xref: /linux/drivers/md/dm-table.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 
24 #define DM_MSG_PREFIX "table"
25 
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 struct dm_table {
32 	struct mapped_device *md;
33 	unsigned type;
34 
35 	/* btree table */
36 	unsigned int depth;
37 	unsigned int counts[MAX_DEPTH];	/* in nodes */
38 	sector_t *index[MAX_DEPTH];
39 
40 	unsigned int num_targets;
41 	unsigned int num_allocated;
42 	sector_t *highs;
43 	struct dm_target *targets;
44 
45 	struct target_type *immutable_target_type;
46 	unsigned integrity_supported:1;
47 	unsigned singleton:1;
48 
49 	/*
50 	 * Indicates the rw permissions for the new logical
51 	 * device.  This should be a combination of FMODE_READ
52 	 * and FMODE_WRITE.
53 	 */
54 	fmode_t mode;
55 
56 	/* a list of devices used by this table */
57 	struct list_head devices;
58 
59 	/* events get handed up using this callback */
60 	void (*event_fn)(void *);
61 	void *event_context;
62 
63 	struct dm_md_mempools *mempools;
64 
65 	struct list_head target_callbacks;
66 };
67 
68 /*
69  * Similar to ceiling(log_size(n))
70  */
71 static unsigned int int_log(unsigned int n, unsigned int base)
72 {
73 	int result = 0;
74 
75 	while (n > 1) {
76 		n = dm_div_up(n, base);
77 		result++;
78 	}
79 
80 	return result;
81 }
82 
83 /*
84  * Calculate the index of the child node of the n'th node k'th key.
85  */
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
87 {
88 	return (n * CHILDREN_PER_NODE) + k;
89 }
90 
91 /*
92  * Return the n'th node of level l from table t.
93  */
94 static inline sector_t *get_node(struct dm_table *t,
95 				 unsigned int l, unsigned int n)
96 {
97 	return t->index[l] + (n * KEYS_PER_NODE);
98 }
99 
100 /*
101  * Return the highest key that you could lookup from the n'th
102  * node on level l of the btree.
103  */
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105 {
106 	for (; l < t->depth - 1; l++)
107 		n = get_child(n, CHILDREN_PER_NODE - 1);
108 
109 	if (n >= t->counts[l])
110 		return (sector_t) - 1;
111 
112 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
113 }
114 
115 /*
116  * Fills in a level of the btree based on the highs of the level
117  * below it.
118  */
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
120 {
121 	unsigned int n, k;
122 	sector_t *node;
123 
124 	for (n = 0U; n < t->counts[l]; n++) {
125 		node = get_node(t, l, n);
126 
127 		for (k = 0U; k < KEYS_PER_NODE; k++)
128 			node[k] = high(t, l + 1, get_child(n, k));
129 	}
130 
131 	return 0;
132 }
133 
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135 {
136 	unsigned long size;
137 	void *addr;
138 
139 	/*
140 	 * Check that we're not going to overflow.
141 	 */
142 	if (nmemb > (ULONG_MAX / elem_size))
143 		return NULL;
144 
145 	size = nmemb * elem_size;
146 	addr = vzalloc(size);
147 
148 	return addr;
149 }
150 EXPORT_SYMBOL(dm_vcalloc);
151 
152 /*
153  * highs, and targets are managed as dynamic arrays during a
154  * table load.
155  */
156 static int alloc_targets(struct dm_table *t, unsigned int num)
157 {
158 	sector_t *n_highs;
159 	struct dm_target *n_targets;
160 
161 	/*
162 	 * Allocate both the target array and offset array at once.
163 	 * Append an empty entry to catch sectors beyond the end of
164 	 * the device.
165 	 */
166 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167 					  sizeof(sector_t));
168 	if (!n_highs)
169 		return -ENOMEM;
170 
171 	n_targets = (struct dm_target *) (n_highs + num);
172 
173 	memset(n_highs, -1, sizeof(*n_highs) * num);
174 	vfree(t->highs);
175 
176 	t->num_allocated = num;
177 	t->highs = n_highs;
178 	t->targets = n_targets;
179 
180 	return 0;
181 }
182 
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184 		    unsigned num_targets, struct mapped_device *md)
185 {
186 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187 
188 	if (!t)
189 		return -ENOMEM;
190 
191 	INIT_LIST_HEAD(&t->devices);
192 	INIT_LIST_HEAD(&t->target_callbacks);
193 
194 	if (!num_targets)
195 		num_targets = KEYS_PER_NODE;
196 
197 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198 
199 	if (!num_targets) {
200 		kfree(t);
201 		return -ENOMEM;
202 	}
203 
204 	if (alloc_targets(t, num_targets)) {
205 		kfree(t);
206 		return -ENOMEM;
207 	}
208 
209 	t->mode = mode;
210 	t->md = md;
211 	*result = t;
212 	return 0;
213 }
214 
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
216 {
217 	struct list_head *tmp, *next;
218 
219 	list_for_each_safe(tmp, next, devices) {
220 		struct dm_dev_internal *dd =
221 		    list_entry(tmp, struct dm_dev_internal, list);
222 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223 		       dm_device_name(md), dd->dm_dev->name);
224 		dm_put_table_device(md, dd->dm_dev);
225 		kfree(dd);
226 	}
227 }
228 
229 void dm_table_destroy(struct dm_table *t)
230 {
231 	unsigned int i;
232 
233 	if (!t)
234 		return;
235 
236 	/* free the indexes */
237 	if (t->depth >= 2)
238 		vfree(t->index[t->depth - 2]);
239 
240 	/* free the targets */
241 	for (i = 0; i < t->num_targets; i++) {
242 		struct dm_target *tgt = t->targets + i;
243 
244 		if (tgt->type->dtr)
245 			tgt->type->dtr(tgt);
246 
247 		dm_put_target_type(tgt->type);
248 	}
249 
250 	vfree(t->highs);
251 
252 	/* free the device list */
253 	free_devices(&t->devices, t->md);
254 
255 	dm_free_md_mempools(t->mempools);
256 
257 	kfree(t);
258 }
259 
260 /*
261  * See if we've already got a device in the list.
262  */
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264 {
265 	struct dm_dev_internal *dd;
266 
267 	list_for_each_entry (dd, l, list)
268 		if (dd->dm_dev->bdev->bd_dev == dev)
269 			return dd;
270 
271 	return NULL;
272 }
273 
274 /*
275  * If possible, this checks an area of a destination device is invalid.
276  */
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278 				  sector_t start, sector_t len, void *data)
279 {
280 	struct request_queue *q;
281 	struct queue_limits *limits = data;
282 	struct block_device *bdev = dev->bdev;
283 	sector_t dev_size =
284 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285 	unsigned short logical_block_size_sectors =
286 		limits->logical_block_size >> SECTOR_SHIFT;
287 	char b[BDEVNAME_SIZE];
288 
289 	/*
290 	 * Some devices exist without request functions,
291 	 * such as loop devices not yet bound to backing files.
292 	 * Forbid the use of such devices.
293 	 */
294 	q = bdev_get_queue(bdev);
295 	if (!q || !q->make_request_fn) {
296 		DMWARN("%s: %s is not yet initialised: "
297 		       "start=%llu, len=%llu, dev_size=%llu",
298 		       dm_device_name(ti->table->md), bdevname(bdev, b),
299 		       (unsigned long long)start,
300 		       (unsigned long long)len,
301 		       (unsigned long long)dev_size);
302 		return 1;
303 	}
304 
305 	if (!dev_size)
306 		return 0;
307 
308 	if ((start >= dev_size) || (start + len > dev_size)) {
309 		DMWARN("%s: %s too small for target: "
310 		       "start=%llu, len=%llu, dev_size=%llu",
311 		       dm_device_name(ti->table->md), bdevname(bdev, b),
312 		       (unsigned long long)start,
313 		       (unsigned long long)len,
314 		       (unsigned long long)dev_size);
315 		return 1;
316 	}
317 
318 	if (logical_block_size_sectors <= 1)
319 		return 0;
320 
321 	if (start & (logical_block_size_sectors - 1)) {
322 		DMWARN("%s: start=%llu not aligned to h/w "
323 		       "logical block size %u of %s",
324 		       dm_device_name(ti->table->md),
325 		       (unsigned long long)start,
326 		       limits->logical_block_size, bdevname(bdev, b));
327 		return 1;
328 	}
329 
330 	if (len & (logical_block_size_sectors - 1)) {
331 		DMWARN("%s: len=%llu not aligned to h/w "
332 		       "logical block size %u of %s",
333 		       dm_device_name(ti->table->md),
334 		       (unsigned long long)len,
335 		       limits->logical_block_size, bdevname(bdev, b));
336 		return 1;
337 	}
338 
339 	return 0;
340 }
341 
342 /*
343  * This upgrades the mode on an already open dm_dev, being
344  * careful to leave things as they were if we fail to reopen the
345  * device and not to touch the existing bdev field in case
346  * it is accessed concurrently inside dm_table_any_congested().
347  */
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349 			struct mapped_device *md)
350 {
351 	int r;
352 	struct dm_dev *old_dev, *new_dev;
353 
354 	old_dev = dd->dm_dev;
355 
356 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357 				dd->dm_dev->mode | new_mode, &new_dev);
358 	if (r)
359 		return r;
360 
361 	dd->dm_dev = new_dev;
362 	dm_put_table_device(md, old_dev);
363 
364 	return 0;
365 }
366 
367 /*
368  * Add a device to the list, or just increment the usage count if
369  * it's already present.
370  */
371 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
372 		  struct dm_dev **result)
373 {
374 	int r;
375 	dev_t uninitialized_var(dev);
376 	struct dm_dev_internal *dd;
377 	struct dm_table *t = ti->table;
378 	struct block_device *bdev;
379 
380 	BUG_ON(!t);
381 
382 	/* convert the path to a device */
383 	bdev = lookup_bdev(path);
384 	if (IS_ERR(bdev)) {
385 		dev = name_to_dev_t(path);
386 		if (!dev)
387 			return -ENODEV;
388 	} else {
389 		dev = bdev->bd_dev;
390 		bdput(bdev);
391 	}
392 
393 	dd = find_device(&t->devices, dev);
394 	if (!dd) {
395 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
396 		if (!dd)
397 			return -ENOMEM;
398 
399 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
400 			kfree(dd);
401 			return r;
402 		}
403 
404 		atomic_set(&dd->count, 0);
405 		list_add(&dd->list, &t->devices);
406 
407 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
408 		r = upgrade_mode(dd, mode, t->md);
409 		if (r)
410 			return r;
411 	}
412 	atomic_inc(&dd->count);
413 
414 	*result = dd->dm_dev;
415 	return 0;
416 }
417 EXPORT_SYMBOL(dm_get_device);
418 
419 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
420 				sector_t start, sector_t len, void *data)
421 {
422 	struct queue_limits *limits = data;
423 	struct block_device *bdev = dev->bdev;
424 	struct request_queue *q = bdev_get_queue(bdev);
425 	char b[BDEVNAME_SIZE];
426 
427 	if (unlikely(!q)) {
428 		DMWARN("%s: Cannot set limits for nonexistent device %s",
429 		       dm_device_name(ti->table->md), bdevname(bdev, b));
430 		return 0;
431 	}
432 
433 	if (bdev_stack_limits(limits, bdev, start) < 0)
434 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435 		       "physical_block_size=%u, logical_block_size=%u, "
436 		       "alignment_offset=%u, start=%llu",
437 		       dm_device_name(ti->table->md), bdevname(bdev, b),
438 		       q->limits.physical_block_size,
439 		       q->limits.logical_block_size,
440 		       q->limits.alignment_offset,
441 		       (unsigned long long) start << SECTOR_SHIFT);
442 
443 	/*
444 	 * Check if merge fn is supported.
445 	 * If not we'll force DM to use PAGE_SIZE or
446 	 * smaller I/O, just to be safe.
447 	 */
448 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
449 		blk_limits_max_hw_sectors(limits,
450 					  (unsigned int) (PAGE_SIZE >> 9));
451 	return 0;
452 }
453 
454 /*
455  * Decrement a device's use count and remove it if necessary.
456  */
457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459 	int found = 0;
460 	struct list_head *devices = &ti->table->devices;
461 	struct dm_dev_internal *dd;
462 
463 	list_for_each_entry(dd, devices, list) {
464 		if (dd->dm_dev == d) {
465 			found = 1;
466 			break;
467 		}
468 	}
469 	if (!found) {
470 		DMWARN("%s: device %s not in table devices list",
471 		       dm_device_name(ti->table->md), d->name);
472 		return;
473 	}
474 	if (atomic_dec_and_test(&dd->count)) {
475 		dm_put_table_device(ti->table->md, d);
476 		list_del(&dd->list);
477 		kfree(dd);
478 	}
479 }
480 EXPORT_SYMBOL(dm_put_device);
481 
482 /*
483  * Checks to see if the target joins onto the end of the table.
484  */
485 static int adjoin(struct dm_table *table, struct dm_target *ti)
486 {
487 	struct dm_target *prev;
488 
489 	if (!table->num_targets)
490 		return !ti->begin;
491 
492 	prev = &table->targets[table->num_targets - 1];
493 	return (ti->begin == (prev->begin + prev->len));
494 }
495 
496 /*
497  * Used to dynamically allocate the arg array.
498  *
499  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
500  * process messages even if some device is suspended. These messages have a
501  * small fixed number of arguments.
502  *
503  * On the other hand, dm-switch needs to process bulk data using messages and
504  * excessive use of GFP_NOIO could cause trouble.
505  */
506 static char **realloc_argv(unsigned *array_size, char **old_argv)
507 {
508 	char **argv;
509 	unsigned new_size;
510 	gfp_t gfp;
511 
512 	if (*array_size) {
513 		new_size = *array_size * 2;
514 		gfp = GFP_KERNEL;
515 	} else {
516 		new_size = 8;
517 		gfp = GFP_NOIO;
518 	}
519 	argv = kmalloc(new_size * sizeof(*argv), gfp);
520 	if (argv) {
521 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
522 		*array_size = new_size;
523 	}
524 
525 	kfree(old_argv);
526 	return argv;
527 }
528 
529 /*
530  * Destructively splits up the argument list to pass to ctr.
531  */
532 int dm_split_args(int *argc, char ***argvp, char *input)
533 {
534 	char *start, *end = input, *out, **argv = NULL;
535 	unsigned array_size = 0;
536 
537 	*argc = 0;
538 
539 	if (!input) {
540 		*argvp = NULL;
541 		return 0;
542 	}
543 
544 	argv = realloc_argv(&array_size, argv);
545 	if (!argv)
546 		return -ENOMEM;
547 
548 	while (1) {
549 		/* Skip whitespace */
550 		start = skip_spaces(end);
551 
552 		if (!*start)
553 			break;	/* success, we hit the end */
554 
555 		/* 'out' is used to remove any back-quotes */
556 		end = out = start;
557 		while (*end) {
558 			/* Everything apart from '\0' can be quoted */
559 			if (*end == '\\' && *(end + 1)) {
560 				*out++ = *(end + 1);
561 				end += 2;
562 				continue;
563 			}
564 
565 			if (isspace(*end))
566 				break;	/* end of token */
567 
568 			*out++ = *end++;
569 		}
570 
571 		/* have we already filled the array ? */
572 		if ((*argc + 1) > array_size) {
573 			argv = realloc_argv(&array_size, argv);
574 			if (!argv)
575 				return -ENOMEM;
576 		}
577 
578 		/* we know this is whitespace */
579 		if (*end)
580 			end++;
581 
582 		/* terminate the string and put it in the array */
583 		*out = '\0';
584 		argv[*argc] = start;
585 		(*argc)++;
586 	}
587 
588 	*argvp = argv;
589 	return 0;
590 }
591 
592 /*
593  * Impose necessary and sufficient conditions on a devices's table such
594  * that any incoming bio which respects its logical_block_size can be
595  * processed successfully.  If it falls across the boundary between
596  * two or more targets, the size of each piece it gets split into must
597  * be compatible with the logical_block_size of the target processing it.
598  */
599 static int validate_hardware_logical_block_alignment(struct dm_table *table,
600 						 struct queue_limits *limits)
601 {
602 	/*
603 	 * This function uses arithmetic modulo the logical_block_size
604 	 * (in units of 512-byte sectors).
605 	 */
606 	unsigned short device_logical_block_size_sects =
607 		limits->logical_block_size >> SECTOR_SHIFT;
608 
609 	/*
610 	 * Offset of the start of the next table entry, mod logical_block_size.
611 	 */
612 	unsigned short next_target_start = 0;
613 
614 	/*
615 	 * Given an aligned bio that extends beyond the end of a
616 	 * target, how many sectors must the next target handle?
617 	 */
618 	unsigned short remaining = 0;
619 
620 	struct dm_target *uninitialized_var(ti);
621 	struct queue_limits ti_limits;
622 	unsigned i = 0;
623 
624 	/*
625 	 * Check each entry in the table in turn.
626 	 */
627 	while (i < dm_table_get_num_targets(table)) {
628 		ti = dm_table_get_target(table, i++);
629 
630 		blk_set_stacking_limits(&ti_limits);
631 
632 		/* combine all target devices' limits */
633 		if (ti->type->iterate_devices)
634 			ti->type->iterate_devices(ti, dm_set_device_limits,
635 						  &ti_limits);
636 
637 		/*
638 		 * If the remaining sectors fall entirely within this
639 		 * table entry are they compatible with its logical_block_size?
640 		 */
641 		if (remaining < ti->len &&
642 		    remaining & ((ti_limits.logical_block_size >>
643 				  SECTOR_SHIFT) - 1))
644 			break;	/* Error */
645 
646 		next_target_start =
647 		    (unsigned short) ((next_target_start + ti->len) &
648 				      (device_logical_block_size_sects - 1));
649 		remaining = next_target_start ?
650 		    device_logical_block_size_sects - next_target_start : 0;
651 	}
652 
653 	if (remaining) {
654 		DMWARN("%s: table line %u (start sect %llu len %llu) "
655 		       "not aligned to h/w logical block size %u",
656 		       dm_device_name(table->md), i,
657 		       (unsigned long long) ti->begin,
658 		       (unsigned long long) ti->len,
659 		       limits->logical_block_size);
660 		return -EINVAL;
661 	}
662 
663 	return 0;
664 }
665 
666 int dm_table_add_target(struct dm_table *t, const char *type,
667 			sector_t start, sector_t len, char *params)
668 {
669 	int r = -EINVAL, argc;
670 	char **argv;
671 	struct dm_target *tgt;
672 
673 	if (t->singleton) {
674 		DMERR("%s: target type %s must appear alone in table",
675 		      dm_device_name(t->md), t->targets->type->name);
676 		return -EINVAL;
677 	}
678 
679 	BUG_ON(t->num_targets >= t->num_allocated);
680 
681 	tgt = t->targets + t->num_targets;
682 	memset(tgt, 0, sizeof(*tgt));
683 
684 	if (!len) {
685 		DMERR("%s: zero-length target", dm_device_name(t->md));
686 		return -EINVAL;
687 	}
688 
689 	tgt->type = dm_get_target_type(type);
690 	if (!tgt->type) {
691 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
692 		      type);
693 		return -EINVAL;
694 	}
695 
696 	if (dm_target_needs_singleton(tgt->type)) {
697 		if (t->num_targets) {
698 			DMERR("%s: target type %s must appear alone in table",
699 			      dm_device_name(t->md), type);
700 			return -EINVAL;
701 		}
702 		t->singleton = 1;
703 	}
704 
705 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
706 		DMERR("%s: target type %s may not be included in read-only tables",
707 		      dm_device_name(t->md), type);
708 		return -EINVAL;
709 	}
710 
711 	if (t->immutable_target_type) {
712 		if (t->immutable_target_type != tgt->type) {
713 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
714 			      dm_device_name(t->md), t->immutable_target_type->name);
715 			return -EINVAL;
716 		}
717 	} else if (dm_target_is_immutable(tgt->type)) {
718 		if (t->num_targets) {
719 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
720 			      dm_device_name(t->md), tgt->type->name);
721 			return -EINVAL;
722 		}
723 		t->immutable_target_type = tgt->type;
724 	}
725 
726 	tgt->table = t;
727 	tgt->begin = start;
728 	tgt->len = len;
729 	tgt->error = "Unknown error";
730 
731 	/*
732 	 * Does this target adjoin the previous one ?
733 	 */
734 	if (!adjoin(t, tgt)) {
735 		tgt->error = "Gap in table";
736 		r = -EINVAL;
737 		goto bad;
738 	}
739 
740 	r = dm_split_args(&argc, &argv, params);
741 	if (r) {
742 		tgt->error = "couldn't split parameters (insufficient memory)";
743 		goto bad;
744 	}
745 
746 	r = tgt->type->ctr(tgt, argc, argv);
747 	kfree(argv);
748 	if (r)
749 		goto bad;
750 
751 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
752 
753 	if (!tgt->num_discard_bios && tgt->discards_supported)
754 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
755 		       dm_device_name(t->md), type);
756 
757 	return 0;
758 
759  bad:
760 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
761 	dm_put_target_type(tgt->type);
762 	return r;
763 }
764 
765 /*
766  * Target argument parsing helpers.
767  */
768 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
769 			     unsigned *value, char **error, unsigned grouped)
770 {
771 	const char *arg_str = dm_shift_arg(arg_set);
772 	char dummy;
773 
774 	if (!arg_str ||
775 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
776 	    (*value < arg->min) ||
777 	    (*value > arg->max) ||
778 	    (grouped && arg_set->argc < *value)) {
779 		*error = arg->error;
780 		return -EINVAL;
781 	}
782 
783 	return 0;
784 }
785 
786 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
787 		unsigned *value, char **error)
788 {
789 	return validate_next_arg(arg, arg_set, value, error, 0);
790 }
791 EXPORT_SYMBOL(dm_read_arg);
792 
793 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
794 		      unsigned *value, char **error)
795 {
796 	return validate_next_arg(arg, arg_set, value, error, 1);
797 }
798 EXPORT_SYMBOL(dm_read_arg_group);
799 
800 const char *dm_shift_arg(struct dm_arg_set *as)
801 {
802 	char *r;
803 
804 	if (as->argc) {
805 		as->argc--;
806 		r = *as->argv;
807 		as->argv++;
808 		return r;
809 	}
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(dm_shift_arg);
814 
815 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
816 {
817 	BUG_ON(as->argc < num_args);
818 	as->argc -= num_args;
819 	as->argv += num_args;
820 }
821 EXPORT_SYMBOL(dm_consume_args);
822 
823 static bool __table_type_request_based(unsigned table_type)
824 {
825 	return (table_type == DM_TYPE_REQUEST_BASED ||
826 		table_type == DM_TYPE_MQ_REQUEST_BASED);
827 }
828 
829 static int dm_table_set_type(struct dm_table *t)
830 {
831 	unsigned i;
832 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
833 	bool use_blk_mq = false;
834 	struct dm_target *tgt;
835 	struct dm_dev_internal *dd;
836 	struct list_head *devices;
837 	unsigned live_md_type = dm_get_md_type(t->md);
838 
839 	for (i = 0; i < t->num_targets; i++) {
840 		tgt = t->targets + i;
841 		if (dm_target_hybrid(tgt))
842 			hybrid = 1;
843 		else if (dm_target_request_based(tgt))
844 			request_based = 1;
845 		else
846 			bio_based = 1;
847 
848 		if (bio_based && request_based) {
849 			DMWARN("Inconsistent table: different target types"
850 			       " can't be mixed up");
851 			return -EINVAL;
852 		}
853 	}
854 
855 	if (hybrid && !bio_based && !request_based) {
856 		/*
857 		 * The targets can work either way.
858 		 * Determine the type from the live device.
859 		 * Default to bio-based if device is new.
860 		 */
861 		if (__table_type_request_based(live_md_type))
862 			request_based = 1;
863 		else
864 			bio_based = 1;
865 	}
866 
867 	if (bio_based) {
868 		/* We must use this table as bio-based */
869 		t->type = DM_TYPE_BIO_BASED;
870 		return 0;
871 	}
872 
873 	BUG_ON(!request_based); /* No targets in this table */
874 
875 	/*
876 	 * Request-based dm supports only tables that have a single target now.
877 	 * To support multiple targets, request splitting support is needed,
878 	 * and that needs lots of changes in the block-layer.
879 	 * (e.g. request completion process for partial completion.)
880 	 */
881 	if (t->num_targets > 1) {
882 		DMWARN("Request-based dm doesn't support multiple targets yet");
883 		return -EINVAL;
884 	}
885 
886 	/* Non-request-stackable devices can't be used for request-based dm */
887 	devices = dm_table_get_devices(t);
888 	list_for_each_entry(dd, devices, list) {
889 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
890 
891 		if (!blk_queue_stackable(q)) {
892 			DMERR("table load rejected: including"
893 			      " non-request-stackable devices");
894 			return -EINVAL;
895 		}
896 
897 		if (q->mq_ops)
898 			use_blk_mq = true;
899 	}
900 
901 	if (use_blk_mq) {
902 		/* verify _all_ devices in the table are blk-mq devices */
903 		list_for_each_entry(dd, devices, list)
904 			if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
905 				DMERR("table load rejected: not all devices"
906 				      " are blk-mq request-stackable");
907 				return -EINVAL;
908 			}
909 		t->type = DM_TYPE_MQ_REQUEST_BASED;
910 
911 	} else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
912 		/* inherit live MD type */
913 		t->type = live_md_type;
914 
915 	} else
916 		t->type = DM_TYPE_REQUEST_BASED;
917 
918 	return 0;
919 }
920 
921 unsigned dm_table_get_type(struct dm_table *t)
922 {
923 	return t->type;
924 }
925 
926 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
927 {
928 	return t->immutable_target_type;
929 }
930 
931 bool dm_table_request_based(struct dm_table *t)
932 {
933 	return __table_type_request_based(dm_table_get_type(t));
934 }
935 
936 bool dm_table_mq_request_based(struct dm_table *t)
937 {
938 	return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
939 }
940 
941 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
942 {
943 	unsigned type = dm_table_get_type(t);
944 	unsigned per_bio_data_size = 0;
945 	struct dm_target *tgt;
946 	unsigned i;
947 
948 	if (unlikely(type == DM_TYPE_NONE)) {
949 		DMWARN("no table type is set, can't allocate mempools");
950 		return -EINVAL;
951 	}
952 
953 	if (type == DM_TYPE_BIO_BASED)
954 		for (i = 0; i < t->num_targets; i++) {
955 			tgt = t->targets + i;
956 			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
957 		}
958 
959 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
960 	if (!t->mempools)
961 		return -ENOMEM;
962 
963 	return 0;
964 }
965 
966 void dm_table_free_md_mempools(struct dm_table *t)
967 {
968 	dm_free_md_mempools(t->mempools);
969 	t->mempools = NULL;
970 }
971 
972 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
973 {
974 	return t->mempools;
975 }
976 
977 static int setup_indexes(struct dm_table *t)
978 {
979 	int i;
980 	unsigned int total = 0;
981 	sector_t *indexes;
982 
983 	/* allocate the space for *all* the indexes */
984 	for (i = t->depth - 2; i >= 0; i--) {
985 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
986 		total += t->counts[i];
987 	}
988 
989 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
990 	if (!indexes)
991 		return -ENOMEM;
992 
993 	/* set up internal nodes, bottom-up */
994 	for (i = t->depth - 2; i >= 0; i--) {
995 		t->index[i] = indexes;
996 		indexes += (KEYS_PER_NODE * t->counts[i]);
997 		setup_btree_index(i, t);
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 /*
1004  * Builds the btree to index the map.
1005  */
1006 static int dm_table_build_index(struct dm_table *t)
1007 {
1008 	int r = 0;
1009 	unsigned int leaf_nodes;
1010 
1011 	/* how many indexes will the btree have ? */
1012 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1013 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1014 
1015 	/* leaf layer has already been set up */
1016 	t->counts[t->depth - 1] = leaf_nodes;
1017 	t->index[t->depth - 1] = t->highs;
1018 
1019 	if (t->depth >= 2)
1020 		r = setup_indexes(t);
1021 
1022 	return r;
1023 }
1024 
1025 /*
1026  * Get a disk whose integrity profile reflects the table's profile.
1027  * If %match_all is true, all devices' profiles must match.
1028  * If %match_all is false, all devices must at least have an
1029  * allocated integrity profile; but uninitialized is ok.
1030  * Returns NULL if integrity support was inconsistent or unavailable.
1031  */
1032 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1033 						    bool match_all)
1034 {
1035 	struct list_head *devices = dm_table_get_devices(t);
1036 	struct dm_dev_internal *dd = NULL;
1037 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1038 
1039 	list_for_each_entry(dd, devices, list) {
1040 		template_disk = dd->dm_dev->bdev->bd_disk;
1041 		if (!blk_get_integrity(template_disk))
1042 			goto no_integrity;
1043 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1044 			continue; /* skip uninitialized profiles */
1045 		else if (prev_disk &&
1046 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1047 			goto no_integrity;
1048 		prev_disk = template_disk;
1049 	}
1050 
1051 	return template_disk;
1052 
1053 no_integrity:
1054 	if (prev_disk)
1055 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1056 		       dm_device_name(t->md),
1057 		       prev_disk->disk_name,
1058 		       template_disk->disk_name);
1059 	return NULL;
1060 }
1061 
1062 /*
1063  * Register the mapped device for blk_integrity support if
1064  * the underlying devices have an integrity profile.  But all devices
1065  * may not have matching profiles (checking all devices isn't reliable
1066  * during table load because this table may use other DM device(s) which
1067  * must be resumed before they will have an initialized integity profile).
1068  * Stacked DM devices force a 2 stage integrity profile validation:
1069  * 1 - during load, validate all initialized integrity profiles match
1070  * 2 - during resume, validate all integrity profiles match
1071  */
1072 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1073 {
1074 	struct gendisk *template_disk = NULL;
1075 
1076 	template_disk = dm_table_get_integrity_disk(t, false);
1077 	if (!template_disk)
1078 		return 0;
1079 
1080 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1081 		t->integrity_supported = 1;
1082 		return blk_integrity_register(dm_disk(md), NULL);
1083 	}
1084 
1085 	/*
1086 	 * If DM device already has an initalized integrity
1087 	 * profile the new profile should not conflict.
1088 	 */
1089 	if (blk_integrity_is_initialized(template_disk) &&
1090 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1091 		DMWARN("%s: conflict with existing integrity profile: "
1092 		       "%s profile mismatch",
1093 		       dm_device_name(t->md),
1094 		       template_disk->disk_name);
1095 		return 1;
1096 	}
1097 
1098 	/* Preserve existing initialized integrity profile */
1099 	t->integrity_supported = 1;
1100 	return 0;
1101 }
1102 
1103 /*
1104  * Prepares the table for use by building the indices,
1105  * setting the type, and allocating mempools.
1106  */
1107 int dm_table_complete(struct dm_table *t)
1108 {
1109 	int r;
1110 
1111 	r = dm_table_set_type(t);
1112 	if (r) {
1113 		DMERR("unable to set table type");
1114 		return r;
1115 	}
1116 
1117 	r = dm_table_build_index(t);
1118 	if (r) {
1119 		DMERR("unable to build btrees");
1120 		return r;
1121 	}
1122 
1123 	r = dm_table_prealloc_integrity(t, t->md);
1124 	if (r) {
1125 		DMERR("could not register integrity profile.");
1126 		return r;
1127 	}
1128 
1129 	r = dm_table_alloc_md_mempools(t, t->md);
1130 	if (r)
1131 		DMERR("unable to allocate mempools");
1132 
1133 	return r;
1134 }
1135 
1136 static DEFINE_MUTEX(_event_lock);
1137 void dm_table_event_callback(struct dm_table *t,
1138 			     void (*fn)(void *), void *context)
1139 {
1140 	mutex_lock(&_event_lock);
1141 	t->event_fn = fn;
1142 	t->event_context = context;
1143 	mutex_unlock(&_event_lock);
1144 }
1145 
1146 void dm_table_event(struct dm_table *t)
1147 {
1148 	/*
1149 	 * You can no longer call dm_table_event() from interrupt
1150 	 * context, use a bottom half instead.
1151 	 */
1152 	BUG_ON(in_interrupt());
1153 
1154 	mutex_lock(&_event_lock);
1155 	if (t->event_fn)
1156 		t->event_fn(t->event_context);
1157 	mutex_unlock(&_event_lock);
1158 }
1159 EXPORT_SYMBOL(dm_table_event);
1160 
1161 sector_t dm_table_get_size(struct dm_table *t)
1162 {
1163 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1164 }
1165 EXPORT_SYMBOL(dm_table_get_size);
1166 
1167 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1168 {
1169 	if (index >= t->num_targets)
1170 		return NULL;
1171 
1172 	return t->targets + index;
1173 }
1174 
1175 /*
1176  * Search the btree for the correct target.
1177  *
1178  * Caller should check returned pointer with dm_target_is_valid()
1179  * to trap I/O beyond end of device.
1180  */
1181 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1182 {
1183 	unsigned int l, n = 0, k = 0;
1184 	sector_t *node;
1185 
1186 	for (l = 0; l < t->depth; l++) {
1187 		n = get_child(n, k);
1188 		node = get_node(t, l, n);
1189 
1190 		for (k = 0; k < KEYS_PER_NODE; k++)
1191 			if (node[k] >= sector)
1192 				break;
1193 	}
1194 
1195 	return &t->targets[(KEYS_PER_NODE * n) + k];
1196 }
1197 
1198 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1199 			sector_t start, sector_t len, void *data)
1200 {
1201 	unsigned *num_devices = data;
1202 
1203 	(*num_devices)++;
1204 
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Check whether a table has no data devices attached using each
1210  * target's iterate_devices method.
1211  * Returns false if the result is unknown because a target doesn't
1212  * support iterate_devices.
1213  */
1214 bool dm_table_has_no_data_devices(struct dm_table *table)
1215 {
1216 	struct dm_target *uninitialized_var(ti);
1217 	unsigned i = 0, num_devices = 0;
1218 
1219 	while (i < dm_table_get_num_targets(table)) {
1220 		ti = dm_table_get_target(table, i++);
1221 
1222 		if (!ti->type->iterate_devices)
1223 			return false;
1224 
1225 		ti->type->iterate_devices(ti, count_device, &num_devices);
1226 		if (num_devices)
1227 			return false;
1228 	}
1229 
1230 	return true;
1231 }
1232 
1233 /*
1234  * Establish the new table's queue_limits and validate them.
1235  */
1236 int dm_calculate_queue_limits(struct dm_table *table,
1237 			      struct queue_limits *limits)
1238 {
1239 	struct dm_target *uninitialized_var(ti);
1240 	struct queue_limits ti_limits;
1241 	unsigned i = 0;
1242 
1243 	blk_set_stacking_limits(limits);
1244 
1245 	while (i < dm_table_get_num_targets(table)) {
1246 		blk_set_stacking_limits(&ti_limits);
1247 
1248 		ti = dm_table_get_target(table, i++);
1249 
1250 		if (!ti->type->iterate_devices)
1251 			goto combine_limits;
1252 
1253 		/*
1254 		 * Combine queue limits of all the devices this target uses.
1255 		 */
1256 		ti->type->iterate_devices(ti, dm_set_device_limits,
1257 					  &ti_limits);
1258 
1259 		/* Set I/O hints portion of queue limits */
1260 		if (ti->type->io_hints)
1261 			ti->type->io_hints(ti, &ti_limits);
1262 
1263 		/*
1264 		 * Check each device area is consistent with the target's
1265 		 * overall queue limits.
1266 		 */
1267 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1268 					      &ti_limits))
1269 			return -EINVAL;
1270 
1271 combine_limits:
1272 		/*
1273 		 * Merge this target's queue limits into the overall limits
1274 		 * for the table.
1275 		 */
1276 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1277 			DMWARN("%s: adding target device "
1278 			       "(start sect %llu len %llu) "
1279 			       "caused an alignment inconsistency",
1280 			       dm_device_name(table->md),
1281 			       (unsigned long long) ti->begin,
1282 			       (unsigned long long) ti->len);
1283 	}
1284 
1285 	return validate_hardware_logical_block_alignment(table, limits);
1286 }
1287 
1288 /*
1289  * Set the integrity profile for this device if all devices used have
1290  * matching profiles.  We're quite deep in the resume path but still
1291  * don't know if all devices (particularly DM devices this device
1292  * may be stacked on) have matching profiles.  Even if the profiles
1293  * don't match we have no way to fail (to resume) at this point.
1294  */
1295 static void dm_table_set_integrity(struct dm_table *t)
1296 {
1297 	struct gendisk *template_disk = NULL;
1298 
1299 	if (!blk_get_integrity(dm_disk(t->md)))
1300 		return;
1301 
1302 	template_disk = dm_table_get_integrity_disk(t, true);
1303 	if (template_disk)
1304 		blk_integrity_register(dm_disk(t->md),
1305 				       blk_get_integrity(template_disk));
1306 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1307 		DMWARN("%s: device no longer has a valid integrity profile",
1308 		       dm_device_name(t->md));
1309 	else
1310 		DMWARN("%s: unable to establish an integrity profile",
1311 		       dm_device_name(t->md));
1312 }
1313 
1314 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1315 				sector_t start, sector_t len, void *data)
1316 {
1317 	unsigned flush = (*(unsigned *)data);
1318 	struct request_queue *q = bdev_get_queue(dev->bdev);
1319 
1320 	return q && (q->flush_flags & flush);
1321 }
1322 
1323 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1324 {
1325 	struct dm_target *ti;
1326 	unsigned i = 0;
1327 
1328 	/*
1329 	 * Require at least one underlying device to support flushes.
1330 	 * t->devices includes internal dm devices such as mirror logs
1331 	 * so we need to use iterate_devices here, which targets
1332 	 * supporting flushes must provide.
1333 	 */
1334 	while (i < dm_table_get_num_targets(t)) {
1335 		ti = dm_table_get_target(t, i++);
1336 
1337 		if (!ti->num_flush_bios)
1338 			continue;
1339 
1340 		if (ti->flush_supported)
1341 			return true;
1342 
1343 		if (ti->type->iterate_devices &&
1344 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1345 			return true;
1346 	}
1347 
1348 	return false;
1349 }
1350 
1351 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1352 {
1353 	struct dm_target *ti;
1354 	unsigned i = 0;
1355 
1356 	/* Ensure that all targets supports discard_zeroes_data. */
1357 	while (i < dm_table_get_num_targets(t)) {
1358 		ti = dm_table_get_target(t, i++);
1359 
1360 		if (ti->discard_zeroes_data_unsupported)
1361 			return false;
1362 	}
1363 
1364 	return true;
1365 }
1366 
1367 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1368 			    sector_t start, sector_t len, void *data)
1369 {
1370 	struct request_queue *q = bdev_get_queue(dev->bdev);
1371 
1372 	return q && blk_queue_nonrot(q);
1373 }
1374 
1375 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1376 			     sector_t start, sector_t len, void *data)
1377 {
1378 	struct request_queue *q = bdev_get_queue(dev->bdev);
1379 
1380 	return q && !blk_queue_add_random(q);
1381 }
1382 
1383 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1384 				   sector_t start, sector_t len, void *data)
1385 {
1386 	struct request_queue *q = bdev_get_queue(dev->bdev);
1387 
1388 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1389 }
1390 
1391 static int queue_supports_sg_gaps(struct dm_target *ti, struct dm_dev *dev,
1392 				  sector_t start, sector_t len, void *data)
1393 {
1394 	struct request_queue *q = bdev_get_queue(dev->bdev);
1395 
1396 	return q && !test_bit(QUEUE_FLAG_SG_GAPS, &q->queue_flags);
1397 }
1398 
1399 static bool dm_table_all_devices_attribute(struct dm_table *t,
1400 					   iterate_devices_callout_fn func)
1401 {
1402 	struct dm_target *ti;
1403 	unsigned i = 0;
1404 
1405 	while (i < dm_table_get_num_targets(t)) {
1406 		ti = dm_table_get_target(t, i++);
1407 
1408 		if (!ti->type->iterate_devices ||
1409 		    !ti->type->iterate_devices(ti, func, NULL))
1410 			return false;
1411 	}
1412 
1413 	return true;
1414 }
1415 
1416 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1417 					 sector_t start, sector_t len, void *data)
1418 {
1419 	struct request_queue *q = bdev_get_queue(dev->bdev);
1420 
1421 	return q && !q->limits.max_write_same_sectors;
1422 }
1423 
1424 static bool dm_table_supports_write_same(struct dm_table *t)
1425 {
1426 	struct dm_target *ti;
1427 	unsigned i = 0;
1428 
1429 	while (i < dm_table_get_num_targets(t)) {
1430 		ti = dm_table_get_target(t, i++);
1431 
1432 		if (!ti->num_write_same_bios)
1433 			return false;
1434 
1435 		if (!ti->type->iterate_devices ||
1436 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1437 			return false;
1438 	}
1439 
1440 	return true;
1441 }
1442 
1443 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1444 				  sector_t start, sector_t len, void *data)
1445 {
1446 	struct request_queue *q = bdev_get_queue(dev->bdev);
1447 
1448 	return q && blk_queue_discard(q);
1449 }
1450 
1451 static bool dm_table_supports_discards(struct dm_table *t)
1452 {
1453 	struct dm_target *ti;
1454 	unsigned i = 0;
1455 
1456 	/*
1457 	 * Unless any target used by the table set discards_supported,
1458 	 * require at least one underlying device to support discards.
1459 	 * t->devices includes internal dm devices such as mirror logs
1460 	 * so we need to use iterate_devices here, which targets
1461 	 * supporting discard selectively must provide.
1462 	 */
1463 	while (i < dm_table_get_num_targets(t)) {
1464 		ti = dm_table_get_target(t, i++);
1465 
1466 		if (!ti->num_discard_bios)
1467 			continue;
1468 
1469 		if (ti->discards_supported)
1470 			return true;
1471 
1472 		if (ti->type->iterate_devices &&
1473 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1474 			return true;
1475 	}
1476 
1477 	return false;
1478 }
1479 
1480 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1481 			       struct queue_limits *limits)
1482 {
1483 	unsigned flush = 0;
1484 
1485 	/*
1486 	 * Copy table's limits to the DM device's request_queue
1487 	 */
1488 	q->limits = *limits;
1489 
1490 	if (!dm_table_supports_discards(t))
1491 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1492 	else
1493 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1494 
1495 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1496 		flush |= REQ_FLUSH;
1497 		if (dm_table_supports_flush(t, REQ_FUA))
1498 			flush |= REQ_FUA;
1499 	}
1500 	blk_queue_flush(q, flush);
1501 
1502 	if (!dm_table_discard_zeroes_data(t))
1503 		q->limits.discard_zeroes_data = 0;
1504 
1505 	/* Ensure that all underlying devices are non-rotational. */
1506 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1507 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1508 	else
1509 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1510 
1511 	if (!dm_table_supports_write_same(t))
1512 		q->limits.max_write_same_sectors = 0;
1513 
1514 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1515 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1516 	else
1517 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1518 
1519 	if (dm_table_all_devices_attribute(t, queue_supports_sg_gaps))
1520 		queue_flag_clear_unlocked(QUEUE_FLAG_SG_GAPS, q);
1521 	else
1522 		queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, q);
1523 
1524 	dm_table_set_integrity(t);
1525 
1526 	/*
1527 	 * Determine whether or not this queue's I/O timings contribute
1528 	 * to the entropy pool, Only request-based targets use this.
1529 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1530 	 * have it set.
1531 	 */
1532 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1533 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1534 
1535 	/*
1536 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1537 	 * visible to other CPUs because, once the flag is set, incoming bios
1538 	 * are processed by request-based dm, which refers to the queue
1539 	 * settings.
1540 	 * Until the flag set, bios are passed to bio-based dm and queued to
1541 	 * md->deferred where queue settings are not needed yet.
1542 	 * Those bios are passed to request-based dm at the resume time.
1543 	 */
1544 	smp_mb();
1545 	if (dm_table_request_based(t))
1546 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1547 }
1548 
1549 unsigned int dm_table_get_num_targets(struct dm_table *t)
1550 {
1551 	return t->num_targets;
1552 }
1553 
1554 struct list_head *dm_table_get_devices(struct dm_table *t)
1555 {
1556 	return &t->devices;
1557 }
1558 
1559 fmode_t dm_table_get_mode(struct dm_table *t)
1560 {
1561 	return t->mode;
1562 }
1563 EXPORT_SYMBOL(dm_table_get_mode);
1564 
1565 enum suspend_mode {
1566 	PRESUSPEND,
1567 	PRESUSPEND_UNDO,
1568 	POSTSUSPEND,
1569 };
1570 
1571 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1572 {
1573 	int i = t->num_targets;
1574 	struct dm_target *ti = t->targets;
1575 
1576 	while (i--) {
1577 		switch (mode) {
1578 		case PRESUSPEND:
1579 			if (ti->type->presuspend)
1580 				ti->type->presuspend(ti);
1581 			break;
1582 		case PRESUSPEND_UNDO:
1583 			if (ti->type->presuspend_undo)
1584 				ti->type->presuspend_undo(ti);
1585 			break;
1586 		case POSTSUSPEND:
1587 			if (ti->type->postsuspend)
1588 				ti->type->postsuspend(ti);
1589 			break;
1590 		}
1591 		ti++;
1592 	}
1593 }
1594 
1595 void dm_table_presuspend_targets(struct dm_table *t)
1596 {
1597 	if (!t)
1598 		return;
1599 
1600 	suspend_targets(t, PRESUSPEND);
1601 }
1602 
1603 void dm_table_presuspend_undo_targets(struct dm_table *t)
1604 {
1605 	if (!t)
1606 		return;
1607 
1608 	suspend_targets(t, PRESUSPEND_UNDO);
1609 }
1610 
1611 void dm_table_postsuspend_targets(struct dm_table *t)
1612 {
1613 	if (!t)
1614 		return;
1615 
1616 	suspend_targets(t, POSTSUSPEND);
1617 }
1618 
1619 int dm_table_resume_targets(struct dm_table *t)
1620 {
1621 	int i, r = 0;
1622 
1623 	for (i = 0; i < t->num_targets; i++) {
1624 		struct dm_target *ti = t->targets + i;
1625 
1626 		if (!ti->type->preresume)
1627 			continue;
1628 
1629 		r = ti->type->preresume(ti);
1630 		if (r) {
1631 			DMERR("%s: %s: preresume failed, error = %d",
1632 			      dm_device_name(t->md), ti->type->name, r);
1633 			return r;
1634 		}
1635 	}
1636 
1637 	for (i = 0; i < t->num_targets; i++) {
1638 		struct dm_target *ti = t->targets + i;
1639 
1640 		if (ti->type->resume)
1641 			ti->type->resume(ti);
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1648 {
1649 	list_add(&cb->list, &t->target_callbacks);
1650 }
1651 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1652 
1653 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1654 {
1655 	struct dm_dev_internal *dd;
1656 	struct list_head *devices = dm_table_get_devices(t);
1657 	struct dm_target_callbacks *cb;
1658 	int r = 0;
1659 
1660 	list_for_each_entry(dd, devices, list) {
1661 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1662 		char b[BDEVNAME_SIZE];
1663 
1664 		if (likely(q))
1665 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1666 		else
1667 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1668 				     dm_device_name(t->md),
1669 				     bdevname(dd->dm_dev->bdev, b));
1670 	}
1671 
1672 	list_for_each_entry(cb, &t->target_callbacks, list)
1673 		if (cb->congested_fn)
1674 			r |= cb->congested_fn(cb, bdi_bits);
1675 
1676 	return r;
1677 }
1678 
1679 struct mapped_device *dm_table_get_md(struct dm_table *t)
1680 {
1681 	return t->md;
1682 }
1683 EXPORT_SYMBOL(dm_table_get_md);
1684 
1685 void dm_table_run_md_queue_async(struct dm_table *t)
1686 {
1687 	struct mapped_device *md;
1688 	struct request_queue *queue;
1689 	unsigned long flags;
1690 
1691 	if (!dm_table_request_based(t))
1692 		return;
1693 
1694 	md = dm_table_get_md(t);
1695 	queue = dm_get_md_queue(md);
1696 	if (queue) {
1697 		if (queue->mq_ops)
1698 			blk_mq_run_hw_queues(queue, true);
1699 		else {
1700 			spin_lock_irqsave(queue->queue_lock, flags);
1701 			blk_run_queue_async(queue);
1702 			spin_unlock_irqrestore(queue->queue_lock, flags);
1703 		}
1704 	}
1705 }
1706 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1707 
1708