1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <asm/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 /* 30 * The table has always exactly one reference from either mapped_device->map 31 * or hash_cell->new_map. This reference is not counted in table->holders. 32 * A pair of dm_create_table/dm_destroy_table functions is used for table 33 * creation/destruction. 34 * 35 * Temporary references from the other code increase table->holders. A pair 36 * of dm_table_get/dm_table_put functions is used to manipulate it. 37 * 38 * When the table is about to be destroyed, we wait for table->holders to 39 * drop to zero. 40 */ 41 42 struct dm_table { 43 struct mapped_device *md; 44 atomic_t holders; 45 unsigned type; 46 47 /* btree table */ 48 unsigned int depth; 49 unsigned int counts[MAX_DEPTH]; /* in nodes */ 50 sector_t *index[MAX_DEPTH]; 51 52 unsigned int num_targets; 53 unsigned int num_allocated; 54 sector_t *highs; 55 struct dm_target *targets; 56 57 unsigned discards_supported:1; 58 59 /* 60 * Indicates the rw permissions for the new logical 61 * device. This should be a combination of FMODE_READ 62 * and FMODE_WRITE. 63 */ 64 fmode_t mode; 65 66 /* a list of devices used by this table */ 67 struct list_head devices; 68 69 /* events get handed up using this callback */ 70 void (*event_fn)(void *); 71 void *event_context; 72 73 struct dm_md_mempools *mempools; 74 }; 75 76 /* 77 * Similar to ceiling(log_size(n)) 78 */ 79 static unsigned int int_log(unsigned int n, unsigned int base) 80 { 81 int result = 0; 82 83 while (n > 1) { 84 n = dm_div_up(n, base); 85 result++; 86 } 87 88 return result; 89 } 90 91 /* 92 * Calculate the index of the child node of the n'th node k'th key. 93 */ 94 static inline unsigned int get_child(unsigned int n, unsigned int k) 95 { 96 return (n * CHILDREN_PER_NODE) + k; 97 } 98 99 /* 100 * Return the n'th node of level l from table t. 101 */ 102 static inline sector_t *get_node(struct dm_table *t, 103 unsigned int l, unsigned int n) 104 { 105 return t->index[l] + (n * KEYS_PER_NODE); 106 } 107 108 /* 109 * Return the highest key that you could lookup from the n'th 110 * node on level l of the btree. 111 */ 112 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 113 { 114 for (; l < t->depth - 1; l++) 115 n = get_child(n, CHILDREN_PER_NODE - 1); 116 117 if (n >= t->counts[l]) 118 return (sector_t) - 1; 119 120 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 121 } 122 123 /* 124 * Fills in a level of the btree based on the highs of the level 125 * below it. 126 */ 127 static int setup_btree_index(unsigned int l, struct dm_table *t) 128 { 129 unsigned int n, k; 130 sector_t *node; 131 132 for (n = 0U; n < t->counts[l]; n++) { 133 node = get_node(t, l, n); 134 135 for (k = 0U; k < KEYS_PER_NODE; k++) 136 node[k] = high(t, l + 1, get_child(n, k)); 137 } 138 139 return 0; 140 } 141 142 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 143 { 144 unsigned long size; 145 void *addr; 146 147 /* 148 * Check that we're not going to overflow. 149 */ 150 if (nmemb > (ULONG_MAX / elem_size)) 151 return NULL; 152 153 size = nmemb * elem_size; 154 addr = vmalloc(size); 155 if (addr) 156 memset(addr, 0, size); 157 158 return addr; 159 } 160 161 /* 162 * highs, and targets are managed as dynamic arrays during a 163 * table load. 164 */ 165 static int alloc_targets(struct dm_table *t, unsigned int num) 166 { 167 sector_t *n_highs; 168 struct dm_target *n_targets; 169 int n = t->num_targets; 170 171 /* 172 * Allocate both the target array and offset array at once. 173 * Append an empty entry to catch sectors beyond the end of 174 * the device. 175 */ 176 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 177 sizeof(sector_t)); 178 if (!n_highs) 179 return -ENOMEM; 180 181 n_targets = (struct dm_target *) (n_highs + num); 182 183 if (n) { 184 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 185 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 186 } 187 188 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 189 vfree(t->highs); 190 191 t->num_allocated = num; 192 t->highs = n_highs; 193 t->targets = n_targets; 194 195 return 0; 196 } 197 198 int dm_table_create(struct dm_table **result, fmode_t mode, 199 unsigned num_targets, struct mapped_device *md) 200 { 201 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 202 203 if (!t) 204 return -ENOMEM; 205 206 INIT_LIST_HEAD(&t->devices); 207 atomic_set(&t->holders, 0); 208 t->discards_supported = 1; 209 210 if (!num_targets) 211 num_targets = KEYS_PER_NODE; 212 213 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 214 215 if (alloc_targets(t, num_targets)) { 216 kfree(t); 217 t = NULL; 218 return -ENOMEM; 219 } 220 221 t->mode = mode; 222 t->md = md; 223 *result = t; 224 return 0; 225 } 226 227 static void free_devices(struct list_head *devices) 228 { 229 struct list_head *tmp, *next; 230 231 list_for_each_safe(tmp, next, devices) { 232 struct dm_dev_internal *dd = 233 list_entry(tmp, struct dm_dev_internal, list); 234 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 235 dd->dm_dev.name); 236 kfree(dd); 237 } 238 } 239 240 void dm_table_destroy(struct dm_table *t) 241 { 242 unsigned int i; 243 244 if (!t) 245 return; 246 247 while (atomic_read(&t->holders)) 248 msleep(1); 249 smp_mb(); 250 251 /* free the indexes */ 252 if (t->depth >= 2) 253 vfree(t->index[t->depth - 2]); 254 255 /* free the targets */ 256 for (i = 0; i < t->num_targets; i++) { 257 struct dm_target *tgt = t->targets + i; 258 259 if (tgt->type->dtr) 260 tgt->type->dtr(tgt); 261 262 dm_put_target_type(tgt->type); 263 } 264 265 vfree(t->highs); 266 267 /* free the device list */ 268 if (t->devices.next != &t->devices) 269 free_devices(&t->devices); 270 271 dm_free_md_mempools(t->mempools); 272 273 kfree(t); 274 } 275 276 void dm_table_get(struct dm_table *t) 277 { 278 atomic_inc(&t->holders); 279 } 280 281 void dm_table_put(struct dm_table *t) 282 { 283 if (!t) 284 return; 285 286 smp_mb__before_atomic_dec(); 287 atomic_dec(&t->holders); 288 } 289 290 /* 291 * Checks to see if we need to extend highs or targets. 292 */ 293 static inline int check_space(struct dm_table *t) 294 { 295 if (t->num_targets >= t->num_allocated) 296 return alloc_targets(t, t->num_allocated * 2); 297 298 return 0; 299 } 300 301 /* 302 * See if we've already got a device in the list. 303 */ 304 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 305 { 306 struct dm_dev_internal *dd; 307 308 list_for_each_entry (dd, l, list) 309 if (dd->dm_dev.bdev->bd_dev == dev) 310 return dd; 311 312 return NULL; 313 } 314 315 /* 316 * Open a device so we can use it as a map destination. 317 */ 318 static int open_dev(struct dm_dev_internal *d, dev_t dev, 319 struct mapped_device *md) 320 { 321 static char *_claim_ptr = "I belong to device-mapper"; 322 struct block_device *bdev; 323 324 int r; 325 326 BUG_ON(d->dm_dev.bdev); 327 328 bdev = open_by_devnum(dev, d->dm_dev.mode); 329 if (IS_ERR(bdev)) 330 return PTR_ERR(bdev); 331 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 332 if (r) 333 blkdev_put(bdev, d->dm_dev.mode); 334 else 335 d->dm_dev.bdev = bdev; 336 return r; 337 } 338 339 /* 340 * Close a device that we've been using. 341 */ 342 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 343 { 344 if (!d->dm_dev.bdev) 345 return; 346 347 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 348 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); 349 d->dm_dev.bdev = NULL; 350 } 351 352 /* 353 * If possible, this checks an area of a destination device is invalid. 354 */ 355 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 356 sector_t start, sector_t len, void *data) 357 { 358 struct queue_limits *limits = data; 359 struct block_device *bdev = dev->bdev; 360 sector_t dev_size = 361 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 362 unsigned short logical_block_size_sectors = 363 limits->logical_block_size >> SECTOR_SHIFT; 364 char b[BDEVNAME_SIZE]; 365 366 if (!dev_size) 367 return 0; 368 369 if ((start >= dev_size) || (start + len > dev_size)) { 370 DMWARN("%s: %s too small for target: " 371 "start=%llu, len=%llu, dev_size=%llu", 372 dm_device_name(ti->table->md), bdevname(bdev, b), 373 (unsigned long long)start, 374 (unsigned long long)len, 375 (unsigned long long)dev_size); 376 return 1; 377 } 378 379 if (logical_block_size_sectors <= 1) 380 return 0; 381 382 if (start & (logical_block_size_sectors - 1)) { 383 DMWARN("%s: start=%llu not aligned to h/w " 384 "logical block size %u of %s", 385 dm_device_name(ti->table->md), 386 (unsigned long long)start, 387 limits->logical_block_size, bdevname(bdev, b)); 388 return 1; 389 } 390 391 if (len & (logical_block_size_sectors - 1)) { 392 DMWARN("%s: len=%llu not aligned to h/w " 393 "logical block size %u of %s", 394 dm_device_name(ti->table->md), 395 (unsigned long long)len, 396 limits->logical_block_size, bdevname(bdev, b)); 397 return 1; 398 } 399 400 return 0; 401 } 402 403 /* 404 * This upgrades the mode on an already open dm_dev, being 405 * careful to leave things as they were if we fail to reopen the 406 * device and not to touch the existing bdev field in case 407 * it is accessed concurrently inside dm_table_any_congested(). 408 */ 409 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 410 struct mapped_device *md) 411 { 412 int r; 413 struct dm_dev_internal dd_new, dd_old; 414 415 dd_new = dd_old = *dd; 416 417 dd_new.dm_dev.mode |= new_mode; 418 dd_new.dm_dev.bdev = NULL; 419 420 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 421 if (r) 422 return r; 423 424 dd->dm_dev.mode |= new_mode; 425 close_dev(&dd_old, md); 426 427 return 0; 428 } 429 430 /* 431 * Add a device to the list, or just increment the usage count if 432 * it's already present. 433 */ 434 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 435 const char *path, fmode_t mode, struct dm_dev **result) 436 { 437 int r; 438 dev_t uninitialized_var(dev); 439 struct dm_dev_internal *dd; 440 unsigned int major, minor; 441 442 BUG_ON(!t); 443 444 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 445 /* Extract the major/minor numbers */ 446 dev = MKDEV(major, minor); 447 if (MAJOR(dev) != major || MINOR(dev) != minor) 448 return -EOVERFLOW; 449 } else { 450 /* convert the path to a device */ 451 struct block_device *bdev = lookup_bdev(path); 452 453 if (IS_ERR(bdev)) 454 return PTR_ERR(bdev); 455 dev = bdev->bd_dev; 456 bdput(bdev); 457 } 458 459 dd = find_device(&t->devices, dev); 460 if (!dd) { 461 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 462 if (!dd) 463 return -ENOMEM; 464 465 dd->dm_dev.mode = mode; 466 dd->dm_dev.bdev = NULL; 467 468 if ((r = open_dev(dd, dev, t->md))) { 469 kfree(dd); 470 return r; 471 } 472 473 format_dev_t(dd->dm_dev.name, dev); 474 475 atomic_set(&dd->count, 0); 476 list_add(&dd->list, &t->devices); 477 478 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 479 r = upgrade_mode(dd, mode, t->md); 480 if (r) 481 return r; 482 } 483 atomic_inc(&dd->count); 484 485 *result = &dd->dm_dev; 486 return 0; 487 } 488 489 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 490 sector_t start, sector_t len, void *data) 491 { 492 struct queue_limits *limits = data; 493 struct block_device *bdev = dev->bdev; 494 struct request_queue *q = bdev_get_queue(bdev); 495 char b[BDEVNAME_SIZE]; 496 497 if (unlikely(!q)) { 498 DMWARN("%s: Cannot set limits for nonexistent device %s", 499 dm_device_name(ti->table->md), bdevname(bdev, b)); 500 return 0; 501 } 502 503 if (bdev_stack_limits(limits, bdev, start) < 0) 504 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 505 "physical_block_size=%u, logical_block_size=%u, " 506 "alignment_offset=%u, start=%llu", 507 dm_device_name(ti->table->md), bdevname(bdev, b), 508 q->limits.physical_block_size, 509 q->limits.logical_block_size, 510 q->limits.alignment_offset, 511 (unsigned long long) start << SECTOR_SHIFT); 512 513 /* 514 * Check if merge fn is supported. 515 * If not we'll force DM to use PAGE_SIZE or 516 * smaller I/O, just to be safe. 517 */ 518 519 if (q->merge_bvec_fn && !ti->type->merge) 520 limits->max_sectors = 521 min_not_zero(limits->max_sectors, 522 (unsigned int) (PAGE_SIZE >> 9)); 523 return 0; 524 } 525 EXPORT_SYMBOL_GPL(dm_set_device_limits); 526 527 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 528 struct dm_dev **result) 529 { 530 return __table_get_device(ti->table, ti, path, mode, result); 531 } 532 533 534 /* 535 * Decrement a devices use count and remove it if necessary. 536 */ 537 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 538 { 539 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 540 dm_dev); 541 542 if (atomic_dec_and_test(&dd->count)) { 543 close_dev(dd, ti->table->md); 544 list_del(&dd->list); 545 kfree(dd); 546 } 547 } 548 549 /* 550 * Checks to see if the target joins onto the end of the table. 551 */ 552 static int adjoin(struct dm_table *table, struct dm_target *ti) 553 { 554 struct dm_target *prev; 555 556 if (!table->num_targets) 557 return !ti->begin; 558 559 prev = &table->targets[table->num_targets - 1]; 560 return (ti->begin == (prev->begin + prev->len)); 561 } 562 563 /* 564 * Used to dynamically allocate the arg array. 565 */ 566 static char **realloc_argv(unsigned *array_size, char **old_argv) 567 { 568 char **argv; 569 unsigned new_size; 570 571 new_size = *array_size ? *array_size * 2 : 64; 572 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 573 if (argv) { 574 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 575 *array_size = new_size; 576 } 577 578 kfree(old_argv); 579 return argv; 580 } 581 582 /* 583 * Destructively splits up the argument list to pass to ctr. 584 */ 585 int dm_split_args(int *argc, char ***argvp, char *input) 586 { 587 char *start, *end = input, *out, **argv = NULL; 588 unsigned array_size = 0; 589 590 *argc = 0; 591 592 if (!input) { 593 *argvp = NULL; 594 return 0; 595 } 596 597 argv = realloc_argv(&array_size, argv); 598 if (!argv) 599 return -ENOMEM; 600 601 while (1) { 602 /* Skip whitespace */ 603 start = skip_spaces(end); 604 605 if (!*start) 606 break; /* success, we hit the end */ 607 608 /* 'out' is used to remove any back-quotes */ 609 end = out = start; 610 while (*end) { 611 /* Everything apart from '\0' can be quoted */ 612 if (*end == '\\' && *(end + 1)) { 613 *out++ = *(end + 1); 614 end += 2; 615 continue; 616 } 617 618 if (isspace(*end)) 619 break; /* end of token */ 620 621 *out++ = *end++; 622 } 623 624 /* have we already filled the array ? */ 625 if ((*argc + 1) > array_size) { 626 argv = realloc_argv(&array_size, argv); 627 if (!argv) 628 return -ENOMEM; 629 } 630 631 /* we know this is whitespace */ 632 if (*end) 633 end++; 634 635 /* terminate the string and put it in the array */ 636 *out = '\0'; 637 argv[*argc] = start; 638 (*argc)++; 639 } 640 641 *argvp = argv; 642 return 0; 643 } 644 645 /* 646 * Impose necessary and sufficient conditions on a devices's table such 647 * that any incoming bio which respects its logical_block_size can be 648 * processed successfully. If it falls across the boundary between 649 * two or more targets, the size of each piece it gets split into must 650 * be compatible with the logical_block_size of the target processing it. 651 */ 652 static int validate_hardware_logical_block_alignment(struct dm_table *table, 653 struct queue_limits *limits) 654 { 655 /* 656 * This function uses arithmetic modulo the logical_block_size 657 * (in units of 512-byte sectors). 658 */ 659 unsigned short device_logical_block_size_sects = 660 limits->logical_block_size >> SECTOR_SHIFT; 661 662 /* 663 * Offset of the start of the next table entry, mod logical_block_size. 664 */ 665 unsigned short next_target_start = 0; 666 667 /* 668 * Given an aligned bio that extends beyond the end of a 669 * target, how many sectors must the next target handle? 670 */ 671 unsigned short remaining = 0; 672 673 struct dm_target *uninitialized_var(ti); 674 struct queue_limits ti_limits; 675 unsigned i = 0; 676 677 /* 678 * Check each entry in the table in turn. 679 */ 680 while (i < dm_table_get_num_targets(table)) { 681 ti = dm_table_get_target(table, i++); 682 683 blk_set_default_limits(&ti_limits); 684 685 /* combine all target devices' limits */ 686 if (ti->type->iterate_devices) 687 ti->type->iterate_devices(ti, dm_set_device_limits, 688 &ti_limits); 689 690 /* 691 * If the remaining sectors fall entirely within this 692 * table entry are they compatible with its logical_block_size? 693 */ 694 if (remaining < ti->len && 695 remaining & ((ti_limits.logical_block_size >> 696 SECTOR_SHIFT) - 1)) 697 break; /* Error */ 698 699 next_target_start = 700 (unsigned short) ((next_target_start + ti->len) & 701 (device_logical_block_size_sects - 1)); 702 remaining = next_target_start ? 703 device_logical_block_size_sects - next_target_start : 0; 704 } 705 706 if (remaining) { 707 DMWARN("%s: table line %u (start sect %llu len %llu) " 708 "not aligned to h/w logical block size %u", 709 dm_device_name(table->md), i, 710 (unsigned long long) ti->begin, 711 (unsigned long long) ti->len, 712 limits->logical_block_size); 713 return -EINVAL; 714 } 715 716 return 0; 717 } 718 719 int dm_table_add_target(struct dm_table *t, const char *type, 720 sector_t start, sector_t len, char *params) 721 { 722 int r = -EINVAL, argc; 723 char **argv; 724 struct dm_target *tgt; 725 726 if ((r = check_space(t))) 727 return r; 728 729 tgt = t->targets + t->num_targets; 730 memset(tgt, 0, sizeof(*tgt)); 731 732 if (!len) { 733 DMERR("%s: zero-length target", dm_device_name(t->md)); 734 return -EINVAL; 735 } 736 737 tgt->type = dm_get_target_type(type); 738 if (!tgt->type) { 739 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 740 type); 741 return -EINVAL; 742 } 743 744 tgt->table = t; 745 tgt->begin = start; 746 tgt->len = len; 747 tgt->error = "Unknown error"; 748 749 /* 750 * Does this target adjoin the previous one ? 751 */ 752 if (!adjoin(t, tgt)) { 753 tgt->error = "Gap in table"; 754 r = -EINVAL; 755 goto bad; 756 } 757 758 r = dm_split_args(&argc, &argv, params); 759 if (r) { 760 tgt->error = "couldn't split parameters (insufficient memory)"; 761 goto bad; 762 } 763 764 r = tgt->type->ctr(tgt, argc, argv); 765 kfree(argv); 766 if (r) 767 goto bad; 768 769 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 770 771 if (!tgt->num_discard_requests) 772 t->discards_supported = 0; 773 774 return 0; 775 776 bad: 777 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 778 dm_put_target_type(tgt->type); 779 return r; 780 } 781 782 static int dm_table_set_type(struct dm_table *t) 783 { 784 unsigned i; 785 unsigned bio_based = 0, request_based = 0; 786 struct dm_target *tgt; 787 struct dm_dev_internal *dd; 788 struct list_head *devices; 789 790 for (i = 0; i < t->num_targets; i++) { 791 tgt = t->targets + i; 792 if (dm_target_request_based(tgt)) 793 request_based = 1; 794 else 795 bio_based = 1; 796 797 if (bio_based && request_based) { 798 DMWARN("Inconsistent table: different target types" 799 " can't be mixed up"); 800 return -EINVAL; 801 } 802 } 803 804 if (bio_based) { 805 /* We must use this table as bio-based */ 806 t->type = DM_TYPE_BIO_BASED; 807 return 0; 808 } 809 810 BUG_ON(!request_based); /* No targets in this table */ 811 812 /* Non-request-stackable devices can't be used for request-based dm */ 813 devices = dm_table_get_devices(t); 814 list_for_each_entry(dd, devices, list) { 815 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 816 DMWARN("table load rejected: including" 817 " non-request-stackable devices"); 818 return -EINVAL; 819 } 820 } 821 822 /* 823 * Request-based dm supports only tables that have a single target now. 824 * To support multiple targets, request splitting support is needed, 825 * and that needs lots of changes in the block-layer. 826 * (e.g. request completion process for partial completion.) 827 */ 828 if (t->num_targets > 1) { 829 DMWARN("Request-based dm doesn't support multiple targets yet"); 830 return -EINVAL; 831 } 832 833 t->type = DM_TYPE_REQUEST_BASED; 834 835 return 0; 836 } 837 838 unsigned dm_table_get_type(struct dm_table *t) 839 { 840 return t->type; 841 } 842 843 bool dm_table_request_based(struct dm_table *t) 844 { 845 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 846 } 847 848 int dm_table_alloc_md_mempools(struct dm_table *t) 849 { 850 unsigned type = dm_table_get_type(t); 851 852 if (unlikely(type == DM_TYPE_NONE)) { 853 DMWARN("no table type is set, can't allocate mempools"); 854 return -EINVAL; 855 } 856 857 t->mempools = dm_alloc_md_mempools(type); 858 if (!t->mempools) 859 return -ENOMEM; 860 861 return 0; 862 } 863 864 void dm_table_free_md_mempools(struct dm_table *t) 865 { 866 dm_free_md_mempools(t->mempools); 867 t->mempools = NULL; 868 } 869 870 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 871 { 872 return t->mempools; 873 } 874 875 static int setup_indexes(struct dm_table *t) 876 { 877 int i; 878 unsigned int total = 0; 879 sector_t *indexes; 880 881 /* allocate the space for *all* the indexes */ 882 for (i = t->depth - 2; i >= 0; i--) { 883 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 884 total += t->counts[i]; 885 } 886 887 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 888 if (!indexes) 889 return -ENOMEM; 890 891 /* set up internal nodes, bottom-up */ 892 for (i = t->depth - 2; i >= 0; i--) { 893 t->index[i] = indexes; 894 indexes += (KEYS_PER_NODE * t->counts[i]); 895 setup_btree_index(i, t); 896 } 897 898 return 0; 899 } 900 901 /* 902 * Builds the btree to index the map. 903 */ 904 static int dm_table_build_index(struct dm_table *t) 905 { 906 int r = 0; 907 unsigned int leaf_nodes; 908 909 /* how many indexes will the btree have ? */ 910 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 911 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 912 913 /* leaf layer has already been set up */ 914 t->counts[t->depth - 1] = leaf_nodes; 915 t->index[t->depth - 1] = t->highs; 916 917 if (t->depth >= 2) 918 r = setup_indexes(t); 919 920 return r; 921 } 922 923 /* 924 * Register the mapped device for blk_integrity support if 925 * the underlying devices support it. 926 */ 927 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 928 { 929 struct list_head *devices = dm_table_get_devices(t); 930 struct dm_dev_internal *dd; 931 932 list_for_each_entry(dd, devices, list) 933 if (bdev_get_integrity(dd->dm_dev.bdev)) 934 return blk_integrity_register(dm_disk(md), NULL); 935 936 return 0; 937 } 938 939 /* 940 * Prepares the table for use by building the indices, 941 * setting the type, and allocating mempools. 942 */ 943 int dm_table_complete(struct dm_table *t) 944 { 945 int r; 946 947 r = dm_table_set_type(t); 948 if (r) { 949 DMERR("unable to set table type"); 950 return r; 951 } 952 953 r = dm_table_build_index(t); 954 if (r) { 955 DMERR("unable to build btrees"); 956 return r; 957 } 958 959 r = dm_table_prealloc_integrity(t, t->md); 960 if (r) { 961 DMERR("could not register integrity profile."); 962 return r; 963 } 964 965 r = dm_table_alloc_md_mempools(t); 966 if (r) 967 DMERR("unable to allocate mempools"); 968 969 return r; 970 } 971 972 static DEFINE_MUTEX(_event_lock); 973 void dm_table_event_callback(struct dm_table *t, 974 void (*fn)(void *), void *context) 975 { 976 mutex_lock(&_event_lock); 977 t->event_fn = fn; 978 t->event_context = context; 979 mutex_unlock(&_event_lock); 980 } 981 982 void dm_table_event(struct dm_table *t) 983 { 984 /* 985 * You can no longer call dm_table_event() from interrupt 986 * context, use a bottom half instead. 987 */ 988 BUG_ON(in_interrupt()); 989 990 mutex_lock(&_event_lock); 991 if (t->event_fn) 992 t->event_fn(t->event_context); 993 mutex_unlock(&_event_lock); 994 } 995 996 sector_t dm_table_get_size(struct dm_table *t) 997 { 998 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 999 } 1000 1001 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1002 { 1003 if (index >= t->num_targets) 1004 return NULL; 1005 1006 return t->targets + index; 1007 } 1008 1009 /* 1010 * Search the btree for the correct target. 1011 * 1012 * Caller should check returned pointer with dm_target_is_valid() 1013 * to trap I/O beyond end of device. 1014 */ 1015 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1016 { 1017 unsigned int l, n = 0, k = 0; 1018 sector_t *node; 1019 1020 for (l = 0; l < t->depth; l++) { 1021 n = get_child(n, k); 1022 node = get_node(t, l, n); 1023 1024 for (k = 0; k < KEYS_PER_NODE; k++) 1025 if (node[k] >= sector) 1026 break; 1027 } 1028 1029 return &t->targets[(KEYS_PER_NODE * n) + k]; 1030 } 1031 1032 /* 1033 * Establish the new table's queue_limits and validate them. 1034 */ 1035 int dm_calculate_queue_limits(struct dm_table *table, 1036 struct queue_limits *limits) 1037 { 1038 struct dm_target *uninitialized_var(ti); 1039 struct queue_limits ti_limits; 1040 unsigned i = 0; 1041 1042 blk_set_default_limits(limits); 1043 1044 while (i < dm_table_get_num_targets(table)) { 1045 blk_set_default_limits(&ti_limits); 1046 1047 ti = dm_table_get_target(table, i++); 1048 1049 if (!ti->type->iterate_devices) 1050 goto combine_limits; 1051 1052 /* 1053 * Combine queue limits of all the devices this target uses. 1054 */ 1055 ti->type->iterate_devices(ti, dm_set_device_limits, 1056 &ti_limits); 1057 1058 /* Set I/O hints portion of queue limits */ 1059 if (ti->type->io_hints) 1060 ti->type->io_hints(ti, &ti_limits); 1061 1062 /* 1063 * Check each device area is consistent with the target's 1064 * overall queue limits. 1065 */ 1066 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1067 &ti_limits)) 1068 return -EINVAL; 1069 1070 combine_limits: 1071 /* 1072 * Merge this target's queue limits into the overall limits 1073 * for the table. 1074 */ 1075 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1076 DMWARN("%s: adding target device " 1077 "(start sect %llu len %llu) " 1078 "caused an alignment inconsistency", 1079 dm_device_name(table->md), 1080 (unsigned long long) ti->begin, 1081 (unsigned long long) ti->len); 1082 } 1083 1084 return validate_hardware_logical_block_alignment(table, limits); 1085 } 1086 1087 /* 1088 * Set the integrity profile for this device if all devices used have 1089 * matching profiles. 1090 */ 1091 static void dm_table_set_integrity(struct dm_table *t) 1092 { 1093 struct list_head *devices = dm_table_get_devices(t); 1094 struct dm_dev_internal *prev = NULL, *dd = NULL; 1095 1096 if (!blk_get_integrity(dm_disk(t->md))) 1097 return; 1098 1099 list_for_each_entry(dd, devices, list) { 1100 if (prev && 1101 blk_integrity_compare(prev->dm_dev.bdev->bd_disk, 1102 dd->dm_dev.bdev->bd_disk) < 0) { 1103 DMWARN("%s: integrity not set: %s and %s mismatch", 1104 dm_device_name(t->md), 1105 prev->dm_dev.bdev->bd_disk->disk_name, 1106 dd->dm_dev.bdev->bd_disk->disk_name); 1107 goto no_integrity; 1108 } 1109 prev = dd; 1110 } 1111 1112 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev)) 1113 goto no_integrity; 1114 1115 blk_integrity_register(dm_disk(t->md), 1116 bdev_get_integrity(prev->dm_dev.bdev)); 1117 1118 return; 1119 1120 no_integrity: 1121 blk_integrity_register(dm_disk(t->md), NULL); 1122 1123 return; 1124 } 1125 1126 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1127 struct queue_limits *limits) 1128 { 1129 /* 1130 * Copy table's limits to the DM device's request_queue 1131 */ 1132 q->limits = *limits; 1133 1134 if (limits->no_cluster) 1135 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1136 else 1137 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 1138 1139 if (!dm_table_supports_discards(t)) 1140 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1141 else 1142 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1143 1144 dm_table_set_integrity(t); 1145 1146 /* 1147 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1148 * visible to other CPUs because, once the flag is set, incoming bios 1149 * are processed by request-based dm, which refers to the queue 1150 * settings. 1151 * Until the flag set, bios are passed to bio-based dm and queued to 1152 * md->deferred where queue settings are not needed yet. 1153 * Those bios are passed to request-based dm at the resume time. 1154 */ 1155 smp_mb(); 1156 if (dm_table_request_based(t)) 1157 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1158 } 1159 1160 unsigned int dm_table_get_num_targets(struct dm_table *t) 1161 { 1162 return t->num_targets; 1163 } 1164 1165 struct list_head *dm_table_get_devices(struct dm_table *t) 1166 { 1167 return &t->devices; 1168 } 1169 1170 fmode_t dm_table_get_mode(struct dm_table *t) 1171 { 1172 return t->mode; 1173 } 1174 1175 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1176 { 1177 int i = t->num_targets; 1178 struct dm_target *ti = t->targets; 1179 1180 while (i--) { 1181 if (postsuspend) { 1182 if (ti->type->postsuspend) 1183 ti->type->postsuspend(ti); 1184 } else if (ti->type->presuspend) 1185 ti->type->presuspend(ti); 1186 1187 ti++; 1188 } 1189 } 1190 1191 void dm_table_presuspend_targets(struct dm_table *t) 1192 { 1193 if (!t) 1194 return; 1195 1196 suspend_targets(t, 0); 1197 } 1198 1199 void dm_table_postsuspend_targets(struct dm_table *t) 1200 { 1201 if (!t) 1202 return; 1203 1204 suspend_targets(t, 1); 1205 } 1206 1207 int dm_table_resume_targets(struct dm_table *t) 1208 { 1209 int i, r = 0; 1210 1211 for (i = 0; i < t->num_targets; i++) { 1212 struct dm_target *ti = t->targets + i; 1213 1214 if (!ti->type->preresume) 1215 continue; 1216 1217 r = ti->type->preresume(ti); 1218 if (r) 1219 return r; 1220 } 1221 1222 for (i = 0; i < t->num_targets; i++) { 1223 struct dm_target *ti = t->targets + i; 1224 1225 if (ti->type->resume) 1226 ti->type->resume(ti); 1227 } 1228 1229 return 0; 1230 } 1231 1232 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1233 { 1234 struct dm_dev_internal *dd; 1235 struct list_head *devices = dm_table_get_devices(t); 1236 int r = 0; 1237 1238 list_for_each_entry(dd, devices, list) { 1239 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1240 char b[BDEVNAME_SIZE]; 1241 1242 if (likely(q)) 1243 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1244 else 1245 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1246 dm_device_name(t->md), 1247 bdevname(dd->dm_dev.bdev, b)); 1248 } 1249 1250 return r; 1251 } 1252 1253 int dm_table_any_busy_target(struct dm_table *t) 1254 { 1255 unsigned i; 1256 struct dm_target *ti; 1257 1258 for (i = 0; i < t->num_targets; i++) { 1259 ti = t->targets + i; 1260 if (ti->type->busy && ti->type->busy(ti)) 1261 return 1; 1262 } 1263 1264 return 0; 1265 } 1266 1267 void dm_table_unplug_all(struct dm_table *t) 1268 { 1269 struct dm_dev_internal *dd; 1270 struct list_head *devices = dm_table_get_devices(t); 1271 1272 list_for_each_entry(dd, devices, list) { 1273 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1274 char b[BDEVNAME_SIZE]; 1275 1276 if (likely(q)) 1277 blk_unplug(q); 1278 else 1279 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 1280 dm_device_name(t->md), 1281 bdevname(dd->dm_dev.bdev, b)); 1282 } 1283 } 1284 1285 struct mapped_device *dm_table_get_md(struct dm_table *t) 1286 { 1287 return t->md; 1288 } 1289 1290 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1291 sector_t start, sector_t len, void *data) 1292 { 1293 struct request_queue *q = bdev_get_queue(dev->bdev); 1294 1295 return q && blk_queue_discard(q); 1296 } 1297 1298 bool dm_table_supports_discards(struct dm_table *t) 1299 { 1300 struct dm_target *ti; 1301 unsigned i = 0; 1302 1303 if (!t->discards_supported) 1304 return 0; 1305 1306 /* 1307 * Ensure that at least one underlying device supports discards. 1308 * t->devices includes internal dm devices such as mirror logs 1309 * so we need to use iterate_devices here, which targets 1310 * supporting discard must provide. 1311 */ 1312 while (i < dm_table_get_num_targets(t)) { 1313 ti = dm_table_get_target(t, i++); 1314 1315 if (ti->type->iterate_devices && 1316 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1317 return 1; 1318 } 1319 1320 return 0; 1321 } 1322 1323 EXPORT_SYMBOL(dm_vcalloc); 1324 EXPORT_SYMBOL(dm_get_device); 1325 EXPORT_SYMBOL(dm_put_device); 1326 EXPORT_SYMBOL(dm_table_event); 1327 EXPORT_SYMBOL(dm_table_get_size); 1328 EXPORT_SYMBOL(dm_table_get_mode); 1329 EXPORT_SYMBOL(dm_table_get_md); 1330 EXPORT_SYMBOL(dm_table_put); 1331 EXPORT_SYMBOL(dm_table_get); 1332 EXPORT_SYMBOL(dm_table_unplug_all); 1333