1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 struct dm_table { 30 struct mapped_device *md; 31 unsigned type; 32 33 /* btree table */ 34 unsigned int depth; 35 unsigned int counts[MAX_DEPTH]; /* in nodes */ 36 sector_t *index[MAX_DEPTH]; 37 38 unsigned int num_targets; 39 unsigned int num_allocated; 40 sector_t *highs; 41 struct dm_target *targets; 42 43 struct target_type *immutable_target_type; 44 unsigned integrity_supported:1; 45 unsigned singleton:1; 46 47 /* 48 * Indicates the rw permissions for the new logical 49 * device. This should be a combination of FMODE_READ 50 * and FMODE_WRITE. 51 */ 52 fmode_t mode; 53 54 /* a list of devices used by this table */ 55 struct list_head devices; 56 57 /* events get handed up using this callback */ 58 void (*event_fn)(void *); 59 void *event_context; 60 61 struct dm_md_mempools *mempools; 62 63 struct list_head target_callbacks; 64 }; 65 66 /* 67 * Similar to ceiling(log_size(n)) 68 */ 69 static unsigned int int_log(unsigned int n, unsigned int base) 70 { 71 int result = 0; 72 73 while (n > 1) { 74 n = dm_div_up(n, base); 75 result++; 76 } 77 78 return result; 79 } 80 81 /* 82 * Calculate the index of the child node of the n'th node k'th key. 83 */ 84 static inline unsigned int get_child(unsigned int n, unsigned int k) 85 { 86 return (n * CHILDREN_PER_NODE) + k; 87 } 88 89 /* 90 * Return the n'th node of level l from table t. 91 */ 92 static inline sector_t *get_node(struct dm_table *t, 93 unsigned int l, unsigned int n) 94 { 95 return t->index[l] + (n * KEYS_PER_NODE); 96 } 97 98 /* 99 * Return the highest key that you could lookup from the n'th 100 * node on level l of the btree. 101 */ 102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 103 { 104 for (; l < t->depth - 1; l++) 105 n = get_child(n, CHILDREN_PER_NODE - 1); 106 107 if (n >= t->counts[l]) 108 return (sector_t) - 1; 109 110 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 111 } 112 113 /* 114 * Fills in a level of the btree based on the highs of the level 115 * below it. 116 */ 117 static int setup_btree_index(unsigned int l, struct dm_table *t) 118 { 119 unsigned int n, k; 120 sector_t *node; 121 122 for (n = 0U; n < t->counts[l]; n++) { 123 node = get_node(t, l, n); 124 125 for (k = 0U; k < KEYS_PER_NODE; k++) 126 node[k] = high(t, l + 1, get_child(n, k)); 127 } 128 129 return 0; 130 } 131 132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 133 { 134 unsigned long size; 135 void *addr; 136 137 /* 138 * Check that we're not going to overflow. 139 */ 140 if (nmemb > (ULONG_MAX / elem_size)) 141 return NULL; 142 143 size = nmemb * elem_size; 144 addr = vzalloc(size); 145 146 return addr; 147 } 148 EXPORT_SYMBOL(dm_vcalloc); 149 150 /* 151 * highs, and targets are managed as dynamic arrays during a 152 * table load. 153 */ 154 static int alloc_targets(struct dm_table *t, unsigned int num) 155 { 156 sector_t *n_highs; 157 struct dm_target *n_targets; 158 159 /* 160 * Allocate both the target array and offset array at once. 161 * Append an empty entry to catch sectors beyond the end of 162 * the device. 163 */ 164 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 165 sizeof(sector_t)); 166 if (!n_highs) 167 return -ENOMEM; 168 169 n_targets = (struct dm_target *) (n_highs + num); 170 171 memset(n_highs, -1, sizeof(*n_highs) * num); 172 vfree(t->highs); 173 174 t->num_allocated = num; 175 t->highs = n_highs; 176 t->targets = n_targets; 177 178 return 0; 179 } 180 181 int dm_table_create(struct dm_table **result, fmode_t mode, 182 unsigned num_targets, struct mapped_device *md) 183 { 184 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 185 186 if (!t) 187 return -ENOMEM; 188 189 INIT_LIST_HEAD(&t->devices); 190 INIT_LIST_HEAD(&t->target_callbacks); 191 192 if (!num_targets) 193 num_targets = KEYS_PER_NODE; 194 195 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 196 197 if (!num_targets) { 198 kfree(t); 199 return -ENOMEM; 200 } 201 202 if (alloc_targets(t, num_targets)) { 203 kfree(t); 204 return -ENOMEM; 205 } 206 207 t->mode = mode; 208 t->md = md; 209 *result = t; 210 return 0; 211 } 212 213 static void free_devices(struct list_head *devices) 214 { 215 struct list_head *tmp, *next; 216 217 list_for_each_safe(tmp, next, devices) { 218 struct dm_dev_internal *dd = 219 list_entry(tmp, struct dm_dev_internal, list); 220 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 221 dd->dm_dev.name); 222 kfree(dd); 223 } 224 } 225 226 void dm_table_destroy(struct dm_table *t) 227 { 228 unsigned int i; 229 230 if (!t) 231 return; 232 233 /* free the indexes */ 234 if (t->depth >= 2) 235 vfree(t->index[t->depth - 2]); 236 237 /* free the targets */ 238 for (i = 0; i < t->num_targets; i++) { 239 struct dm_target *tgt = t->targets + i; 240 241 if (tgt->type->dtr) 242 tgt->type->dtr(tgt); 243 244 dm_put_target_type(tgt->type); 245 } 246 247 vfree(t->highs); 248 249 /* free the device list */ 250 free_devices(&t->devices); 251 252 dm_free_md_mempools(t->mempools); 253 254 kfree(t); 255 } 256 257 /* 258 * See if we've already got a device in the list. 259 */ 260 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 261 { 262 struct dm_dev_internal *dd; 263 264 list_for_each_entry (dd, l, list) 265 if (dd->dm_dev.bdev->bd_dev == dev) 266 return dd; 267 268 return NULL; 269 } 270 271 /* 272 * Open a device so we can use it as a map destination. 273 */ 274 static int open_dev(struct dm_dev_internal *d, dev_t dev, 275 struct mapped_device *md) 276 { 277 static char *_claim_ptr = "I belong to device-mapper"; 278 struct block_device *bdev; 279 280 int r; 281 282 BUG_ON(d->dm_dev.bdev); 283 284 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 285 if (IS_ERR(bdev)) 286 return PTR_ERR(bdev); 287 288 r = bd_link_disk_holder(bdev, dm_disk(md)); 289 if (r) { 290 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 291 return r; 292 } 293 294 d->dm_dev.bdev = bdev; 295 return 0; 296 } 297 298 /* 299 * Close a device that we've been using. 300 */ 301 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 302 { 303 if (!d->dm_dev.bdev) 304 return; 305 306 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 307 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 308 d->dm_dev.bdev = NULL; 309 } 310 311 /* 312 * If possible, this checks an area of a destination device is invalid. 313 */ 314 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 315 sector_t start, sector_t len, void *data) 316 { 317 struct request_queue *q; 318 struct queue_limits *limits = data; 319 struct block_device *bdev = dev->bdev; 320 sector_t dev_size = 321 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 322 unsigned short logical_block_size_sectors = 323 limits->logical_block_size >> SECTOR_SHIFT; 324 char b[BDEVNAME_SIZE]; 325 326 /* 327 * Some devices exist without request functions, 328 * such as loop devices not yet bound to backing files. 329 * Forbid the use of such devices. 330 */ 331 q = bdev_get_queue(bdev); 332 if (!q || !q->make_request_fn) { 333 DMWARN("%s: %s is not yet initialised: " 334 "start=%llu, len=%llu, dev_size=%llu", 335 dm_device_name(ti->table->md), bdevname(bdev, b), 336 (unsigned long long)start, 337 (unsigned long long)len, 338 (unsigned long long)dev_size); 339 return 1; 340 } 341 342 if (!dev_size) 343 return 0; 344 345 if ((start >= dev_size) || (start + len > dev_size)) { 346 DMWARN("%s: %s too small for target: " 347 "start=%llu, len=%llu, dev_size=%llu", 348 dm_device_name(ti->table->md), bdevname(bdev, b), 349 (unsigned long long)start, 350 (unsigned long long)len, 351 (unsigned long long)dev_size); 352 return 1; 353 } 354 355 if (logical_block_size_sectors <= 1) 356 return 0; 357 358 if (start & (logical_block_size_sectors - 1)) { 359 DMWARN("%s: start=%llu not aligned to h/w " 360 "logical block size %u of %s", 361 dm_device_name(ti->table->md), 362 (unsigned long long)start, 363 limits->logical_block_size, bdevname(bdev, b)); 364 return 1; 365 } 366 367 if (len & (logical_block_size_sectors - 1)) { 368 DMWARN("%s: len=%llu not aligned to h/w " 369 "logical block size %u of %s", 370 dm_device_name(ti->table->md), 371 (unsigned long long)len, 372 limits->logical_block_size, bdevname(bdev, b)); 373 return 1; 374 } 375 376 return 0; 377 } 378 379 /* 380 * This upgrades the mode on an already open dm_dev, being 381 * careful to leave things as they were if we fail to reopen the 382 * device and not to touch the existing bdev field in case 383 * it is accessed concurrently inside dm_table_any_congested(). 384 */ 385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 386 struct mapped_device *md) 387 { 388 int r; 389 struct dm_dev_internal dd_new, dd_old; 390 391 dd_new = dd_old = *dd; 392 393 dd_new.dm_dev.mode |= new_mode; 394 dd_new.dm_dev.bdev = NULL; 395 396 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 397 if (r) 398 return r; 399 400 dd->dm_dev.mode |= new_mode; 401 close_dev(&dd_old, md); 402 403 return 0; 404 } 405 406 /* 407 * Add a device to the list, or just increment the usage count if 408 * it's already present. 409 */ 410 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 411 struct dm_dev **result) 412 { 413 int r; 414 dev_t uninitialized_var(dev); 415 struct dm_dev_internal *dd; 416 unsigned int major, minor; 417 struct dm_table *t = ti->table; 418 char dummy; 419 420 BUG_ON(!t); 421 422 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 423 /* Extract the major/minor numbers */ 424 dev = MKDEV(major, minor); 425 if (MAJOR(dev) != major || MINOR(dev) != minor) 426 return -EOVERFLOW; 427 } else { 428 /* convert the path to a device */ 429 struct block_device *bdev = lookup_bdev(path); 430 431 if (IS_ERR(bdev)) 432 return PTR_ERR(bdev); 433 dev = bdev->bd_dev; 434 bdput(bdev); 435 } 436 437 dd = find_device(&t->devices, dev); 438 if (!dd) { 439 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 440 if (!dd) 441 return -ENOMEM; 442 443 dd->dm_dev.mode = mode; 444 dd->dm_dev.bdev = NULL; 445 446 if ((r = open_dev(dd, dev, t->md))) { 447 kfree(dd); 448 return r; 449 } 450 451 format_dev_t(dd->dm_dev.name, dev); 452 453 atomic_set(&dd->count, 0); 454 list_add(&dd->list, &t->devices); 455 456 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 457 r = upgrade_mode(dd, mode, t->md); 458 if (r) 459 return r; 460 } 461 atomic_inc(&dd->count); 462 463 *result = &dd->dm_dev; 464 return 0; 465 } 466 EXPORT_SYMBOL(dm_get_device); 467 468 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 469 sector_t start, sector_t len, void *data) 470 { 471 struct queue_limits *limits = data; 472 struct block_device *bdev = dev->bdev; 473 struct request_queue *q = bdev_get_queue(bdev); 474 char b[BDEVNAME_SIZE]; 475 476 if (unlikely(!q)) { 477 DMWARN("%s: Cannot set limits for nonexistent device %s", 478 dm_device_name(ti->table->md), bdevname(bdev, b)); 479 return 0; 480 } 481 482 if (bdev_stack_limits(limits, bdev, start) < 0) 483 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 484 "physical_block_size=%u, logical_block_size=%u, " 485 "alignment_offset=%u, start=%llu", 486 dm_device_name(ti->table->md), bdevname(bdev, b), 487 q->limits.physical_block_size, 488 q->limits.logical_block_size, 489 q->limits.alignment_offset, 490 (unsigned long long) start << SECTOR_SHIFT); 491 492 /* 493 * Check if merge fn is supported. 494 * If not we'll force DM to use PAGE_SIZE or 495 * smaller I/O, just to be safe. 496 */ 497 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge) 498 blk_limits_max_hw_sectors(limits, 499 (unsigned int) (PAGE_SIZE >> 9)); 500 return 0; 501 } 502 EXPORT_SYMBOL_GPL(dm_set_device_limits); 503 504 /* 505 * Decrement a device's use count and remove it if necessary. 506 */ 507 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 508 { 509 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 510 dm_dev); 511 512 if (atomic_dec_and_test(&dd->count)) { 513 close_dev(dd, ti->table->md); 514 list_del(&dd->list); 515 kfree(dd); 516 } 517 } 518 EXPORT_SYMBOL(dm_put_device); 519 520 /* 521 * Checks to see if the target joins onto the end of the table. 522 */ 523 static int adjoin(struct dm_table *table, struct dm_target *ti) 524 { 525 struct dm_target *prev; 526 527 if (!table->num_targets) 528 return !ti->begin; 529 530 prev = &table->targets[table->num_targets - 1]; 531 return (ti->begin == (prev->begin + prev->len)); 532 } 533 534 /* 535 * Used to dynamically allocate the arg array. 536 * 537 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 538 * process messages even if some device is suspended. These messages have a 539 * small fixed number of arguments. 540 * 541 * On the other hand, dm-switch needs to process bulk data using messages and 542 * excessive use of GFP_NOIO could cause trouble. 543 */ 544 static char **realloc_argv(unsigned *array_size, char **old_argv) 545 { 546 char **argv; 547 unsigned new_size; 548 gfp_t gfp; 549 550 if (*array_size) { 551 new_size = *array_size * 2; 552 gfp = GFP_KERNEL; 553 } else { 554 new_size = 8; 555 gfp = GFP_NOIO; 556 } 557 argv = kmalloc(new_size * sizeof(*argv), gfp); 558 if (argv) { 559 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 560 *array_size = new_size; 561 } 562 563 kfree(old_argv); 564 return argv; 565 } 566 567 /* 568 * Destructively splits up the argument list to pass to ctr. 569 */ 570 int dm_split_args(int *argc, char ***argvp, char *input) 571 { 572 char *start, *end = input, *out, **argv = NULL; 573 unsigned array_size = 0; 574 575 *argc = 0; 576 577 if (!input) { 578 *argvp = NULL; 579 return 0; 580 } 581 582 argv = realloc_argv(&array_size, argv); 583 if (!argv) 584 return -ENOMEM; 585 586 while (1) { 587 /* Skip whitespace */ 588 start = skip_spaces(end); 589 590 if (!*start) 591 break; /* success, we hit the end */ 592 593 /* 'out' is used to remove any back-quotes */ 594 end = out = start; 595 while (*end) { 596 /* Everything apart from '\0' can be quoted */ 597 if (*end == '\\' && *(end + 1)) { 598 *out++ = *(end + 1); 599 end += 2; 600 continue; 601 } 602 603 if (isspace(*end)) 604 break; /* end of token */ 605 606 *out++ = *end++; 607 } 608 609 /* have we already filled the array ? */ 610 if ((*argc + 1) > array_size) { 611 argv = realloc_argv(&array_size, argv); 612 if (!argv) 613 return -ENOMEM; 614 } 615 616 /* we know this is whitespace */ 617 if (*end) 618 end++; 619 620 /* terminate the string and put it in the array */ 621 *out = '\0'; 622 argv[*argc] = start; 623 (*argc)++; 624 } 625 626 *argvp = argv; 627 return 0; 628 } 629 630 /* 631 * Impose necessary and sufficient conditions on a devices's table such 632 * that any incoming bio which respects its logical_block_size can be 633 * processed successfully. If it falls across the boundary between 634 * two or more targets, the size of each piece it gets split into must 635 * be compatible with the logical_block_size of the target processing it. 636 */ 637 static int validate_hardware_logical_block_alignment(struct dm_table *table, 638 struct queue_limits *limits) 639 { 640 /* 641 * This function uses arithmetic modulo the logical_block_size 642 * (in units of 512-byte sectors). 643 */ 644 unsigned short device_logical_block_size_sects = 645 limits->logical_block_size >> SECTOR_SHIFT; 646 647 /* 648 * Offset of the start of the next table entry, mod logical_block_size. 649 */ 650 unsigned short next_target_start = 0; 651 652 /* 653 * Given an aligned bio that extends beyond the end of a 654 * target, how many sectors must the next target handle? 655 */ 656 unsigned short remaining = 0; 657 658 struct dm_target *uninitialized_var(ti); 659 struct queue_limits ti_limits; 660 unsigned i = 0; 661 662 /* 663 * Check each entry in the table in turn. 664 */ 665 while (i < dm_table_get_num_targets(table)) { 666 ti = dm_table_get_target(table, i++); 667 668 blk_set_stacking_limits(&ti_limits); 669 670 /* combine all target devices' limits */ 671 if (ti->type->iterate_devices) 672 ti->type->iterate_devices(ti, dm_set_device_limits, 673 &ti_limits); 674 675 /* 676 * If the remaining sectors fall entirely within this 677 * table entry are they compatible with its logical_block_size? 678 */ 679 if (remaining < ti->len && 680 remaining & ((ti_limits.logical_block_size >> 681 SECTOR_SHIFT) - 1)) 682 break; /* Error */ 683 684 next_target_start = 685 (unsigned short) ((next_target_start + ti->len) & 686 (device_logical_block_size_sects - 1)); 687 remaining = next_target_start ? 688 device_logical_block_size_sects - next_target_start : 0; 689 } 690 691 if (remaining) { 692 DMWARN("%s: table line %u (start sect %llu len %llu) " 693 "not aligned to h/w logical block size %u", 694 dm_device_name(table->md), i, 695 (unsigned long long) ti->begin, 696 (unsigned long long) ti->len, 697 limits->logical_block_size); 698 return -EINVAL; 699 } 700 701 return 0; 702 } 703 704 int dm_table_add_target(struct dm_table *t, const char *type, 705 sector_t start, sector_t len, char *params) 706 { 707 int r = -EINVAL, argc; 708 char **argv; 709 struct dm_target *tgt; 710 711 if (t->singleton) { 712 DMERR("%s: target type %s must appear alone in table", 713 dm_device_name(t->md), t->targets->type->name); 714 return -EINVAL; 715 } 716 717 BUG_ON(t->num_targets >= t->num_allocated); 718 719 tgt = t->targets + t->num_targets; 720 memset(tgt, 0, sizeof(*tgt)); 721 722 if (!len) { 723 DMERR("%s: zero-length target", dm_device_name(t->md)); 724 return -EINVAL; 725 } 726 727 tgt->type = dm_get_target_type(type); 728 if (!tgt->type) { 729 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 730 type); 731 return -EINVAL; 732 } 733 734 if (dm_target_needs_singleton(tgt->type)) { 735 if (t->num_targets) { 736 DMERR("%s: target type %s must appear alone in table", 737 dm_device_name(t->md), type); 738 return -EINVAL; 739 } 740 t->singleton = 1; 741 } 742 743 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 744 DMERR("%s: target type %s may not be included in read-only tables", 745 dm_device_name(t->md), type); 746 return -EINVAL; 747 } 748 749 if (t->immutable_target_type) { 750 if (t->immutable_target_type != tgt->type) { 751 DMERR("%s: immutable target type %s cannot be mixed with other target types", 752 dm_device_name(t->md), t->immutable_target_type->name); 753 return -EINVAL; 754 } 755 } else if (dm_target_is_immutable(tgt->type)) { 756 if (t->num_targets) { 757 DMERR("%s: immutable target type %s cannot be mixed with other target types", 758 dm_device_name(t->md), tgt->type->name); 759 return -EINVAL; 760 } 761 t->immutable_target_type = tgt->type; 762 } 763 764 tgt->table = t; 765 tgt->begin = start; 766 tgt->len = len; 767 tgt->error = "Unknown error"; 768 769 /* 770 * Does this target adjoin the previous one ? 771 */ 772 if (!adjoin(t, tgt)) { 773 tgt->error = "Gap in table"; 774 r = -EINVAL; 775 goto bad; 776 } 777 778 r = dm_split_args(&argc, &argv, params); 779 if (r) { 780 tgt->error = "couldn't split parameters (insufficient memory)"; 781 goto bad; 782 } 783 784 r = tgt->type->ctr(tgt, argc, argv); 785 kfree(argv); 786 if (r) 787 goto bad; 788 789 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 790 791 if (!tgt->num_discard_bios && tgt->discards_supported) 792 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 793 dm_device_name(t->md), type); 794 795 return 0; 796 797 bad: 798 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 799 dm_put_target_type(tgt->type); 800 return r; 801 } 802 803 /* 804 * Target argument parsing helpers. 805 */ 806 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 807 unsigned *value, char **error, unsigned grouped) 808 { 809 const char *arg_str = dm_shift_arg(arg_set); 810 char dummy; 811 812 if (!arg_str || 813 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 814 (*value < arg->min) || 815 (*value > arg->max) || 816 (grouped && arg_set->argc < *value)) { 817 *error = arg->error; 818 return -EINVAL; 819 } 820 821 return 0; 822 } 823 824 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 825 unsigned *value, char **error) 826 { 827 return validate_next_arg(arg, arg_set, value, error, 0); 828 } 829 EXPORT_SYMBOL(dm_read_arg); 830 831 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 832 unsigned *value, char **error) 833 { 834 return validate_next_arg(arg, arg_set, value, error, 1); 835 } 836 EXPORT_SYMBOL(dm_read_arg_group); 837 838 const char *dm_shift_arg(struct dm_arg_set *as) 839 { 840 char *r; 841 842 if (as->argc) { 843 as->argc--; 844 r = *as->argv; 845 as->argv++; 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(dm_shift_arg); 852 853 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 854 { 855 BUG_ON(as->argc < num_args); 856 as->argc -= num_args; 857 as->argv += num_args; 858 } 859 EXPORT_SYMBOL(dm_consume_args); 860 861 static int dm_table_set_type(struct dm_table *t) 862 { 863 unsigned i; 864 unsigned bio_based = 0, request_based = 0, hybrid = 0; 865 struct dm_target *tgt; 866 struct dm_dev_internal *dd; 867 struct list_head *devices; 868 unsigned live_md_type; 869 870 for (i = 0; i < t->num_targets; i++) { 871 tgt = t->targets + i; 872 if (dm_target_hybrid(tgt)) 873 hybrid = 1; 874 else if (dm_target_request_based(tgt)) 875 request_based = 1; 876 else 877 bio_based = 1; 878 879 if (bio_based && request_based) { 880 DMWARN("Inconsistent table: different target types" 881 " can't be mixed up"); 882 return -EINVAL; 883 } 884 } 885 886 if (hybrid && !bio_based && !request_based) { 887 /* 888 * The targets can work either way. 889 * Determine the type from the live device. 890 * Default to bio-based if device is new. 891 */ 892 live_md_type = dm_get_md_type(t->md); 893 if (live_md_type == DM_TYPE_REQUEST_BASED) 894 request_based = 1; 895 else 896 bio_based = 1; 897 } 898 899 if (bio_based) { 900 /* We must use this table as bio-based */ 901 t->type = DM_TYPE_BIO_BASED; 902 return 0; 903 } 904 905 BUG_ON(!request_based); /* No targets in this table */ 906 907 /* Non-request-stackable devices can't be used for request-based dm */ 908 devices = dm_table_get_devices(t); 909 list_for_each_entry(dd, devices, list) { 910 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 911 DMWARN("table load rejected: including" 912 " non-request-stackable devices"); 913 return -EINVAL; 914 } 915 } 916 917 /* 918 * Request-based dm supports only tables that have a single target now. 919 * To support multiple targets, request splitting support is needed, 920 * and that needs lots of changes in the block-layer. 921 * (e.g. request completion process for partial completion.) 922 */ 923 if (t->num_targets > 1) { 924 DMWARN("Request-based dm doesn't support multiple targets yet"); 925 return -EINVAL; 926 } 927 928 t->type = DM_TYPE_REQUEST_BASED; 929 930 return 0; 931 } 932 933 unsigned dm_table_get_type(struct dm_table *t) 934 { 935 return t->type; 936 } 937 938 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 939 { 940 return t->immutable_target_type; 941 } 942 943 bool dm_table_request_based(struct dm_table *t) 944 { 945 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 946 } 947 948 static int dm_table_alloc_md_mempools(struct dm_table *t) 949 { 950 unsigned type = dm_table_get_type(t); 951 unsigned per_bio_data_size = 0; 952 struct dm_target *tgt; 953 unsigned i; 954 955 if (unlikely(type == DM_TYPE_NONE)) { 956 DMWARN("no table type is set, can't allocate mempools"); 957 return -EINVAL; 958 } 959 960 if (type == DM_TYPE_BIO_BASED) 961 for (i = 0; i < t->num_targets; i++) { 962 tgt = t->targets + i; 963 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size); 964 } 965 966 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size); 967 if (!t->mempools) 968 return -ENOMEM; 969 970 return 0; 971 } 972 973 void dm_table_free_md_mempools(struct dm_table *t) 974 { 975 dm_free_md_mempools(t->mempools); 976 t->mempools = NULL; 977 } 978 979 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 980 { 981 return t->mempools; 982 } 983 984 static int setup_indexes(struct dm_table *t) 985 { 986 int i; 987 unsigned int total = 0; 988 sector_t *indexes; 989 990 /* allocate the space for *all* the indexes */ 991 for (i = t->depth - 2; i >= 0; i--) { 992 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 993 total += t->counts[i]; 994 } 995 996 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 997 if (!indexes) 998 return -ENOMEM; 999 1000 /* set up internal nodes, bottom-up */ 1001 for (i = t->depth - 2; i >= 0; i--) { 1002 t->index[i] = indexes; 1003 indexes += (KEYS_PER_NODE * t->counts[i]); 1004 setup_btree_index(i, t); 1005 } 1006 1007 return 0; 1008 } 1009 1010 /* 1011 * Builds the btree to index the map. 1012 */ 1013 static int dm_table_build_index(struct dm_table *t) 1014 { 1015 int r = 0; 1016 unsigned int leaf_nodes; 1017 1018 /* how many indexes will the btree have ? */ 1019 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1020 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1021 1022 /* leaf layer has already been set up */ 1023 t->counts[t->depth - 1] = leaf_nodes; 1024 t->index[t->depth - 1] = t->highs; 1025 1026 if (t->depth >= 2) 1027 r = setup_indexes(t); 1028 1029 return r; 1030 } 1031 1032 /* 1033 * Get a disk whose integrity profile reflects the table's profile. 1034 * If %match_all is true, all devices' profiles must match. 1035 * If %match_all is false, all devices must at least have an 1036 * allocated integrity profile; but uninitialized is ok. 1037 * Returns NULL if integrity support was inconsistent or unavailable. 1038 */ 1039 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 1040 bool match_all) 1041 { 1042 struct list_head *devices = dm_table_get_devices(t); 1043 struct dm_dev_internal *dd = NULL; 1044 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1045 1046 list_for_each_entry(dd, devices, list) { 1047 template_disk = dd->dm_dev.bdev->bd_disk; 1048 if (!blk_get_integrity(template_disk)) 1049 goto no_integrity; 1050 if (!match_all && !blk_integrity_is_initialized(template_disk)) 1051 continue; /* skip uninitialized profiles */ 1052 else if (prev_disk && 1053 blk_integrity_compare(prev_disk, template_disk) < 0) 1054 goto no_integrity; 1055 prev_disk = template_disk; 1056 } 1057 1058 return template_disk; 1059 1060 no_integrity: 1061 if (prev_disk) 1062 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1063 dm_device_name(t->md), 1064 prev_disk->disk_name, 1065 template_disk->disk_name); 1066 return NULL; 1067 } 1068 1069 /* 1070 * Register the mapped device for blk_integrity support if 1071 * the underlying devices have an integrity profile. But all devices 1072 * may not have matching profiles (checking all devices isn't reliable 1073 * during table load because this table may use other DM device(s) which 1074 * must be resumed before they will have an initialized integity profile). 1075 * Stacked DM devices force a 2 stage integrity profile validation: 1076 * 1 - during load, validate all initialized integrity profiles match 1077 * 2 - during resume, validate all integrity profiles match 1078 */ 1079 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 1080 { 1081 struct gendisk *template_disk = NULL; 1082 1083 template_disk = dm_table_get_integrity_disk(t, false); 1084 if (!template_disk) 1085 return 0; 1086 1087 if (!blk_integrity_is_initialized(dm_disk(md))) { 1088 t->integrity_supported = 1; 1089 return blk_integrity_register(dm_disk(md), NULL); 1090 } 1091 1092 /* 1093 * If DM device already has an initalized integrity 1094 * profile the new profile should not conflict. 1095 */ 1096 if (blk_integrity_is_initialized(template_disk) && 1097 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1098 DMWARN("%s: conflict with existing integrity profile: " 1099 "%s profile mismatch", 1100 dm_device_name(t->md), 1101 template_disk->disk_name); 1102 return 1; 1103 } 1104 1105 /* Preserve existing initialized integrity profile */ 1106 t->integrity_supported = 1; 1107 return 0; 1108 } 1109 1110 /* 1111 * Prepares the table for use by building the indices, 1112 * setting the type, and allocating mempools. 1113 */ 1114 int dm_table_complete(struct dm_table *t) 1115 { 1116 int r; 1117 1118 r = dm_table_set_type(t); 1119 if (r) { 1120 DMERR("unable to set table type"); 1121 return r; 1122 } 1123 1124 r = dm_table_build_index(t); 1125 if (r) { 1126 DMERR("unable to build btrees"); 1127 return r; 1128 } 1129 1130 r = dm_table_prealloc_integrity(t, t->md); 1131 if (r) { 1132 DMERR("could not register integrity profile."); 1133 return r; 1134 } 1135 1136 r = dm_table_alloc_md_mempools(t); 1137 if (r) 1138 DMERR("unable to allocate mempools"); 1139 1140 return r; 1141 } 1142 1143 static DEFINE_MUTEX(_event_lock); 1144 void dm_table_event_callback(struct dm_table *t, 1145 void (*fn)(void *), void *context) 1146 { 1147 mutex_lock(&_event_lock); 1148 t->event_fn = fn; 1149 t->event_context = context; 1150 mutex_unlock(&_event_lock); 1151 } 1152 1153 void dm_table_event(struct dm_table *t) 1154 { 1155 /* 1156 * You can no longer call dm_table_event() from interrupt 1157 * context, use a bottom half instead. 1158 */ 1159 BUG_ON(in_interrupt()); 1160 1161 mutex_lock(&_event_lock); 1162 if (t->event_fn) 1163 t->event_fn(t->event_context); 1164 mutex_unlock(&_event_lock); 1165 } 1166 EXPORT_SYMBOL(dm_table_event); 1167 1168 sector_t dm_table_get_size(struct dm_table *t) 1169 { 1170 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1171 } 1172 EXPORT_SYMBOL(dm_table_get_size); 1173 1174 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1175 { 1176 if (index >= t->num_targets) 1177 return NULL; 1178 1179 return t->targets + index; 1180 } 1181 1182 /* 1183 * Search the btree for the correct target. 1184 * 1185 * Caller should check returned pointer with dm_target_is_valid() 1186 * to trap I/O beyond end of device. 1187 */ 1188 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1189 { 1190 unsigned int l, n = 0, k = 0; 1191 sector_t *node; 1192 1193 for (l = 0; l < t->depth; l++) { 1194 n = get_child(n, k); 1195 node = get_node(t, l, n); 1196 1197 for (k = 0; k < KEYS_PER_NODE; k++) 1198 if (node[k] >= sector) 1199 break; 1200 } 1201 1202 return &t->targets[(KEYS_PER_NODE * n) + k]; 1203 } 1204 1205 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1206 sector_t start, sector_t len, void *data) 1207 { 1208 unsigned *num_devices = data; 1209 1210 (*num_devices)++; 1211 1212 return 0; 1213 } 1214 1215 /* 1216 * Check whether a table has no data devices attached using each 1217 * target's iterate_devices method. 1218 * Returns false if the result is unknown because a target doesn't 1219 * support iterate_devices. 1220 */ 1221 bool dm_table_has_no_data_devices(struct dm_table *table) 1222 { 1223 struct dm_target *uninitialized_var(ti); 1224 unsigned i = 0, num_devices = 0; 1225 1226 while (i < dm_table_get_num_targets(table)) { 1227 ti = dm_table_get_target(table, i++); 1228 1229 if (!ti->type->iterate_devices) 1230 return false; 1231 1232 ti->type->iterate_devices(ti, count_device, &num_devices); 1233 if (num_devices) 1234 return false; 1235 } 1236 1237 return true; 1238 } 1239 1240 /* 1241 * Establish the new table's queue_limits and validate them. 1242 */ 1243 int dm_calculate_queue_limits(struct dm_table *table, 1244 struct queue_limits *limits) 1245 { 1246 struct dm_target *uninitialized_var(ti); 1247 struct queue_limits ti_limits; 1248 unsigned i = 0; 1249 1250 blk_set_stacking_limits(limits); 1251 1252 while (i < dm_table_get_num_targets(table)) { 1253 blk_set_stacking_limits(&ti_limits); 1254 1255 ti = dm_table_get_target(table, i++); 1256 1257 if (!ti->type->iterate_devices) 1258 goto combine_limits; 1259 1260 /* 1261 * Combine queue limits of all the devices this target uses. 1262 */ 1263 ti->type->iterate_devices(ti, dm_set_device_limits, 1264 &ti_limits); 1265 1266 /* Set I/O hints portion of queue limits */ 1267 if (ti->type->io_hints) 1268 ti->type->io_hints(ti, &ti_limits); 1269 1270 /* 1271 * Check each device area is consistent with the target's 1272 * overall queue limits. 1273 */ 1274 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1275 &ti_limits)) 1276 return -EINVAL; 1277 1278 combine_limits: 1279 /* 1280 * Merge this target's queue limits into the overall limits 1281 * for the table. 1282 */ 1283 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1284 DMWARN("%s: adding target device " 1285 "(start sect %llu len %llu) " 1286 "caused an alignment inconsistency", 1287 dm_device_name(table->md), 1288 (unsigned long long) ti->begin, 1289 (unsigned long long) ti->len); 1290 } 1291 1292 return validate_hardware_logical_block_alignment(table, limits); 1293 } 1294 1295 /* 1296 * Set the integrity profile for this device if all devices used have 1297 * matching profiles. We're quite deep in the resume path but still 1298 * don't know if all devices (particularly DM devices this device 1299 * may be stacked on) have matching profiles. Even if the profiles 1300 * don't match we have no way to fail (to resume) at this point. 1301 */ 1302 static void dm_table_set_integrity(struct dm_table *t) 1303 { 1304 struct gendisk *template_disk = NULL; 1305 1306 if (!blk_get_integrity(dm_disk(t->md))) 1307 return; 1308 1309 template_disk = dm_table_get_integrity_disk(t, true); 1310 if (template_disk) 1311 blk_integrity_register(dm_disk(t->md), 1312 blk_get_integrity(template_disk)); 1313 else if (blk_integrity_is_initialized(dm_disk(t->md))) 1314 DMWARN("%s: device no longer has a valid integrity profile", 1315 dm_device_name(t->md)); 1316 else 1317 DMWARN("%s: unable to establish an integrity profile", 1318 dm_device_name(t->md)); 1319 } 1320 1321 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1322 sector_t start, sector_t len, void *data) 1323 { 1324 unsigned flush = (*(unsigned *)data); 1325 struct request_queue *q = bdev_get_queue(dev->bdev); 1326 1327 return q && (q->flush_flags & flush); 1328 } 1329 1330 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) 1331 { 1332 struct dm_target *ti; 1333 unsigned i = 0; 1334 1335 /* 1336 * Require at least one underlying device to support flushes. 1337 * t->devices includes internal dm devices such as mirror logs 1338 * so we need to use iterate_devices here, which targets 1339 * supporting flushes must provide. 1340 */ 1341 while (i < dm_table_get_num_targets(t)) { 1342 ti = dm_table_get_target(t, i++); 1343 1344 if (!ti->num_flush_bios) 1345 continue; 1346 1347 if (ti->flush_supported) 1348 return 1; 1349 1350 if (ti->type->iterate_devices && 1351 ti->type->iterate_devices(ti, device_flush_capable, &flush)) 1352 return 1; 1353 } 1354 1355 return 0; 1356 } 1357 1358 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1359 { 1360 struct dm_target *ti; 1361 unsigned i = 0; 1362 1363 /* Ensure that all targets supports discard_zeroes_data. */ 1364 while (i < dm_table_get_num_targets(t)) { 1365 ti = dm_table_get_target(t, i++); 1366 1367 if (ti->discard_zeroes_data_unsupported) 1368 return 0; 1369 } 1370 1371 return 1; 1372 } 1373 1374 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1375 sector_t start, sector_t len, void *data) 1376 { 1377 struct request_queue *q = bdev_get_queue(dev->bdev); 1378 1379 return q && blk_queue_nonrot(q); 1380 } 1381 1382 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1383 sector_t start, sector_t len, void *data) 1384 { 1385 struct request_queue *q = bdev_get_queue(dev->bdev); 1386 1387 return q && !blk_queue_add_random(q); 1388 } 1389 1390 static bool dm_table_all_devices_attribute(struct dm_table *t, 1391 iterate_devices_callout_fn func) 1392 { 1393 struct dm_target *ti; 1394 unsigned i = 0; 1395 1396 while (i < dm_table_get_num_targets(t)) { 1397 ti = dm_table_get_target(t, i++); 1398 1399 if (!ti->type->iterate_devices || 1400 !ti->type->iterate_devices(ti, func, NULL)) 1401 return 0; 1402 } 1403 1404 return 1; 1405 } 1406 1407 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1408 sector_t start, sector_t len, void *data) 1409 { 1410 struct request_queue *q = bdev_get_queue(dev->bdev); 1411 1412 return q && !q->limits.max_write_same_sectors; 1413 } 1414 1415 static bool dm_table_supports_write_same(struct dm_table *t) 1416 { 1417 struct dm_target *ti; 1418 unsigned i = 0; 1419 1420 while (i < dm_table_get_num_targets(t)) { 1421 ti = dm_table_get_target(t, i++); 1422 1423 if (!ti->num_write_same_bios) 1424 return false; 1425 1426 if (!ti->type->iterate_devices || 1427 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1428 return false; 1429 } 1430 1431 return true; 1432 } 1433 1434 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1435 struct queue_limits *limits) 1436 { 1437 unsigned flush = 0; 1438 1439 /* 1440 * Copy table's limits to the DM device's request_queue 1441 */ 1442 q->limits = *limits; 1443 1444 if (!dm_table_supports_discards(t)) 1445 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1446 else 1447 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1448 1449 if (dm_table_supports_flush(t, REQ_FLUSH)) { 1450 flush |= REQ_FLUSH; 1451 if (dm_table_supports_flush(t, REQ_FUA)) 1452 flush |= REQ_FUA; 1453 } 1454 blk_queue_flush(q, flush); 1455 1456 if (!dm_table_discard_zeroes_data(t)) 1457 q->limits.discard_zeroes_data = 0; 1458 1459 /* Ensure that all underlying devices are non-rotational. */ 1460 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1461 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1462 else 1463 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1464 1465 if (!dm_table_supports_write_same(t)) 1466 q->limits.max_write_same_sectors = 0; 1467 1468 dm_table_set_integrity(t); 1469 1470 /* 1471 * Determine whether or not this queue's I/O timings contribute 1472 * to the entropy pool, Only request-based targets use this. 1473 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1474 * have it set. 1475 */ 1476 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1477 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1478 1479 /* 1480 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1481 * visible to other CPUs because, once the flag is set, incoming bios 1482 * are processed by request-based dm, which refers to the queue 1483 * settings. 1484 * Until the flag set, bios are passed to bio-based dm and queued to 1485 * md->deferred where queue settings are not needed yet. 1486 * Those bios are passed to request-based dm at the resume time. 1487 */ 1488 smp_mb(); 1489 if (dm_table_request_based(t)) 1490 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1491 } 1492 1493 unsigned int dm_table_get_num_targets(struct dm_table *t) 1494 { 1495 return t->num_targets; 1496 } 1497 1498 struct list_head *dm_table_get_devices(struct dm_table *t) 1499 { 1500 return &t->devices; 1501 } 1502 1503 fmode_t dm_table_get_mode(struct dm_table *t) 1504 { 1505 return t->mode; 1506 } 1507 EXPORT_SYMBOL(dm_table_get_mode); 1508 1509 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1510 { 1511 int i = t->num_targets; 1512 struct dm_target *ti = t->targets; 1513 1514 while (i--) { 1515 if (postsuspend) { 1516 if (ti->type->postsuspend) 1517 ti->type->postsuspend(ti); 1518 } else if (ti->type->presuspend) 1519 ti->type->presuspend(ti); 1520 1521 ti++; 1522 } 1523 } 1524 1525 void dm_table_presuspend_targets(struct dm_table *t) 1526 { 1527 if (!t) 1528 return; 1529 1530 suspend_targets(t, 0); 1531 } 1532 1533 void dm_table_postsuspend_targets(struct dm_table *t) 1534 { 1535 if (!t) 1536 return; 1537 1538 suspend_targets(t, 1); 1539 } 1540 1541 int dm_table_resume_targets(struct dm_table *t) 1542 { 1543 int i, r = 0; 1544 1545 for (i = 0; i < t->num_targets; i++) { 1546 struct dm_target *ti = t->targets + i; 1547 1548 if (!ti->type->preresume) 1549 continue; 1550 1551 r = ti->type->preresume(ti); 1552 if (r) { 1553 DMERR("%s: %s: preresume failed, error = %d", 1554 dm_device_name(t->md), ti->type->name, r); 1555 return r; 1556 } 1557 } 1558 1559 for (i = 0; i < t->num_targets; i++) { 1560 struct dm_target *ti = t->targets + i; 1561 1562 if (ti->type->resume) 1563 ti->type->resume(ti); 1564 } 1565 1566 return 0; 1567 } 1568 1569 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1570 { 1571 list_add(&cb->list, &t->target_callbacks); 1572 } 1573 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1574 1575 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1576 { 1577 struct dm_dev_internal *dd; 1578 struct list_head *devices = dm_table_get_devices(t); 1579 struct dm_target_callbacks *cb; 1580 int r = 0; 1581 1582 list_for_each_entry(dd, devices, list) { 1583 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1584 char b[BDEVNAME_SIZE]; 1585 1586 if (likely(q)) 1587 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1588 else 1589 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1590 dm_device_name(t->md), 1591 bdevname(dd->dm_dev.bdev, b)); 1592 } 1593 1594 list_for_each_entry(cb, &t->target_callbacks, list) 1595 if (cb->congested_fn) 1596 r |= cb->congested_fn(cb, bdi_bits); 1597 1598 return r; 1599 } 1600 1601 int dm_table_any_busy_target(struct dm_table *t) 1602 { 1603 unsigned i; 1604 struct dm_target *ti; 1605 1606 for (i = 0; i < t->num_targets; i++) { 1607 ti = t->targets + i; 1608 if (ti->type->busy && ti->type->busy(ti)) 1609 return 1; 1610 } 1611 1612 return 0; 1613 } 1614 1615 struct mapped_device *dm_table_get_md(struct dm_table *t) 1616 { 1617 return t->md; 1618 } 1619 EXPORT_SYMBOL(dm_table_get_md); 1620 1621 void dm_table_run_md_queue_async(struct dm_table *t) 1622 { 1623 struct mapped_device *md; 1624 struct request_queue *queue; 1625 unsigned long flags; 1626 1627 if (!dm_table_request_based(t)) 1628 return; 1629 1630 md = dm_table_get_md(t); 1631 queue = dm_get_md_queue(md); 1632 if (queue) { 1633 spin_lock_irqsave(queue->queue_lock, flags); 1634 blk_run_queue_async(queue); 1635 spin_unlock_irqrestore(queue->queue_lock, flags); 1636 } 1637 } 1638 EXPORT_SYMBOL(dm_table_run_md_queue_async); 1639 1640 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1641 sector_t start, sector_t len, void *data) 1642 { 1643 struct request_queue *q = bdev_get_queue(dev->bdev); 1644 1645 return q && blk_queue_discard(q); 1646 } 1647 1648 bool dm_table_supports_discards(struct dm_table *t) 1649 { 1650 struct dm_target *ti; 1651 unsigned i = 0; 1652 1653 /* 1654 * Unless any target used by the table set discards_supported, 1655 * require at least one underlying device to support discards. 1656 * t->devices includes internal dm devices such as mirror logs 1657 * so we need to use iterate_devices here, which targets 1658 * supporting discard selectively must provide. 1659 */ 1660 while (i < dm_table_get_num_targets(t)) { 1661 ti = dm_table_get_target(t, i++); 1662 1663 if (!ti->num_discard_bios) 1664 continue; 1665 1666 if (ti->discards_supported) 1667 return 1; 1668 1669 if (ti->type->iterate_devices && 1670 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1671 return 1; 1672 } 1673 1674 return 0; 1675 } 1676