1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t; 133 134 if (num_targets > DM_MAX_TARGETS) 135 return -EOVERFLOW; 136 137 t = kzalloc(sizeof(*t), GFP_KERNEL); 138 139 if (!t) 140 return -ENOMEM; 141 142 INIT_LIST_HEAD(&t->devices); 143 init_rwsem(&t->devices_lock); 144 145 if (!num_targets) 146 num_targets = KEYS_PER_NODE; 147 148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 149 150 if (!num_targets) { 151 kfree(t); 152 return -EOVERFLOW; 153 } 154 155 if (alloc_targets(t, num_targets)) { 156 kfree(t); 157 return -ENOMEM; 158 } 159 160 t->type = DM_TYPE_NONE; 161 t->mode = mode; 162 t->md = md; 163 *result = t; 164 return 0; 165 } 166 167 static void free_devices(struct list_head *devices, struct mapped_device *md) 168 { 169 struct list_head *tmp, *next; 170 171 list_for_each_safe(tmp, next, devices) { 172 struct dm_dev_internal *dd = 173 list_entry(tmp, struct dm_dev_internal, list); 174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 175 dm_device_name(md), dd->dm_dev->name); 176 dm_put_table_device(md, dd->dm_dev); 177 kfree(dd); 178 } 179 } 180 181 static void dm_table_destroy_crypto_profile(struct dm_table *t); 182 183 void dm_table_destroy(struct dm_table *t) 184 { 185 if (!t) 186 return; 187 188 /* free the indexes */ 189 if (t->depth >= 2) 190 kvfree(t->index[t->depth - 2]); 191 192 /* free the targets */ 193 for (unsigned int i = 0; i < t->num_targets; i++) { 194 struct dm_target *ti = dm_table_get_target(t, i); 195 196 if (ti->type->dtr) 197 ti->type->dtr(ti); 198 199 dm_put_target_type(ti->type); 200 } 201 202 kvfree(t->highs); 203 204 /* free the device list */ 205 free_devices(&t->devices, t->md); 206 207 dm_free_md_mempools(t->mempools); 208 209 dm_table_destroy_crypto_profile(t); 210 211 kfree(t); 212 } 213 214 /* 215 * See if we've already got a device in the list. 216 */ 217 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 218 { 219 struct dm_dev_internal *dd; 220 221 list_for_each_entry(dd, l, list) 222 if (dd->dm_dev->bdev->bd_dev == dev) 223 return dd; 224 225 return NULL; 226 } 227 228 /* 229 * If possible, this checks an area of a destination device is invalid. 230 */ 231 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 232 sector_t start, sector_t len, void *data) 233 { 234 struct queue_limits *limits = data; 235 struct block_device *bdev = dev->bdev; 236 sector_t dev_size = bdev_nr_sectors(bdev); 237 unsigned short logical_block_size_sectors = 238 limits->logical_block_size >> SECTOR_SHIFT; 239 240 if (!dev_size) 241 return 0; 242 243 if ((start >= dev_size) || (start + len > dev_size)) { 244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 245 dm_device_name(ti->table->md), bdev, 246 (unsigned long long)start, 247 (unsigned long long)len, 248 (unsigned long long)dev_size); 249 return 1; 250 } 251 252 /* 253 * If the target is mapped to zoned block device(s), check 254 * that the zones are not partially mapped. 255 */ 256 if (bdev_is_zoned(bdev)) { 257 unsigned int zone_sectors = bdev_zone_sectors(bdev); 258 259 if (start & (zone_sectors - 1)) { 260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 261 dm_device_name(ti->table->md), 262 (unsigned long long)start, 263 zone_sectors, bdev); 264 return 1; 265 } 266 267 /* 268 * Note: The last zone of a zoned block device may be smaller 269 * than other zones. So for a target mapping the end of a 270 * zoned block device with such a zone, len would not be zone 271 * aligned. We do not allow such last smaller zone to be part 272 * of the mapping here to ensure that mappings with multiple 273 * devices do not end up with a smaller zone in the middle of 274 * the sector range. 275 */ 276 if (len & (zone_sectors - 1)) { 277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 278 dm_device_name(ti->table->md), 279 (unsigned long long)len, 280 zone_sectors, bdev); 281 return 1; 282 } 283 } 284 285 if (logical_block_size_sectors <= 1) 286 return 0; 287 288 if (start & (logical_block_size_sectors - 1)) { 289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 290 dm_device_name(ti->table->md), 291 (unsigned long long)start, 292 limits->logical_block_size, bdev); 293 return 1; 294 } 295 296 if (len & (logical_block_size_sectors - 1)) { 297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 298 dm_device_name(ti->table->md), 299 (unsigned long long)len, 300 limits->logical_block_size, bdev); 301 return 1; 302 } 303 304 return 0; 305 } 306 307 /* 308 * This upgrades the mode on an already open dm_dev, being 309 * careful to leave things as they were if we fail to reopen the 310 * device and not to touch the existing bdev field in case 311 * it is accessed concurrently. 312 */ 313 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 314 struct mapped_device *md) 315 { 316 int r; 317 struct dm_dev *old_dev, *new_dev; 318 319 old_dev = dd->dm_dev; 320 321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 322 dd->dm_dev->mode | new_mode, &new_dev); 323 if (r) 324 return r; 325 326 dd->dm_dev = new_dev; 327 dm_put_table_device(md, old_dev); 328 329 return 0; 330 } 331 332 /* 333 * Add a device to the list, or just increment the usage count if 334 * it's already present. 335 * 336 * Note: the __ref annotation is because this function can call the __init 337 * marked early_lookup_bdev when called during early boot code from dm-init.c. 338 */ 339 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 340 struct dm_dev **result) 341 { 342 int r; 343 dev_t dev; 344 unsigned int major, minor; 345 char dummy; 346 struct dm_dev_internal *dd; 347 struct dm_table *t = ti->table; 348 349 BUG_ON(!t); 350 351 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 352 /* Extract the major/minor numbers */ 353 dev = MKDEV(major, minor); 354 if (MAJOR(dev) != major || MINOR(dev) != minor) 355 return -EOVERFLOW; 356 } else { 357 r = lookup_bdev(path, &dev); 358 #ifndef MODULE 359 if (r && system_state < SYSTEM_RUNNING) 360 r = early_lookup_bdev(path, &dev); 361 #endif 362 if (r) 363 return r; 364 } 365 if (dev == disk_devt(t->md->disk)) 366 return -EINVAL; 367 368 down_write(&t->devices_lock); 369 370 dd = find_device(&t->devices, dev); 371 if (!dd) { 372 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 373 if (!dd) { 374 r = -ENOMEM; 375 goto unlock_ret_r; 376 } 377 378 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 379 if (r) { 380 kfree(dd); 381 goto unlock_ret_r; 382 } 383 384 refcount_set(&dd->count, 1); 385 list_add(&dd->list, &t->devices); 386 goto out; 387 388 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 389 r = upgrade_mode(dd, mode, t->md); 390 if (r) 391 goto unlock_ret_r; 392 } 393 refcount_inc(&dd->count); 394 out: 395 up_write(&t->devices_lock); 396 *result = dd->dm_dev; 397 return 0; 398 399 unlock_ret_r: 400 up_write(&t->devices_lock); 401 return r; 402 } 403 EXPORT_SYMBOL(dm_get_device); 404 405 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 406 sector_t start, sector_t len, void *data) 407 { 408 struct queue_limits *limits = data; 409 struct block_device *bdev = dev->bdev; 410 struct request_queue *q = bdev_get_queue(bdev); 411 412 if (unlikely(!q)) { 413 DMWARN("%s: Cannot set limits for nonexistent device %pg", 414 dm_device_name(ti->table->md), bdev); 415 return 0; 416 } 417 418 if (blk_stack_limits(limits, &q->limits, 419 get_start_sect(bdev) + start) < 0) 420 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 421 "physical_block_size=%u, logical_block_size=%u, " 422 "alignment_offset=%u, start=%llu", 423 dm_device_name(ti->table->md), bdev, 424 q->limits.physical_block_size, 425 q->limits.logical_block_size, 426 q->limits.alignment_offset, 427 (unsigned long long) start << SECTOR_SHIFT); 428 return 0; 429 } 430 431 /* 432 * Decrement a device's use count and remove it if necessary. 433 */ 434 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 435 { 436 int found = 0; 437 struct dm_table *t = ti->table; 438 struct list_head *devices = &t->devices; 439 struct dm_dev_internal *dd; 440 441 down_write(&t->devices_lock); 442 443 list_for_each_entry(dd, devices, list) { 444 if (dd->dm_dev == d) { 445 found = 1; 446 break; 447 } 448 } 449 if (!found) { 450 DMERR("%s: device %s not in table devices list", 451 dm_device_name(t->md), d->name); 452 goto unlock_ret; 453 } 454 if (refcount_dec_and_test(&dd->count)) { 455 dm_put_table_device(t->md, d); 456 list_del(&dd->list); 457 kfree(dd); 458 } 459 460 unlock_ret: 461 up_write(&t->devices_lock); 462 } 463 EXPORT_SYMBOL(dm_put_device); 464 465 /* 466 * Checks to see if the target joins onto the end of the table. 467 */ 468 static int adjoin(struct dm_table *t, struct dm_target *ti) 469 { 470 struct dm_target *prev; 471 472 if (!t->num_targets) 473 return !ti->begin; 474 475 prev = &t->targets[t->num_targets - 1]; 476 return (ti->begin == (prev->begin + prev->len)); 477 } 478 479 /* 480 * Used to dynamically allocate the arg array. 481 * 482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 483 * process messages even if some device is suspended. These messages have a 484 * small fixed number of arguments. 485 * 486 * On the other hand, dm-switch needs to process bulk data using messages and 487 * excessive use of GFP_NOIO could cause trouble. 488 */ 489 static char **realloc_argv(unsigned int *size, char **old_argv) 490 { 491 char **argv; 492 unsigned int new_size; 493 gfp_t gfp; 494 495 if (*size) { 496 new_size = *size * 2; 497 gfp = GFP_KERNEL; 498 } else { 499 new_size = 8; 500 gfp = GFP_NOIO; 501 } 502 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 503 if (argv && old_argv) { 504 memcpy(argv, old_argv, *size * sizeof(*argv)); 505 *size = new_size; 506 } 507 508 kfree(old_argv); 509 return argv; 510 } 511 512 /* 513 * Destructively splits up the argument list to pass to ctr. 514 */ 515 int dm_split_args(int *argc, char ***argvp, char *input) 516 { 517 char *start, *end = input, *out, **argv = NULL; 518 unsigned int array_size = 0; 519 520 *argc = 0; 521 522 if (!input) { 523 *argvp = NULL; 524 return 0; 525 } 526 527 argv = realloc_argv(&array_size, argv); 528 if (!argv) 529 return -ENOMEM; 530 531 while (1) { 532 /* Skip whitespace */ 533 start = skip_spaces(end); 534 535 if (!*start) 536 break; /* success, we hit the end */ 537 538 /* 'out' is used to remove any back-quotes */ 539 end = out = start; 540 while (*end) { 541 /* Everything apart from '\0' can be quoted */ 542 if (*end == '\\' && *(end + 1)) { 543 *out++ = *(end + 1); 544 end += 2; 545 continue; 546 } 547 548 if (isspace(*end)) 549 break; /* end of token */ 550 551 *out++ = *end++; 552 } 553 554 /* have we already filled the array ? */ 555 if ((*argc + 1) > array_size) { 556 argv = realloc_argv(&array_size, argv); 557 if (!argv) 558 return -ENOMEM; 559 } 560 561 /* we know this is whitespace */ 562 if (*end) 563 end++; 564 565 /* terminate the string and put it in the array */ 566 *out = '\0'; 567 argv[*argc] = start; 568 (*argc)++; 569 } 570 571 *argvp = argv; 572 return 0; 573 } 574 575 /* 576 * Impose necessary and sufficient conditions on a devices's table such 577 * that any incoming bio which respects its logical_block_size can be 578 * processed successfully. If it falls across the boundary between 579 * two or more targets, the size of each piece it gets split into must 580 * be compatible with the logical_block_size of the target processing it. 581 */ 582 static int validate_hardware_logical_block_alignment(struct dm_table *t, 583 struct queue_limits *limits) 584 { 585 /* 586 * This function uses arithmetic modulo the logical_block_size 587 * (in units of 512-byte sectors). 588 */ 589 unsigned short device_logical_block_size_sects = 590 limits->logical_block_size >> SECTOR_SHIFT; 591 592 /* 593 * Offset of the start of the next table entry, mod logical_block_size. 594 */ 595 unsigned short next_target_start = 0; 596 597 /* 598 * Given an aligned bio that extends beyond the end of a 599 * target, how many sectors must the next target handle? 600 */ 601 unsigned short remaining = 0; 602 603 struct dm_target *ti; 604 struct queue_limits ti_limits; 605 unsigned int i; 606 607 /* 608 * Check each entry in the table in turn. 609 */ 610 for (i = 0; i < t->num_targets; i++) { 611 ti = dm_table_get_target(t, i); 612 613 blk_set_stacking_limits(&ti_limits); 614 615 /* combine all target devices' limits */ 616 if (ti->type->iterate_devices) 617 ti->type->iterate_devices(ti, dm_set_device_limits, 618 &ti_limits); 619 620 /* 621 * If the remaining sectors fall entirely within this 622 * table entry are they compatible with its logical_block_size? 623 */ 624 if (remaining < ti->len && 625 remaining & ((ti_limits.logical_block_size >> 626 SECTOR_SHIFT) - 1)) 627 break; /* Error */ 628 629 next_target_start = 630 (unsigned short) ((next_target_start + ti->len) & 631 (device_logical_block_size_sects - 1)); 632 remaining = next_target_start ? 633 device_logical_block_size_sects - next_target_start : 0; 634 } 635 636 if (remaining) { 637 DMERR("%s: table line %u (start sect %llu len %llu) " 638 "not aligned to h/w logical block size %u", 639 dm_device_name(t->md), i, 640 (unsigned long long) ti->begin, 641 (unsigned long long) ti->len, 642 limits->logical_block_size); 643 return -EINVAL; 644 } 645 646 return 0; 647 } 648 649 int dm_table_add_target(struct dm_table *t, const char *type, 650 sector_t start, sector_t len, char *params) 651 { 652 int r = -EINVAL, argc; 653 char **argv; 654 struct dm_target *ti; 655 656 if (t->singleton) { 657 DMERR("%s: target type %s must appear alone in table", 658 dm_device_name(t->md), t->targets->type->name); 659 return -EINVAL; 660 } 661 662 BUG_ON(t->num_targets >= t->num_allocated); 663 664 ti = t->targets + t->num_targets; 665 memset(ti, 0, sizeof(*ti)); 666 667 if (!len) { 668 DMERR("%s: zero-length target", dm_device_name(t->md)); 669 return -EINVAL; 670 } 671 672 ti->type = dm_get_target_type(type); 673 if (!ti->type) { 674 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 675 return -EINVAL; 676 } 677 678 if (dm_target_needs_singleton(ti->type)) { 679 if (t->num_targets) { 680 ti->error = "singleton target type must appear alone in table"; 681 goto bad; 682 } 683 t->singleton = true; 684 } 685 686 if (dm_target_always_writeable(ti->type) && 687 !(t->mode & BLK_OPEN_WRITE)) { 688 ti->error = "target type may not be included in a read-only table"; 689 goto bad; 690 } 691 692 if (t->immutable_target_type) { 693 if (t->immutable_target_type != ti->type) { 694 ti->error = "immutable target type cannot be mixed with other target types"; 695 goto bad; 696 } 697 } else if (dm_target_is_immutable(ti->type)) { 698 if (t->num_targets) { 699 ti->error = "immutable target type cannot be mixed with other target types"; 700 goto bad; 701 } 702 t->immutable_target_type = ti->type; 703 } 704 705 if (dm_target_has_integrity(ti->type)) 706 t->integrity_added = 1; 707 708 ti->table = t; 709 ti->begin = start; 710 ti->len = len; 711 ti->error = "Unknown error"; 712 713 /* 714 * Does this target adjoin the previous one ? 715 */ 716 if (!adjoin(t, ti)) { 717 ti->error = "Gap in table"; 718 goto bad; 719 } 720 721 r = dm_split_args(&argc, &argv, params); 722 if (r) { 723 ti->error = "couldn't split parameters"; 724 goto bad; 725 } 726 727 r = ti->type->ctr(ti, argc, argv); 728 kfree(argv); 729 if (r) 730 goto bad; 731 732 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 733 734 if (!ti->num_discard_bios && ti->discards_supported) 735 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 736 dm_device_name(t->md), type); 737 738 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 739 static_branch_enable(&swap_bios_enabled); 740 741 return 0; 742 743 bad: 744 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 745 dm_put_target_type(ti->type); 746 return r; 747 } 748 749 /* 750 * Target argument parsing helpers. 751 */ 752 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 753 unsigned int *value, char **error, unsigned int grouped) 754 { 755 const char *arg_str = dm_shift_arg(arg_set); 756 char dummy; 757 758 if (!arg_str || 759 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 760 (*value < arg->min) || 761 (*value > arg->max) || 762 (grouped && arg_set->argc < *value)) { 763 *error = arg->error; 764 return -EINVAL; 765 } 766 767 return 0; 768 } 769 770 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 771 unsigned int *value, char **error) 772 { 773 return validate_next_arg(arg, arg_set, value, error, 0); 774 } 775 EXPORT_SYMBOL(dm_read_arg); 776 777 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 778 unsigned int *value, char **error) 779 { 780 return validate_next_arg(arg, arg_set, value, error, 1); 781 } 782 EXPORT_SYMBOL(dm_read_arg_group); 783 784 const char *dm_shift_arg(struct dm_arg_set *as) 785 { 786 char *r; 787 788 if (as->argc) { 789 as->argc--; 790 r = *as->argv; 791 as->argv++; 792 return r; 793 } 794 795 return NULL; 796 } 797 EXPORT_SYMBOL(dm_shift_arg); 798 799 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 800 { 801 BUG_ON(as->argc < num_args); 802 as->argc -= num_args; 803 as->argv += num_args; 804 } 805 EXPORT_SYMBOL(dm_consume_args); 806 807 static bool __table_type_bio_based(enum dm_queue_mode table_type) 808 { 809 return (table_type == DM_TYPE_BIO_BASED || 810 table_type == DM_TYPE_DAX_BIO_BASED); 811 } 812 813 static bool __table_type_request_based(enum dm_queue_mode table_type) 814 { 815 return table_type == DM_TYPE_REQUEST_BASED; 816 } 817 818 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 819 { 820 t->type = type; 821 } 822 EXPORT_SYMBOL_GPL(dm_table_set_type); 823 824 /* validate the dax capability of the target device span */ 825 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 826 sector_t start, sector_t len, void *data) 827 { 828 if (dev->dax_dev) 829 return false; 830 831 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 832 return true; 833 } 834 835 /* Check devices support synchronous DAX */ 836 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 837 sector_t start, sector_t len, void *data) 838 { 839 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 840 } 841 842 static bool dm_table_supports_dax(struct dm_table *t, 843 iterate_devices_callout_fn iterate_fn) 844 { 845 /* Ensure that all targets support DAX. */ 846 for (unsigned int i = 0; i < t->num_targets; i++) { 847 struct dm_target *ti = dm_table_get_target(t, i); 848 849 if (!ti->type->direct_access) 850 return false; 851 852 if (dm_target_is_wildcard(ti->type) || 853 !ti->type->iterate_devices || 854 ti->type->iterate_devices(ti, iterate_fn, NULL)) 855 return false; 856 } 857 858 return true; 859 } 860 861 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 862 sector_t start, sector_t len, void *data) 863 { 864 struct block_device *bdev = dev->bdev; 865 struct request_queue *q = bdev_get_queue(bdev); 866 867 /* request-based cannot stack on partitions! */ 868 if (bdev_is_partition(bdev)) 869 return false; 870 871 return queue_is_mq(q); 872 } 873 874 static int dm_table_determine_type(struct dm_table *t) 875 { 876 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 877 struct dm_target *ti; 878 struct list_head *devices = dm_table_get_devices(t); 879 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 880 881 if (t->type != DM_TYPE_NONE) { 882 /* target already set the table's type */ 883 if (t->type == DM_TYPE_BIO_BASED) { 884 /* possibly upgrade to a variant of bio-based */ 885 goto verify_bio_based; 886 } 887 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 888 goto verify_rq_based; 889 } 890 891 for (unsigned int i = 0; i < t->num_targets; i++) { 892 ti = dm_table_get_target(t, i); 893 if (dm_target_hybrid(ti)) 894 hybrid = 1; 895 else if (dm_target_request_based(ti)) 896 request_based = 1; 897 else 898 bio_based = 1; 899 900 if (bio_based && request_based) { 901 DMERR("Inconsistent table: different target types can't be mixed up"); 902 return -EINVAL; 903 } 904 } 905 906 if (hybrid && !bio_based && !request_based) { 907 /* 908 * The targets can work either way. 909 * Determine the type from the live device. 910 * Default to bio-based if device is new. 911 */ 912 if (__table_type_request_based(live_md_type)) 913 request_based = 1; 914 else 915 bio_based = 1; 916 } 917 918 if (bio_based) { 919 verify_bio_based: 920 /* We must use this table as bio-based */ 921 t->type = DM_TYPE_BIO_BASED; 922 if (dm_table_supports_dax(t, device_not_dax_capable) || 923 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 924 t->type = DM_TYPE_DAX_BIO_BASED; 925 } 926 return 0; 927 } 928 929 BUG_ON(!request_based); /* No targets in this table */ 930 931 t->type = DM_TYPE_REQUEST_BASED; 932 933 verify_rq_based: 934 /* 935 * Request-based dm supports only tables that have a single target now. 936 * To support multiple targets, request splitting support is needed, 937 * and that needs lots of changes in the block-layer. 938 * (e.g. request completion process for partial completion.) 939 */ 940 if (t->num_targets > 1) { 941 DMERR("request-based DM doesn't support multiple targets"); 942 return -EINVAL; 943 } 944 945 if (list_empty(devices)) { 946 int srcu_idx; 947 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 948 949 /* inherit live table's type */ 950 if (live_table) 951 t->type = live_table->type; 952 dm_put_live_table(t->md, srcu_idx); 953 return 0; 954 } 955 956 ti = dm_table_get_immutable_target(t); 957 if (!ti) { 958 DMERR("table load rejected: immutable target is required"); 959 return -EINVAL; 960 } else if (ti->max_io_len) { 961 DMERR("table load rejected: immutable target that splits IO is not supported"); 962 return -EINVAL; 963 } 964 965 /* Non-request-stackable devices can't be used for request-based dm */ 966 if (!ti->type->iterate_devices || 967 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 968 DMERR("table load rejected: including non-request-stackable devices"); 969 return -EINVAL; 970 } 971 972 return 0; 973 } 974 975 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 976 { 977 return t->type; 978 } 979 980 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 981 { 982 return t->immutable_target_type; 983 } 984 985 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 986 { 987 /* Immutable target is implicitly a singleton */ 988 if (t->num_targets > 1 || 989 !dm_target_is_immutable(t->targets[0].type)) 990 return NULL; 991 992 return t->targets; 993 } 994 995 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 996 { 997 for (unsigned int i = 0; i < t->num_targets; i++) { 998 struct dm_target *ti = dm_table_get_target(t, i); 999 1000 if (dm_target_is_wildcard(ti->type)) 1001 return ti; 1002 } 1003 1004 return NULL; 1005 } 1006 1007 bool dm_table_bio_based(struct dm_table *t) 1008 { 1009 return __table_type_bio_based(dm_table_get_type(t)); 1010 } 1011 1012 bool dm_table_request_based(struct dm_table *t) 1013 { 1014 return __table_type_request_based(dm_table_get_type(t)); 1015 } 1016 1017 static bool dm_table_supports_poll(struct dm_table *t); 1018 1019 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1020 { 1021 enum dm_queue_mode type = dm_table_get_type(t); 1022 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1023 unsigned int min_pool_size = 0, pool_size; 1024 struct dm_md_mempools *pools; 1025 1026 if (unlikely(type == DM_TYPE_NONE)) { 1027 DMERR("no table type is set, can't allocate mempools"); 1028 return -EINVAL; 1029 } 1030 1031 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1032 if (!pools) 1033 return -ENOMEM; 1034 1035 if (type == DM_TYPE_REQUEST_BASED) { 1036 pool_size = dm_get_reserved_rq_based_ios(); 1037 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1038 goto init_bs; 1039 } 1040 1041 for (unsigned int i = 0; i < t->num_targets; i++) { 1042 struct dm_target *ti = dm_table_get_target(t, i); 1043 1044 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1045 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1046 } 1047 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1048 front_pad = roundup(per_io_data_size, 1049 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1050 1051 io_front_pad = roundup(per_io_data_size, 1052 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1053 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, 1054 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0)) 1055 goto out_free_pools; 1056 if (t->integrity_supported && 1057 bioset_integrity_create(&pools->io_bs, pool_size)) 1058 goto out_free_pools; 1059 init_bs: 1060 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1061 goto out_free_pools; 1062 if (t->integrity_supported && 1063 bioset_integrity_create(&pools->bs, pool_size)) 1064 goto out_free_pools; 1065 1066 t->mempools = pools; 1067 return 0; 1068 1069 out_free_pools: 1070 dm_free_md_mempools(pools); 1071 return -ENOMEM; 1072 } 1073 1074 static int setup_indexes(struct dm_table *t) 1075 { 1076 int i; 1077 unsigned int total = 0; 1078 sector_t *indexes; 1079 1080 /* allocate the space for *all* the indexes */ 1081 for (i = t->depth - 2; i >= 0; i--) { 1082 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1083 total += t->counts[i]; 1084 } 1085 1086 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1087 if (!indexes) 1088 return -ENOMEM; 1089 1090 /* set up internal nodes, bottom-up */ 1091 for (i = t->depth - 2; i >= 0; i--) { 1092 t->index[i] = indexes; 1093 indexes += (KEYS_PER_NODE * t->counts[i]); 1094 setup_btree_index(i, t); 1095 } 1096 1097 return 0; 1098 } 1099 1100 /* 1101 * Builds the btree to index the map. 1102 */ 1103 static int dm_table_build_index(struct dm_table *t) 1104 { 1105 int r = 0; 1106 unsigned int leaf_nodes; 1107 1108 /* how many indexes will the btree have ? */ 1109 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1110 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1111 1112 /* leaf layer has already been set up */ 1113 t->counts[t->depth - 1] = leaf_nodes; 1114 t->index[t->depth - 1] = t->highs; 1115 1116 if (t->depth >= 2) 1117 r = setup_indexes(t); 1118 1119 return r; 1120 } 1121 1122 static bool integrity_profile_exists(struct gendisk *disk) 1123 { 1124 return !!blk_get_integrity(disk); 1125 } 1126 1127 /* 1128 * Get a disk whose integrity profile reflects the table's profile. 1129 * Returns NULL if integrity support was inconsistent or unavailable. 1130 */ 1131 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t) 1132 { 1133 struct list_head *devices = dm_table_get_devices(t); 1134 struct dm_dev_internal *dd = NULL; 1135 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1136 1137 for (unsigned int i = 0; i < t->num_targets; i++) { 1138 struct dm_target *ti = dm_table_get_target(t, i); 1139 1140 if (!dm_target_passes_integrity(ti->type)) 1141 goto no_integrity; 1142 } 1143 1144 list_for_each_entry(dd, devices, list) { 1145 template_disk = dd->dm_dev->bdev->bd_disk; 1146 if (!integrity_profile_exists(template_disk)) 1147 goto no_integrity; 1148 else if (prev_disk && 1149 blk_integrity_compare(prev_disk, template_disk) < 0) 1150 goto no_integrity; 1151 prev_disk = template_disk; 1152 } 1153 1154 return template_disk; 1155 1156 no_integrity: 1157 if (prev_disk) 1158 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1159 dm_device_name(t->md), 1160 prev_disk->disk_name, 1161 template_disk->disk_name); 1162 return NULL; 1163 } 1164 1165 /* 1166 * Register the mapped device for blk_integrity support if the 1167 * underlying devices have an integrity profile. But all devices may 1168 * not have matching profiles (checking all devices isn't reliable 1169 * during table load because this table may use other DM device(s) which 1170 * must be resumed before they will have an initialized integity 1171 * profile). Consequently, stacked DM devices force a 2 stage integrity 1172 * profile validation: First pass during table load, final pass during 1173 * resume. 1174 */ 1175 static int dm_table_register_integrity(struct dm_table *t) 1176 { 1177 struct mapped_device *md = t->md; 1178 struct gendisk *template_disk = NULL; 1179 1180 /* If target handles integrity itself do not register it here. */ 1181 if (t->integrity_added) 1182 return 0; 1183 1184 template_disk = dm_table_get_integrity_disk(t); 1185 if (!template_disk) 1186 return 0; 1187 1188 if (!integrity_profile_exists(dm_disk(md))) { 1189 t->integrity_supported = true; 1190 /* 1191 * Register integrity profile during table load; we can do 1192 * this because the final profile must match during resume. 1193 */ 1194 blk_integrity_register(dm_disk(md), 1195 blk_get_integrity(template_disk)); 1196 return 0; 1197 } 1198 1199 /* 1200 * If DM device already has an initialized integrity 1201 * profile the new profile should not conflict. 1202 */ 1203 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1204 DMERR("%s: conflict with existing integrity profile: %s profile mismatch", 1205 dm_device_name(t->md), 1206 template_disk->disk_name); 1207 return 1; 1208 } 1209 1210 /* Preserve existing integrity profile */ 1211 t->integrity_supported = true; 1212 return 0; 1213 } 1214 1215 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1216 1217 struct dm_crypto_profile { 1218 struct blk_crypto_profile profile; 1219 struct mapped_device *md; 1220 }; 1221 1222 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1223 sector_t start, sector_t len, void *data) 1224 { 1225 const struct blk_crypto_key *key = data; 1226 1227 blk_crypto_evict_key(dev->bdev, key); 1228 return 0; 1229 } 1230 1231 /* 1232 * When an inline encryption key is evicted from a device-mapper device, evict 1233 * it from all the underlying devices. 1234 */ 1235 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1236 const struct blk_crypto_key *key, unsigned int slot) 1237 { 1238 struct mapped_device *md = 1239 container_of(profile, struct dm_crypto_profile, profile)->md; 1240 struct dm_table *t; 1241 int srcu_idx; 1242 1243 t = dm_get_live_table(md, &srcu_idx); 1244 if (!t) 1245 return 0; 1246 1247 for (unsigned int i = 0; i < t->num_targets; i++) { 1248 struct dm_target *ti = dm_table_get_target(t, i); 1249 1250 if (!ti->type->iterate_devices) 1251 continue; 1252 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1253 (void *)key); 1254 } 1255 1256 dm_put_live_table(md, srcu_idx); 1257 return 0; 1258 } 1259 1260 static int 1261 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1262 sector_t start, sector_t len, void *data) 1263 { 1264 struct blk_crypto_profile *parent = data; 1265 struct blk_crypto_profile *child = 1266 bdev_get_queue(dev->bdev)->crypto_profile; 1267 1268 blk_crypto_intersect_capabilities(parent, child); 1269 return 0; 1270 } 1271 1272 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1273 { 1274 struct dm_crypto_profile *dmcp = container_of(profile, 1275 struct dm_crypto_profile, 1276 profile); 1277 1278 if (!profile) 1279 return; 1280 1281 blk_crypto_profile_destroy(profile); 1282 kfree(dmcp); 1283 } 1284 1285 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1286 { 1287 dm_destroy_crypto_profile(t->crypto_profile); 1288 t->crypto_profile = NULL; 1289 } 1290 1291 /* 1292 * Constructs and initializes t->crypto_profile with a crypto profile that 1293 * represents the common set of crypto capabilities of the devices described by 1294 * the dm_table. However, if the constructed crypto profile doesn't support all 1295 * crypto capabilities that are supported by the current mapped_device, it 1296 * returns an error instead, since we don't support removing crypto capabilities 1297 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1298 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1299 */ 1300 static int dm_table_construct_crypto_profile(struct dm_table *t) 1301 { 1302 struct dm_crypto_profile *dmcp; 1303 struct blk_crypto_profile *profile; 1304 unsigned int i; 1305 bool empty_profile = true; 1306 1307 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1308 if (!dmcp) 1309 return -ENOMEM; 1310 dmcp->md = t->md; 1311 1312 profile = &dmcp->profile; 1313 blk_crypto_profile_init(profile, 0); 1314 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1315 profile->max_dun_bytes_supported = UINT_MAX; 1316 memset(profile->modes_supported, 0xFF, 1317 sizeof(profile->modes_supported)); 1318 1319 for (i = 0; i < t->num_targets; i++) { 1320 struct dm_target *ti = dm_table_get_target(t, i); 1321 1322 if (!dm_target_passes_crypto(ti->type)) { 1323 blk_crypto_intersect_capabilities(profile, NULL); 1324 break; 1325 } 1326 if (!ti->type->iterate_devices) 1327 continue; 1328 ti->type->iterate_devices(ti, 1329 device_intersect_crypto_capabilities, 1330 profile); 1331 } 1332 1333 if (t->md->queue && 1334 !blk_crypto_has_capabilities(profile, 1335 t->md->queue->crypto_profile)) { 1336 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1337 dm_destroy_crypto_profile(profile); 1338 return -EINVAL; 1339 } 1340 1341 /* 1342 * If the new profile doesn't actually support any crypto capabilities, 1343 * we may as well represent it with a NULL profile. 1344 */ 1345 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1346 if (profile->modes_supported[i]) { 1347 empty_profile = false; 1348 break; 1349 } 1350 } 1351 1352 if (empty_profile) { 1353 dm_destroy_crypto_profile(profile); 1354 profile = NULL; 1355 } 1356 1357 /* 1358 * t->crypto_profile is only set temporarily while the table is being 1359 * set up, and it gets set to NULL after the profile has been 1360 * transferred to the request_queue. 1361 */ 1362 t->crypto_profile = profile; 1363 1364 return 0; 1365 } 1366 1367 static void dm_update_crypto_profile(struct request_queue *q, 1368 struct dm_table *t) 1369 { 1370 if (!t->crypto_profile) 1371 return; 1372 1373 /* Make the crypto profile less restrictive. */ 1374 if (!q->crypto_profile) { 1375 blk_crypto_register(t->crypto_profile, q); 1376 } else { 1377 blk_crypto_update_capabilities(q->crypto_profile, 1378 t->crypto_profile); 1379 dm_destroy_crypto_profile(t->crypto_profile); 1380 } 1381 t->crypto_profile = NULL; 1382 } 1383 1384 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1385 1386 static int dm_table_construct_crypto_profile(struct dm_table *t) 1387 { 1388 return 0; 1389 } 1390 1391 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1392 { 1393 } 1394 1395 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1396 { 1397 } 1398 1399 static void dm_update_crypto_profile(struct request_queue *q, 1400 struct dm_table *t) 1401 { 1402 } 1403 1404 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1405 1406 /* 1407 * Prepares the table for use by building the indices, 1408 * setting the type, and allocating mempools. 1409 */ 1410 int dm_table_complete(struct dm_table *t) 1411 { 1412 int r; 1413 1414 r = dm_table_determine_type(t); 1415 if (r) { 1416 DMERR("unable to determine table type"); 1417 return r; 1418 } 1419 1420 r = dm_table_build_index(t); 1421 if (r) { 1422 DMERR("unable to build btrees"); 1423 return r; 1424 } 1425 1426 r = dm_table_register_integrity(t); 1427 if (r) { 1428 DMERR("could not register integrity profile."); 1429 return r; 1430 } 1431 1432 r = dm_table_construct_crypto_profile(t); 1433 if (r) { 1434 DMERR("could not construct crypto profile."); 1435 return r; 1436 } 1437 1438 r = dm_table_alloc_md_mempools(t, t->md); 1439 if (r) 1440 DMERR("unable to allocate mempools"); 1441 1442 return r; 1443 } 1444 1445 static DEFINE_MUTEX(_event_lock); 1446 void dm_table_event_callback(struct dm_table *t, 1447 void (*fn)(void *), void *context) 1448 { 1449 mutex_lock(&_event_lock); 1450 t->event_fn = fn; 1451 t->event_context = context; 1452 mutex_unlock(&_event_lock); 1453 } 1454 1455 void dm_table_event(struct dm_table *t) 1456 { 1457 mutex_lock(&_event_lock); 1458 if (t->event_fn) 1459 t->event_fn(t->event_context); 1460 mutex_unlock(&_event_lock); 1461 } 1462 EXPORT_SYMBOL(dm_table_event); 1463 1464 inline sector_t dm_table_get_size(struct dm_table *t) 1465 { 1466 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1467 } 1468 EXPORT_SYMBOL(dm_table_get_size); 1469 1470 /* 1471 * Search the btree for the correct target. 1472 * 1473 * Caller should check returned pointer for NULL 1474 * to trap I/O beyond end of device. 1475 */ 1476 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1477 { 1478 unsigned int l, n = 0, k = 0; 1479 sector_t *node; 1480 1481 if (unlikely(sector >= dm_table_get_size(t))) 1482 return NULL; 1483 1484 for (l = 0; l < t->depth; l++) { 1485 n = get_child(n, k); 1486 node = get_node(t, l, n); 1487 1488 for (k = 0; k < KEYS_PER_NODE; k++) 1489 if (node[k] >= sector) 1490 break; 1491 } 1492 1493 return &t->targets[(KEYS_PER_NODE * n) + k]; 1494 } 1495 1496 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev, 1497 sector_t start, sector_t len, void *data) 1498 { 1499 struct request_queue *q = bdev_get_queue(dev->bdev); 1500 1501 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags); 1502 } 1503 1504 /* 1505 * type->iterate_devices() should be called when the sanity check needs to 1506 * iterate and check all underlying data devices. iterate_devices() will 1507 * iterate all underlying data devices until it encounters a non-zero return 1508 * code, returned by whether the input iterate_devices_callout_fn, or 1509 * iterate_devices() itself internally. 1510 * 1511 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1512 * iterate multiple underlying devices internally, in which case a non-zero 1513 * return code returned by iterate_devices_callout_fn will stop the iteration 1514 * in advance. 1515 * 1516 * Cases requiring _any_ underlying device supporting some kind of attribute, 1517 * should use the iteration structure like dm_table_any_dev_attr(), or call 1518 * it directly. @func should handle semantics of positive examples, e.g. 1519 * capable of something. 1520 * 1521 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1522 * should use the iteration structure like dm_table_supports_nowait() or 1523 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1524 * uses an @anti_func that handle semantics of counter examples, e.g. not 1525 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1526 */ 1527 static bool dm_table_any_dev_attr(struct dm_table *t, 1528 iterate_devices_callout_fn func, void *data) 1529 { 1530 for (unsigned int i = 0; i < t->num_targets; i++) { 1531 struct dm_target *ti = dm_table_get_target(t, i); 1532 1533 if (ti->type->iterate_devices && 1534 ti->type->iterate_devices(ti, func, data)) 1535 return true; 1536 } 1537 1538 return false; 1539 } 1540 1541 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1542 sector_t start, sector_t len, void *data) 1543 { 1544 unsigned int *num_devices = data; 1545 1546 (*num_devices)++; 1547 1548 return 0; 1549 } 1550 1551 static bool dm_table_supports_poll(struct dm_table *t) 1552 { 1553 for (unsigned int i = 0; i < t->num_targets; i++) { 1554 struct dm_target *ti = dm_table_get_target(t, i); 1555 1556 if (!ti->type->iterate_devices || 1557 ti->type->iterate_devices(ti, device_not_poll_capable, NULL)) 1558 return false; 1559 } 1560 1561 return true; 1562 } 1563 1564 /* 1565 * Check whether a table has no data devices attached using each 1566 * target's iterate_devices method. 1567 * Returns false if the result is unknown because a target doesn't 1568 * support iterate_devices. 1569 */ 1570 bool dm_table_has_no_data_devices(struct dm_table *t) 1571 { 1572 for (unsigned int i = 0; i < t->num_targets; i++) { 1573 struct dm_target *ti = dm_table_get_target(t, i); 1574 unsigned int num_devices = 0; 1575 1576 if (!ti->type->iterate_devices) 1577 return false; 1578 1579 ti->type->iterate_devices(ti, count_device, &num_devices); 1580 if (num_devices) 1581 return false; 1582 } 1583 1584 return true; 1585 } 1586 1587 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1588 sector_t start, sector_t len, void *data) 1589 { 1590 bool *zoned = data; 1591 1592 return bdev_is_zoned(dev->bdev) != *zoned; 1593 } 1594 1595 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1596 sector_t start, sector_t len, void *data) 1597 { 1598 return bdev_is_zoned(dev->bdev); 1599 } 1600 1601 /* 1602 * Check the device zoned model based on the target feature flag. If the target 1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1604 * also accepted but all devices must have the same zoned model. If the target 1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1606 * zoned model with all zoned devices having the same zone size. 1607 */ 1608 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1609 { 1610 for (unsigned int i = 0; i < t->num_targets; i++) { 1611 struct dm_target *ti = dm_table_get_target(t, i); 1612 1613 /* 1614 * For the wildcard target (dm-error), if we do not have a 1615 * backing device, we must always return false. If we have a 1616 * backing device, the result must depend on checking zoned 1617 * model, like for any other target. So for this, check directly 1618 * if the target backing device is zoned as we get "false" when 1619 * dm-error was set without a backing device. 1620 */ 1621 if (dm_target_is_wildcard(ti->type) && 1622 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1623 return false; 1624 1625 if (dm_target_supports_zoned_hm(ti->type)) { 1626 if (!ti->type->iterate_devices || 1627 ti->type->iterate_devices(ti, device_not_zoned, 1628 &zoned)) 1629 return false; 1630 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1631 if (zoned) 1632 return false; 1633 } 1634 } 1635 1636 return true; 1637 } 1638 1639 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1640 sector_t start, sector_t len, void *data) 1641 { 1642 unsigned int *zone_sectors = data; 1643 1644 if (!bdev_is_zoned(dev->bdev)) 1645 return 0; 1646 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1647 } 1648 1649 /* 1650 * Check consistency of zoned model and zone sectors across all targets. For 1651 * zone sectors, if the destination device is a zoned block device, it shall 1652 * have the specified zone_sectors. 1653 */ 1654 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1655 unsigned int zone_sectors) 1656 { 1657 if (!zoned) 1658 return 0; 1659 1660 if (!dm_table_supports_zoned(t, zoned)) { 1661 DMERR("%s: zoned model is not consistent across all devices", 1662 dm_device_name(t->md)); 1663 return -EINVAL; 1664 } 1665 1666 /* Check zone size validity and compatibility */ 1667 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1668 return -EINVAL; 1669 1670 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1671 DMERR("%s: zone sectors is not consistent across all zoned devices", 1672 dm_device_name(t->md)); 1673 return -EINVAL; 1674 } 1675 1676 return 0; 1677 } 1678 1679 /* 1680 * Establish the new table's queue_limits and validate them. 1681 */ 1682 int dm_calculate_queue_limits(struct dm_table *t, 1683 struct queue_limits *limits) 1684 { 1685 struct queue_limits ti_limits; 1686 unsigned int zone_sectors = 0; 1687 bool zoned = false; 1688 1689 blk_set_stacking_limits(limits); 1690 1691 for (unsigned int i = 0; i < t->num_targets; i++) { 1692 struct dm_target *ti = dm_table_get_target(t, i); 1693 1694 blk_set_stacking_limits(&ti_limits); 1695 1696 if (!ti->type->iterate_devices) { 1697 /* Set I/O hints portion of queue limits */ 1698 if (ti->type->io_hints) 1699 ti->type->io_hints(ti, &ti_limits); 1700 goto combine_limits; 1701 } 1702 1703 /* 1704 * Combine queue limits of all the devices this target uses. 1705 */ 1706 ti->type->iterate_devices(ti, dm_set_device_limits, 1707 &ti_limits); 1708 1709 if (!zoned && ti_limits.zoned) { 1710 /* 1711 * After stacking all limits, validate all devices 1712 * in table support this zoned model and zone sectors. 1713 */ 1714 zoned = ti_limits.zoned; 1715 zone_sectors = ti_limits.chunk_sectors; 1716 } 1717 1718 /* Set I/O hints portion of queue limits */ 1719 if (ti->type->io_hints) 1720 ti->type->io_hints(ti, &ti_limits); 1721 1722 /* 1723 * Check each device area is consistent with the target's 1724 * overall queue limits. 1725 */ 1726 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1727 &ti_limits)) 1728 return -EINVAL; 1729 1730 combine_limits: 1731 /* 1732 * Merge this target's queue limits into the overall limits 1733 * for the table. 1734 */ 1735 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1736 DMWARN("%s: adding target device (start sect %llu len %llu) " 1737 "caused an alignment inconsistency", 1738 dm_device_name(t->md), 1739 (unsigned long long) ti->begin, 1740 (unsigned long long) ti->len); 1741 } 1742 1743 /* 1744 * Verify that the zoned model and zone sectors, as determined before 1745 * any .io_hints override, are the same across all devices in the table. 1746 * - this is especially relevant if .io_hints is emulating a disk-managed 1747 * zoned model on host-managed zoned block devices. 1748 * BUT... 1749 */ 1750 if (limits->zoned) { 1751 /* 1752 * ...IF the above limits stacking determined a zoned model 1753 * validate that all of the table's devices conform to it. 1754 */ 1755 zoned = limits->zoned; 1756 zone_sectors = limits->chunk_sectors; 1757 } 1758 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1759 return -EINVAL; 1760 1761 return validate_hardware_logical_block_alignment(t, limits); 1762 } 1763 1764 /* 1765 * Verify that all devices have an integrity profile that matches the 1766 * DM device's registered integrity profile. If the profiles don't 1767 * match then unregister the DM device's integrity profile. 1768 */ 1769 static void dm_table_verify_integrity(struct dm_table *t) 1770 { 1771 struct gendisk *template_disk = NULL; 1772 1773 if (t->integrity_added) 1774 return; 1775 1776 if (t->integrity_supported) { 1777 /* 1778 * Verify that the original integrity profile 1779 * matches all the devices in this table. 1780 */ 1781 template_disk = dm_table_get_integrity_disk(t); 1782 if (template_disk && 1783 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1784 return; 1785 } 1786 1787 if (integrity_profile_exists(dm_disk(t->md))) { 1788 DMWARN("%s: unable to establish an integrity profile", 1789 dm_device_name(t->md)); 1790 blk_integrity_unregister(dm_disk(t->md)); 1791 } 1792 } 1793 1794 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1795 sector_t start, sector_t len, void *data) 1796 { 1797 unsigned long flush = (unsigned long) data; 1798 struct request_queue *q = bdev_get_queue(dev->bdev); 1799 1800 return (q->queue_flags & flush); 1801 } 1802 1803 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1804 { 1805 /* 1806 * Require at least one underlying device to support flushes. 1807 * t->devices includes internal dm devices such as mirror logs 1808 * so we need to use iterate_devices here, which targets 1809 * supporting flushes must provide. 1810 */ 1811 for (unsigned int i = 0; i < t->num_targets; i++) { 1812 struct dm_target *ti = dm_table_get_target(t, i); 1813 1814 if (!ti->num_flush_bios) 1815 continue; 1816 1817 if (ti->flush_supported) 1818 return true; 1819 1820 if (ti->type->iterate_devices && 1821 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1822 return true; 1823 } 1824 1825 return false; 1826 } 1827 1828 static int device_dax_write_cache_enabled(struct dm_target *ti, 1829 struct dm_dev *dev, sector_t start, 1830 sector_t len, void *data) 1831 { 1832 struct dax_device *dax_dev = dev->dax_dev; 1833 1834 if (!dax_dev) 1835 return false; 1836 1837 if (dax_write_cache_enabled(dax_dev)) 1838 return true; 1839 return false; 1840 } 1841 1842 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1843 sector_t start, sector_t len, void *data) 1844 { 1845 return !bdev_nonrot(dev->bdev); 1846 } 1847 1848 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1849 sector_t start, sector_t len, void *data) 1850 { 1851 struct request_queue *q = bdev_get_queue(dev->bdev); 1852 1853 return !blk_queue_add_random(q); 1854 } 1855 1856 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1857 sector_t start, sector_t len, void *data) 1858 { 1859 struct request_queue *q = bdev_get_queue(dev->bdev); 1860 1861 return !q->limits.max_write_zeroes_sectors; 1862 } 1863 1864 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1865 { 1866 for (unsigned int i = 0; i < t->num_targets; i++) { 1867 struct dm_target *ti = dm_table_get_target(t, i); 1868 1869 if (!ti->num_write_zeroes_bios) 1870 return false; 1871 1872 if (!ti->type->iterate_devices || 1873 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1874 return false; 1875 } 1876 1877 return true; 1878 } 1879 1880 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1881 sector_t start, sector_t len, void *data) 1882 { 1883 return !bdev_nowait(dev->bdev); 1884 } 1885 1886 static bool dm_table_supports_nowait(struct dm_table *t) 1887 { 1888 for (unsigned int i = 0; i < t->num_targets; i++) { 1889 struct dm_target *ti = dm_table_get_target(t, i); 1890 1891 if (!dm_target_supports_nowait(ti->type)) 1892 return false; 1893 1894 if (!ti->type->iterate_devices || 1895 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1896 return false; 1897 } 1898 1899 return true; 1900 } 1901 1902 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1903 sector_t start, sector_t len, void *data) 1904 { 1905 return !bdev_max_discard_sectors(dev->bdev); 1906 } 1907 1908 static bool dm_table_supports_discards(struct dm_table *t) 1909 { 1910 for (unsigned int i = 0; i < t->num_targets; i++) { 1911 struct dm_target *ti = dm_table_get_target(t, i); 1912 1913 if (!ti->num_discard_bios) 1914 return false; 1915 1916 /* 1917 * Either the target provides discard support (as implied by setting 1918 * 'discards_supported') or it relies on _all_ data devices having 1919 * discard support. 1920 */ 1921 if (!ti->discards_supported && 1922 (!ti->type->iterate_devices || 1923 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1924 return false; 1925 } 1926 1927 return true; 1928 } 1929 1930 static int device_not_secure_erase_capable(struct dm_target *ti, 1931 struct dm_dev *dev, sector_t start, 1932 sector_t len, void *data) 1933 { 1934 return !bdev_max_secure_erase_sectors(dev->bdev); 1935 } 1936 1937 static bool dm_table_supports_secure_erase(struct dm_table *t) 1938 { 1939 for (unsigned int i = 0; i < t->num_targets; i++) { 1940 struct dm_target *ti = dm_table_get_target(t, i); 1941 1942 if (!ti->num_secure_erase_bios) 1943 return false; 1944 1945 if (!ti->type->iterate_devices || 1946 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1947 return false; 1948 } 1949 1950 return true; 1951 } 1952 1953 static int device_requires_stable_pages(struct dm_target *ti, 1954 struct dm_dev *dev, sector_t start, 1955 sector_t len, void *data) 1956 { 1957 return bdev_stable_writes(dev->bdev); 1958 } 1959 1960 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1961 struct queue_limits *limits) 1962 { 1963 bool wc = false, fua = false; 1964 int r; 1965 1966 if (dm_table_supports_nowait(t)) 1967 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1968 else 1969 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1970 1971 if (!dm_table_supports_discards(t)) { 1972 limits->max_hw_discard_sectors = 0; 1973 limits->discard_granularity = 0; 1974 limits->discard_alignment = 0; 1975 limits->discard_misaligned = 0; 1976 } 1977 1978 if (!dm_table_supports_write_zeroes(t)) 1979 limits->max_write_zeroes_sectors = 0; 1980 1981 if (!dm_table_supports_secure_erase(t)) 1982 limits->max_secure_erase_sectors = 0; 1983 1984 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1985 wc = true; 1986 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1987 fua = true; 1988 } 1989 blk_queue_write_cache(q, wc, fua); 1990 1991 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1992 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1993 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1994 set_dax_synchronous(t->md->dax_dev); 1995 } else 1996 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1997 1998 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1999 dax_write_cache(t->md->dax_dev, true); 2000 2001 /* Ensure that all underlying devices are non-rotational. */ 2002 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 2003 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2004 else 2005 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2006 2007 dm_table_verify_integrity(t); 2008 2009 /* 2010 * Some devices don't use blk_integrity but still want stable pages 2011 * because they do their own checksumming. 2012 * If any underlying device requires stable pages, a table must require 2013 * them as well. Only targets that support iterate_devices are considered: 2014 * don't want error, zero, etc to require stable pages. 2015 */ 2016 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 2017 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 2018 else 2019 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 2020 2021 /* 2022 * Determine whether or not this queue's I/O timings contribute 2023 * to the entropy pool, Only request-based targets use this. 2024 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 2025 * have it set. 2026 */ 2027 if (blk_queue_add_random(q) && 2028 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 2029 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2030 2031 /* 2032 * For a zoned target, setup the zones related queue attributes 2033 * and resources necessary for zone append emulation if necessary. 2034 */ 2035 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && limits->zoned) { 2036 r = dm_set_zones_restrictions(t, q, limits); 2037 if (r) 2038 return r; 2039 } 2040 2041 r = queue_limits_set(q, limits); 2042 if (r) 2043 return r; 2044 2045 dm_update_crypto_profile(q, t); 2046 2047 /* 2048 * Check for request-based device is left to 2049 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue(). 2050 * 2051 * For bio-based device, only set QUEUE_FLAG_POLL when all 2052 * underlying devices supporting polling. 2053 */ 2054 if (__table_type_bio_based(t->type)) { 2055 if (dm_table_supports_poll(t)) 2056 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2057 else 2058 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 2059 } 2060 2061 return 0; 2062 } 2063 2064 struct list_head *dm_table_get_devices(struct dm_table *t) 2065 { 2066 return &t->devices; 2067 } 2068 2069 blk_mode_t dm_table_get_mode(struct dm_table *t) 2070 { 2071 return t->mode; 2072 } 2073 EXPORT_SYMBOL(dm_table_get_mode); 2074 2075 enum suspend_mode { 2076 PRESUSPEND, 2077 PRESUSPEND_UNDO, 2078 POSTSUSPEND, 2079 }; 2080 2081 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2082 { 2083 lockdep_assert_held(&t->md->suspend_lock); 2084 2085 for (unsigned int i = 0; i < t->num_targets; i++) { 2086 struct dm_target *ti = dm_table_get_target(t, i); 2087 2088 switch (mode) { 2089 case PRESUSPEND: 2090 if (ti->type->presuspend) 2091 ti->type->presuspend(ti); 2092 break; 2093 case PRESUSPEND_UNDO: 2094 if (ti->type->presuspend_undo) 2095 ti->type->presuspend_undo(ti); 2096 break; 2097 case POSTSUSPEND: 2098 if (ti->type->postsuspend) 2099 ti->type->postsuspend(ti); 2100 break; 2101 } 2102 } 2103 } 2104 2105 void dm_table_presuspend_targets(struct dm_table *t) 2106 { 2107 if (!t) 2108 return; 2109 2110 suspend_targets(t, PRESUSPEND); 2111 } 2112 2113 void dm_table_presuspend_undo_targets(struct dm_table *t) 2114 { 2115 if (!t) 2116 return; 2117 2118 suspend_targets(t, PRESUSPEND_UNDO); 2119 } 2120 2121 void dm_table_postsuspend_targets(struct dm_table *t) 2122 { 2123 if (!t) 2124 return; 2125 2126 suspend_targets(t, POSTSUSPEND); 2127 } 2128 2129 int dm_table_resume_targets(struct dm_table *t) 2130 { 2131 unsigned int i; 2132 int r = 0; 2133 2134 lockdep_assert_held(&t->md->suspend_lock); 2135 2136 for (i = 0; i < t->num_targets; i++) { 2137 struct dm_target *ti = dm_table_get_target(t, i); 2138 2139 if (!ti->type->preresume) 2140 continue; 2141 2142 r = ti->type->preresume(ti); 2143 if (r) { 2144 DMERR("%s: %s: preresume failed, error = %d", 2145 dm_device_name(t->md), ti->type->name, r); 2146 return r; 2147 } 2148 } 2149 2150 for (i = 0; i < t->num_targets; i++) { 2151 struct dm_target *ti = dm_table_get_target(t, i); 2152 2153 if (ti->type->resume) 2154 ti->type->resume(ti); 2155 } 2156 2157 return 0; 2158 } 2159 2160 struct mapped_device *dm_table_get_md(struct dm_table *t) 2161 { 2162 return t->md; 2163 } 2164 EXPORT_SYMBOL(dm_table_get_md); 2165 2166 const char *dm_table_device_name(struct dm_table *t) 2167 { 2168 return dm_device_name(t->md); 2169 } 2170 EXPORT_SYMBOL_GPL(dm_table_device_name); 2171 2172 void dm_table_run_md_queue_async(struct dm_table *t) 2173 { 2174 if (!dm_table_request_based(t)) 2175 return; 2176 2177 if (t->md->queue) 2178 blk_mq_run_hw_queues(t->md->queue, true); 2179 } 2180 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2181 2182