1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <asm/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 /* 30 * The table has always exactly one reference from either mapped_device->map 31 * or hash_cell->new_map. This reference is not counted in table->holders. 32 * A pair of dm_create_table/dm_destroy_table functions is used for table 33 * creation/destruction. 34 * 35 * Temporary references from the other code increase table->holders. A pair 36 * of dm_table_get/dm_table_put functions is used to manipulate it. 37 * 38 * When the table is about to be destroyed, we wait for table->holders to 39 * drop to zero. 40 */ 41 42 struct dm_table { 43 struct mapped_device *md; 44 atomic_t holders; 45 unsigned type; 46 47 /* btree table */ 48 unsigned int depth; 49 unsigned int counts[MAX_DEPTH]; /* in nodes */ 50 sector_t *index[MAX_DEPTH]; 51 52 unsigned int num_targets; 53 unsigned int num_allocated; 54 sector_t *highs; 55 struct dm_target *targets; 56 57 unsigned discards_supported:1; 58 59 /* 60 * Indicates the rw permissions for the new logical 61 * device. This should be a combination of FMODE_READ 62 * and FMODE_WRITE. 63 */ 64 fmode_t mode; 65 66 /* a list of devices used by this table */ 67 struct list_head devices; 68 69 /* events get handed up using this callback */ 70 void (*event_fn)(void *); 71 void *event_context; 72 73 struct dm_md_mempools *mempools; 74 75 struct list_head target_callbacks; 76 }; 77 78 /* 79 * Similar to ceiling(log_size(n)) 80 */ 81 static unsigned int int_log(unsigned int n, unsigned int base) 82 { 83 int result = 0; 84 85 while (n > 1) { 86 n = dm_div_up(n, base); 87 result++; 88 } 89 90 return result; 91 } 92 93 /* 94 * Calculate the index of the child node of the n'th node k'th key. 95 */ 96 static inline unsigned int get_child(unsigned int n, unsigned int k) 97 { 98 return (n * CHILDREN_PER_NODE) + k; 99 } 100 101 /* 102 * Return the n'th node of level l from table t. 103 */ 104 static inline sector_t *get_node(struct dm_table *t, 105 unsigned int l, unsigned int n) 106 { 107 return t->index[l] + (n * KEYS_PER_NODE); 108 } 109 110 /* 111 * Return the highest key that you could lookup from the n'th 112 * node on level l of the btree. 113 */ 114 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 115 { 116 for (; l < t->depth - 1; l++) 117 n = get_child(n, CHILDREN_PER_NODE - 1); 118 119 if (n >= t->counts[l]) 120 return (sector_t) - 1; 121 122 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 123 } 124 125 /* 126 * Fills in a level of the btree based on the highs of the level 127 * below it. 128 */ 129 static int setup_btree_index(unsigned int l, struct dm_table *t) 130 { 131 unsigned int n, k; 132 sector_t *node; 133 134 for (n = 0U; n < t->counts[l]; n++) { 135 node = get_node(t, l, n); 136 137 for (k = 0U; k < KEYS_PER_NODE; k++) 138 node[k] = high(t, l + 1, get_child(n, k)); 139 } 140 141 return 0; 142 } 143 144 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 145 { 146 unsigned long size; 147 void *addr; 148 149 /* 150 * Check that we're not going to overflow. 151 */ 152 if (nmemb > (ULONG_MAX / elem_size)) 153 return NULL; 154 155 size = nmemb * elem_size; 156 addr = vmalloc(size); 157 if (addr) 158 memset(addr, 0, size); 159 160 return addr; 161 } 162 163 /* 164 * highs, and targets are managed as dynamic arrays during a 165 * table load. 166 */ 167 static int alloc_targets(struct dm_table *t, unsigned int num) 168 { 169 sector_t *n_highs; 170 struct dm_target *n_targets; 171 int n = t->num_targets; 172 173 /* 174 * Allocate both the target array and offset array at once. 175 * Append an empty entry to catch sectors beyond the end of 176 * the device. 177 */ 178 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 179 sizeof(sector_t)); 180 if (!n_highs) 181 return -ENOMEM; 182 183 n_targets = (struct dm_target *) (n_highs + num); 184 185 if (n) { 186 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 187 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 188 } 189 190 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 191 vfree(t->highs); 192 193 t->num_allocated = num; 194 t->highs = n_highs; 195 t->targets = n_targets; 196 197 return 0; 198 } 199 200 int dm_table_create(struct dm_table **result, fmode_t mode, 201 unsigned num_targets, struct mapped_device *md) 202 { 203 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 204 205 if (!t) 206 return -ENOMEM; 207 208 INIT_LIST_HEAD(&t->devices); 209 INIT_LIST_HEAD(&t->target_callbacks); 210 atomic_set(&t->holders, 0); 211 t->discards_supported = 1; 212 213 if (!num_targets) 214 num_targets = KEYS_PER_NODE; 215 216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 217 218 if (alloc_targets(t, num_targets)) { 219 kfree(t); 220 t = NULL; 221 return -ENOMEM; 222 } 223 224 t->mode = mode; 225 t->md = md; 226 *result = t; 227 return 0; 228 } 229 230 static void free_devices(struct list_head *devices) 231 { 232 struct list_head *tmp, *next; 233 234 list_for_each_safe(tmp, next, devices) { 235 struct dm_dev_internal *dd = 236 list_entry(tmp, struct dm_dev_internal, list); 237 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 238 dd->dm_dev.name); 239 kfree(dd); 240 } 241 } 242 243 void dm_table_destroy(struct dm_table *t) 244 { 245 unsigned int i; 246 247 if (!t) 248 return; 249 250 while (atomic_read(&t->holders)) 251 msleep(1); 252 smp_mb(); 253 254 /* free the indexes */ 255 if (t->depth >= 2) 256 vfree(t->index[t->depth - 2]); 257 258 /* free the targets */ 259 for (i = 0; i < t->num_targets; i++) { 260 struct dm_target *tgt = t->targets + i; 261 262 if (tgt->type->dtr) 263 tgt->type->dtr(tgt); 264 265 dm_put_target_type(tgt->type); 266 } 267 268 vfree(t->highs); 269 270 /* free the device list */ 271 if (t->devices.next != &t->devices) 272 free_devices(&t->devices); 273 274 dm_free_md_mempools(t->mempools); 275 276 kfree(t); 277 } 278 279 void dm_table_get(struct dm_table *t) 280 { 281 atomic_inc(&t->holders); 282 } 283 284 void dm_table_put(struct dm_table *t) 285 { 286 if (!t) 287 return; 288 289 smp_mb__before_atomic_dec(); 290 atomic_dec(&t->holders); 291 } 292 293 /* 294 * Checks to see if we need to extend highs or targets. 295 */ 296 static inline int check_space(struct dm_table *t) 297 { 298 if (t->num_targets >= t->num_allocated) 299 return alloc_targets(t, t->num_allocated * 2); 300 301 return 0; 302 } 303 304 /* 305 * See if we've already got a device in the list. 306 */ 307 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 308 { 309 struct dm_dev_internal *dd; 310 311 list_for_each_entry (dd, l, list) 312 if (dd->dm_dev.bdev->bd_dev == dev) 313 return dd; 314 315 return NULL; 316 } 317 318 /* 319 * Open a device so we can use it as a map destination. 320 */ 321 static int open_dev(struct dm_dev_internal *d, dev_t dev, 322 struct mapped_device *md) 323 { 324 static char *_claim_ptr = "I belong to device-mapper"; 325 struct block_device *bdev; 326 327 int r; 328 329 BUG_ON(d->dm_dev.bdev); 330 331 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 332 if (IS_ERR(bdev)) 333 return PTR_ERR(bdev); 334 335 r = bd_link_disk_holder(bdev, dm_disk(md)); 336 if (r) { 337 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 338 return r; 339 } 340 341 d->dm_dev.bdev = bdev; 342 return 0; 343 } 344 345 /* 346 * Close a device that we've been using. 347 */ 348 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 349 { 350 if (!d->dm_dev.bdev) 351 return; 352 353 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 354 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 355 d->dm_dev.bdev = NULL; 356 } 357 358 /* 359 * If possible, this checks an area of a destination device is invalid. 360 */ 361 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 362 sector_t start, sector_t len, void *data) 363 { 364 struct queue_limits *limits = data; 365 struct block_device *bdev = dev->bdev; 366 sector_t dev_size = 367 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 368 unsigned short logical_block_size_sectors = 369 limits->logical_block_size >> SECTOR_SHIFT; 370 char b[BDEVNAME_SIZE]; 371 372 if (!dev_size) 373 return 0; 374 375 if ((start >= dev_size) || (start + len > dev_size)) { 376 DMWARN("%s: %s too small for target: " 377 "start=%llu, len=%llu, dev_size=%llu", 378 dm_device_name(ti->table->md), bdevname(bdev, b), 379 (unsigned long long)start, 380 (unsigned long long)len, 381 (unsigned long long)dev_size); 382 return 1; 383 } 384 385 if (logical_block_size_sectors <= 1) 386 return 0; 387 388 if (start & (logical_block_size_sectors - 1)) { 389 DMWARN("%s: start=%llu not aligned to h/w " 390 "logical block size %u of %s", 391 dm_device_name(ti->table->md), 392 (unsigned long long)start, 393 limits->logical_block_size, bdevname(bdev, b)); 394 return 1; 395 } 396 397 if (len & (logical_block_size_sectors - 1)) { 398 DMWARN("%s: len=%llu not aligned to h/w " 399 "logical block size %u of %s", 400 dm_device_name(ti->table->md), 401 (unsigned long long)len, 402 limits->logical_block_size, bdevname(bdev, b)); 403 return 1; 404 } 405 406 return 0; 407 } 408 409 /* 410 * This upgrades the mode on an already open dm_dev, being 411 * careful to leave things as they were if we fail to reopen the 412 * device and not to touch the existing bdev field in case 413 * it is accessed concurrently inside dm_table_any_congested(). 414 */ 415 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 416 struct mapped_device *md) 417 { 418 int r; 419 struct dm_dev_internal dd_new, dd_old; 420 421 dd_new = dd_old = *dd; 422 423 dd_new.dm_dev.mode |= new_mode; 424 dd_new.dm_dev.bdev = NULL; 425 426 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 427 if (r) 428 return r; 429 430 dd->dm_dev.mode |= new_mode; 431 close_dev(&dd_old, md); 432 433 return 0; 434 } 435 436 /* 437 * Add a device to the list, or just increment the usage count if 438 * it's already present. 439 */ 440 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 441 const char *path, fmode_t mode, struct dm_dev **result) 442 { 443 int r; 444 dev_t uninitialized_var(dev); 445 struct dm_dev_internal *dd; 446 unsigned int major, minor; 447 448 BUG_ON(!t); 449 450 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 451 /* Extract the major/minor numbers */ 452 dev = MKDEV(major, minor); 453 if (MAJOR(dev) != major || MINOR(dev) != minor) 454 return -EOVERFLOW; 455 } else { 456 /* convert the path to a device */ 457 struct block_device *bdev = lookup_bdev(path); 458 459 if (IS_ERR(bdev)) 460 return PTR_ERR(bdev); 461 dev = bdev->bd_dev; 462 bdput(bdev); 463 } 464 465 dd = find_device(&t->devices, dev); 466 if (!dd) { 467 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 468 if (!dd) 469 return -ENOMEM; 470 471 dd->dm_dev.mode = mode; 472 dd->dm_dev.bdev = NULL; 473 474 if ((r = open_dev(dd, dev, t->md))) { 475 kfree(dd); 476 return r; 477 } 478 479 format_dev_t(dd->dm_dev.name, dev); 480 481 atomic_set(&dd->count, 0); 482 list_add(&dd->list, &t->devices); 483 484 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 485 r = upgrade_mode(dd, mode, t->md); 486 if (r) 487 return r; 488 } 489 atomic_inc(&dd->count); 490 491 *result = &dd->dm_dev; 492 return 0; 493 } 494 495 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 496 sector_t start, sector_t len, void *data) 497 { 498 struct queue_limits *limits = data; 499 struct block_device *bdev = dev->bdev; 500 struct request_queue *q = bdev_get_queue(bdev); 501 char b[BDEVNAME_SIZE]; 502 503 if (unlikely(!q)) { 504 DMWARN("%s: Cannot set limits for nonexistent device %s", 505 dm_device_name(ti->table->md), bdevname(bdev, b)); 506 return 0; 507 } 508 509 if (bdev_stack_limits(limits, bdev, start) < 0) 510 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 511 "physical_block_size=%u, logical_block_size=%u, " 512 "alignment_offset=%u, start=%llu", 513 dm_device_name(ti->table->md), bdevname(bdev, b), 514 q->limits.physical_block_size, 515 q->limits.logical_block_size, 516 q->limits.alignment_offset, 517 (unsigned long long) start << SECTOR_SHIFT); 518 519 /* 520 * Check if merge fn is supported. 521 * If not we'll force DM to use PAGE_SIZE or 522 * smaller I/O, just to be safe. 523 */ 524 525 if (q->merge_bvec_fn && !ti->type->merge) 526 blk_limits_max_hw_sectors(limits, 527 (unsigned int) (PAGE_SIZE >> 9)); 528 return 0; 529 } 530 EXPORT_SYMBOL_GPL(dm_set_device_limits); 531 532 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 533 struct dm_dev **result) 534 { 535 return __table_get_device(ti->table, ti, path, mode, result); 536 } 537 538 539 /* 540 * Decrement a devices use count and remove it if necessary. 541 */ 542 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 543 { 544 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 545 dm_dev); 546 547 if (atomic_dec_and_test(&dd->count)) { 548 close_dev(dd, ti->table->md); 549 list_del(&dd->list); 550 kfree(dd); 551 } 552 } 553 554 /* 555 * Checks to see if the target joins onto the end of the table. 556 */ 557 static int adjoin(struct dm_table *table, struct dm_target *ti) 558 { 559 struct dm_target *prev; 560 561 if (!table->num_targets) 562 return !ti->begin; 563 564 prev = &table->targets[table->num_targets - 1]; 565 return (ti->begin == (prev->begin + prev->len)); 566 } 567 568 /* 569 * Used to dynamically allocate the arg array. 570 */ 571 static char **realloc_argv(unsigned *array_size, char **old_argv) 572 { 573 char **argv; 574 unsigned new_size; 575 576 new_size = *array_size ? *array_size * 2 : 64; 577 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 578 if (argv) { 579 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 580 *array_size = new_size; 581 } 582 583 kfree(old_argv); 584 return argv; 585 } 586 587 /* 588 * Destructively splits up the argument list to pass to ctr. 589 */ 590 int dm_split_args(int *argc, char ***argvp, char *input) 591 { 592 char *start, *end = input, *out, **argv = NULL; 593 unsigned array_size = 0; 594 595 *argc = 0; 596 597 if (!input) { 598 *argvp = NULL; 599 return 0; 600 } 601 602 argv = realloc_argv(&array_size, argv); 603 if (!argv) 604 return -ENOMEM; 605 606 while (1) { 607 /* Skip whitespace */ 608 start = skip_spaces(end); 609 610 if (!*start) 611 break; /* success, we hit the end */ 612 613 /* 'out' is used to remove any back-quotes */ 614 end = out = start; 615 while (*end) { 616 /* Everything apart from '\0' can be quoted */ 617 if (*end == '\\' && *(end + 1)) { 618 *out++ = *(end + 1); 619 end += 2; 620 continue; 621 } 622 623 if (isspace(*end)) 624 break; /* end of token */ 625 626 *out++ = *end++; 627 } 628 629 /* have we already filled the array ? */ 630 if ((*argc + 1) > array_size) { 631 argv = realloc_argv(&array_size, argv); 632 if (!argv) 633 return -ENOMEM; 634 } 635 636 /* we know this is whitespace */ 637 if (*end) 638 end++; 639 640 /* terminate the string and put it in the array */ 641 *out = '\0'; 642 argv[*argc] = start; 643 (*argc)++; 644 } 645 646 *argvp = argv; 647 return 0; 648 } 649 650 /* 651 * Impose necessary and sufficient conditions on a devices's table such 652 * that any incoming bio which respects its logical_block_size can be 653 * processed successfully. If it falls across the boundary between 654 * two or more targets, the size of each piece it gets split into must 655 * be compatible with the logical_block_size of the target processing it. 656 */ 657 static int validate_hardware_logical_block_alignment(struct dm_table *table, 658 struct queue_limits *limits) 659 { 660 /* 661 * This function uses arithmetic modulo the logical_block_size 662 * (in units of 512-byte sectors). 663 */ 664 unsigned short device_logical_block_size_sects = 665 limits->logical_block_size >> SECTOR_SHIFT; 666 667 /* 668 * Offset of the start of the next table entry, mod logical_block_size. 669 */ 670 unsigned short next_target_start = 0; 671 672 /* 673 * Given an aligned bio that extends beyond the end of a 674 * target, how many sectors must the next target handle? 675 */ 676 unsigned short remaining = 0; 677 678 struct dm_target *uninitialized_var(ti); 679 struct queue_limits ti_limits; 680 unsigned i = 0; 681 682 /* 683 * Check each entry in the table in turn. 684 */ 685 while (i < dm_table_get_num_targets(table)) { 686 ti = dm_table_get_target(table, i++); 687 688 blk_set_default_limits(&ti_limits); 689 690 /* combine all target devices' limits */ 691 if (ti->type->iterate_devices) 692 ti->type->iterate_devices(ti, dm_set_device_limits, 693 &ti_limits); 694 695 /* 696 * If the remaining sectors fall entirely within this 697 * table entry are they compatible with its logical_block_size? 698 */ 699 if (remaining < ti->len && 700 remaining & ((ti_limits.logical_block_size >> 701 SECTOR_SHIFT) - 1)) 702 break; /* Error */ 703 704 next_target_start = 705 (unsigned short) ((next_target_start + ti->len) & 706 (device_logical_block_size_sects - 1)); 707 remaining = next_target_start ? 708 device_logical_block_size_sects - next_target_start : 0; 709 } 710 711 if (remaining) { 712 DMWARN("%s: table line %u (start sect %llu len %llu) " 713 "not aligned to h/w logical block size %u", 714 dm_device_name(table->md), i, 715 (unsigned long long) ti->begin, 716 (unsigned long long) ti->len, 717 limits->logical_block_size); 718 return -EINVAL; 719 } 720 721 return 0; 722 } 723 724 int dm_table_add_target(struct dm_table *t, const char *type, 725 sector_t start, sector_t len, char *params) 726 { 727 int r = -EINVAL, argc; 728 char **argv; 729 struct dm_target *tgt; 730 731 if ((r = check_space(t))) 732 return r; 733 734 tgt = t->targets + t->num_targets; 735 memset(tgt, 0, sizeof(*tgt)); 736 737 if (!len) { 738 DMERR("%s: zero-length target", dm_device_name(t->md)); 739 return -EINVAL; 740 } 741 742 tgt->type = dm_get_target_type(type); 743 if (!tgt->type) { 744 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 745 type); 746 return -EINVAL; 747 } 748 749 tgt->table = t; 750 tgt->begin = start; 751 tgt->len = len; 752 tgt->error = "Unknown error"; 753 754 /* 755 * Does this target adjoin the previous one ? 756 */ 757 if (!adjoin(t, tgt)) { 758 tgt->error = "Gap in table"; 759 r = -EINVAL; 760 goto bad; 761 } 762 763 r = dm_split_args(&argc, &argv, params); 764 if (r) { 765 tgt->error = "couldn't split parameters (insufficient memory)"; 766 goto bad; 767 } 768 769 r = tgt->type->ctr(tgt, argc, argv); 770 kfree(argv); 771 if (r) 772 goto bad; 773 774 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 775 776 if (!tgt->num_discard_requests) 777 t->discards_supported = 0; 778 779 return 0; 780 781 bad: 782 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 783 dm_put_target_type(tgt->type); 784 return r; 785 } 786 787 static int dm_table_set_type(struct dm_table *t) 788 { 789 unsigned i; 790 unsigned bio_based = 0, request_based = 0; 791 struct dm_target *tgt; 792 struct dm_dev_internal *dd; 793 struct list_head *devices; 794 795 for (i = 0; i < t->num_targets; i++) { 796 tgt = t->targets + i; 797 if (dm_target_request_based(tgt)) 798 request_based = 1; 799 else 800 bio_based = 1; 801 802 if (bio_based && request_based) { 803 DMWARN("Inconsistent table: different target types" 804 " can't be mixed up"); 805 return -EINVAL; 806 } 807 } 808 809 if (bio_based) { 810 /* We must use this table as bio-based */ 811 t->type = DM_TYPE_BIO_BASED; 812 return 0; 813 } 814 815 BUG_ON(!request_based); /* No targets in this table */ 816 817 /* Non-request-stackable devices can't be used for request-based dm */ 818 devices = dm_table_get_devices(t); 819 list_for_each_entry(dd, devices, list) { 820 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 821 DMWARN("table load rejected: including" 822 " non-request-stackable devices"); 823 return -EINVAL; 824 } 825 } 826 827 /* 828 * Request-based dm supports only tables that have a single target now. 829 * To support multiple targets, request splitting support is needed, 830 * and that needs lots of changes in the block-layer. 831 * (e.g. request completion process for partial completion.) 832 */ 833 if (t->num_targets > 1) { 834 DMWARN("Request-based dm doesn't support multiple targets yet"); 835 return -EINVAL; 836 } 837 838 t->type = DM_TYPE_REQUEST_BASED; 839 840 return 0; 841 } 842 843 unsigned dm_table_get_type(struct dm_table *t) 844 { 845 return t->type; 846 } 847 848 bool dm_table_request_based(struct dm_table *t) 849 { 850 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 851 } 852 853 int dm_table_alloc_md_mempools(struct dm_table *t) 854 { 855 unsigned type = dm_table_get_type(t); 856 857 if (unlikely(type == DM_TYPE_NONE)) { 858 DMWARN("no table type is set, can't allocate mempools"); 859 return -EINVAL; 860 } 861 862 t->mempools = dm_alloc_md_mempools(type); 863 if (!t->mempools) 864 return -ENOMEM; 865 866 return 0; 867 } 868 869 void dm_table_free_md_mempools(struct dm_table *t) 870 { 871 dm_free_md_mempools(t->mempools); 872 t->mempools = NULL; 873 } 874 875 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 876 { 877 return t->mempools; 878 } 879 880 static int setup_indexes(struct dm_table *t) 881 { 882 int i; 883 unsigned int total = 0; 884 sector_t *indexes; 885 886 /* allocate the space for *all* the indexes */ 887 for (i = t->depth - 2; i >= 0; i--) { 888 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 889 total += t->counts[i]; 890 } 891 892 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 893 if (!indexes) 894 return -ENOMEM; 895 896 /* set up internal nodes, bottom-up */ 897 for (i = t->depth - 2; i >= 0; i--) { 898 t->index[i] = indexes; 899 indexes += (KEYS_PER_NODE * t->counts[i]); 900 setup_btree_index(i, t); 901 } 902 903 return 0; 904 } 905 906 /* 907 * Builds the btree to index the map. 908 */ 909 static int dm_table_build_index(struct dm_table *t) 910 { 911 int r = 0; 912 unsigned int leaf_nodes; 913 914 /* how many indexes will the btree have ? */ 915 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 916 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 917 918 /* leaf layer has already been set up */ 919 t->counts[t->depth - 1] = leaf_nodes; 920 t->index[t->depth - 1] = t->highs; 921 922 if (t->depth >= 2) 923 r = setup_indexes(t); 924 925 return r; 926 } 927 928 /* 929 * Register the mapped device for blk_integrity support if 930 * the underlying devices support it. 931 */ 932 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 933 { 934 struct list_head *devices = dm_table_get_devices(t); 935 struct dm_dev_internal *dd; 936 937 list_for_each_entry(dd, devices, list) 938 if (bdev_get_integrity(dd->dm_dev.bdev)) 939 return blk_integrity_register(dm_disk(md), NULL); 940 941 return 0; 942 } 943 944 /* 945 * Prepares the table for use by building the indices, 946 * setting the type, and allocating mempools. 947 */ 948 int dm_table_complete(struct dm_table *t) 949 { 950 int r; 951 952 r = dm_table_set_type(t); 953 if (r) { 954 DMERR("unable to set table type"); 955 return r; 956 } 957 958 r = dm_table_build_index(t); 959 if (r) { 960 DMERR("unable to build btrees"); 961 return r; 962 } 963 964 r = dm_table_prealloc_integrity(t, t->md); 965 if (r) { 966 DMERR("could not register integrity profile."); 967 return r; 968 } 969 970 r = dm_table_alloc_md_mempools(t); 971 if (r) 972 DMERR("unable to allocate mempools"); 973 974 return r; 975 } 976 977 static DEFINE_MUTEX(_event_lock); 978 void dm_table_event_callback(struct dm_table *t, 979 void (*fn)(void *), void *context) 980 { 981 mutex_lock(&_event_lock); 982 t->event_fn = fn; 983 t->event_context = context; 984 mutex_unlock(&_event_lock); 985 } 986 987 void dm_table_event(struct dm_table *t) 988 { 989 /* 990 * You can no longer call dm_table_event() from interrupt 991 * context, use a bottom half instead. 992 */ 993 BUG_ON(in_interrupt()); 994 995 mutex_lock(&_event_lock); 996 if (t->event_fn) 997 t->event_fn(t->event_context); 998 mutex_unlock(&_event_lock); 999 } 1000 1001 sector_t dm_table_get_size(struct dm_table *t) 1002 { 1003 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1004 } 1005 1006 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1007 { 1008 if (index >= t->num_targets) 1009 return NULL; 1010 1011 return t->targets + index; 1012 } 1013 1014 /* 1015 * Search the btree for the correct target. 1016 * 1017 * Caller should check returned pointer with dm_target_is_valid() 1018 * to trap I/O beyond end of device. 1019 */ 1020 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1021 { 1022 unsigned int l, n = 0, k = 0; 1023 sector_t *node; 1024 1025 for (l = 0; l < t->depth; l++) { 1026 n = get_child(n, k); 1027 node = get_node(t, l, n); 1028 1029 for (k = 0; k < KEYS_PER_NODE; k++) 1030 if (node[k] >= sector) 1031 break; 1032 } 1033 1034 return &t->targets[(KEYS_PER_NODE * n) + k]; 1035 } 1036 1037 /* 1038 * Establish the new table's queue_limits and validate them. 1039 */ 1040 int dm_calculate_queue_limits(struct dm_table *table, 1041 struct queue_limits *limits) 1042 { 1043 struct dm_target *uninitialized_var(ti); 1044 struct queue_limits ti_limits; 1045 unsigned i = 0; 1046 1047 blk_set_default_limits(limits); 1048 1049 while (i < dm_table_get_num_targets(table)) { 1050 blk_set_default_limits(&ti_limits); 1051 1052 ti = dm_table_get_target(table, i++); 1053 1054 if (!ti->type->iterate_devices) 1055 goto combine_limits; 1056 1057 /* 1058 * Combine queue limits of all the devices this target uses. 1059 */ 1060 ti->type->iterate_devices(ti, dm_set_device_limits, 1061 &ti_limits); 1062 1063 /* Set I/O hints portion of queue limits */ 1064 if (ti->type->io_hints) 1065 ti->type->io_hints(ti, &ti_limits); 1066 1067 /* 1068 * Check each device area is consistent with the target's 1069 * overall queue limits. 1070 */ 1071 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1072 &ti_limits)) 1073 return -EINVAL; 1074 1075 combine_limits: 1076 /* 1077 * Merge this target's queue limits into the overall limits 1078 * for the table. 1079 */ 1080 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1081 DMWARN("%s: adding target device " 1082 "(start sect %llu len %llu) " 1083 "caused an alignment inconsistency", 1084 dm_device_name(table->md), 1085 (unsigned long long) ti->begin, 1086 (unsigned long long) ti->len); 1087 } 1088 1089 return validate_hardware_logical_block_alignment(table, limits); 1090 } 1091 1092 /* 1093 * Set the integrity profile for this device if all devices used have 1094 * matching profiles. 1095 */ 1096 static void dm_table_set_integrity(struct dm_table *t) 1097 { 1098 struct list_head *devices = dm_table_get_devices(t); 1099 struct dm_dev_internal *prev = NULL, *dd = NULL; 1100 1101 if (!blk_get_integrity(dm_disk(t->md))) 1102 return; 1103 1104 list_for_each_entry(dd, devices, list) { 1105 if (prev && 1106 blk_integrity_compare(prev->dm_dev.bdev->bd_disk, 1107 dd->dm_dev.bdev->bd_disk) < 0) { 1108 DMWARN("%s: integrity not set: %s and %s mismatch", 1109 dm_device_name(t->md), 1110 prev->dm_dev.bdev->bd_disk->disk_name, 1111 dd->dm_dev.bdev->bd_disk->disk_name); 1112 goto no_integrity; 1113 } 1114 prev = dd; 1115 } 1116 1117 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev)) 1118 goto no_integrity; 1119 1120 blk_integrity_register(dm_disk(t->md), 1121 bdev_get_integrity(prev->dm_dev.bdev)); 1122 1123 return; 1124 1125 no_integrity: 1126 blk_integrity_register(dm_disk(t->md), NULL); 1127 1128 return; 1129 } 1130 1131 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1132 struct queue_limits *limits) 1133 { 1134 /* 1135 * Copy table's limits to the DM device's request_queue 1136 */ 1137 q->limits = *limits; 1138 1139 if (!dm_table_supports_discards(t)) 1140 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1141 else 1142 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1143 1144 dm_table_set_integrity(t); 1145 1146 /* 1147 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1148 * visible to other CPUs because, once the flag is set, incoming bios 1149 * are processed by request-based dm, which refers to the queue 1150 * settings. 1151 * Until the flag set, bios are passed to bio-based dm and queued to 1152 * md->deferred where queue settings are not needed yet. 1153 * Those bios are passed to request-based dm at the resume time. 1154 */ 1155 smp_mb(); 1156 if (dm_table_request_based(t)) 1157 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1158 } 1159 1160 unsigned int dm_table_get_num_targets(struct dm_table *t) 1161 { 1162 return t->num_targets; 1163 } 1164 1165 struct list_head *dm_table_get_devices(struct dm_table *t) 1166 { 1167 return &t->devices; 1168 } 1169 1170 fmode_t dm_table_get_mode(struct dm_table *t) 1171 { 1172 return t->mode; 1173 } 1174 1175 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1176 { 1177 int i = t->num_targets; 1178 struct dm_target *ti = t->targets; 1179 1180 while (i--) { 1181 if (postsuspend) { 1182 if (ti->type->postsuspend) 1183 ti->type->postsuspend(ti); 1184 } else if (ti->type->presuspend) 1185 ti->type->presuspend(ti); 1186 1187 ti++; 1188 } 1189 } 1190 1191 void dm_table_presuspend_targets(struct dm_table *t) 1192 { 1193 if (!t) 1194 return; 1195 1196 suspend_targets(t, 0); 1197 } 1198 1199 void dm_table_postsuspend_targets(struct dm_table *t) 1200 { 1201 if (!t) 1202 return; 1203 1204 suspend_targets(t, 1); 1205 } 1206 1207 int dm_table_resume_targets(struct dm_table *t) 1208 { 1209 int i, r = 0; 1210 1211 for (i = 0; i < t->num_targets; i++) { 1212 struct dm_target *ti = t->targets + i; 1213 1214 if (!ti->type->preresume) 1215 continue; 1216 1217 r = ti->type->preresume(ti); 1218 if (r) 1219 return r; 1220 } 1221 1222 for (i = 0; i < t->num_targets; i++) { 1223 struct dm_target *ti = t->targets + i; 1224 1225 if (ti->type->resume) 1226 ti->type->resume(ti); 1227 } 1228 1229 return 0; 1230 } 1231 1232 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1233 { 1234 list_add(&cb->list, &t->target_callbacks); 1235 } 1236 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1237 1238 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1239 { 1240 struct dm_dev_internal *dd; 1241 struct list_head *devices = dm_table_get_devices(t); 1242 struct dm_target_callbacks *cb; 1243 int r = 0; 1244 1245 list_for_each_entry(dd, devices, list) { 1246 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1247 char b[BDEVNAME_SIZE]; 1248 1249 if (likely(q)) 1250 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1251 else 1252 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1253 dm_device_name(t->md), 1254 bdevname(dd->dm_dev.bdev, b)); 1255 } 1256 1257 list_for_each_entry(cb, &t->target_callbacks, list) 1258 if (cb->congested_fn) 1259 r |= cb->congested_fn(cb, bdi_bits); 1260 1261 return r; 1262 } 1263 1264 int dm_table_any_busy_target(struct dm_table *t) 1265 { 1266 unsigned i; 1267 struct dm_target *ti; 1268 1269 for (i = 0; i < t->num_targets; i++) { 1270 ti = t->targets + i; 1271 if (ti->type->busy && ti->type->busy(ti)) 1272 return 1; 1273 } 1274 1275 return 0; 1276 } 1277 1278 void dm_table_unplug_all(struct dm_table *t) 1279 { 1280 struct dm_dev_internal *dd; 1281 struct list_head *devices = dm_table_get_devices(t); 1282 struct dm_target_callbacks *cb; 1283 1284 list_for_each_entry(dd, devices, list) { 1285 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1286 char b[BDEVNAME_SIZE]; 1287 1288 if (likely(q)) 1289 blk_unplug(q); 1290 else 1291 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 1292 dm_device_name(t->md), 1293 bdevname(dd->dm_dev.bdev, b)); 1294 } 1295 1296 list_for_each_entry(cb, &t->target_callbacks, list) 1297 if (cb->unplug_fn) 1298 cb->unplug_fn(cb); 1299 } 1300 1301 struct mapped_device *dm_table_get_md(struct dm_table *t) 1302 { 1303 return t->md; 1304 } 1305 1306 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1307 sector_t start, sector_t len, void *data) 1308 { 1309 struct request_queue *q = bdev_get_queue(dev->bdev); 1310 1311 return q && blk_queue_discard(q); 1312 } 1313 1314 bool dm_table_supports_discards(struct dm_table *t) 1315 { 1316 struct dm_target *ti; 1317 unsigned i = 0; 1318 1319 if (!t->discards_supported) 1320 return 0; 1321 1322 /* 1323 * Ensure that at least one underlying device supports discards. 1324 * t->devices includes internal dm devices such as mirror logs 1325 * so we need to use iterate_devices here, which targets 1326 * supporting discard must provide. 1327 */ 1328 while (i < dm_table_get_num_targets(t)) { 1329 ti = dm_table_get_target(t, i++); 1330 1331 if (ti->type->iterate_devices && 1332 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1333 return 1; 1334 } 1335 1336 return 0; 1337 } 1338 1339 EXPORT_SYMBOL(dm_vcalloc); 1340 EXPORT_SYMBOL(dm_get_device); 1341 EXPORT_SYMBOL(dm_put_device); 1342 EXPORT_SYMBOL(dm_table_event); 1343 EXPORT_SYMBOL(dm_table_get_size); 1344 EXPORT_SYMBOL(dm_table_get_mode); 1345 EXPORT_SYMBOL(dm_table_get_md); 1346 EXPORT_SYMBOL(dm_table_put); 1347 EXPORT_SYMBOL(dm_table_get); 1348 EXPORT_SYMBOL(dm_table_unplug_all); 1349