1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 24 #define DM_MSG_PREFIX "table" 25 26 #define MAX_DEPTH 16 27 #define NODE_SIZE L1_CACHE_BYTES 28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 30 31 struct dm_table { 32 struct mapped_device *md; 33 unsigned type; 34 35 /* btree table */ 36 unsigned int depth; 37 unsigned int counts[MAX_DEPTH]; /* in nodes */ 38 sector_t *index[MAX_DEPTH]; 39 40 unsigned int num_targets; 41 unsigned int num_allocated; 42 sector_t *highs; 43 struct dm_target *targets; 44 45 struct target_type *immutable_target_type; 46 unsigned integrity_supported:1; 47 unsigned singleton:1; 48 49 /* 50 * Indicates the rw permissions for the new logical 51 * device. This should be a combination of FMODE_READ 52 * and FMODE_WRITE. 53 */ 54 fmode_t mode; 55 56 /* a list of devices used by this table */ 57 struct list_head devices; 58 59 /* events get handed up using this callback */ 60 void (*event_fn)(void *); 61 void *event_context; 62 63 struct dm_md_mempools *mempools; 64 65 struct list_head target_callbacks; 66 }; 67 68 /* 69 * Similar to ceiling(log_size(n)) 70 */ 71 static unsigned int int_log(unsigned int n, unsigned int base) 72 { 73 int result = 0; 74 75 while (n > 1) { 76 n = dm_div_up(n, base); 77 result++; 78 } 79 80 return result; 81 } 82 83 /* 84 * Calculate the index of the child node of the n'th node k'th key. 85 */ 86 static inline unsigned int get_child(unsigned int n, unsigned int k) 87 { 88 return (n * CHILDREN_PER_NODE) + k; 89 } 90 91 /* 92 * Return the n'th node of level l from table t. 93 */ 94 static inline sector_t *get_node(struct dm_table *t, 95 unsigned int l, unsigned int n) 96 { 97 return t->index[l] + (n * KEYS_PER_NODE); 98 } 99 100 /* 101 * Return the highest key that you could lookup from the n'th 102 * node on level l of the btree. 103 */ 104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 105 { 106 for (; l < t->depth - 1; l++) 107 n = get_child(n, CHILDREN_PER_NODE - 1); 108 109 if (n >= t->counts[l]) 110 return (sector_t) - 1; 111 112 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 113 } 114 115 /* 116 * Fills in a level of the btree based on the highs of the level 117 * below it. 118 */ 119 static int setup_btree_index(unsigned int l, struct dm_table *t) 120 { 121 unsigned int n, k; 122 sector_t *node; 123 124 for (n = 0U; n < t->counts[l]; n++) { 125 node = get_node(t, l, n); 126 127 for (k = 0U; k < KEYS_PER_NODE; k++) 128 node[k] = high(t, l + 1, get_child(n, k)); 129 } 130 131 return 0; 132 } 133 134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 135 { 136 unsigned long size; 137 void *addr; 138 139 /* 140 * Check that we're not going to overflow. 141 */ 142 if (nmemb > (ULONG_MAX / elem_size)) 143 return NULL; 144 145 size = nmemb * elem_size; 146 addr = vzalloc(size); 147 148 return addr; 149 } 150 EXPORT_SYMBOL(dm_vcalloc); 151 152 /* 153 * highs, and targets are managed as dynamic arrays during a 154 * table load. 155 */ 156 static int alloc_targets(struct dm_table *t, unsigned int num) 157 { 158 sector_t *n_highs; 159 struct dm_target *n_targets; 160 161 /* 162 * Allocate both the target array and offset array at once. 163 * Append an empty entry to catch sectors beyond the end of 164 * the device. 165 */ 166 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 167 sizeof(sector_t)); 168 if (!n_highs) 169 return -ENOMEM; 170 171 n_targets = (struct dm_target *) (n_highs + num); 172 173 memset(n_highs, -1, sizeof(*n_highs) * num); 174 vfree(t->highs); 175 176 t->num_allocated = num; 177 t->highs = n_highs; 178 t->targets = n_targets; 179 180 return 0; 181 } 182 183 int dm_table_create(struct dm_table **result, fmode_t mode, 184 unsigned num_targets, struct mapped_device *md) 185 { 186 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 187 188 if (!t) 189 return -ENOMEM; 190 191 INIT_LIST_HEAD(&t->devices); 192 INIT_LIST_HEAD(&t->target_callbacks); 193 194 if (!num_targets) 195 num_targets = KEYS_PER_NODE; 196 197 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 198 199 if (!num_targets) { 200 kfree(t); 201 return -ENOMEM; 202 } 203 204 if (alloc_targets(t, num_targets)) { 205 kfree(t); 206 return -ENOMEM; 207 } 208 209 t->mode = mode; 210 t->md = md; 211 *result = t; 212 return 0; 213 } 214 215 static void free_devices(struct list_head *devices, struct mapped_device *md) 216 { 217 struct list_head *tmp, *next; 218 219 list_for_each_safe(tmp, next, devices) { 220 struct dm_dev_internal *dd = 221 list_entry(tmp, struct dm_dev_internal, list); 222 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 223 dm_device_name(md), dd->dm_dev->name); 224 dm_put_table_device(md, dd->dm_dev); 225 kfree(dd); 226 } 227 } 228 229 void dm_table_destroy(struct dm_table *t) 230 { 231 unsigned int i; 232 233 if (!t) 234 return; 235 236 /* free the indexes */ 237 if (t->depth >= 2) 238 vfree(t->index[t->depth - 2]); 239 240 /* free the targets */ 241 for (i = 0; i < t->num_targets; i++) { 242 struct dm_target *tgt = t->targets + i; 243 244 if (tgt->type->dtr) 245 tgt->type->dtr(tgt); 246 247 dm_put_target_type(tgt->type); 248 } 249 250 vfree(t->highs); 251 252 /* free the device list */ 253 free_devices(&t->devices, t->md); 254 255 dm_free_md_mempools(t->mempools); 256 257 kfree(t); 258 } 259 260 /* 261 * See if we've already got a device in the list. 262 */ 263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 264 { 265 struct dm_dev_internal *dd; 266 267 list_for_each_entry (dd, l, list) 268 if (dd->dm_dev->bdev->bd_dev == dev) 269 return dd; 270 271 return NULL; 272 } 273 274 /* 275 * If possible, this checks an area of a destination device is invalid. 276 */ 277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 278 sector_t start, sector_t len, void *data) 279 { 280 struct request_queue *q; 281 struct queue_limits *limits = data; 282 struct block_device *bdev = dev->bdev; 283 sector_t dev_size = 284 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 285 unsigned short logical_block_size_sectors = 286 limits->logical_block_size >> SECTOR_SHIFT; 287 char b[BDEVNAME_SIZE]; 288 289 /* 290 * Some devices exist without request functions, 291 * such as loop devices not yet bound to backing files. 292 * Forbid the use of such devices. 293 */ 294 q = bdev_get_queue(bdev); 295 if (!q || !q->make_request_fn) { 296 DMWARN("%s: %s is not yet initialised: " 297 "start=%llu, len=%llu, dev_size=%llu", 298 dm_device_name(ti->table->md), bdevname(bdev, b), 299 (unsigned long long)start, 300 (unsigned long long)len, 301 (unsigned long long)dev_size); 302 return 1; 303 } 304 305 if (!dev_size) 306 return 0; 307 308 if ((start >= dev_size) || (start + len > dev_size)) { 309 DMWARN("%s: %s too small for target: " 310 "start=%llu, len=%llu, dev_size=%llu", 311 dm_device_name(ti->table->md), bdevname(bdev, b), 312 (unsigned long long)start, 313 (unsigned long long)len, 314 (unsigned long long)dev_size); 315 return 1; 316 } 317 318 if (logical_block_size_sectors <= 1) 319 return 0; 320 321 if (start & (logical_block_size_sectors - 1)) { 322 DMWARN("%s: start=%llu not aligned to h/w " 323 "logical block size %u of %s", 324 dm_device_name(ti->table->md), 325 (unsigned long long)start, 326 limits->logical_block_size, bdevname(bdev, b)); 327 return 1; 328 } 329 330 if (len & (logical_block_size_sectors - 1)) { 331 DMWARN("%s: len=%llu not aligned to h/w " 332 "logical block size %u of %s", 333 dm_device_name(ti->table->md), 334 (unsigned long long)len, 335 limits->logical_block_size, bdevname(bdev, b)); 336 return 1; 337 } 338 339 return 0; 340 } 341 342 /* 343 * This upgrades the mode on an already open dm_dev, being 344 * careful to leave things as they were if we fail to reopen the 345 * device and not to touch the existing bdev field in case 346 * it is accessed concurrently inside dm_table_any_congested(). 347 */ 348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 349 struct mapped_device *md) 350 { 351 int r; 352 struct dm_dev *old_dev, *new_dev; 353 354 old_dev = dd->dm_dev; 355 356 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 357 dd->dm_dev->mode | new_mode, &new_dev); 358 if (r) 359 return r; 360 361 dd->dm_dev = new_dev; 362 dm_put_table_device(md, old_dev); 363 364 return 0; 365 } 366 367 /* 368 * Add a device to the list, or just increment the usage count if 369 * it's already present. 370 */ 371 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 372 struct dm_dev **result) 373 { 374 int r; 375 dev_t uninitialized_var(dev); 376 struct dm_dev_internal *dd; 377 struct dm_table *t = ti->table; 378 struct block_device *bdev; 379 380 BUG_ON(!t); 381 382 /* convert the path to a device */ 383 bdev = lookup_bdev(path); 384 if (IS_ERR(bdev)) { 385 dev = name_to_dev_t(path); 386 if (!dev) 387 return -ENODEV; 388 } else { 389 dev = bdev->bd_dev; 390 bdput(bdev); 391 } 392 393 dd = find_device(&t->devices, dev); 394 if (!dd) { 395 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 396 if (!dd) 397 return -ENOMEM; 398 399 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 400 kfree(dd); 401 return r; 402 } 403 404 atomic_set(&dd->count, 0); 405 list_add(&dd->list, &t->devices); 406 407 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 408 r = upgrade_mode(dd, mode, t->md); 409 if (r) 410 return r; 411 } 412 atomic_inc(&dd->count); 413 414 *result = dd->dm_dev; 415 return 0; 416 } 417 EXPORT_SYMBOL(dm_get_device); 418 419 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 420 sector_t start, sector_t len, void *data) 421 { 422 struct queue_limits *limits = data; 423 struct block_device *bdev = dev->bdev; 424 struct request_queue *q = bdev_get_queue(bdev); 425 char b[BDEVNAME_SIZE]; 426 427 if (unlikely(!q)) { 428 DMWARN("%s: Cannot set limits for nonexistent device %s", 429 dm_device_name(ti->table->md), bdevname(bdev, b)); 430 return 0; 431 } 432 433 if (bdev_stack_limits(limits, bdev, start) < 0) 434 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 435 "physical_block_size=%u, logical_block_size=%u, " 436 "alignment_offset=%u, start=%llu", 437 dm_device_name(ti->table->md), bdevname(bdev, b), 438 q->limits.physical_block_size, 439 q->limits.logical_block_size, 440 q->limits.alignment_offset, 441 (unsigned long long) start << SECTOR_SHIFT); 442 443 return 0; 444 } 445 446 /* 447 * Decrement a device's use count and remove it if necessary. 448 */ 449 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 450 { 451 int found = 0; 452 struct list_head *devices = &ti->table->devices; 453 struct dm_dev_internal *dd; 454 455 list_for_each_entry(dd, devices, list) { 456 if (dd->dm_dev == d) { 457 found = 1; 458 break; 459 } 460 } 461 if (!found) { 462 DMWARN("%s: device %s not in table devices list", 463 dm_device_name(ti->table->md), d->name); 464 return; 465 } 466 if (atomic_dec_and_test(&dd->count)) { 467 dm_put_table_device(ti->table->md, d); 468 list_del(&dd->list); 469 kfree(dd); 470 } 471 } 472 EXPORT_SYMBOL(dm_put_device); 473 474 /* 475 * Checks to see if the target joins onto the end of the table. 476 */ 477 static int adjoin(struct dm_table *table, struct dm_target *ti) 478 { 479 struct dm_target *prev; 480 481 if (!table->num_targets) 482 return !ti->begin; 483 484 prev = &table->targets[table->num_targets - 1]; 485 return (ti->begin == (prev->begin + prev->len)); 486 } 487 488 /* 489 * Used to dynamically allocate the arg array. 490 * 491 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 492 * process messages even if some device is suspended. These messages have a 493 * small fixed number of arguments. 494 * 495 * On the other hand, dm-switch needs to process bulk data using messages and 496 * excessive use of GFP_NOIO could cause trouble. 497 */ 498 static char **realloc_argv(unsigned *array_size, char **old_argv) 499 { 500 char **argv; 501 unsigned new_size; 502 gfp_t gfp; 503 504 if (*array_size) { 505 new_size = *array_size * 2; 506 gfp = GFP_KERNEL; 507 } else { 508 new_size = 8; 509 gfp = GFP_NOIO; 510 } 511 argv = kmalloc(new_size * sizeof(*argv), gfp); 512 if (argv) { 513 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 514 *array_size = new_size; 515 } 516 517 kfree(old_argv); 518 return argv; 519 } 520 521 /* 522 * Destructively splits up the argument list to pass to ctr. 523 */ 524 int dm_split_args(int *argc, char ***argvp, char *input) 525 { 526 char *start, *end = input, *out, **argv = NULL; 527 unsigned array_size = 0; 528 529 *argc = 0; 530 531 if (!input) { 532 *argvp = NULL; 533 return 0; 534 } 535 536 argv = realloc_argv(&array_size, argv); 537 if (!argv) 538 return -ENOMEM; 539 540 while (1) { 541 /* Skip whitespace */ 542 start = skip_spaces(end); 543 544 if (!*start) 545 break; /* success, we hit the end */ 546 547 /* 'out' is used to remove any back-quotes */ 548 end = out = start; 549 while (*end) { 550 /* Everything apart from '\0' can be quoted */ 551 if (*end == '\\' && *(end + 1)) { 552 *out++ = *(end + 1); 553 end += 2; 554 continue; 555 } 556 557 if (isspace(*end)) 558 break; /* end of token */ 559 560 *out++ = *end++; 561 } 562 563 /* have we already filled the array ? */ 564 if ((*argc + 1) > array_size) { 565 argv = realloc_argv(&array_size, argv); 566 if (!argv) 567 return -ENOMEM; 568 } 569 570 /* we know this is whitespace */ 571 if (*end) 572 end++; 573 574 /* terminate the string and put it in the array */ 575 *out = '\0'; 576 argv[*argc] = start; 577 (*argc)++; 578 } 579 580 *argvp = argv; 581 return 0; 582 } 583 584 /* 585 * Impose necessary and sufficient conditions on a devices's table such 586 * that any incoming bio which respects its logical_block_size can be 587 * processed successfully. If it falls across the boundary between 588 * two or more targets, the size of each piece it gets split into must 589 * be compatible with the logical_block_size of the target processing it. 590 */ 591 static int validate_hardware_logical_block_alignment(struct dm_table *table, 592 struct queue_limits *limits) 593 { 594 /* 595 * This function uses arithmetic modulo the logical_block_size 596 * (in units of 512-byte sectors). 597 */ 598 unsigned short device_logical_block_size_sects = 599 limits->logical_block_size >> SECTOR_SHIFT; 600 601 /* 602 * Offset of the start of the next table entry, mod logical_block_size. 603 */ 604 unsigned short next_target_start = 0; 605 606 /* 607 * Given an aligned bio that extends beyond the end of a 608 * target, how many sectors must the next target handle? 609 */ 610 unsigned short remaining = 0; 611 612 struct dm_target *uninitialized_var(ti); 613 struct queue_limits ti_limits; 614 unsigned i = 0; 615 616 /* 617 * Check each entry in the table in turn. 618 */ 619 while (i < dm_table_get_num_targets(table)) { 620 ti = dm_table_get_target(table, i++); 621 622 blk_set_stacking_limits(&ti_limits); 623 624 /* combine all target devices' limits */ 625 if (ti->type->iterate_devices) 626 ti->type->iterate_devices(ti, dm_set_device_limits, 627 &ti_limits); 628 629 /* 630 * If the remaining sectors fall entirely within this 631 * table entry are they compatible with its logical_block_size? 632 */ 633 if (remaining < ti->len && 634 remaining & ((ti_limits.logical_block_size >> 635 SECTOR_SHIFT) - 1)) 636 break; /* Error */ 637 638 next_target_start = 639 (unsigned short) ((next_target_start + ti->len) & 640 (device_logical_block_size_sects - 1)); 641 remaining = next_target_start ? 642 device_logical_block_size_sects - next_target_start : 0; 643 } 644 645 if (remaining) { 646 DMWARN("%s: table line %u (start sect %llu len %llu) " 647 "not aligned to h/w logical block size %u", 648 dm_device_name(table->md), i, 649 (unsigned long long) ti->begin, 650 (unsigned long long) ti->len, 651 limits->logical_block_size); 652 return -EINVAL; 653 } 654 655 return 0; 656 } 657 658 int dm_table_add_target(struct dm_table *t, const char *type, 659 sector_t start, sector_t len, char *params) 660 { 661 int r = -EINVAL, argc; 662 char **argv; 663 struct dm_target *tgt; 664 665 if (t->singleton) { 666 DMERR("%s: target type %s must appear alone in table", 667 dm_device_name(t->md), t->targets->type->name); 668 return -EINVAL; 669 } 670 671 BUG_ON(t->num_targets >= t->num_allocated); 672 673 tgt = t->targets + t->num_targets; 674 memset(tgt, 0, sizeof(*tgt)); 675 676 if (!len) { 677 DMERR("%s: zero-length target", dm_device_name(t->md)); 678 return -EINVAL; 679 } 680 681 tgt->type = dm_get_target_type(type); 682 if (!tgt->type) { 683 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 684 type); 685 return -EINVAL; 686 } 687 688 if (dm_target_needs_singleton(tgt->type)) { 689 if (t->num_targets) { 690 DMERR("%s: target type %s must appear alone in table", 691 dm_device_name(t->md), type); 692 return -EINVAL; 693 } 694 t->singleton = 1; 695 } 696 697 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 698 DMERR("%s: target type %s may not be included in read-only tables", 699 dm_device_name(t->md), type); 700 return -EINVAL; 701 } 702 703 if (t->immutable_target_type) { 704 if (t->immutable_target_type != tgt->type) { 705 DMERR("%s: immutable target type %s cannot be mixed with other target types", 706 dm_device_name(t->md), t->immutable_target_type->name); 707 return -EINVAL; 708 } 709 } else if (dm_target_is_immutable(tgt->type)) { 710 if (t->num_targets) { 711 DMERR("%s: immutable target type %s cannot be mixed with other target types", 712 dm_device_name(t->md), tgt->type->name); 713 return -EINVAL; 714 } 715 t->immutable_target_type = tgt->type; 716 } 717 718 tgt->table = t; 719 tgt->begin = start; 720 tgt->len = len; 721 tgt->error = "Unknown error"; 722 723 /* 724 * Does this target adjoin the previous one ? 725 */ 726 if (!adjoin(t, tgt)) { 727 tgt->error = "Gap in table"; 728 r = -EINVAL; 729 goto bad; 730 } 731 732 r = dm_split_args(&argc, &argv, params); 733 if (r) { 734 tgt->error = "couldn't split parameters (insufficient memory)"; 735 goto bad; 736 } 737 738 r = tgt->type->ctr(tgt, argc, argv); 739 kfree(argv); 740 if (r) 741 goto bad; 742 743 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 744 745 if (!tgt->num_discard_bios && tgt->discards_supported) 746 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 747 dm_device_name(t->md), type); 748 749 return 0; 750 751 bad: 752 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 753 dm_put_target_type(tgt->type); 754 return r; 755 } 756 757 /* 758 * Target argument parsing helpers. 759 */ 760 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 761 unsigned *value, char **error, unsigned grouped) 762 { 763 const char *arg_str = dm_shift_arg(arg_set); 764 char dummy; 765 766 if (!arg_str || 767 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 768 (*value < arg->min) || 769 (*value > arg->max) || 770 (grouped && arg_set->argc < *value)) { 771 *error = arg->error; 772 return -EINVAL; 773 } 774 775 return 0; 776 } 777 778 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 779 unsigned *value, char **error) 780 { 781 return validate_next_arg(arg, arg_set, value, error, 0); 782 } 783 EXPORT_SYMBOL(dm_read_arg); 784 785 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 786 unsigned *value, char **error) 787 { 788 return validate_next_arg(arg, arg_set, value, error, 1); 789 } 790 EXPORT_SYMBOL(dm_read_arg_group); 791 792 const char *dm_shift_arg(struct dm_arg_set *as) 793 { 794 char *r; 795 796 if (as->argc) { 797 as->argc--; 798 r = *as->argv; 799 as->argv++; 800 return r; 801 } 802 803 return NULL; 804 } 805 EXPORT_SYMBOL(dm_shift_arg); 806 807 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 808 { 809 BUG_ON(as->argc < num_args); 810 as->argc -= num_args; 811 as->argv += num_args; 812 } 813 EXPORT_SYMBOL(dm_consume_args); 814 815 static bool __table_type_request_based(unsigned table_type) 816 { 817 return (table_type == DM_TYPE_REQUEST_BASED || 818 table_type == DM_TYPE_MQ_REQUEST_BASED); 819 } 820 821 static int dm_table_set_type(struct dm_table *t) 822 { 823 unsigned i; 824 unsigned bio_based = 0, request_based = 0, hybrid = 0; 825 bool use_blk_mq = false; 826 struct dm_target *tgt; 827 struct dm_dev_internal *dd; 828 struct list_head *devices; 829 unsigned live_md_type = dm_get_md_type(t->md); 830 831 for (i = 0; i < t->num_targets; i++) { 832 tgt = t->targets + i; 833 if (dm_target_hybrid(tgt)) 834 hybrid = 1; 835 else if (dm_target_request_based(tgt)) 836 request_based = 1; 837 else 838 bio_based = 1; 839 840 if (bio_based && request_based) { 841 DMWARN("Inconsistent table: different target types" 842 " can't be mixed up"); 843 return -EINVAL; 844 } 845 } 846 847 if (hybrid && !bio_based && !request_based) { 848 /* 849 * The targets can work either way. 850 * Determine the type from the live device. 851 * Default to bio-based if device is new. 852 */ 853 if (__table_type_request_based(live_md_type)) 854 request_based = 1; 855 else 856 bio_based = 1; 857 } 858 859 if (bio_based) { 860 /* We must use this table as bio-based */ 861 t->type = DM_TYPE_BIO_BASED; 862 return 0; 863 } 864 865 BUG_ON(!request_based); /* No targets in this table */ 866 867 /* 868 * Request-based dm supports only tables that have a single target now. 869 * To support multiple targets, request splitting support is needed, 870 * and that needs lots of changes in the block-layer. 871 * (e.g. request completion process for partial completion.) 872 */ 873 if (t->num_targets > 1) { 874 DMWARN("Request-based dm doesn't support multiple targets yet"); 875 return -EINVAL; 876 } 877 878 /* Non-request-stackable devices can't be used for request-based dm */ 879 devices = dm_table_get_devices(t); 880 list_for_each_entry(dd, devices, list) { 881 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 882 883 if (!blk_queue_stackable(q)) { 884 DMERR("table load rejected: including" 885 " non-request-stackable devices"); 886 return -EINVAL; 887 } 888 889 if (q->mq_ops) 890 use_blk_mq = true; 891 } 892 893 if (use_blk_mq) { 894 /* verify _all_ devices in the table are blk-mq devices */ 895 list_for_each_entry(dd, devices, list) 896 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) { 897 DMERR("table load rejected: not all devices" 898 " are blk-mq request-stackable"); 899 return -EINVAL; 900 } 901 t->type = DM_TYPE_MQ_REQUEST_BASED; 902 903 } else if (list_empty(devices) && __table_type_request_based(live_md_type)) { 904 /* inherit live MD type */ 905 t->type = live_md_type; 906 907 } else 908 t->type = DM_TYPE_REQUEST_BASED; 909 910 return 0; 911 } 912 913 unsigned dm_table_get_type(struct dm_table *t) 914 { 915 return t->type; 916 } 917 918 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 919 { 920 return t->immutable_target_type; 921 } 922 923 bool dm_table_request_based(struct dm_table *t) 924 { 925 return __table_type_request_based(dm_table_get_type(t)); 926 } 927 928 bool dm_table_mq_request_based(struct dm_table *t) 929 { 930 return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED; 931 } 932 933 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 934 { 935 unsigned type = dm_table_get_type(t); 936 unsigned per_bio_data_size = 0; 937 struct dm_target *tgt; 938 unsigned i; 939 940 if (unlikely(type == DM_TYPE_NONE)) { 941 DMWARN("no table type is set, can't allocate mempools"); 942 return -EINVAL; 943 } 944 945 if (type == DM_TYPE_BIO_BASED) 946 for (i = 0; i < t->num_targets; i++) { 947 tgt = t->targets + i; 948 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size); 949 } 950 951 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size); 952 if (!t->mempools) 953 return -ENOMEM; 954 955 return 0; 956 } 957 958 void dm_table_free_md_mempools(struct dm_table *t) 959 { 960 dm_free_md_mempools(t->mempools); 961 t->mempools = NULL; 962 } 963 964 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 965 { 966 return t->mempools; 967 } 968 969 static int setup_indexes(struct dm_table *t) 970 { 971 int i; 972 unsigned int total = 0; 973 sector_t *indexes; 974 975 /* allocate the space for *all* the indexes */ 976 for (i = t->depth - 2; i >= 0; i--) { 977 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 978 total += t->counts[i]; 979 } 980 981 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 982 if (!indexes) 983 return -ENOMEM; 984 985 /* set up internal nodes, bottom-up */ 986 for (i = t->depth - 2; i >= 0; i--) { 987 t->index[i] = indexes; 988 indexes += (KEYS_PER_NODE * t->counts[i]); 989 setup_btree_index(i, t); 990 } 991 992 return 0; 993 } 994 995 /* 996 * Builds the btree to index the map. 997 */ 998 static int dm_table_build_index(struct dm_table *t) 999 { 1000 int r = 0; 1001 unsigned int leaf_nodes; 1002 1003 /* how many indexes will the btree have ? */ 1004 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1005 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1006 1007 /* leaf layer has already been set up */ 1008 t->counts[t->depth - 1] = leaf_nodes; 1009 t->index[t->depth - 1] = t->highs; 1010 1011 if (t->depth >= 2) 1012 r = setup_indexes(t); 1013 1014 return r; 1015 } 1016 1017 /* 1018 * Get a disk whose integrity profile reflects the table's profile. 1019 * If %match_all is true, all devices' profiles must match. 1020 * If %match_all is false, all devices must at least have an 1021 * allocated integrity profile; but uninitialized is ok. 1022 * Returns NULL if integrity support was inconsistent or unavailable. 1023 */ 1024 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 1025 bool match_all) 1026 { 1027 struct list_head *devices = dm_table_get_devices(t); 1028 struct dm_dev_internal *dd = NULL; 1029 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1030 1031 list_for_each_entry(dd, devices, list) { 1032 template_disk = dd->dm_dev->bdev->bd_disk; 1033 if (!blk_get_integrity(template_disk)) 1034 goto no_integrity; 1035 if (!match_all && !blk_integrity_is_initialized(template_disk)) 1036 continue; /* skip uninitialized profiles */ 1037 else if (prev_disk && 1038 blk_integrity_compare(prev_disk, template_disk) < 0) 1039 goto no_integrity; 1040 prev_disk = template_disk; 1041 } 1042 1043 return template_disk; 1044 1045 no_integrity: 1046 if (prev_disk) 1047 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1048 dm_device_name(t->md), 1049 prev_disk->disk_name, 1050 template_disk->disk_name); 1051 return NULL; 1052 } 1053 1054 /* 1055 * Register the mapped device for blk_integrity support if 1056 * the underlying devices have an integrity profile. But all devices 1057 * may not have matching profiles (checking all devices isn't reliable 1058 * during table load because this table may use other DM device(s) which 1059 * must be resumed before they will have an initialized integity profile). 1060 * Stacked DM devices force a 2 stage integrity profile validation: 1061 * 1 - during load, validate all initialized integrity profiles match 1062 * 2 - during resume, validate all integrity profiles match 1063 */ 1064 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 1065 { 1066 struct gendisk *template_disk = NULL; 1067 1068 template_disk = dm_table_get_integrity_disk(t, false); 1069 if (!template_disk) 1070 return 0; 1071 1072 if (!blk_integrity_is_initialized(dm_disk(md))) { 1073 t->integrity_supported = 1; 1074 return blk_integrity_register(dm_disk(md), NULL); 1075 } 1076 1077 /* 1078 * If DM device already has an initalized integrity 1079 * profile the new profile should not conflict. 1080 */ 1081 if (blk_integrity_is_initialized(template_disk) && 1082 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1083 DMWARN("%s: conflict with existing integrity profile: " 1084 "%s profile mismatch", 1085 dm_device_name(t->md), 1086 template_disk->disk_name); 1087 return 1; 1088 } 1089 1090 /* Preserve existing initialized integrity profile */ 1091 t->integrity_supported = 1; 1092 return 0; 1093 } 1094 1095 /* 1096 * Prepares the table for use by building the indices, 1097 * setting the type, and allocating mempools. 1098 */ 1099 int dm_table_complete(struct dm_table *t) 1100 { 1101 int r; 1102 1103 r = dm_table_set_type(t); 1104 if (r) { 1105 DMERR("unable to set table type"); 1106 return r; 1107 } 1108 1109 r = dm_table_build_index(t); 1110 if (r) { 1111 DMERR("unable to build btrees"); 1112 return r; 1113 } 1114 1115 r = dm_table_prealloc_integrity(t, t->md); 1116 if (r) { 1117 DMERR("could not register integrity profile."); 1118 return r; 1119 } 1120 1121 r = dm_table_alloc_md_mempools(t, t->md); 1122 if (r) 1123 DMERR("unable to allocate mempools"); 1124 1125 return r; 1126 } 1127 1128 static DEFINE_MUTEX(_event_lock); 1129 void dm_table_event_callback(struct dm_table *t, 1130 void (*fn)(void *), void *context) 1131 { 1132 mutex_lock(&_event_lock); 1133 t->event_fn = fn; 1134 t->event_context = context; 1135 mutex_unlock(&_event_lock); 1136 } 1137 1138 void dm_table_event(struct dm_table *t) 1139 { 1140 /* 1141 * You can no longer call dm_table_event() from interrupt 1142 * context, use a bottom half instead. 1143 */ 1144 BUG_ON(in_interrupt()); 1145 1146 mutex_lock(&_event_lock); 1147 if (t->event_fn) 1148 t->event_fn(t->event_context); 1149 mutex_unlock(&_event_lock); 1150 } 1151 EXPORT_SYMBOL(dm_table_event); 1152 1153 sector_t dm_table_get_size(struct dm_table *t) 1154 { 1155 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1156 } 1157 EXPORT_SYMBOL(dm_table_get_size); 1158 1159 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1160 { 1161 if (index >= t->num_targets) 1162 return NULL; 1163 1164 return t->targets + index; 1165 } 1166 1167 /* 1168 * Search the btree for the correct target. 1169 * 1170 * Caller should check returned pointer with dm_target_is_valid() 1171 * to trap I/O beyond end of device. 1172 */ 1173 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1174 { 1175 unsigned int l, n = 0, k = 0; 1176 sector_t *node; 1177 1178 for (l = 0; l < t->depth; l++) { 1179 n = get_child(n, k); 1180 node = get_node(t, l, n); 1181 1182 for (k = 0; k < KEYS_PER_NODE; k++) 1183 if (node[k] >= sector) 1184 break; 1185 } 1186 1187 return &t->targets[(KEYS_PER_NODE * n) + k]; 1188 } 1189 1190 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1191 sector_t start, sector_t len, void *data) 1192 { 1193 unsigned *num_devices = data; 1194 1195 (*num_devices)++; 1196 1197 return 0; 1198 } 1199 1200 /* 1201 * Check whether a table has no data devices attached using each 1202 * target's iterate_devices method. 1203 * Returns false if the result is unknown because a target doesn't 1204 * support iterate_devices. 1205 */ 1206 bool dm_table_has_no_data_devices(struct dm_table *table) 1207 { 1208 struct dm_target *uninitialized_var(ti); 1209 unsigned i = 0, num_devices = 0; 1210 1211 while (i < dm_table_get_num_targets(table)) { 1212 ti = dm_table_get_target(table, i++); 1213 1214 if (!ti->type->iterate_devices) 1215 return false; 1216 1217 ti->type->iterate_devices(ti, count_device, &num_devices); 1218 if (num_devices) 1219 return false; 1220 } 1221 1222 return true; 1223 } 1224 1225 /* 1226 * Establish the new table's queue_limits and validate them. 1227 */ 1228 int dm_calculate_queue_limits(struct dm_table *table, 1229 struct queue_limits *limits) 1230 { 1231 struct dm_target *uninitialized_var(ti); 1232 struct queue_limits ti_limits; 1233 unsigned i = 0; 1234 1235 blk_set_stacking_limits(limits); 1236 1237 while (i < dm_table_get_num_targets(table)) { 1238 blk_set_stacking_limits(&ti_limits); 1239 1240 ti = dm_table_get_target(table, i++); 1241 1242 if (!ti->type->iterate_devices) 1243 goto combine_limits; 1244 1245 /* 1246 * Combine queue limits of all the devices this target uses. 1247 */ 1248 ti->type->iterate_devices(ti, dm_set_device_limits, 1249 &ti_limits); 1250 1251 /* Set I/O hints portion of queue limits */ 1252 if (ti->type->io_hints) 1253 ti->type->io_hints(ti, &ti_limits); 1254 1255 /* 1256 * Check each device area is consistent with the target's 1257 * overall queue limits. 1258 */ 1259 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1260 &ti_limits)) 1261 return -EINVAL; 1262 1263 combine_limits: 1264 /* 1265 * Merge this target's queue limits into the overall limits 1266 * for the table. 1267 */ 1268 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1269 DMWARN("%s: adding target device " 1270 "(start sect %llu len %llu) " 1271 "caused an alignment inconsistency", 1272 dm_device_name(table->md), 1273 (unsigned long long) ti->begin, 1274 (unsigned long long) ti->len); 1275 } 1276 1277 return validate_hardware_logical_block_alignment(table, limits); 1278 } 1279 1280 /* 1281 * Set the integrity profile for this device if all devices used have 1282 * matching profiles. We're quite deep in the resume path but still 1283 * don't know if all devices (particularly DM devices this device 1284 * may be stacked on) have matching profiles. Even if the profiles 1285 * don't match we have no way to fail (to resume) at this point. 1286 */ 1287 static void dm_table_set_integrity(struct dm_table *t) 1288 { 1289 struct gendisk *template_disk = NULL; 1290 1291 if (!blk_get_integrity(dm_disk(t->md))) 1292 return; 1293 1294 template_disk = dm_table_get_integrity_disk(t, true); 1295 if (template_disk) 1296 blk_integrity_register(dm_disk(t->md), 1297 blk_get_integrity(template_disk)); 1298 else if (blk_integrity_is_initialized(dm_disk(t->md))) 1299 DMWARN("%s: device no longer has a valid integrity profile", 1300 dm_device_name(t->md)); 1301 else 1302 DMWARN("%s: unable to establish an integrity profile", 1303 dm_device_name(t->md)); 1304 } 1305 1306 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1307 sector_t start, sector_t len, void *data) 1308 { 1309 unsigned flush = (*(unsigned *)data); 1310 struct request_queue *q = bdev_get_queue(dev->bdev); 1311 1312 return q && (q->flush_flags & flush); 1313 } 1314 1315 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) 1316 { 1317 struct dm_target *ti; 1318 unsigned i = 0; 1319 1320 /* 1321 * Require at least one underlying device to support flushes. 1322 * t->devices includes internal dm devices such as mirror logs 1323 * so we need to use iterate_devices here, which targets 1324 * supporting flushes must provide. 1325 */ 1326 while (i < dm_table_get_num_targets(t)) { 1327 ti = dm_table_get_target(t, i++); 1328 1329 if (!ti->num_flush_bios) 1330 continue; 1331 1332 if (ti->flush_supported) 1333 return true; 1334 1335 if (ti->type->iterate_devices && 1336 ti->type->iterate_devices(ti, device_flush_capable, &flush)) 1337 return true; 1338 } 1339 1340 return false; 1341 } 1342 1343 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1344 { 1345 struct dm_target *ti; 1346 unsigned i = 0; 1347 1348 /* Ensure that all targets supports discard_zeroes_data. */ 1349 while (i < dm_table_get_num_targets(t)) { 1350 ti = dm_table_get_target(t, i++); 1351 1352 if (ti->discard_zeroes_data_unsupported) 1353 return false; 1354 } 1355 1356 return true; 1357 } 1358 1359 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1360 sector_t start, sector_t len, void *data) 1361 { 1362 struct request_queue *q = bdev_get_queue(dev->bdev); 1363 1364 return q && blk_queue_nonrot(q); 1365 } 1366 1367 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1368 sector_t start, sector_t len, void *data) 1369 { 1370 struct request_queue *q = bdev_get_queue(dev->bdev); 1371 1372 return q && !blk_queue_add_random(q); 1373 } 1374 1375 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1376 sector_t start, sector_t len, void *data) 1377 { 1378 struct request_queue *q = bdev_get_queue(dev->bdev); 1379 1380 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1381 } 1382 1383 static bool dm_table_all_devices_attribute(struct dm_table *t, 1384 iterate_devices_callout_fn func) 1385 { 1386 struct dm_target *ti; 1387 unsigned i = 0; 1388 1389 while (i < dm_table_get_num_targets(t)) { 1390 ti = dm_table_get_target(t, i++); 1391 1392 if (!ti->type->iterate_devices || 1393 !ti->type->iterate_devices(ti, func, NULL)) 1394 return false; 1395 } 1396 1397 return true; 1398 } 1399 1400 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1401 sector_t start, sector_t len, void *data) 1402 { 1403 struct request_queue *q = bdev_get_queue(dev->bdev); 1404 1405 return q && !q->limits.max_write_same_sectors; 1406 } 1407 1408 static bool dm_table_supports_write_same(struct dm_table *t) 1409 { 1410 struct dm_target *ti; 1411 unsigned i = 0; 1412 1413 while (i < dm_table_get_num_targets(t)) { 1414 ti = dm_table_get_target(t, i++); 1415 1416 if (!ti->num_write_same_bios) 1417 return false; 1418 1419 if (!ti->type->iterate_devices || 1420 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1421 return false; 1422 } 1423 1424 return true; 1425 } 1426 1427 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1428 sector_t start, sector_t len, void *data) 1429 { 1430 struct request_queue *q = bdev_get_queue(dev->bdev); 1431 1432 return q && blk_queue_discard(q); 1433 } 1434 1435 static bool dm_table_supports_discards(struct dm_table *t) 1436 { 1437 struct dm_target *ti; 1438 unsigned i = 0; 1439 1440 /* 1441 * Unless any target used by the table set discards_supported, 1442 * require at least one underlying device to support discards. 1443 * t->devices includes internal dm devices such as mirror logs 1444 * so we need to use iterate_devices here, which targets 1445 * supporting discard selectively must provide. 1446 */ 1447 while (i < dm_table_get_num_targets(t)) { 1448 ti = dm_table_get_target(t, i++); 1449 1450 if (!ti->num_discard_bios) 1451 continue; 1452 1453 if (ti->discards_supported) 1454 return true; 1455 1456 if (ti->type->iterate_devices && 1457 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1458 return true; 1459 } 1460 1461 return false; 1462 } 1463 1464 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1465 struct queue_limits *limits) 1466 { 1467 unsigned flush = 0; 1468 1469 /* 1470 * Copy table's limits to the DM device's request_queue 1471 */ 1472 q->limits = *limits; 1473 1474 if (!dm_table_supports_discards(t)) 1475 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1476 else 1477 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1478 1479 if (dm_table_supports_flush(t, REQ_FLUSH)) { 1480 flush |= REQ_FLUSH; 1481 if (dm_table_supports_flush(t, REQ_FUA)) 1482 flush |= REQ_FUA; 1483 } 1484 blk_queue_flush(q, flush); 1485 1486 if (!dm_table_discard_zeroes_data(t)) 1487 q->limits.discard_zeroes_data = 0; 1488 1489 /* Ensure that all underlying devices are non-rotational. */ 1490 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1491 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1492 else 1493 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1494 1495 if (!dm_table_supports_write_same(t)) 1496 q->limits.max_write_same_sectors = 0; 1497 1498 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1499 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1500 else 1501 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1502 1503 dm_table_set_integrity(t); 1504 1505 /* 1506 * Determine whether or not this queue's I/O timings contribute 1507 * to the entropy pool, Only request-based targets use this. 1508 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1509 * have it set. 1510 */ 1511 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1512 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1513 1514 /* 1515 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1516 * visible to other CPUs because, once the flag is set, incoming bios 1517 * are processed by request-based dm, which refers to the queue 1518 * settings. 1519 * Until the flag set, bios are passed to bio-based dm and queued to 1520 * md->deferred where queue settings are not needed yet. 1521 * Those bios are passed to request-based dm at the resume time. 1522 */ 1523 smp_mb(); 1524 if (dm_table_request_based(t)) 1525 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1526 } 1527 1528 unsigned int dm_table_get_num_targets(struct dm_table *t) 1529 { 1530 return t->num_targets; 1531 } 1532 1533 struct list_head *dm_table_get_devices(struct dm_table *t) 1534 { 1535 return &t->devices; 1536 } 1537 1538 fmode_t dm_table_get_mode(struct dm_table *t) 1539 { 1540 return t->mode; 1541 } 1542 EXPORT_SYMBOL(dm_table_get_mode); 1543 1544 enum suspend_mode { 1545 PRESUSPEND, 1546 PRESUSPEND_UNDO, 1547 POSTSUSPEND, 1548 }; 1549 1550 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1551 { 1552 int i = t->num_targets; 1553 struct dm_target *ti = t->targets; 1554 1555 while (i--) { 1556 switch (mode) { 1557 case PRESUSPEND: 1558 if (ti->type->presuspend) 1559 ti->type->presuspend(ti); 1560 break; 1561 case PRESUSPEND_UNDO: 1562 if (ti->type->presuspend_undo) 1563 ti->type->presuspend_undo(ti); 1564 break; 1565 case POSTSUSPEND: 1566 if (ti->type->postsuspend) 1567 ti->type->postsuspend(ti); 1568 break; 1569 } 1570 ti++; 1571 } 1572 } 1573 1574 void dm_table_presuspend_targets(struct dm_table *t) 1575 { 1576 if (!t) 1577 return; 1578 1579 suspend_targets(t, PRESUSPEND); 1580 } 1581 1582 void dm_table_presuspend_undo_targets(struct dm_table *t) 1583 { 1584 if (!t) 1585 return; 1586 1587 suspend_targets(t, PRESUSPEND_UNDO); 1588 } 1589 1590 void dm_table_postsuspend_targets(struct dm_table *t) 1591 { 1592 if (!t) 1593 return; 1594 1595 suspend_targets(t, POSTSUSPEND); 1596 } 1597 1598 int dm_table_resume_targets(struct dm_table *t) 1599 { 1600 int i, r = 0; 1601 1602 for (i = 0; i < t->num_targets; i++) { 1603 struct dm_target *ti = t->targets + i; 1604 1605 if (!ti->type->preresume) 1606 continue; 1607 1608 r = ti->type->preresume(ti); 1609 if (r) { 1610 DMERR("%s: %s: preresume failed, error = %d", 1611 dm_device_name(t->md), ti->type->name, r); 1612 return r; 1613 } 1614 } 1615 1616 for (i = 0; i < t->num_targets; i++) { 1617 struct dm_target *ti = t->targets + i; 1618 1619 if (ti->type->resume) 1620 ti->type->resume(ti); 1621 } 1622 1623 return 0; 1624 } 1625 1626 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1627 { 1628 list_add(&cb->list, &t->target_callbacks); 1629 } 1630 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1631 1632 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1633 { 1634 struct dm_dev_internal *dd; 1635 struct list_head *devices = dm_table_get_devices(t); 1636 struct dm_target_callbacks *cb; 1637 int r = 0; 1638 1639 list_for_each_entry(dd, devices, list) { 1640 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 1641 char b[BDEVNAME_SIZE]; 1642 1643 if (likely(q)) 1644 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1645 else 1646 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1647 dm_device_name(t->md), 1648 bdevname(dd->dm_dev->bdev, b)); 1649 } 1650 1651 list_for_each_entry(cb, &t->target_callbacks, list) 1652 if (cb->congested_fn) 1653 r |= cb->congested_fn(cb, bdi_bits); 1654 1655 return r; 1656 } 1657 1658 struct mapped_device *dm_table_get_md(struct dm_table *t) 1659 { 1660 return t->md; 1661 } 1662 EXPORT_SYMBOL(dm_table_get_md); 1663 1664 void dm_table_run_md_queue_async(struct dm_table *t) 1665 { 1666 struct mapped_device *md; 1667 struct request_queue *queue; 1668 unsigned long flags; 1669 1670 if (!dm_table_request_based(t)) 1671 return; 1672 1673 md = dm_table_get_md(t); 1674 queue = dm_get_md_queue(md); 1675 if (queue) { 1676 if (queue->mq_ops) 1677 blk_mq_run_hw_queues(queue, true); 1678 else { 1679 spin_lock_irqsave(queue->queue_lock, flags); 1680 blk_run_queue_async(queue); 1681 spin_unlock_irqrestore(queue->queue_lock, flags); 1682 } 1683 } 1684 } 1685 EXPORT_SYMBOL(dm_table_run_md_queue_async); 1686 1687