add(&dd->list, &t->devices);
474 
475 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
476 		r = upgrade_mode(dd, mode, t->md);
477 		if (r)
478 			return r;
479 	}
480 	atomic_inc(&dd->count);
481 
482 	if (!check_device_area(dd, start, len)) {
483 		DMWARN("device %s too small for target", path);
484 		dm_put_device(ti, &dd->dm_dev);
485 		return -EINVAL;
486 	}
487 
488 	*result = &dd->dm_dev;
489 
490 	return 0;
491 }
492 
493 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
494 {
495 	struct request_queue *q = bdev_get_queue(bdev);
496 	struct io_restrictions *rs = &ti->limits;
497 	char b[BDEVNAME_SIZE];
498 
499 	if (unlikely(!q)) {
500 		DMWARN("%s: Cannot set limits for nonexistent device %s",
501 		       dm_device_name(ti->table->md), bdevname(bdev, b));
502 		return;
503 	}
504 
505 	/*
506 	 * Combine the device limits low.
507 	 *
508 	 * FIXME: if we move an io_restriction struct
509 	 *        into q this would just be a call to
510 	 *        combine_restrictions_low()
511 	 */
512 	rs->max_sectors =
513 		min_not_zero(rs->max_sectors, queue_max_sectors(q));
514 
515 	/*
516 	 * Check if merge fn is supported.
517 	 * If not we'll force DM to use PAGE_SIZE or
518 	 * smaller I/O, just to be safe.
519 	 */
520 
521 	if (q->merge_bvec_fn && !ti->type->merge)
522 		rs->max_sectors =
523 			min_not_zero(rs->max_sectors,
524 				     (unsigned int) (PAGE_SIZE >> 9));
525 
526 	rs->max_phys_segments =
527 		min_not_zero(rs->max_phys_segments,
528 			     queue_max_phys_segments(q));
529 
530 	rs->max_hw_segments =
531 		min_not_zero(rs->max_hw_segments, queue_max_hw_segments(q));
532 
533 	rs->logical_block_size = max(rs->logical_block_size,
534 				     queue_logical_block_size(q));
535 
536 	rs->max_segment_size =
537 		min_not_zero(rs->max_segment_size, queue_max_segment_size(q));
538 
539 	rs->max_hw_sectors =
540 		min_not_zero(rs->max_hw_sectors, queue_max_hw_sectors(q));
541 
542 	rs->seg_boundary_mask =
543 		min_not_zero(rs->seg_boundary_mask,
544 			     queue_segment_boundary(q));
545 
546 	rs->bounce_pfn = min_not_zero(rs->bounce_pfn, queue_bounce_pfn(q));
547 
548 	rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
549 }
550 EXPORT_SYMBOL_GPL(dm_set_device_limits);
551 
552 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
553 		  sector_t len, fmode_t mode, struct dm_dev **result)
554 {
555 	int r = __table_get_device(ti->table, ti, path,
556 				   start, len, mode, result);
557 
558 	if (!r)
559 		dm_set_device_limits(ti, (*result)->bdev);
560 
561 	return r;
562 }
563 
564 /*
565  * Decrement a devices use count and remove it if necessary.
566  */
567 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
568 {
569 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
570 						  dm_dev);
571 
572 	if (atomic_dec_and_test(&dd->count)) {
573 		close_dev(dd, ti->table->md);
574 		list_del(&dd->list);
575 		kfree(dd);
576 	}
577 }
578 
579 /*
580  * Checks to see if the target joins onto the end of the table.
581  */
582 static int adjoin(struct dm_table *table, struct dm_target *ti)
583 {
584 	struct dm_target *prev;
585 
586 	if (!table->num_targets)
587 		return !ti->begin;
588 
589 	prev = &table->targets[table->num_targets - 1];
590 	return (ti->begin == (prev->begin + prev->len));
591 }
592 
593 /*
594  * Used to dynamically allocate the arg array.
595  */
596 static char **realloc_argv(unsigned *array_size, char **old_argv)
597 {
598 	char **argv;
599 	unsigned new_size;
600 
601 	new_size = *array_size ? *array_size * 2 : 64;
602 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
603 	if (argv) {
604 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
605 		*array_size = new_size;
606 	}
607 
608 	kfree(old_argv);
609 	return argv;
610 }
611 
612 /*
613  * Destructively splits up the argument list to pass to ctr.
614  */
615 int dm_split_args(int *argc, char ***argvp, char *input)
616 {
617 	char *start, *end = input, *out, **argv = NULL;
618 	unsigned array_size = 0;
619 
620 	*argc = 0;
621 
622 	if (!input) {
623 		*argvp = NULL;
624 		return 0;
625 	}
626 
627 	argv = realloc_argv(&array_size, argv);
628 	if (!argv)
629 		return -ENOMEM;
630 
631 	while (1) {
632 		start = end;
633 
634 		/* Skip whitespace */
635 		while (*start && isspace(*start))
636 			start++;
637 
638 		if (!*start)
639 			break;	/* success, we hit the end */
640 
641 		/* 'out' is used to remove any back-quotes */
642 		end = out = start;
643 		while (*end) {
644 			/* Everything apart from '\0' can be quoted */
645 			if (*end == '\\' && *(end + 1)) {
646 				*out++ = *(end + 1);
647 				end += 2;
648 				continue;
649 			}
650 
651 			if (isspace(*end))
652 				break;	/* end of token */
653 
654 			*out++ = *end++;
655 		}
656 
657 		/* have we already filled the array ? */
658 		if ((*argc + 1) > array_size) {
659 			argv = realloc_argv(&array_size, argv);
660 			if (!argv)
661 				return -ENOMEM;
662 		}
663 
664 		/* we know this is whitespace */
665 		if (*end)
666 			end++;
667 
668 		/* terminate the string and put it in the array */
669 		*out = '\0';
670 		argv[*argc] = start;
671 		(*argc)++;
672 	}
673 
674 	*argvp = argv;
675 	return 0;
676 }
677 
678 static void check_for_valid_limits(struct io_restrictions *rs)
679 {
680 	if (!rs->max_sectors)
681 		rs->max_sectors = SAFE_MAX_SECTORS;
682 	if (!rs->max_hw_sectors)
683 		rs->max_hw_sectors = SAFE_MAX_SECTORS;
684 	if (!rs->max_phys_segments)
685 		rs->max_phys_segments = MAX_PHYS_SEGMENTS;
686 	if (!rs->max_hw_segments)
687 		rs->max_hw_segments = MAX_HW_SEGMENTS;
688 	if (!rs->logical_block_size)
689 		rs->logical_block_size = 1 << SECTOR_SHIFT;
690 	if (!rs->max_segment_size)
691 		rs->max_segment_size = MAX_SEGMENT_SIZE;
692 	if (!rs->seg_boundary_mask)
693 		rs->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
694 	if (!rs->bounce_pfn)
695 		rs->bounce_pfn = -1;
696 }
697 
698 int dm_table_add_target(struct dm_table *t, const char *type,
699 			sector_t start, sector_t len, char *params)
700 {
701 	int r = -EINVAL, argc;
702 	char **argv;
703 	struct dm_target *tgt;
704 
705 	if ((r = check_space(t)))
706 		return r;
707 
708 	tgt = t->targets + t->num_targets;
709 	memset(tgt, 0, sizeof(*tgt));
710 
711 	if (!len) {
712 		DMERR("%s: zero-length target", dm_device_name(t->md));
713 		return -EINVAL;
714 	}
715 
716 	tgt->type = dm_get_target_type(type);
717 	if (!tgt->type) {
718 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
719 		      type);
720 		return -EINVAL;
721 	}
722 
723 	tgt->table = t;
724 	tgt->begin = start;
725 	tgt->len = len;
726 	tgt->error = "Unknown error";
727 
728 	/*
729 	 * Does this target adjoin the previous one ?
730 	 */
731 	if (!adjoin(t, tgt)) {
732 		tgt->error = "Gap in table";
733 		r = -EINVAL;
734 		goto bad;
735 	}
736 
737 	r = dm_split_args(&argc, &argv, params);
738 	if (r) {
739 		tgt->error = "couldn't split parameters (insufficient memory)";
740 		goto bad;
741 	}
742 
743 	r = tgt->type->ctr(tgt, argc, argv);
744 	kfree(argv);
745 	if (r)
746 		goto bad;
747 
748 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
749 
750 	/* FIXME: the plan is to combine high here and then have
751 	 * the merge fn apply the target level restrictions. */
752 	combine_restrictions_low(&t->limits, &tgt->limits);
753 	return 0;
754 
755  bad:
756 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
757 	dm_put_target_type(tgt->type);
758 	return r;
759 }
760 
761 static int setup_indexes(struct dm_table *t)
762 {
763 	int i;
764 	unsigned int total = 0;
765 	sector_t *indexes;
766 
767 	/* allocate the space for *all* the indexes */
768 	for (i = t->depth - 2; i >= 0; i--) {
769 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
770 		total += t->counts[i];
771 	}
772 
773 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
774 	if (!indexes)
775 		return -ENOMEM;
776 
777 	/* set up internal nodes, bottom-up */
778 	for (i = t->depth - 2; i >= 0; i--) {
779 		t->index[i] = indexes;
780 		indexes += (KEYS_PER_NODE * t->counts[i]);
781 		setup_btree_index(i, t);
782 	}
783 
784 	return 0;
785 }
786 
787 /*
788  * Builds the btree to index the map.
789  */
790 int dm_table_complete(struct dm_table *t)
791 {
792 	int r = 0;
793 	unsigned int leaf_nodes;
794 
795 	check_for_valid_limits(&t->limits);
796 
797 	/* how many indexes will the btree have ? */
798 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
799 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
800 
801 	/* leaf layer has already been set up */
802 	t->counts[t->depth - 1] = leaf_nodes;
803 	t->index[t->depth - 1] = t->highs;
804 
805 	if (t->depth >= 2)
806 		r = setup_indexes(t);
807 
808 	return r;
809 }
810 
811 static DEFINE_MUTEX(_event_lock);
812 void dm_table_event_callback(struct dm_table *t,
813 			     void (*fn)(void *), void *context)
814 {
815 	mutex_lock(&_event_lock);
816 	t->event_fn = fn;
817 	t->event_context = context;
818 	mutex_unlock(&_event_lock);
819 }
820 
821 void dm_table_event(struct dm_table *t)
822 {
823 	/*
824 	 * You can no longer call dm_table_event() from interrupt
825 	 * context, use a bottom half instead.
826 	 */
827 	BUG_ON(in_interrupt());
828 
829 	mutex_lock(&_event_lock);
830 	if (t->event_fn)
831 		t->event_fn(t->event_context);
832 	mutex_unlock(&_event_lock);
833 }
834 
835 sector_t dm_table_get_size(struct dm_table *t)
836 {
837 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
838 }
839 
840 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
841 {
842 	if (index >= t->num_targets)
843 		return NULL;
844 
845 	return t->targets + index;
846 }
847 
848 /*
849  * Search the btree for the correct target.
850  *
851  * Caller should check returned pointer with dm_target_is_valid()
852  * to trap I/O beyond end of device.
853  */
854 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
855 {
856 	unsigned int l, n = 0, k = 0;
857 	sector_t *node;
858 
859 	for (l = 0; l < t->depth; l++) {
860 		n = get_child(n, k);
861 		node = get_node(t, l, n);
862 
863 		for (k = 0; k < KEYS_PER_NODE; k++)
864 			if (node[k] >= sector)
865 				break;
866 	}
867 
868 	return &t->targets[(KEYS_PER_NODE * n) + k];
869 }
870 
871 /*
872  * Set the integrity profile for this device if all devices used have
873  * matching profiles.
874  */
875 static void dm_table_set_integrity(struct dm_table *t)
876 {
877 	struct list_head *devices = dm_table_get_devices(t);
878 	struct dm_dev_internal *prev = NULL, *dd = NULL;
879 
880 	if (!blk_get_integrity(dm_disk(t->md)))
881 		return;
882 
883 	list_for_each_entry(dd, devices, list) {
884 		if (prev &&
885 		    blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
886 					  dd->dm_dev.bdev->bd_disk) < 0) {
887 			DMWARN("%s: integrity not set: %s and %s mismatch",
888 			       dm_device_name(t->md),
889 			       prev->dm_dev.bdev->bd_disk->disk_name,
890 			       dd->dm_dev.bdev->bd_disk->disk_name);
891 			goto no_integrity;
892 		}
893 		prev = dd;
894 	}
895 
896 	if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
897 		goto no_integrity;
898 
899 	blk_integrity_register(dm_disk(t->md),
900 			       bdev_get_integrity(prev->dm_dev.bdev));
901 
902 	return;
903 
904 no_integrity:
905 	blk_integrity_register(dm_disk(t->md), NULL);
906 
907 	return;
908 }
909 
910 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
911 {
912 	/*
913 	 * Make sure we obey the optimistic sub devices
914 	 * restrictions.
915 	 */
916 	blk_queue_max_sectors(q, t->limits.max_sectors);
917 	blk_queue_max_phys_segments(q, t->limits.max_phys_segments);
918 	blk_queue_max_hw_segments(q, t->limits.max_hw_segments);
919 	blk_queue_logical_block_size(q, t->limits.logical_block_size);
920 	blk_queue_max_segment_size(q, t->limits.max_segment_size);
921 	blk_queue_max_hw_sectors(q, t->limits.max_hw_sectors);
922 	blk_queue_segment_boundary(q, t->limits.seg_boundary_mask);
923 	blk_queue_bounce_limit(q, t->limits.bounce_pfn);
924 
925 	if (t->limits.no_cluster)
926 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
927 	else
928 		queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
929 
930 	dm_table_set_integrity(t);
931 }
932 
933 unsigned int dm_table_get_num_targets(struct dm_table *t)
934 {
935 	return t->num_targets;
936 }
937 
938 struct list_head *dm_table_get_devices(struct dm_table *t)
939 {
940 	return &t->devices;
941 }
942 
943 fmode_t dm_table_get_mode(struct dm_table *t)
944 {
945 	return t->mode;
946 }
947 
948 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
949 {
950 	int i = t->num_targets;
951 	struct dm_target *ti = t->targets;
952 
953 	while (i--) {
954 		if (postsuspend) {
955 			if (ti->type->postsuspend)
956 				ti->type->postsuspend(ti);
957 		} else if (ti->type->presuspend)
958 			ti->type->presuspend(ti);
959 
960 		ti++;
961 	}
962 }
963 
964 void dm_table_presuspend_targets(struct dm_table *t)
965 {
966 	if (!t)
967 		return;
968 
969 	suspend_targets(t, 0);
970 }
971 
972 void dm_table_postsuspend_targets(struct dm_table *t)
973 {
974 	if (!t)
975 		return;
976 
977 	suspend_targets(t, 1);
978 }
979 
980 int dm_table_resume_targets(struct dm_table *t)
981 {
982 	int i, r = 0;
983 
984 	for (i = 0; i < t->num_targets; i++) {
985 		struct dm_target *ti = t->targets + i;
986 
987 		if (!ti->type->preresume)
988 			continue;
989 
990 		r = ti->type->preresume(ti);
991 		if (r)
992 			return r;
993 	}
994 
995 	for (i = 0; i < t->num_targets; i++) {
996 		struct dm_target *ti = t->targets + i;
997 
998 		if (ti->type->resume)
999 			ti->type->resume(ti);
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1006 {
1007 	struct dm_dev_internal *dd;
1008 	struct list_head *devices = dm_table_get_devices(t);
1009 	int r = 0;
1010 
1011 	list_for_each_entry(dd, devices, list) {
1012 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1013 		char b[BDEVNAME_SIZE];
1014 
1015 		if (likely(q))
1016 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1017 		else
1018 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1019 				     dm_device_name(t->md),
1020 				     bdevname(dd->dm_dev.bdev, b));
1021 	}
1022 
1023 	return r;
1024 }
1025 
1026 void dm_table_unplug_all(struct dm_table *t)
1027 {
1028 	struct dm_dev_internal *dd;
1029 	struct list_head *devices = dm_table_get_devices(t);
1030 
1031 	list_for_each_entry(dd, devices, list) {
1032 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1033 		char b[BDEVNAME_SIZE];
1034 
1035 		if (likely(q))
1036 			blk_unplug(q);
1037 		else
1038 			DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1039 				     dm_device_name(t->md),
1040 				     bdevname(dd->dm_dev.bdev, b));
1041 	}
1042 }
1043 
1044 struct mapped_device *dm_table_get_md(struct dm_table *t)
1045 {
1046 	dm_get(t->md);
1047 
1048 	return t->md;
1049 }
1050 
1051 EXPORT_SYMBOL(dm_vcalloc);
1052 EXPORT_SYMBOL(dm_get_device);
1053 EXPORT_SYMBOL(dm_put_device);
1054 EXPORT_SYMBOL(dm_table_event);
1055 EXPORT_SYMBOL(dm_table_get_size);
1056 EXPORT_SYMBOL(dm_table_get_mode);
1057 EXPORT_SYMBOL(dm_table_get_md);
1058 EXPORT_SYMBOL(dm_table_put);
1059 EXPORT_SYMBOL(dm_table_get);
1060 EXPORT_SYMBOL(dm_table_unplug_all);
1061