1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t; 133 134 if (num_targets > DM_MAX_TARGETS) 135 return -EOVERFLOW; 136 137 t = kzalloc(sizeof(*t), GFP_KERNEL); 138 139 if (!t) 140 return -ENOMEM; 141 142 INIT_LIST_HEAD(&t->devices); 143 init_rwsem(&t->devices_lock); 144 145 if (!num_targets) 146 num_targets = KEYS_PER_NODE; 147 148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 149 150 if (!num_targets) { 151 kfree(t); 152 return -EOVERFLOW; 153 } 154 155 if (alloc_targets(t, num_targets)) { 156 kfree(t); 157 return -ENOMEM; 158 } 159 160 t->type = DM_TYPE_NONE; 161 t->mode = mode; 162 t->md = md; 163 t->flush_bypasses_map = true; 164 *result = t; 165 return 0; 166 } 167 168 static void free_devices(struct list_head *devices, struct mapped_device *md) 169 { 170 struct list_head *tmp, *next; 171 172 list_for_each_safe(tmp, next, devices) { 173 struct dm_dev_internal *dd = 174 list_entry(tmp, struct dm_dev_internal, list); 175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 176 dm_device_name(md), dd->dm_dev->name); 177 dm_put_table_device(md, dd->dm_dev); 178 kfree(dd); 179 } 180 } 181 182 static void dm_table_destroy_crypto_profile(struct dm_table *t); 183 184 void dm_table_destroy(struct dm_table *t) 185 { 186 if (!t) 187 return; 188 189 /* free the indexes */ 190 if (t->depth >= 2) 191 kvfree(t->index[t->depth - 2]); 192 193 /* free the targets */ 194 for (unsigned int i = 0; i < t->num_targets; i++) { 195 struct dm_target *ti = dm_table_get_target(t, i); 196 197 if (ti->type->dtr) 198 ti->type->dtr(ti); 199 200 dm_put_target_type(ti->type); 201 } 202 203 kvfree(t->highs); 204 205 /* free the device list */ 206 free_devices(&t->devices, t->md); 207 208 dm_free_md_mempools(t->mempools); 209 210 dm_table_destroy_crypto_profile(t); 211 212 kfree(t); 213 } 214 215 /* 216 * See if we've already got a device in the list. 217 */ 218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 219 { 220 struct dm_dev_internal *dd; 221 222 list_for_each_entry(dd, l, list) 223 if (dd->dm_dev->bdev->bd_dev == dev) 224 return dd; 225 226 return NULL; 227 } 228 229 /* 230 * If possible, this checks an area of a destination device is invalid. 231 */ 232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 233 sector_t start, sector_t len, void *data) 234 { 235 struct queue_limits *limits = data; 236 struct block_device *bdev = dev->bdev; 237 sector_t dev_size = bdev_nr_sectors(bdev); 238 unsigned short logical_block_size_sectors = 239 limits->logical_block_size >> SECTOR_SHIFT; 240 241 if (!dev_size) 242 return 0; 243 244 if ((start >= dev_size) || (start + len > dev_size)) { 245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 246 dm_device_name(ti->table->md), bdev, 247 (unsigned long long)start, 248 (unsigned long long)len, 249 (unsigned long long)dev_size); 250 return 1; 251 } 252 253 /* 254 * If the target is mapped to zoned block device(s), check 255 * that the zones are not partially mapped. 256 */ 257 if (bdev_is_zoned(bdev)) { 258 unsigned int zone_sectors = bdev_zone_sectors(bdev); 259 260 if (start & (zone_sectors - 1)) { 261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 262 dm_device_name(ti->table->md), 263 (unsigned long long)start, 264 zone_sectors, bdev); 265 return 1; 266 } 267 268 /* 269 * Note: The last zone of a zoned block device may be smaller 270 * than other zones. So for a target mapping the end of a 271 * zoned block device with such a zone, len would not be zone 272 * aligned. We do not allow such last smaller zone to be part 273 * of the mapping here to ensure that mappings with multiple 274 * devices do not end up with a smaller zone in the middle of 275 * the sector range. 276 */ 277 if (len & (zone_sectors - 1)) { 278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 279 dm_device_name(ti->table->md), 280 (unsigned long long)len, 281 zone_sectors, bdev); 282 return 1; 283 } 284 } 285 286 if (logical_block_size_sectors <= 1) 287 return 0; 288 289 if (start & (logical_block_size_sectors - 1)) { 290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 291 dm_device_name(ti->table->md), 292 (unsigned long long)start, 293 limits->logical_block_size, bdev); 294 return 1; 295 } 296 297 if (len & (logical_block_size_sectors - 1)) { 298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 299 dm_device_name(ti->table->md), 300 (unsigned long long)len, 301 limits->logical_block_size, bdev); 302 return 1; 303 } 304 305 return 0; 306 } 307 308 /* 309 * This upgrades the mode on an already open dm_dev, being 310 * careful to leave things as they were if we fail to reopen the 311 * device and not to touch the existing bdev field in case 312 * it is accessed concurrently. 313 */ 314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 315 struct mapped_device *md) 316 { 317 int r; 318 struct dm_dev *old_dev, *new_dev; 319 320 old_dev = dd->dm_dev; 321 322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 323 dd->dm_dev->mode | new_mode, &new_dev); 324 if (r) 325 return r; 326 327 dd->dm_dev = new_dev; 328 dm_put_table_device(md, old_dev); 329 330 return 0; 331 } 332 333 /* 334 * Note: the __ref annotation is because this function can call the __init 335 * marked early_lookup_bdev when called during early boot code from dm-init.c. 336 */ 337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p) 338 { 339 int r; 340 dev_t dev; 341 unsigned int major, minor; 342 char dummy; 343 344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 345 /* Extract the major/minor numbers */ 346 dev = MKDEV(major, minor); 347 if (MAJOR(dev) != major || MINOR(dev) != minor) 348 return -EOVERFLOW; 349 } else { 350 r = lookup_bdev(path, &dev); 351 #ifndef MODULE 352 if (r && system_state < SYSTEM_RUNNING) 353 r = early_lookup_bdev(path, &dev); 354 #endif 355 if (r) 356 return r; 357 } 358 *dev_p = dev; 359 return 0; 360 } 361 EXPORT_SYMBOL(dm_devt_from_path); 362 363 /* 364 * Add a device to the list, or just increment the usage count if 365 * it's already present. 366 */ 367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 368 struct dm_dev **result) 369 { 370 int r; 371 dev_t dev; 372 struct dm_dev_internal *dd; 373 struct dm_table *t = ti->table; 374 375 BUG_ON(!t); 376 377 r = dm_devt_from_path(path, &dev); 378 if (r) 379 return r; 380 381 if (dev == disk_devt(t->md->disk)) 382 return -EINVAL; 383 384 down_write(&t->devices_lock); 385 386 dd = find_device(&t->devices, dev); 387 if (!dd) { 388 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 389 if (!dd) { 390 r = -ENOMEM; 391 goto unlock_ret_r; 392 } 393 394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 395 if (r) { 396 kfree(dd); 397 goto unlock_ret_r; 398 } 399 400 refcount_set(&dd->count, 1); 401 list_add(&dd->list, &t->devices); 402 goto out; 403 404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 405 r = upgrade_mode(dd, mode, t->md); 406 if (r) 407 goto unlock_ret_r; 408 } 409 refcount_inc(&dd->count); 410 out: 411 up_write(&t->devices_lock); 412 *result = dd->dm_dev; 413 return 0; 414 415 unlock_ret_r: 416 up_write(&t->devices_lock); 417 return r; 418 } 419 EXPORT_SYMBOL(dm_get_device); 420 421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 422 sector_t start, sector_t len, void *data) 423 { 424 struct queue_limits *limits = data; 425 struct block_device *bdev = dev->bdev; 426 struct request_queue *q = bdev_get_queue(bdev); 427 428 if (unlikely(!q)) { 429 DMWARN("%s: Cannot set limits for nonexistent device %pg", 430 dm_device_name(ti->table->md), bdev); 431 return 0; 432 } 433 434 if (blk_stack_limits(limits, &q->limits, 435 get_start_sect(bdev) + start) < 0) 436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 437 "physical_block_size=%u, logical_block_size=%u, " 438 "alignment_offset=%u, start=%llu", 439 dm_device_name(ti->table->md), bdev, 440 q->limits.physical_block_size, 441 q->limits.logical_block_size, 442 q->limits.alignment_offset, 443 (unsigned long long) start << SECTOR_SHIFT); 444 445 /* 446 * Only stack the integrity profile if the target doesn't have native 447 * integrity support. 448 */ 449 if (!dm_target_has_integrity(ti->type)) 450 queue_limits_stack_integrity_bdev(limits, bdev); 451 return 0; 452 } 453 454 /* 455 * Decrement a device's use count and remove it if necessary. 456 */ 457 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 458 { 459 int found = 0; 460 struct dm_table *t = ti->table; 461 struct list_head *devices = &t->devices; 462 struct dm_dev_internal *dd; 463 464 down_write(&t->devices_lock); 465 466 list_for_each_entry(dd, devices, list) { 467 if (dd->dm_dev == d) { 468 found = 1; 469 break; 470 } 471 } 472 if (!found) { 473 DMERR("%s: device %s not in table devices list", 474 dm_device_name(t->md), d->name); 475 goto unlock_ret; 476 } 477 if (refcount_dec_and_test(&dd->count)) { 478 dm_put_table_device(t->md, d); 479 list_del(&dd->list); 480 kfree(dd); 481 } 482 483 unlock_ret: 484 up_write(&t->devices_lock); 485 } 486 EXPORT_SYMBOL(dm_put_device); 487 488 /* 489 * Checks to see if the target joins onto the end of the table. 490 */ 491 static int adjoin(struct dm_table *t, struct dm_target *ti) 492 { 493 struct dm_target *prev; 494 495 if (!t->num_targets) 496 return !ti->begin; 497 498 prev = &t->targets[t->num_targets - 1]; 499 return (ti->begin == (prev->begin + prev->len)); 500 } 501 502 /* 503 * Used to dynamically allocate the arg array. 504 * 505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 506 * process messages even if some device is suspended. These messages have a 507 * small fixed number of arguments. 508 * 509 * On the other hand, dm-switch needs to process bulk data using messages and 510 * excessive use of GFP_NOIO could cause trouble. 511 */ 512 static char **realloc_argv(unsigned int *size, char **old_argv) 513 { 514 char **argv; 515 unsigned int new_size; 516 gfp_t gfp; 517 518 if (*size) { 519 new_size = *size * 2; 520 gfp = GFP_KERNEL; 521 } else { 522 new_size = 8; 523 gfp = GFP_NOIO; 524 } 525 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 526 if (argv && old_argv) { 527 memcpy(argv, old_argv, *size * sizeof(*argv)); 528 *size = new_size; 529 } 530 531 kfree(old_argv); 532 return argv; 533 } 534 535 /* 536 * Destructively splits up the argument list to pass to ctr. 537 */ 538 int dm_split_args(int *argc, char ***argvp, char *input) 539 { 540 char *start, *end = input, *out, **argv = NULL; 541 unsigned int array_size = 0; 542 543 *argc = 0; 544 545 if (!input) { 546 *argvp = NULL; 547 return 0; 548 } 549 550 argv = realloc_argv(&array_size, argv); 551 if (!argv) 552 return -ENOMEM; 553 554 while (1) { 555 /* Skip whitespace */ 556 start = skip_spaces(end); 557 558 if (!*start) 559 break; /* success, we hit the end */ 560 561 /* 'out' is used to remove any back-quotes */ 562 end = out = start; 563 while (*end) { 564 /* Everything apart from '\0' can be quoted */ 565 if (*end == '\\' && *(end + 1)) { 566 *out++ = *(end + 1); 567 end += 2; 568 continue; 569 } 570 571 if (isspace(*end)) 572 break; /* end of token */ 573 574 *out++ = *end++; 575 } 576 577 /* have we already filled the array ? */ 578 if ((*argc + 1) > array_size) { 579 argv = realloc_argv(&array_size, argv); 580 if (!argv) 581 return -ENOMEM; 582 } 583 584 /* we know this is whitespace */ 585 if (*end) 586 end++; 587 588 /* terminate the string and put it in the array */ 589 *out = '\0'; 590 argv[*argc] = start; 591 (*argc)++; 592 } 593 594 *argvp = argv; 595 return 0; 596 } 597 598 static void dm_set_stacking_limits(struct queue_limits *limits) 599 { 600 blk_set_stacking_limits(limits); 601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL; 602 } 603 604 /* 605 * Impose necessary and sufficient conditions on a devices's table such 606 * that any incoming bio which respects its logical_block_size can be 607 * processed successfully. If it falls across the boundary between 608 * two or more targets, the size of each piece it gets split into must 609 * be compatible with the logical_block_size of the target processing it. 610 */ 611 static int validate_hardware_logical_block_alignment(struct dm_table *t, 612 struct queue_limits *limits) 613 { 614 /* 615 * This function uses arithmetic modulo the logical_block_size 616 * (in units of 512-byte sectors). 617 */ 618 unsigned short device_logical_block_size_sects = 619 limits->logical_block_size >> SECTOR_SHIFT; 620 621 /* 622 * Offset of the start of the next table entry, mod logical_block_size. 623 */ 624 unsigned short next_target_start = 0; 625 626 /* 627 * Given an aligned bio that extends beyond the end of a 628 * target, how many sectors must the next target handle? 629 */ 630 unsigned short remaining = 0; 631 632 struct dm_target *ti; 633 struct queue_limits ti_limits; 634 unsigned int i; 635 636 /* 637 * Check each entry in the table in turn. 638 */ 639 for (i = 0; i < t->num_targets; i++) { 640 ti = dm_table_get_target(t, i); 641 642 dm_set_stacking_limits(&ti_limits); 643 644 /* combine all target devices' limits */ 645 if (ti->type->iterate_devices) 646 ti->type->iterate_devices(ti, dm_set_device_limits, 647 &ti_limits); 648 649 /* 650 * If the remaining sectors fall entirely within this 651 * table entry are they compatible with its logical_block_size? 652 */ 653 if (remaining < ti->len && 654 remaining & ((ti_limits.logical_block_size >> 655 SECTOR_SHIFT) - 1)) 656 break; /* Error */ 657 658 next_target_start = 659 (unsigned short) ((next_target_start + ti->len) & 660 (device_logical_block_size_sects - 1)); 661 remaining = next_target_start ? 662 device_logical_block_size_sects - next_target_start : 0; 663 } 664 665 if (remaining) { 666 DMERR("%s: table line %u (start sect %llu len %llu) " 667 "not aligned to h/w logical block size %u", 668 dm_device_name(t->md), i, 669 (unsigned long long) ti->begin, 670 (unsigned long long) ti->len, 671 limits->logical_block_size); 672 return -EINVAL; 673 } 674 675 return 0; 676 } 677 678 int dm_table_add_target(struct dm_table *t, const char *type, 679 sector_t start, sector_t len, char *params) 680 { 681 int r = -EINVAL, argc; 682 char **argv; 683 struct dm_target *ti; 684 685 if (t->singleton) { 686 DMERR("%s: target type %s must appear alone in table", 687 dm_device_name(t->md), t->targets->type->name); 688 return -EINVAL; 689 } 690 691 BUG_ON(t->num_targets >= t->num_allocated); 692 693 ti = t->targets + t->num_targets; 694 memset(ti, 0, sizeof(*ti)); 695 696 if (!len) { 697 DMERR("%s: zero-length target", dm_device_name(t->md)); 698 return -EINVAL; 699 } 700 701 ti->type = dm_get_target_type(type); 702 if (!ti->type) { 703 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 704 return -EINVAL; 705 } 706 707 if (dm_target_needs_singleton(ti->type)) { 708 if (t->num_targets) { 709 ti->error = "singleton target type must appear alone in table"; 710 goto bad; 711 } 712 t->singleton = true; 713 } 714 715 if (dm_target_always_writeable(ti->type) && 716 !(t->mode & BLK_OPEN_WRITE)) { 717 ti->error = "target type may not be included in a read-only table"; 718 goto bad; 719 } 720 721 if (t->immutable_target_type) { 722 if (t->immutable_target_type != ti->type) { 723 ti->error = "immutable target type cannot be mixed with other target types"; 724 goto bad; 725 } 726 } else if (dm_target_is_immutable(ti->type)) { 727 if (t->num_targets) { 728 ti->error = "immutable target type cannot be mixed with other target types"; 729 goto bad; 730 } 731 t->immutable_target_type = ti->type; 732 } 733 734 ti->table = t; 735 ti->begin = start; 736 ti->len = len; 737 ti->error = "Unknown error"; 738 739 /* 740 * Does this target adjoin the previous one ? 741 */ 742 if (!adjoin(t, ti)) { 743 ti->error = "Gap in table"; 744 goto bad; 745 } 746 747 r = dm_split_args(&argc, &argv, params); 748 if (r) { 749 ti->error = "couldn't split parameters"; 750 goto bad; 751 } 752 753 r = ti->type->ctr(ti, argc, argv); 754 kfree(argv); 755 if (r) 756 goto bad; 757 758 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 759 760 if (!ti->num_discard_bios && ti->discards_supported) 761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 762 dm_device_name(t->md), type); 763 764 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 765 static_branch_enable(&swap_bios_enabled); 766 767 if (!ti->flush_bypasses_map) 768 t->flush_bypasses_map = false; 769 770 return 0; 771 772 bad: 773 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 774 dm_put_target_type(ti->type); 775 return r; 776 } 777 778 /* 779 * Target argument parsing helpers. 780 */ 781 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 782 unsigned int *value, char **error, unsigned int grouped) 783 { 784 const char *arg_str = dm_shift_arg(arg_set); 785 char dummy; 786 787 if (!arg_str || 788 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 789 (*value < arg->min) || 790 (*value > arg->max) || 791 (grouped && arg_set->argc < *value)) { 792 *error = arg->error; 793 return -EINVAL; 794 } 795 796 return 0; 797 } 798 799 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 800 unsigned int *value, char **error) 801 { 802 return validate_next_arg(arg, arg_set, value, error, 0); 803 } 804 EXPORT_SYMBOL(dm_read_arg); 805 806 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 807 unsigned int *value, char **error) 808 { 809 return validate_next_arg(arg, arg_set, value, error, 1); 810 } 811 EXPORT_SYMBOL(dm_read_arg_group); 812 813 const char *dm_shift_arg(struct dm_arg_set *as) 814 { 815 char *r; 816 817 if (as->argc) { 818 as->argc--; 819 r = *as->argv; 820 as->argv++; 821 return r; 822 } 823 824 return NULL; 825 } 826 EXPORT_SYMBOL(dm_shift_arg); 827 828 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 829 { 830 BUG_ON(as->argc < num_args); 831 as->argc -= num_args; 832 as->argv += num_args; 833 } 834 EXPORT_SYMBOL(dm_consume_args); 835 836 static bool __table_type_bio_based(enum dm_queue_mode table_type) 837 { 838 return (table_type == DM_TYPE_BIO_BASED || 839 table_type == DM_TYPE_DAX_BIO_BASED); 840 } 841 842 static bool __table_type_request_based(enum dm_queue_mode table_type) 843 { 844 return table_type == DM_TYPE_REQUEST_BASED; 845 } 846 847 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 848 { 849 t->type = type; 850 } 851 EXPORT_SYMBOL_GPL(dm_table_set_type); 852 853 /* validate the dax capability of the target device span */ 854 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 855 sector_t start, sector_t len, void *data) 856 { 857 if (dev->dax_dev) 858 return false; 859 860 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 861 return true; 862 } 863 864 /* Check devices support synchronous DAX */ 865 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 866 sector_t start, sector_t len, void *data) 867 { 868 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 869 } 870 871 static bool dm_table_supports_dax(struct dm_table *t, 872 iterate_devices_callout_fn iterate_fn) 873 { 874 /* Ensure that all targets support DAX. */ 875 for (unsigned int i = 0; i < t->num_targets; i++) { 876 struct dm_target *ti = dm_table_get_target(t, i); 877 878 if (!ti->type->direct_access) 879 return false; 880 881 if (dm_target_is_wildcard(ti->type) || 882 !ti->type->iterate_devices || 883 ti->type->iterate_devices(ti, iterate_fn, NULL)) 884 return false; 885 } 886 887 return true; 888 } 889 890 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 891 sector_t start, sector_t len, void *data) 892 { 893 struct block_device *bdev = dev->bdev; 894 struct request_queue *q = bdev_get_queue(bdev); 895 896 /* request-based cannot stack on partitions! */ 897 if (bdev_is_partition(bdev)) 898 return false; 899 900 return queue_is_mq(q); 901 } 902 903 static int dm_table_determine_type(struct dm_table *t) 904 { 905 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 906 struct dm_target *ti; 907 struct list_head *devices = dm_table_get_devices(t); 908 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 909 910 if (t->type != DM_TYPE_NONE) { 911 /* target already set the table's type */ 912 if (t->type == DM_TYPE_BIO_BASED) { 913 /* possibly upgrade to a variant of bio-based */ 914 goto verify_bio_based; 915 } 916 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 917 goto verify_rq_based; 918 } 919 920 for (unsigned int i = 0; i < t->num_targets; i++) { 921 ti = dm_table_get_target(t, i); 922 if (dm_target_hybrid(ti)) 923 hybrid = 1; 924 else if (dm_target_request_based(ti)) 925 request_based = 1; 926 else 927 bio_based = 1; 928 929 if (bio_based && request_based) { 930 DMERR("Inconsistent table: different target types can't be mixed up"); 931 return -EINVAL; 932 } 933 } 934 935 if (hybrid && !bio_based && !request_based) { 936 /* 937 * The targets can work either way. 938 * Determine the type from the live device. 939 * Default to bio-based if device is new. 940 */ 941 if (__table_type_request_based(live_md_type)) 942 request_based = 1; 943 else 944 bio_based = 1; 945 } 946 947 if (bio_based) { 948 verify_bio_based: 949 /* We must use this table as bio-based */ 950 t->type = DM_TYPE_BIO_BASED; 951 if (dm_table_supports_dax(t, device_not_dax_capable) || 952 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 953 t->type = DM_TYPE_DAX_BIO_BASED; 954 } 955 return 0; 956 } 957 958 BUG_ON(!request_based); /* No targets in this table */ 959 960 t->type = DM_TYPE_REQUEST_BASED; 961 962 verify_rq_based: 963 /* 964 * Request-based dm supports only tables that have a single target now. 965 * To support multiple targets, request splitting support is needed, 966 * and that needs lots of changes in the block-layer. 967 * (e.g. request completion process for partial completion.) 968 */ 969 if (t->num_targets > 1) { 970 DMERR("request-based DM doesn't support multiple targets"); 971 return -EINVAL; 972 } 973 974 if (list_empty(devices)) { 975 int srcu_idx; 976 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 977 978 /* inherit live table's type */ 979 if (live_table) 980 t->type = live_table->type; 981 dm_put_live_table(t->md, srcu_idx); 982 return 0; 983 } 984 985 ti = dm_table_get_immutable_target(t); 986 if (!ti) { 987 DMERR("table load rejected: immutable target is required"); 988 return -EINVAL; 989 } else if (ti->max_io_len) { 990 DMERR("table load rejected: immutable target that splits IO is not supported"); 991 return -EINVAL; 992 } 993 994 /* Non-request-stackable devices can't be used for request-based dm */ 995 if (!ti->type->iterate_devices || 996 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 997 DMERR("table load rejected: including non-request-stackable devices"); 998 return -EINVAL; 999 } 1000 1001 return 0; 1002 } 1003 1004 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1005 { 1006 return t->type; 1007 } 1008 1009 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1010 { 1011 return t->immutable_target_type; 1012 } 1013 1014 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1015 { 1016 /* Immutable target is implicitly a singleton */ 1017 if (t->num_targets > 1 || 1018 !dm_target_is_immutable(t->targets[0].type)) 1019 return NULL; 1020 1021 return t->targets; 1022 } 1023 1024 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1025 { 1026 for (unsigned int i = 0; i < t->num_targets; i++) { 1027 struct dm_target *ti = dm_table_get_target(t, i); 1028 1029 if (dm_target_is_wildcard(ti->type)) 1030 return ti; 1031 } 1032 1033 return NULL; 1034 } 1035 1036 bool dm_table_request_based(struct dm_table *t) 1037 { 1038 return __table_type_request_based(dm_table_get_type(t)); 1039 } 1040 1041 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1042 { 1043 enum dm_queue_mode type = dm_table_get_type(t); 1044 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1045 unsigned int min_pool_size = 0, pool_size; 1046 struct dm_md_mempools *pools; 1047 unsigned int bioset_flags = 0; 1048 bool mempool_needs_integrity = t->integrity_supported; 1049 1050 if (unlikely(type == DM_TYPE_NONE)) { 1051 DMERR("no table type is set, can't allocate mempools"); 1052 return -EINVAL; 1053 } 1054 1055 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1056 if (!pools) 1057 return -ENOMEM; 1058 1059 if (type == DM_TYPE_REQUEST_BASED) { 1060 pool_size = dm_get_reserved_rq_based_ios(); 1061 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1062 goto init_bs; 1063 } 1064 1065 if (md->queue->limits.features & BLK_FEAT_POLL) 1066 bioset_flags |= BIOSET_PERCPU_CACHE; 1067 1068 for (unsigned int i = 0; i < t->num_targets; i++) { 1069 struct dm_target *ti = dm_table_get_target(t, i); 1070 1071 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1072 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1073 1074 mempool_needs_integrity |= ti->mempool_needs_integrity; 1075 } 1076 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1077 front_pad = roundup(per_io_data_size, 1078 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1079 1080 io_front_pad = roundup(per_io_data_size, 1081 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1082 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags)) 1083 goto out_free_pools; 1084 if (mempool_needs_integrity && 1085 bioset_integrity_create(&pools->io_bs, pool_size)) 1086 goto out_free_pools; 1087 init_bs: 1088 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1089 goto out_free_pools; 1090 if (mempool_needs_integrity && 1091 bioset_integrity_create(&pools->bs, pool_size)) 1092 goto out_free_pools; 1093 1094 t->mempools = pools; 1095 return 0; 1096 1097 out_free_pools: 1098 dm_free_md_mempools(pools); 1099 return -ENOMEM; 1100 } 1101 1102 static int setup_indexes(struct dm_table *t) 1103 { 1104 int i; 1105 unsigned int total = 0; 1106 sector_t *indexes; 1107 1108 /* allocate the space for *all* the indexes */ 1109 for (i = t->depth - 2; i >= 0; i--) { 1110 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1111 total += t->counts[i]; 1112 } 1113 1114 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1115 if (!indexes) 1116 return -ENOMEM; 1117 1118 /* set up internal nodes, bottom-up */ 1119 for (i = t->depth - 2; i >= 0; i--) { 1120 t->index[i] = indexes; 1121 indexes += (KEYS_PER_NODE * t->counts[i]); 1122 setup_btree_index(i, t); 1123 } 1124 1125 return 0; 1126 } 1127 1128 /* 1129 * Builds the btree to index the map. 1130 */ 1131 static int dm_table_build_index(struct dm_table *t) 1132 { 1133 int r = 0; 1134 unsigned int leaf_nodes; 1135 1136 /* how many indexes will the btree have ? */ 1137 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1138 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1139 1140 /* leaf layer has already been set up */ 1141 t->counts[t->depth - 1] = leaf_nodes; 1142 t->index[t->depth - 1] = t->highs; 1143 1144 if (t->depth >= 2) 1145 r = setup_indexes(t); 1146 1147 return r; 1148 } 1149 1150 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1151 1152 struct dm_crypto_profile { 1153 struct blk_crypto_profile profile; 1154 struct mapped_device *md; 1155 }; 1156 1157 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1158 sector_t start, sector_t len, void *data) 1159 { 1160 const struct blk_crypto_key *key = data; 1161 1162 blk_crypto_evict_key(dev->bdev, key); 1163 return 0; 1164 } 1165 1166 /* 1167 * When an inline encryption key is evicted from a device-mapper device, evict 1168 * it from all the underlying devices. 1169 */ 1170 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1171 const struct blk_crypto_key *key, unsigned int slot) 1172 { 1173 struct mapped_device *md = 1174 container_of(profile, struct dm_crypto_profile, profile)->md; 1175 struct dm_table *t; 1176 int srcu_idx; 1177 1178 t = dm_get_live_table(md, &srcu_idx); 1179 if (!t) 1180 return 0; 1181 1182 for (unsigned int i = 0; i < t->num_targets; i++) { 1183 struct dm_target *ti = dm_table_get_target(t, i); 1184 1185 if (!ti->type->iterate_devices) 1186 continue; 1187 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1188 (void *)key); 1189 } 1190 1191 dm_put_live_table(md, srcu_idx); 1192 return 0; 1193 } 1194 1195 static int 1196 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1197 sector_t start, sector_t len, void *data) 1198 { 1199 struct blk_crypto_profile *parent = data; 1200 struct blk_crypto_profile *child = 1201 bdev_get_queue(dev->bdev)->crypto_profile; 1202 1203 blk_crypto_intersect_capabilities(parent, child); 1204 return 0; 1205 } 1206 1207 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1208 { 1209 struct dm_crypto_profile *dmcp = container_of(profile, 1210 struct dm_crypto_profile, 1211 profile); 1212 1213 if (!profile) 1214 return; 1215 1216 blk_crypto_profile_destroy(profile); 1217 kfree(dmcp); 1218 } 1219 1220 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1221 { 1222 dm_destroy_crypto_profile(t->crypto_profile); 1223 t->crypto_profile = NULL; 1224 } 1225 1226 /* 1227 * Constructs and initializes t->crypto_profile with a crypto profile that 1228 * represents the common set of crypto capabilities of the devices described by 1229 * the dm_table. However, if the constructed crypto profile doesn't support all 1230 * crypto capabilities that are supported by the current mapped_device, it 1231 * returns an error instead, since we don't support removing crypto capabilities 1232 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1233 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1234 */ 1235 static int dm_table_construct_crypto_profile(struct dm_table *t) 1236 { 1237 struct dm_crypto_profile *dmcp; 1238 struct blk_crypto_profile *profile; 1239 unsigned int i; 1240 bool empty_profile = true; 1241 1242 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1243 if (!dmcp) 1244 return -ENOMEM; 1245 dmcp->md = t->md; 1246 1247 profile = &dmcp->profile; 1248 blk_crypto_profile_init(profile, 0); 1249 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1250 profile->max_dun_bytes_supported = UINT_MAX; 1251 memset(profile->modes_supported, 0xFF, 1252 sizeof(profile->modes_supported)); 1253 1254 for (i = 0; i < t->num_targets; i++) { 1255 struct dm_target *ti = dm_table_get_target(t, i); 1256 1257 if (!dm_target_passes_crypto(ti->type)) { 1258 blk_crypto_intersect_capabilities(profile, NULL); 1259 break; 1260 } 1261 if (!ti->type->iterate_devices) 1262 continue; 1263 ti->type->iterate_devices(ti, 1264 device_intersect_crypto_capabilities, 1265 profile); 1266 } 1267 1268 if (t->md->queue && 1269 !blk_crypto_has_capabilities(profile, 1270 t->md->queue->crypto_profile)) { 1271 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1272 dm_destroy_crypto_profile(profile); 1273 return -EINVAL; 1274 } 1275 1276 /* 1277 * If the new profile doesn't actually support any crypto capabilities, 1278 * we may as well represent it with a NULL profile. 1279 */ 1280 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1281 if (profile->modes_supported[i]) { 1282 empty_profile = false; 1283 break; 1284 } 1285 } 1286 1287 if (empty_profile) { 1288 dm_destroy_crypto_profile(profile); 1289 profile = NULL; 1290 } 1291 1292 /* 1293 * t->crypto_profile is only set temporarily while the table is being 1294 * set up, and it gets set to NULL after the profile has been 1295 * transferred to the request_queue. 1296 */ 1297 t->crypto_profile = profile; 1298 1299 return 0; 1300 } 1301 1302 static void dm_update_crypto_profile(struct request_queue *q, 1303 struct dm_table *t) 1304 { 1305 if (!t->crypto_profile) 1306 return; 1307 1308 /* Make the crypto profile less restrictive. */ 1309 if (!q->crypto_profile) { 1310 blk_crypto_register(t->crypto_profile, q); 1311 } else { 1312 blk_crypto_update_capabilities(q->crypto_profile, 1313 t->crypto_profile); 1314 dm_destroy_crypto_profile(t->crypto_profile); 1315 } 1316 t->crypto_profile = NULL; 1317 } 1318 1319 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1320 1321 static int dm_table_construct_crypto_profile(struct dm_table *t) 1322 { 1323 return 0; 1324 } 1325 1326 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1327 { 1328 } 1329 1330 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1331 { 1332 } 1333 1334 static void dm_update_crypto_profile(struct request_queue *q, 1335 struct dm_table *t) 1336 { 1337 } 1338 1339 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1340 1341 /* 1342 * Prepares the table for use by building the indices, 1343 * setting the type, and allocating mempools. 1344 */ 1345 int dm_table_complete(struct dm_table *t) 1346 { 1347 int r; 1348 1349 r = dm_table_determine_type(t); 1350 if (r) { 1351 DMERR("unable to determine table type"); 1352 return r; 1353 } 1354 1355 r = dm_table_build_index(t); 1356 if (r) { 1357 DMERR("unable to build btrees"); 1358 return r; 1359 } 1360 1361 r = dm_table_construct_crypto_profile(t); 1362 if (r) { 1363 DMERR("could not construct crypto profile."); 1364 return r; 1365 } 1366 1367 r = dm_table_alloc_md_mempools(t, t->md); 1368 if (r) 1369 DMERR("unable to allocate mempools"); 1370 1371 return r; 1372 } 1373 1374 static DEFINE_MUTEX(_event_lock); 1375 void dm_table_event_callback(struct dm_table *t, 1376 void (*fn)(void *), void *context) 1377 { 1378 mutex_lock(&_event_lock); 1379 t->event_fn = fn; 1380 t->event_context = context; 1381 mutex_unlock(&_event_lock); 1382 } 1383 1384 void dm_table_event(struct dm_table *t) 1385 { 1386 mutex_lock(&_event_lock); 1387 if (t->event_fn) 1388 t->event_fn(t->event_context); 1389 mutex_unlock(&_event_lock); 1390 } 1391 EXPORT_SYMBOL(dm_table_event); 1392 1393 inline sector_t dm_table_get_size(struct dm_table *t) 1394 { 1395 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1396 } 1397 EXPORT_SYMBOL(dm_table_get_size); 1398 1399 /* 1400 * Search the btree for the correct target. 1401 * 1402 * Caller should check returned pointer for NULL 1403 * to trap I/O beyond end of device. 1404 */ 1405 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1406 { 1407 unsigned int l, n = 0, k = 0; 1408 sector_t *node; 1409 1410 if (unlikely(sector >= dm_table_get_size(t))) 1411 return NULL; 1412 1413 for (l = 0; l < t->depth; l++) { 1414 n = get_child(n, k); 1415 node = get_node(t, l, n); 1416 1417 for (k = 0; k < KEYS_PER_NODE; k++) 1418 if (node[k] >= sector) 1419 break; 1420 } 1421 1422 return &t->targets[(KEYS_PER_NODE * n) + k]; 1423 } 1424 1425 /* 1426 * type->iterate_devices() should be called when the sanity check needs to 1427 * iterate and check all underlying data devices. iterate_devices() will 1428 * iterate all underlying data devices until it encounters a non-zero return 1429 * code, returned by whether the input iterate_devices_callout_fn, or 1430 * iterate_devices() itself internally. 1431 * 1432 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1433 * iterate multiple underlying devices internally, in which case a non-zero 1434 * return code returned by iterate_devices_callout_fn will stop the iteration 1435 * in advance. 1436 * 1437 * Cases requiring _any_ underlying device supporting some kind of attribute, 1438 * should use the iteration structure like dm_table_any_dev_attr(), or call 1439 * it directly. @func should handle semantics of positive examples, e.g. 1440 * capable of something. 1441 * 1442 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1443 * should use the iteration structure like dm_table_supports_nowait() or 1444 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1445 * uses an @anti_func that handle semantics of counter examples, e.g. not 1446 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1447 */ 1448 static bool dm_table_any_dev_attr(struct dm_table *t, 1449 iterate_devices_callout_fn func, void *data) 1450 { 1451 for (unsigned int i = 0; i < t->num_targets; i++) { 1452 struct dm_target *ti = dm_table_get_target(t, i); 1453 1454 if (ti->type->iterate_devices && 1455 ti->type->iterate_devices(ti, func, data)) 1456 return true; 1457 } 1458 1459 return false; 1460 } 1461 1462 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1463 sector_t start, sector_t len, void *data) 1464 { 1465 unsigned int *num_devices = data; 1466 1467 (*num_devices)++; 1468 1469 return 0; 1470 } 1471 1472 /* 1473 * Check whether a table has no data devices attached using each 1474 * target's iterate_devices method. 1475 * Returns false if the result is unknown because a target doesn't 1476 * support iterate_devices. 1477 */ 1478 bool dm_table_has_no_data_devices(struct dm_table *t) 1479 { 1480 for (unsigned int i = 0; i < t->num_targets; i++) { 1481 struct dm_target *ti = dm_table_get_target(t, i); 1482 unsigned int num_devices = 0; 1483 1484 if (!ti->type->iterate_devices) 1485 return false; 1486 1487 ti->type->iterate_devices(ti, count_device, &num_devices); 1488 if (num_devices) 1489 return false; 1490 } 1491 1492 return true; 1493 } 1494 1495 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1496 sector_t start, sector_t len, void *data) 1497 { 1498 bool *zoned = data; 1499 1500 return bdev_is_zoned(dev->bdev) != *zoned; 1501 } 1502 1503 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1504 sector_t start, sector_t len, void *data) 1505 { 1506 return bdev_is_zoned(dev->bdev); 1507 } 1508 1509 /* 1510 * Check the device zoned model based on the target feature flag. If the target 1511 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1512 * also accepted but all devices must have the same zoned model. If the target 1513 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1514 * zoned model with all zoned devices having the same zone size. 1515 */ 1516 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1517 { 1518 for (unsigned int i = 0; i < t->num_targets; i++) { 1519 struct dm_target *ti = dm_table_get_target(t, i); 1520 1521 /* 1522 * For the wildcard target (dm-error), if we do not have a 1523 * backing device, we must always return false. If we have a 1524 * backing device, the result must depend on checking zoned 1525 * model, like for any other target. So for this, check directly 1526 * if the target backing device is zoned as we get "false" when 1527 * dm-error was set without a backing device. 1528 */ 1529 if (dm_target_is_wildcard(ti->type) && 1530 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1531 return false; 1532 1533 if (dm_target_supports_zoned_hm(ti->type)) { 1534 if (!ti->type->iterate_devices || 1535 ti->type->iterate_devices(ti, device_not_zoned, 1536 &zoned)) 1537 return false; 1538 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1539 if (zoned) 1540 return false; 1541 } 1542 } 1543 1544 return true; 1545 } 1546 1547 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1548 sector_t start, sector_t len, void *data) 1549 { 1550 unsigned int *zone_sectors = data; 1551 1552 if (!bdev_is_zoned(dev->bdev)) 1553 return 0; 1554 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1555 } 1556 1557 /* 1558 * Check consistency of zoned model and zone sectors across all targets. For 1559 * zone sectors, if the destination device is a zoned block device, it shall 1560 * have the specified zone_sectors. 1561 */ 1562 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1563 unsigned int zone_sectors) 1564 { 1565 if (!zoned) 1566 return 0; 1567 1568 if (!dm_table_supports_zoned(t, zoned)) { 1569 DMERR("%s: zoned model is not consistent across all devices", 1570 dm_device_name(t->md)); 1571 return -EINVAL; 1572 } 1573 1574 /* Check zone size validity and compatibility */ 1575 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1576 return -EINVAL; 1577 1578 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1579 DMERR("%s: zone sectors is not consistent across all zoned devices", 1580 dm_device_name(t->md)); 1581 return -EINVAL; 1582 } 1583 1584 return 0; 1585 } 1586 1587 /* 1588 * Establish the new table's queue_limits and validate them. 1589 */ 1590 int dm_calculate_queue_limits(struct dm_table *t, 1591 struct queue_limits *limits) 1592 { 1593 struct queue_limits ti_limits; 1594 unsigned int zone_sectors = 0; 1595 bool zoned = false; 1596 1597 dm_set_stacking_limits(limits); 1598 1599 t->integrity_supported = true; 1600 for (unsigned int i = 0; i < t->num_targets; i++) { 1601 struct dm_target *ti = dm_table_get_target(t, i); 1602 1603 if (!dm_target_passes_integrity(ti->type)) 1604 t->integrity_supported = false; 1605 } 1606 1607 for (unsigned int i = 0; i < t->num_targets; i++) { 1608 struct dm_target *ti = dm_table_get_target(t, i); 1609 1610 dm_set_stacking_limits(&ti_limits); 1611 1612 if (!ti->type->iterate_devices) { 1613 /* Set I/O hints portion of queue limits */ 1614 if (ti->type->io_hints) 1615 ti->type->io_hints(ti, &ti_limits); 1616 goto combine_limits; 1617 } 1618 1619 /* 1620 * Combine queue limits of all the devices this target uses. 1621 */ 1622 ti->type->iterate_devices(ti, dm_set_device_limits, 1623 &ti_limits); 1624 1625 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) { 1626 /* 1627 * After stacking all limits, validate all devices 1628 * in table support this zoned model and zone sectors. 1629 */ 1630 zoned = (ti_limits.features & BLK_FEAT_ZONED); 1631 zone_sectors = ti_limits.chunk_sectors; 1632 } 1633 1634 /* Set I/O hints portion of queue limits */ 1635 if (ti->type->io_hints) 1636 ti->type->io_hints(ti, &ti_limits); 1637 1638 /* 1639 * Check each device area is consistent with the target's 1640 * overall queue limits. 1641 */ 1642 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1643 &ti_limits)) 1644 return -EINVAL; 1645 1646 combine_limits: 1647 /* 1648 * Merge this target's queue limits into the overall limits 1649 * for the table. 1650 */ 1651 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1652 DMWARN("%s: adding target device (start sect %llu len %llu) " 1653 "caused an alignment inconsistency", 1654 dm_device_name(t->md), 1655 (unsigned long long) ti->begin, 1656 (unsigned long long) ti->len); 1657 1658 if (t->integrity_supported || 1659 dm_target_has_integrity(ti->type)) { 1660 if (!queue_limits_stack_integrity(limits, &ti_limits)) { 1661 DMWARN("%s: adding target device (start sect %llu len %llu) " 1662 "disabled integrity support due to incompatibility", 1663 dm_device_name(t->md), 1664 (unsigned long long) ti->begin, 1665 (unsigned long long) ti->len); 1666 t->integrity_supported = false; 1667 } 1668 } 1669 } 1670 1671 /* 1672 * Verify that the zoned model and zone sectors, as determined before 1673 * any .io_hints override, are the same across all devices in the table. 1674 * - this is especially relevant if .io_hints is emulating a disk-managed 1675 * zoned model on host-managed zoned block devices. 1676 * BUT... 1677 */ 1678 if (limits->features & BLK_FEAT_ZONED) { 1679 /* 1680 * ...IF the above limits stacking determined a zoned model 1681 * validate that all of the table's devices conform to it. 1682 */ 1683 zoned = limits->features & BLK_FEAT_ZONED; 1684 zone_sectors = limits->chunk_sectors; 1685 } 1686 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1687 return -EINVAL; 1688 1689 return validate_hardware_logical_block_alignment(t, limits); 1690 } 1691 1692 /* 1693 * Check if a target requires flush support even if none of the underlying 1694 * devices need it (e.g. to persist target-specific metadata). 1695 */ 1696 static bool dm_table_supports_flush(struct dm_table *t) 1697 { 1698 for (unsigned int i = 0; i < t->num_targets; i++) { 1699 struct dm_target *ti = dm_table_get_target(t, i); 1700 1701 if (ti->num_flush_bios && ti->flush_supported) 1702 return true; 1703 } 1704 1705 return false; 1706 } 1707 1708 static int device_dax_write_cache_enabled(struct dm_target *ti, 1709 struct dm_dev *dev, sector_t start, 1710 sector_t len, void *data) 1711 { 1712 struct dax_device *dax_dev = dev->dax_dev; 1713 1714 if (!dax_dev) 1715 return false; 1716 1717 if (dax_write_cache_enabled(dax_dev)) 1718 return true; 1719 return false; 1720 } 1721 1722 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1723 sector_t start, sector_t len, void *data) 1724 { 1725 struct request_queue *q = bdev_get_queue(dev->bdev); 1726 1727 return !q->limits.max_write_zeroes_sectors; 1728 } 1729 1730 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1731 { 1732 for (unsigned int i = 0; i < t->num_targets; i++) { 1733 struct dm_target *ti = dm_table_get_target(t, i); 1734 1735 if (!ti->num_write_zeroes_bios) 1736 return false; 1737 1738 if (!ti->type->iterate_devices || 1739 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1740 return false; 1741 } 1742 1743 return true; 1744 } 1745 1746 static bool dm_table_supports_nowait(struct dm_table *t) 1747 { 1748 for (unsigned int i = 0; i < t->num_targets; i++) { 1749 struct dm_target *ti = dm_table_get_target(t, i); 1750 1751 if (!dm_target_supports_nowait(ti->type)) 1752 return false; 1753 } 1754 1755 return true; 1756 } 1757 1758 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1759 sector_t start, sector_t len, void *data) 1760 { 1761 return !bdev_max_discard_sectors(dev->bdev); 1762 } 1763 1764 static bool dm_table_supports_discards(struct dm_table *t) 1765 { 1766 for (unsigned int i = 0; i < t->num_targets; i++) { 1767 struct dm_target *ti = dm_table_get_target(t, i); 1768 1769 if (!ti->num_discard_bios) 1770 return false; 1771 1772 /* 1773 * Either the target provides discard support (as implied by setting 1774 * 'discards_supported') or it relies on _all_ data devices having 1775 * discard support. 1776 */ 1777 if (!ti->discards_supported && 1778 (!ti->type->iterate_devices || 1779 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1780 return false; 1781 } 1782 1783 return true; 1784 } 1785 1786 static int device_not_secure_erase_capable(struct dm_target *ti, 1787 struct dm_dev *dev, sector_t start, 1788 sector_t len, void *data) 1789 { 1790 return !bdev_max_secure_erase_sectors(dev->bdev); 1791 } 1792 1793 static bool dm_table_supports_secure_erase(struct dm_table *t) 1794 { 1795 for (unsigned int i = 0; i < t->num_targets; i++) { 1796 struct dm_target *ti = dm_table_get_target(t, i); 1797 1798 if (!ti->num_secure_erase_bios) 1799 return false; 1800 1801 if (!ti->type->iterate_devices || 1802 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1803 return false; 1804 } 1805 1806 return true; 1807 } 1808 1809 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1810 struct queue_limits *limits) 1811 { 1812 int r; 1813 1814 if (!dm_table_supports_nowait(t)) 1815 limits->features &= ~BLK_FEAT_NOWAIT; 1816 1817 /* 1818 * The current polling impementation does not support request based 1819 * stacking. 1820 */ 1821 if (!__table_type_bio_based(t->type)) 1822 limits->features &= ~BLK_FEAT_POLL; 1823 1824 if (!dm_table_supports_discards(t)) { 1825 limits->max_hw_discard_sectors = 0; 1826 limits->discard_granularity = 0; 1827 limits->discard_alignment = 0; 1828 } 1829 1830 if (!dm_table_supports_write_zeroes(t)) 1831 limits->max_write_zeroes_sectors = 0; 1832 1833 if (!dm_table_supports_secure_erase(t)) 1834 limits->max_secure_erase_sectors = 0; 1835 1836 if (dm_table_supports_flush(t)) 1837 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 1838 1839 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1840 limits->features |= BLK_FEAT_DAX; 1841 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1842 set_dax_synchronous(t->md->dax_dev); 1843 } else 1844 limits->features &= ~BLK_FEAT_DAX; 1845 1846 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1847 dax_write_cache(t->md->dax_dev, true); 1848 1849 /* For a zoned table, setup the zone related queue attributes. */ 1850 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1851 (limits->features & BLK_FEAT_ZONED)) { 1852 r = dm_set_zones_restrictions(t, q, limits); 1853 if (r) 1854 return r; 1855 } 1856 1857 r = queue_limits_set(q, limits); 1858 if (r) 1859 return r; 1860 1861 /* 1862 * Now that the limits are set, check the zones mapped by the table 1863 * and setup the resources for zone append emulation if necessary. 1864 */ 1865 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1866 (limits->features & BLK_FEAT_ZONED)) { 1867 r = dm_revalidate_zones(t, q); 1868 if (r) 1869 return r; 1870 } 1871 1872 dm_update_crypto_profile(q, t); 1873 return 0; 1874 } 1875 1876 struct list_head *dm_table_get_devices(struct dm_table *t) 1877 { 1878 return &t->devices; 1879 } 1880 1881 blk_mode_t dm_table_get_mode(struct dm_table *t) 1882 { 1883 return t->mode; 1884 } 1885 EXPORT_SYMBOL(dm_table_get_mode); 1886 1887 enum suspend_mode { 1888 PRESUSPEND, 1889 PRESUSPEND_UNDO, 1890 POSTSUSPEND, 1891 }; 1892 1893 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1894 { 1895 lockdep_assert_held(&t->md->suspend_lock); 1896 1897 for (unsigned int i = 0; i < t->num_targets; i++) { 1898 struct dm_target *ti = dm_table_get_target(t, i); 1899 1900 switch (mode) { 1901 case PRESUSPEND: 1902 if (ti->type->presuspend) 1903 ti->type->presuspend(ti); 1904 break; 1905 case PRESUSPEND_UNDO: 1906 if (ti->type->presuspend_undo) 1907 ti->type->presuspend_undo(ti); 1908 break; 1909 case POSTSUSPEND: 1910 if (ti->type->postsuspend) 1911 ti->type->postsuspend(ti); 1912 break; 1913 } 1914 } 1915 } 1916 1917 void dm_table_presuspend_targets(struct dm_table *t) 1918 { 1919 if (!t) 1920 return; 1921 1922 suspend_targets(t, PRESUSPEND); 1923 } 1924 1925 void dm_table_presuspend_undo_targets(struct dm_table *t) 1926 { 1927 if (!t) 1928 return; 1929 1930 suspend_targets(t, PRESUSPEND_UNDO); 1931 } 1932 1933 void dm_table_postsuspend_targets(struct dm_table *t) 1934 { 1935 if (!t) 1936 return; 1937 1938 suspend_targets(t, POSTSUSPEND); 1939 } 1940 1941 int dm_table_resume_targets(struct dm_table *t) 1942 { 1943 unsigned int i; 1944 int r = 0; 1945 1946 lockdep_assert_held(&t->md->suspend_lock); 1947 1948 for (i = 0; i < t->num_targets; i++) { 1949 struct dm_target *ti = dm_table_get_target(t, i); 1950 1951 if (!ti->type->preresume) 1952 continue; 1953 1954 r = ti->type->preresume(ti); 1955 if (r) { 1956 DMERR("%s: %s: preresume failed, error = %d", 1957 dm_device_name(t->md), ti->type->name, r); 1958 return r; 1959 } 1960 } 1961 1962 for (i = 0; i < t->num_targets; i++) { 1963 struct dm_target *ti = dm_table_get_target(t, i); 1964 1965 if (ti->type->resume) 1966 ti->type->resume(ti); 1967 } 1968 1969 return 0; 1970 } 1971 1972 struct mapped_device *dm_table_get_md(struct dm_table *t) 1973 { 1974 return t->md; 1975 } 1976 EXPORT_SYMBOL(dm_table_get_md); 1977 1978 const char *dm_table_device_name(struct dm_table *t) 1979 { 1980 return dm_device_name(t->md); 1981 } 1982 EXPORT_SYMBOL_GPL(dm_table_device_name); 1983 1984 void dm_table_run_md_queue_async(struct dm_table *t) 1985 { 1986 if (!dm_table_request_based(t)) 1987 return; 1988 1989 if (t->md->queue) 1990 blk_mq_run_hw_queues(t->md->queue, true); 1991 } 1992 EXPORT_SYMBOL(dm_table_run_md_queue_async); 1993 1994