xref: /linux/drivers/md/dm-table.c (revision be239684b18e1cdcafcf8c7face4a2f562c745ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27 
28 #define DM_MSG_PREFIX "table"
29 
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 
34 /*
35  * Similar to ceiling(log_size(n))
36  */
37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 	int result = 0;
40 
41 	while (n > 1) {
42 		n = dm_div_up(n, base);
43 		result++;
44 	}
45 
46 	return result;
47 }
48 
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 	return (n * CHILDREN_PER_NODE) + k;
55 }
56 
57 /*
58  * Return the n'th node of level l from table t.
59  */
60 static inline sector_t *get_node(struct dm_table *t,
61 				 unsigned int l, unsigned int n)
62 {
63 	return t->index[l] + (n * KEYS_PER_NODE);
64 }
65 
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 	for (; l < t->depth - 1; l++)
73 		n = get_child(n, CHILDREN_PER_NODE - 1);
74 
75 	if (n >= t->counts[l])
76 		return (sector_t) -1;
77 
78 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80 
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 	unsigned int n, k;
88 	sector_t *node;
89 
90 	for (n = 0U; n < t->counts[l]; n++) {
91 		node = get_node(t, l, n);
92 
93 		for (k = 0U; k < KEYS_PER_NODE; k++)
94 			node[k] = high(t, l + 1, get_child(n, k));
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 	sector_t *n_highs;
107 	struct dm_target *n_targets;
108 
109 	/*
110 	 * Allocate both the target array and offset array at once.
111 	 */
112 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 			   GFP_KERNEL);
114 	if (!n_highs)
115 		return -ENOMEM;
116 
117 	n_targets = (struct dm_target *) (n_highs + num);
118 
119 	memset(n_highs, -1, sizeof(*n_highs) * num);
120 	kvfree(t->highs);
121 
122 	t->num_allocated = num;
123 	t->highs = n_highs;
124 	t->targets = n_targets;
125 
126 	return 0;
127 }
128 
129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 		    unsigned int num_targets, struct mapped_device *md)
131 {
132 	struct dm_table *t;
133 
134 	if (num_targets > DM_MAX_TARGETS)
135 		return -EOVERFLOW;
136 
137 	t = kzalloc(sizeof(*t), GFP_KERNEL);
138 
139 	if (!t)
140 		return -ENOMEM;
141 
142 	INIT_LIST_HEAD(&t->devices);
143 	init_rwsem(&t->devices_lock);
144 
145 	if (!num_targets)
146 		num_targets = KEYS_PER_NODE;
147 
148 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149 
150 	if (!num_targets) {
151 		kfree(t);
152 		return -EOVERFLOW;
153 	}
154 
155 	if (alloc_targets(t, num_targets)) {
156 		kfree(t);
157 		return -ENOMEM;
158 	}
159 
160 	t->type = DM_TYPE_NONE;
161 	t->mode = mode;
162 	t->md = md;
163 	*result = t;
164 	return 0;
165 }
166 
167 static void free_devices(struct list_head *devices, struct mapped_device *md)
168 {
169 	struct list_head *tmp, *next;
170 
171 	list_for_each_safe(tmp, next, devices) {
172 		struct dm_dev_internal *dd =
173 		    list_entry(tmp, struct dm_dev_internal, list);
174 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175 		       dm_device_name(md), dd->dm_dev->name);
176 		dm_put_table_device(md, dd->dm_dev);
177 		kfree(dd);
178 	}
179 }
180 
181 static void dm_table_destroy_crypto_profile(struct dm_table *t);
182 
183 void dm_table_destroy(struct dm_table *t)
184 {
185 	if (!t)
186 		return;
187 
188 	/* free the indexes */
189 	if (t->depth >= 2)
190 		kvfree(t->index[t->depth - 2]);
191 
192 	/* free the targets */
193 	for (unsigned int i = 0; i < t->num_targets; i++) {
194 		struct dm_target *ti = dm_table_get_target(t, i);
195 
196 		if (ti->type->dtr)
197 			ti->type->dtr(ti);
198 
199 		dm_put_target_type(ti->type);
200 	}
201 
202 	kvfree(t->highs);
203 
204 	/* free the device list */
205 	free_devices(&t->devices, t->md);
206 
207 	dm_free_md_mempools(t->mempools);
208 
209 	dm_table_destroy_crypto_profile(t);
210 
211 	kfree(t);
212 }
213 
214 /*
215  * See if we've already got a device in the list.
216  */
217 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218 {
219 	struct dm_dev_internal *dd;
220 
221 	list_for_each_entry(dd, l, list)
222 		if (dd->dm_dev->bdev->bd_dev == dev)
223 			return dd;
224 
225 	return NULL;
226 }
227 
228 /*
229  * If possible, this checks an area of a destination device is invalid.
230  */
231 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232 				  sector_t start, sector_t len, void *data)
233 {
234 	struct queue_limits *limits = data;
235 	struct block_device *bdev = dev->bdev;
236 	sector_t dev_size = bdev_nr_sectors(bdev);
237 	unsigned short logical_block_size_sectors =
238 		limits->logical_block_size >> SECTOR_SHIFT;
239 
240 	if (!dev_size)
241 		return 0;
242 
243 	if ((start >= dev_size) || (start + len > dev_size)) {
244 		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245 		      dm_device_name(ti->table->md), bdev,
246 		      (unsigned long long)start,
247 		      (unsigned long long)len,
248 		      (unsigned long long)dev_size);
249 		return 1;
250 	}
251 
252 	/*
253 	 * If the target is mapped to zoned block device(s), check
254 	 * that the zones are not partially mapped.
255 	 */
256 	if (bdev_is_zoned(bdev)) {
257 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
258 
259 		if (start & (zone_sectors - 1)) {
260 			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261 			      dm_device_name(ti->table->md),
262 			      (unsigned long long)start,
263 			      zone_sectors, bdev);
264 			return 1;
265 		}
266 
267 		/*
268 		 * Note: The last zone of a zoned block device may be smaller
269 		 * than other zones. So for a target mapping the end of a
270 		 * zoned block device with such a zone, len would not be zone
271 		 * aligned. We do not allow such last smaller zone to be part
272 		 * of the mapping here to ensure that mappings with multiple
273 		 * devices do not end up with a smaller zone in the middle of
274 		 * the sector range.
275 		 */
276 		if (len & (zone_sectors - 1)) {
277 			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278 			      dm_device_name(ti->table->md),
279 			      (unsigned long long)len,
280 			      zone_sectors, bdev);
281 			return 1;
282 		}
283 	}
284 
285 	if (logical_block_size_sectors <= 1)
286 		return 0;
287 
288 	if (start & (logical_block_size_sectors - 1)) {
289 		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290 		      dm_device_name(ti->table->md),
291 		      (unsigned long long)start,
292 		      limits->logical_block_size, bdev);
293 		return 1;
294 	}
295 
296 	if (len & (logical_block_size_sectors - 1)) {
297 		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298 		      dm_device_name(ti->table->md),
299 		      (unsigned long long)len,
300 		      limits->logical_block_size, bdev);
301 		return 1;
302 	}
303 
304 	return 0;
305 }
306 
307 /*
308  * This upgrades the mode on an already open dm_dev, being
309  * careful to leave things as they were if we fail to reopen the
310  * device and not to touch the existing bdev field in case
311  * it is accessed concurrently.
312  */
313 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314 			struct mapped_device *md)
315 {
316 	int r;
317 	struct dm_dev *old_dev, *new_dev;
318 
319 	old_dev = dd->dm_dev;
320 
321 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322 				dd->dm_dev->mode | new_mode, &new_dev);
323 	if (r)
324 		return r;
325 
326 	dd->dm_dev = new_dev;
327 	dm_put_table_device(md, old_dev);
328 
329 	return 0;
330 }
331 
332 /*
333  * Add a device to the list, or just increment the usage count if
334  * it's already present.
335  *
336  * Note: the __ref annotation is because this function can call the __init
337  * marked early_lookup_bdev when called during early boot code from dm-init.c.
338  */
339 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340 		  struct dm_dev **result)
341 {
342 	int r;
343 	dev_t dev;
344 	unsigned int major, minor;
345 	char dummy;
346 	struct dm_dev_internal *dd;
347 	struct dm_table *t = ti->table;
348 
349 	BUG_ON(!t);
350 
351 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352 		/* Extract the major/minor numbers */
353 		dev = MKDEV(major, minor);
354 		if (MAJOR(dev) != major || MINOR(dev) != minor)
355 			return -EOVERFLOW;
356 	} else {
357 		r = lookup_bdev(path, &dev);
358 #ifndef MODULE
359 		if (r && system_state < SYSTEM_RUNNING)
360 			r = early_lookup_bdev(path, &dev);
361 #endif
362 		if (r)
363 			return r;
364 	}
365 	if (dev == disk_devt(t->md->disk))
366 		return -EINVAL;
367 
368 	down_write(&t->devices_lock);
369 
370 	dd = find_device(&t->devices, dev);
371 	if (!dd) {
372 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 		if (!dd) {
374 			r = -ENOMEM;
375 			goto unlock_ret_r;
376 		}
377 
378 		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379 		if (r) {
380 			kfree(dd);
381 			goto unlock_ret_r;
382 		}
383 
384 		refcount_set(&dd->count, 1);
385 		list_add(&dd->list, &t->devices);
386 		goto out;
387 
388 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389 		r = upgrade_mode(dd, mode, t->md);
390 		if (r)
391 			goto unlock_ret_r;
392 	}
393 	refcount_inc(&dd->count);
394 out:
395 	up_write(&t->devices_lock);
396 	*result = dd->dm_dev;
397 	return 0;
398 
399 unlock_ret_r:
400 	up_write(&t->devices_lock);
401 	return r;
402 }
403 EXPORT_SYMBOL(dm_get_device);
404 
405 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406 				sector_t start, sector_t len, void *data)
407 {
408 	struct queue_limits *limits = data;
409 	struct block_device *bdev = dev->bdev;
410 	struct request_queue *q = bdev_get_queue(bdev);
411 
412 	if (unlikely(!q)) {
413 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
414 		       dm_device_name(ti->table->md), bdev);
415 		return 0;
416 	}
417 
418 	if (blk_stack_limits(limits, &q->limits,
419 			get_start_sect(bdev) + start) < 0)
420 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421 		       "physical_block_size=%u, logical_block_size=%u, "
422 		       "alignment_offset=%u, start=%llu",
423 		       dm_device_name(ti->table->md), bdev,
424 		       q->limits.physical_block_size,
425 		       q->limits.logical_block_size,
426 		       q->limits.alignment_offset,
427 		       (unsigned long long) start << SECTOR_SHIFT);
428 	return 0;
429 }
430 
431 /*
432  * Decrement a device's use count and remove it if necessary.
433  */
434 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435 {
436 	int found = 0;
437 	struct dm_table *t = ti->table;
438 	struct list_head *devices = &t->devices;
439 	struct dm_dev_internal *dd;
440 
441 	down_write(&t->devices_lock);
442 
443 	list_for_each_entry(dd, devices, list) {
444 		if (dd->dm_dev == d) {
445 			found = 1;
446 			break;
447 		}
448 	}
449 	if (!found) {
450 		DMERR("%s: device %s not in table devices list",
451 		      dm_device_name(t->md), d->name);
452 		goto unlock_ret;
453 	}
454 	if (refcount_dec_and_test(&dd->count)) {
455 		dm_put_table_device(t->md, d);
456 		list_del(&dd->list);
457 		kfree(dd);
458 	}
459 
460 unlock_ret:
461 	up_write(&t->devices_lock);
462 }
463 EXPORT_SYMBOL(dm_put_device);
464 
465 /*
466  * Checks to see if the target joins onto the end of the table.
467  */
468 static int adjoin(struct dm_table *t, struct dm_target *ti)
469 {
470 	struct dm_target *prev;
471 
472 	if (!t->num_targets)
473 		return !ti->begin;
474 
475 	prev = &t->targets[t->num_targets - 1];
476 	return (ti->begin == (prev->begin + prev->len));
477 }
478 
479 /*
480  * Used to dynamically allocate the arg array.
481  *
482  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483  * process messages even if some device is suspended. These messages have a
484  * small fixed number of arguments.
485  *
486  * On the other hand, dm-switch needs to process bulk data using messages and
487  * excessive use of GFP_NOIO could cause trouble.
488  */
489 static char **realloc_argv(unsigned int *size, char **old_argv)
490 {
491 	char **argv;
492 	unsigned int new_size;
493 	gfp_t gfp;
494 
495 	if (*size) {
496 		new_size = *size * 2;
497 		gfp = GFP_KERNEL;
498 	} else {
499 		new_size = 8;
500 		gfp = GFP_NOIO;
501 	}
502 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503 	if (argv && old_argv) {
504 		memcpy(argv, old_argv, *size * sizeof(*argv));
505 		*size = new_size;
506 	}
507 
508 	kfree(old_argv);
509 	return argv;
510 }
511 
512 /*
513  * Destructively splits up the argument list to pass to ctr.
514  */
515 int dm_split_args(int *argc, char ***argvp, char *input)
516 {
517 	char *start, *end = input, *out, **argv = NULL;
518 	unsigned int array_size = 0;
519 
520 	*argc = 0;
521 
522 	if (!input) {
523 		*argvp = NULL;
524 		return 0;
525 	}
526 
527 	argv = realloc_argv(&array_size, argv);
528 	if (!argv)
529 		return -ENOMEM;
530 
531 	while (1) {
532 		/* Skip whitespace */
533 		start = skip_spaces(end);
534 
535 		if (!*start)
536 			break;	/* success, we hit the end */
537 
538 		/* 'out' is used to remove any back-quotes */
539 		end = out = start;
540 		while (*end) {
541 			/* Everything apart from '\0' can be quoted */
542 			if (*end == '\\' && *(end + 1)) {
543 				*out++ = *(end + 1);
544 				end += 2;
545 				continue;
546 			}
547 
548 			if (isspace(*end))
549 				break;	/* end of token */
550 
551 			*out++ = *end++;
552 		}
553 
554 		/* have we already filled the array ? */
555 		if ((*argc + 1) > array_size) {
556 			argv = realloc_argv(&array_size, argv);
557 			if (!argv)
558 				return -ENOMEM;
559 		}
560 
561 		/* we know this is whitespace */
562 		if (*end)
563 			end++;
564 
565 		/* terminate the string and put it in the array */
566 		*out = '\0';
567 		argv[*argc] = start;
568 		(*argc)++;
569 	}
570 
571 	*argvp = argv;
572 	return 0;
573 }
574 
575 /*
576  * Impose necessary and sufficient conditions on a devices's table such
577  * that any incoming bio which respects its logical_block_size can be
578  * processed successfully.  If it falls across the boundary between
579  * two or more targets, the size of each piece it gets split into must
580  * be compatible with the logical_block_size of the target processing it.
581  */
582 static int validate_hardware_logical_block_alignment(struct dm_table *t,
583 						     struct queue_limits *limits)
584 {
585 	/*
586 	 * This function uses arithmetic modulo the logical_block_size
587 	 * (in units of 512-byte sectors).
588 	 */
589 	unsigned short device_logical_block_size_sects =
590 		limits->logical_block_size >> SECTOR_SHIFT;
591 
592 	/*
593 	 * Offset of the start of the next table entry, mod logical_block_size.
594 	 */
595 	unsigned short next_target_start = 0;
596 
597 	/*
598 	 * Given an aligned bio that extends beyond the end of a
599 	 * target, how many sectors must the next target handle?
600 	 */
601 	unsigned short remaining = 0;
602 
603 	struct dm_target *ti;
604 	struct queue_limits ti_limits;
605 	unsigned int i;
606 
607 	/*
608 	 * Check each entry in the table in turn.
609 	 */
610 	for (i = 0; i < t->num_targets; i++) {
611 		ti = dm_table_get_target(t, i);
612 
613 		blk_set_stacking_limits(&ti_limits);
614 
615 		/* combine all target devices' limits */
616 		if (ti->type->iterate_devices)
617 			ti->type->iterate_devices(ti, dm_set_device_limits,
618 						  &ti_limits);
619 
620 		/*
621 		 * If the remaining sectors fall entirely within this
622 		 * table entry are they compatible with its logical_block_size?
623 		 */
624 		if (remaining < ti->len &&
625 		    remaining & ((ti_limits.logical_block_size >>
626 				  SECTOR_SHIFT) - 1))
627 			break;	/* Error */
628 
629 		next_target_start =
630 		    (unsigned short) ((next_target_start + ti->len) &
631 				      (device_logical_block_size_sects - 1));
632 		remaining = next_target_start ?
633 		    device_logical_block_size_sects - next_target_start : 0;
634 	}
635 
636 	if (remaining) {
637 		DMERR("%s: table line %u (start sect %llu len %llu) "
638 		      "not aligned to h/w logical block size %u",
639 		      dm_device_name(t->md), i,
640 		      (unsigned long long) ti->begin,
641 		      (unsigned long long) ti->len,
642 		      limits->logical_block_size);
643 		return -EINVAL;
644 	}
645 
646 	return 0;
647 }
648 
649 int dm_table_add_target(struct dm_table *t, const char *type,
650 			sector_t start, sector_t len, char *params)
651 {
652 	int r = -EINVAL, argc;
653 	char **argv;
654 	struct dm_target *ti;
655 
656 	if (t->singleton) {
657 		DMERR("%s: target type %s must appear alone in table",
658 		      dm_device_name(t->md), t->targets->type->name);
659 		return -EINVAL;
660 	}
661 
662 	BUG_ON(t->num_targets >= t->num_allocated);
663 
664 	ti = t->targets + t->num_targets;
665 	memset(ti, 0, sizeof(*ti));
666 
667 	if (!len) {
668 		DMERR("%s: zero-length target", dm_device_name(t->md));
669 		return -EINVAL;
670 	}
671 
672 	ti->type = dm_get_target_type(type);
673 	if (!ti->type) {
674 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675 		return -EINVAL;
676 	}
677 
678 	if (dm_target_needs_singleton(ti->type)) {
679 		if (t->num_targets) {
680 			ti->error = "singleton target type must appear alone in table";
681 			goto bad;
682 		}
683 		t->singleton = true;
684 	}
685 
686 	if (dm_target_always_writeable(ti->type) &&
687 	    !(t->mode & BLK_OPEN_WRITE)) {
688 		ti->error = "target type may not be included in a read-only table";
689 		goto bad;
690 	}
691 
692 	if (t->immutable_target_type) {
693 		if (t->immutable_target_type != ti->type) {
694 			ti->error = "immutable target type cannot be mixed with other target types";
695 			goto bad;
696 		}
697 	} else if (dm_target_is_immutable(ti->type)) {
698 		if (t->num_targets) {
699 			ti->error = "immutable target type cannot be mixed with other target types";
700 			goto bad;
701 		}
702 		t->immutable_target_type = ti->type;
703 	}
704 
705 	if (dm_target_has_integrity(ti->type))
706 		t->integrity_added = 1;
707 
708 	ti->table = t;
709 	ti->begin = start;
710 	ti->len = len;
711 	ti->error = "Unknown error";
712 
713 	/*
714 	 * Does this target adjoin the previous one ?
715 	 */
716 	if (!adjoin(t, ti)) {
717 		ti->error = "Gap in table";
718 		goto bad;
719 	}
720 
721 	r = dm_split_args(&argc, &argv, params);
722 	if (r) {
723 		ti->error = "couldn't split parameters";
724 		goto bad;
725 	}
726 
727 	r = ti->type->ctr(ti, argc, argv);
728 	kfree(argv);
729 	if (r)
730 		goto bad;
731 
732 	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
733 
734 	if (!ti->num_discard_bios && ti->discards_supported)
735 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736 		       dm_device_name(t->md), type);
737 
738 	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
739 		static_branch_enable(&swap_bios_enabled);
740 
741 	return 0;
742 
743  bad:
744 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
745 	dm_put_target_type(ti->type);
746 	return r;
747 }
748 
749 /*
750  * Target argument parsing helpers.
751  */
752 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753 			     unsigned int *value, char **error, unsigned int grouped)
754 {
755 	const char *arg_str = dm_shift_arg(arg_set);
756 	char dummy;
757 
758 	if (!arg_str ||
759 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
760 	    (*value < arg->min) ||
761 	    (*value > arg->max) ||
762 	    (grouped && arg_set->argc < *value)) {
763 		*error = arg->error;
764 		return -EINVAL;
765 	}
766 
767 	return 0;
768 }
769 
770 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
771 		unsigned int *value, char **error)
772 {
773 	return validate_next_arg(arg, arg_set, value, error, 0);
774 }
775 EXPORT_SYMBOL(dm_read_arg);
776 
777 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
778 		      unsigned int *value, char **error)
779 {
780 	return validate_next_arg(arg, arg_set, value, error, 1);
781 }
782 EXPORT_SYMBOL(dm_read_arg_group);
783 
784 const char *dm_shift_arg(struct dm_arg_set *as)
785 {
786 	char *r;
787 
788 	if (as->argc) {
789 		as->argc--;
790 		r = *as->argv;
791 		as->argv++;
792 		return r;
793 	}
794 
795 	return NULL;
796 }
797 EXPORT_SYMBOL(dm_shift_arg);
798 
799 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
800 {
801 	BUG_ON(as->argc < num_args);
802 	as->argc -= num_args;
803 	as->argv += num_args;
804 }
805 EXPORT_SYMBOL(dm_consume_args);
806 
807 static bool __table_type_bio_based(enum dm_queue_mode table_type)
808 {
809 	return (table_type == DM_TYPE_BIO_BASED ||
810 		table_type == DM_TYPE_DAX_BIO_BASED);
811 }
812 
813 static bool __table_type_request_based(enum dm_queue_mode table_type)
814 {
815 	return table_type == DM_TYPE_REQUEST_BASED;
816 }
817 
818 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
819 {
820 	t->type = type;
821 }
822 EXPORT_SYMBOL_GPL(dm_table_set_type);
823 
824 /* validate the dax capability of the target device span */
825 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
826 			sector_t start, sector_t len, void *data)
827 {
828 	if (dev->dax_dev)
829 		return false;
830 
831 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
832 	return true;
833 }
834 
835 /* Check devices support synchronous DAX */
836 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
837 					      sector_t start, sector_t len, void *data)
838 {
839 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
840 }
841 
842 static bool dm_table_supports_dax(struct dm_table *t,
843 				  iterate_devices_callout_fn iterate_fn)
844 {
845 	/* Ensure that all targets support DAX. */
846 	for (unsigned int i = 0; i < t->num_targets; i++) {
847 		struct dm_target *ti = dm_table_get_target(t, i);
848 
849 		if (!ti->type->direct_access)
850 			return false;
851 
852 		if (dm_target_is_wildcard(ti->type) ||
853 		    !ti->type->iterate_devices ||
854 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
855 			return false;
856 	}
857 
858 	return true;
859 }
860 
861 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
862 				  sector_t start, sector_t len, void *data)
863 {
864 	struct block_device *bdev = dev->bdev;
865 	struct request_queue *q = bdev_get_queue(bdev);
866 
867 	/* request-based cannot stack on partitions! */
868 	if (bdev_is_partition(bdev))
869 		return false;
870 
871 	return queue_is_mq(q);
872 }
873 
874 static int dm_table_determine_type(struct dm_table *t)
875 {
876 	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
877 	struct dm_target *ti;
878 	struct list_head *devices = dm_table_get_devices(t);
879 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
880 
881 	if (t->type != DM_TYPE_NONE) {
882 		/* target already set the table's type */
883 		if (t->type == DM_TYPE_BIO_BASED) {
884 			/* possibly upgrade to a variant of bio-based */
885 			goto verify_bio_based;
886 		}
887 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
888 		goto verify_rq_based;
889 	}
890 
891 	for (unsigned int i = 0; i < t->num_targets; i++) {
892 		ti = dm_table_get_target(t, i);
893 		if (dm_target_hybrid(ti))
894 			hybrid = 1;
895 		else if (dm_target_request_based(ti))
896 			request_based = 1;
897 		else
898 			bio_based = 1;
899 
900 		if (bio_based && request_based) {
901 			DMERR("Inconsistent table: different target types can't be mixed up");
902 			return -EINVAL;
903 		}
904 	}
905 
906 	if (hybrid && !bio_based && !request_based) {
907 		/*
908 		 * The targets can work either way.
909 		 * Determine the type from the live device.
910 		 * Default to bio-based if device is new.
911 		 */
912 		if (__table_type_request_based(live_md_type))
913 			request_based = 1;
914 		else
915 			bio_based = 1;
916 	}
917 
918 	if (bio_based) {
919 verify_bio_based:
920 		/* We must use this table as bio-based */
921 		t->type = DM_TYPE_BIO_BASED;
922 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
923 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
924 			t->type = DM_TYPE_DAX_BIO_BASED;
925 		}
926 		return 0;
927 	}
928 
929 	BUG_ON(!request_based); /* No targets in this table */
930 
931 	t->type = DM_TYPE_REQUEST_BASED;
932 
933 verify_rq_based:
934 	/*
935 	 * Request-based dm supports only tables that have a single target now.
936 	 * To support multiple targets, request splitting support is needed,
937 	 * and that needs lots of changes in the block-layer.
938 	 * (e.g. request completion process for partial completion.)
939 	 */
940 	if (t->num_targets > 1) {
941 		DMERR("request-based DM doesn't support multiple targets");
942 		return -EINVAL;
943 	}
944 
945 	if (list_empty(devices)) {
946 		int srcu_idx;
947 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948 
949 		/* inherit live table's type */
950 		if (live_table)
951 			t->type = live_table->type;
952 		dm_put_live_table(t->md, srcu_idx);
953 		return 0;
954 	}
955 
956 	ti = dm_table_get_immutable_target(t);
957 	if (!ti) {
958 		DMERR("table load rejected: immutable target is required");
959 		return -EINVAL;
960 	} else if (ti->max_io_len) {
961 		DMERR("table load rejected: immutable target that splits IO is not supported");
962 		return -EINVAL;
963 	}
964 
965 	/* Non-request-stackable devices can't be used for request-based dm */
966 	if (!ti->type->iterate_devices ||
967 	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
968 		DMERR("table load rejected: including non-request-stackable devices");
969 		return -EINVAL;
970 	}
971 
972 	return 0;
973 }
974 
975 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
976 {
977 	return t->type;
978 }
979 
980 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
981 {
982 	return t->immutable_target_type;
983 }
984 
985 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
986 {
987 	/* Immutable target is implicitly a singleton */
988 	if (t->num_targets > 1 ||
989 	    !dm_target_is_immutable(t->targets[0].type))
990 		return NULL;
991 
992 	return t->targets;
993 }
994 
995 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
996 {
997 	for (unsigned int i = 0; i < t->num_targets; i++) {
998 		struct dm_target *ti = dm_table_get_target(t, i);
999 
1000 		if (dm_target_is_wildcard(ti->type))
1001 			return ti;
1002 	}
1003 
1004 	return NULL;
1005 }
1006 
1007 bool dm_table_bio_based(struct dm_table *t)
1008 {
1009 	return __table_type_bio_based(dm_table_get_type(t));
1010 }
1011 
1012 bool dm_table_request_based(struct dm_table *t)
1013 {
1014 	return __table_type_request_based(dm_table_get_type(t));
1015 }
1016 
1017 static bool dm_table_supports_poll(struct dm_table *t);
1018 
1019 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020 {
1021 	enum dm_queue_mode type = dm_table_get_type(t);
1022 	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023 	unsigned int min_pool_size = 0, pool_size;
1024 	struct dm_md_mempools *pools;
1025 
1026 	if (unlikely(type == DM_TYPE_NONE)) {
1027 		DMERR("no table type is set, can't allocate mempools");
1028 		return -EINVAL;
1029 	}
1030 
1031 	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032 	if (!pools)
1033 		return -ENOMEM;
1034 
1035 	if (type == DM_TYPE_REQUEST_BASED) {
1036 		pool_size = dm_get_reserved_rq_based_ios();
1037 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038 		goto init_bs;
1039 	}
1040 
1041 	for (unsigned int i = 0; i < t->num_targets; i++) {
1042 		struct dm_target *ti = dm_table_get_target(t, i);
1043 
1044 		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045 		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046 	}
1047 	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048 	front_pad = roundup(per_io_data_size,
1049 		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050 
1051 	io_front_pad = roundup(per_io_data_size,
1052 		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053 	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054 			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055 		goto out_free_pools;
1056 	if (t->integrity_supported &&
1057 	    bioset_integrity_create(&pools->io_bs, pool_size))
1058 		goto out_free_pools;
1059 init_bs:
1060 	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061 		goto out_free_pools;
1062 	if (t->integrity_supported &&
1063 	    bioset_integrity_create(&pools->bs, pool_size))
1064 		goto out_free_pools;
1065 
1066 	t->mempools = pools;
1067 	return 0;
1068 
1069 out_free_pools:
1070 	dm_free_md_mempools(pools);
1071 	return -ENOMEM;
1072 }
1073 
1074 static int setup_indexes(struct dm_table *t)
1075 {
1076 	int i;
1077 	unsigned int total = 0;
1078 	sector_t *indexes;
1079 
1080 	/* allocate the space for *all* the indexes */
1081 	for (i = t->depth - 2; i >= 0; i--) {
1082 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083 		total += t->counts[i];
1084 	}
1085 
1086 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087 	if (!indexes)
1088 		return -ENOMEM;
1089 
1090 	/* set up internal nodes, bottom-up */
1091 	for (i = t->depth - 2; i >= 0; i--) {
1092 		t->index[i] = indexes;
1093 		indexes += (KEYS_PER_NODE * t->counts[i]);
1094 		setup_btree_index(i, t);
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Builds the btree to index the map.
1102  */
1103 static int dm_table_build_index(struct dm_table *t)
1104 {
1105 	int r = 0;
1106 	unsigned int leaf_nodes;
1107 
1108 	/* how many indexes will the btree have ? */
1109 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111 
1112 	/* leaf layer has already been set up */
1113 	t->counts[t->depth - 1] = leaf_nodes;
1114 	t->index[t->depth - 1] = t->highs;
1115 
1116 	if (t->depth >= 2)
1117 		r = setup_indexes(t);
1118 
1119 	return r;
1120 }
1121 
1122 static bool integrity_profile_exists(struct gendisk *disk)
1123 {
1124 	return !!blk_get_integrity(disk);
1125 }
1126 
1127 /*
1128  * Get a disk whose integrity profile reflects the table's profile.
1129  * Returns NULL if integrity support was inconsistent or unavailable.
1130  */
1131 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132 {
1133 	struct list_head *devices = dm_table_get_devices(t);
1134 	struct dm_dev_internal *dd = NULL;
1135 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1136 
1137 	for (unsigned int i = 0; i < t->num_targets; i++) {
1138 		struct dm_target *ti = dm_table_get_target(t, i);
1139 
1140 		if (!dm_target_passes_integrity(ti->type))
1141 			goto no_integrity;
1142 	}
1143 
1144 	list_for_each_entry(dd, devices, list) {
1145 		template_disk = dd->dm_dev->bdev->bd_disk;
1146 		if (!integrity_profile_exists(template_disk))
1147 			goto no_integrity;
1148 		else if (prev_disk &&
1149 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1150 			goto no_integrity;
1151 		prev_disk = template_disk;
1152 	}
1153 
1154 	return template_disk;
1155 
1156 no_integrity:
1157 	if (prev_disk)
1158 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159 		       dm_device_name(t->md),
1160 		       prev_disk->disk_name,
1161 		       template_disk->disk_name);
1162 	return NULL;
1163 }
1164 
1165 /*
1166  * Register the mapped device for blk_integrity support if the
1167  * underlying devices have an integrity profile.  But all devices may
1168  * not have matching profiles (checking all devices isn't reliable
1169  * during table load because this table may use other DM device(s) which
1170  * must be resumed before they will have an initialized integity
1171  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1172  * profile validation: First pass during table load, final pass during
1173  * resume.
1174  */
1175 static int dm_table_register_integrity(struct dm_table *t)
1176 {
1177 	struct mapped_device *md = t->md;
1178 	struct gendisk *template_disk = NULL;
1179 
1180 	/* If target handles integrity itself do not register it here. */
1181 	if (t->integrity_added)
1182 		return 0;
1183 
1184 	template_disk = dm_table_get_integrity_disk(t);
1185 	if (!template_disk)
1186 		return 0;
1187 
1188 	if (!integrity_profile_exists(dm_disk(md))) {
1189 		t->integrity_supported = true;
1190 		/*
1191 		 * Register integrity profile during table load; we can do
1192 		 * this because the final profile must match during resume.
1193 		 */
1194 		blk_integrity_register(dm_disk(md),
1195 				       blk_get_integrity(template_disk));
1196 		return 0;
1197 	}
1198 
1199 	/*
1200 	 * If DM device already has an initialized integrity
1201 	 * profile the new profile should not conflict.
1202 	 */
1203 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204 		DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205 		      dm_device_name(t->md),
1206 		      template_disk->disk_name);
1207 		return 1;
1208 	}
1209 
1210 	/* Preserve existing integrity profile */
1211 	t->integrity_supported = true;
1212 	return 0;
1213 }
1214 
1215 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216 
1217 struct dm_crypto_profile {
1218 	struct blk_crypto_profile profile;
1219 	struct mapped_device *md;
1220 };
1221 
1222 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223 				     sector_t start, sector_t len, void *data)
1224 {
1225 	const struct blk_crypto_key *key = data;
1226 
1227 	blk_crypto_evict_key(dev->bdev, key);
1228 	return 0;
1229 }
1230 
1231 /*
1232  * When an inline encryption key is evicted from a device-mapper device, evict
1233  * it from all the underlying devices.
1234  */
1235 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236 			    const struct blk_crypto_key *key, unsigned int slot)
1237 {
1238 	struct mapped_device *md =
1239 		container_of(profile, struct dm_crypto_profile, profile)->md;
1240 	struct dm_table *t;
1241 	int srcu_idx;
1242 
1243 	t = dm_get_live_table(md, &srcu_idx);
1244 	if (!t)
1245 		return 0;
1246 
1247 	for (unsigned int i = 0; i < t->num_targets; i++) {
1248 		struct dm_target *ti = dm_table_get_target(t, i);
1249 
1250 		if (!ti->type->iterate_devices)
1251 			continue;
1252 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253 					  (void *)key);
1254 	}
1255 
1256 	dm_put_live_table(md, srcu_idx);
1257 	return 0;
1258 }
1259 
1260 static int
1261 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262 				     sector_t start, sector_t len, void *data)
1263 {
1264 	struct blk_crypto_profile *parent = data;
1265 	struct blk_crypto_profile *child =
1266 		bdev_get_queue(dev->bdev)->crypto_profile;
1267 
1268 	blk_crypto_intersect_capabilities(parent, child);
1269 	return 0;
1270 }
1271 
1272 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273 {
1274 	struct dm_crypto_profile *dmcp = container_of(profile,
1275 						      struct dm_crypto_profile,
1276 						      profile);
1277 
1278 	if (!profile)
1279 		return;
1280 
1281 	blk_crypto_profile_destroy(profile);
1282 	kfree(dmcp);
1283 }
1284 
1285 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286 {
1287 	dm_destroy_crypto_profile(t->crypto_profile);
1288 	t->crypto_profile = NULL;
1289 }
1290 
1291 /*
1292  * Constructs and initializes t->crypto_profile with a crypto profile that
1293  * represents the common set of crypto capabilities of the devices described by
1294  * the dm_table.  However, if the constructed crypto profile doesn't support all
1295  * crypto capabilities that are supported by the current mapped_device, it
1296  * returns an error instead, since we don't support removing crypto capabilities
1297  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1298  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299  */
1300 static int dm_table_construct_crypto_profile(struct dm_table *t)
1301 {
1302 	struct dm_crypto_profile *dmcp;
1303 	struct blk_crypto_profile *profile;
1304 	unsigned int i;
1305 	bool empty_profile = true;
1306 
1307 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308 	if (!dmcp)
1309 		return -ENOMEM;
1310 	dmcp->md = t->md;
1311 
1312 	profile = &dmcp->profile;
1313 	blk_crypto_profile_init(profile, 0);
1314 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315 	profile->max_dun_bytes_supported = UINT_MAX;
1316 	memset(profile->modes_supported, 0xFF,
1317 	       sizeof(profile->modes_supported));
1318 
1319 	for (i = 0; i < t->num_targets; i++) {
1320 		struct dm_target *ti = dm_table_get_target(t, i);
1321 
1322 		if (!dm_target_passes_crypto(ti->type)) {
1323 			blk_crypto_intersect_capabilities(profile, NULL);
1324 			break;
1325 		}
1326 		if (!ti->type->iterate_devices)
1327 			continue;
1328 		ti->type->iterate_devices(ti,
1329 					  device_intersect_crypto_capabilities,
1330 					  profile);
1331 	}
1332 
1333 	if (t->md->queue &&
1334 	    !blk_crypto_has_capabilities(profile,
1335 					 t->md->queue->crypto_profile)) {
1336 		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337 		dm_destroy_crypto_profile(profile);
1338 		return -EINVAL;
1339 	}
1340 
1341 	/*
1342 	 * If the new profile doesn't actually support any crypto capabilities,
1343 	 * we may as well represent it with a NULL profile.
1344 	 */
1345 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346 		if (profile->modes_supported[i]) {
1347 			empty_profile = false;
1348 			break;
1349 		}
1350 	}
1351 
1352 	if (empty_profile) {
1353 		dm_destroy_crypto_profile(profile);
1354 		profile = NULL;
1355 	}
1356 
1357 	/*
1358 	 * t->crypto_profile is only set temporarily while the table is being
1359 	 * set up, and it gets set to NULL after the profile has been
1360 	 * transferred to the request_queue.
1361 	 */
1362 	t->crypto_profile = profile;
1363 
1364 	return 0;
1365 }
1366 
1367 static void dm_update_crypto_profile(struct request_queue *q,
1368 				     struct dm_table *t)
1369 {
1370 	if (!t->crypto_profile)
1371 		return;
1372 
1373 	/* Make the crypto profile less restrictive. */
1374 	if (!q->crypto_profile) {
1375 		blk_crypto_register(t->crypto_profile, q);
1376 	} else {
1377 		blk_crypto_update_capabilities(q->crypto_profile,
1378 					       t->crypto_profile);
1379 		dm_destroy_crypto_profile(t->crypto_profile);
1380 	}
1381 	t->crypto_profile = NULL;
1382 }
1383 
1384 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385 
1386 static int dm_table_construct_crypto_profile(struct dm_table *t)
1387 {
1388 	return 0;
1389 }
1390 
1391 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392 {
1393 }
1394 
1395 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396 {
1397 }
1398 
1399 static void dm_update_crypto_profile(struct request_queue *q,
1400 				     struct dm_table *t)
1401 {
1402 }
1403 
1404 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405 
1406 /*
1407  * Prepares the table for use by building the indices,
1408  * setting the type, and allocating mempools.
1409  */
1410 int dm_table_complete(struct dm_table *t)
1411 {
1412 	int r;
1413 
1414 	r = dm_table_determine_type(t);
1415 	if (r) {
1416 		DMERR("unable to determine table type");
1417 		return r;
1418 	}
1419 
1420 	r = dm_table_build_index(t);
1421 	if (r) {
1422 		DMERR("unable to build btrees");
1423 		return r;
1424 	}
1425 
1426 	r = dm_table_register_integrity(t);
1427 	if (r) {
1428 		DMERR("could not register integrity profile.");
1429 		return r;
1430 	}
1431 
1432 	r = dm_table_construct_crypto_profile(t);
1433 	if (r) {
1434 		DMERR("could not construct crypto profile.");
1435 		return r;
1436 	}
1437 
1438 	r = dm_table_alloc_md_mempools(t, t->md);
1439 	if (r)
1440 		DMERR("unable to allocate mempools");
1441 
1442 	return r;
1443 }
1444 
1445 static DEFINE_MUTEX(_event_lock);
1446 void dm_table_event_callback(struct dm_table *t,
1447 			     void (*fn)(void *), void *context)
1448 {
1449 	mutex_lock(&_event_lock);
1450 	t->event_fn = fn;
1451 	t->event_context = context;
1452 	mutex_unlock(&_event_lock);
1453 }
1454 
1455 void dm_table_event(struct dm_table *t)
1456 {
1457 	mutex_lock(&_event_lock);
1458 	if (t->event_fn)
1459 		t->event_fn(t->event_context);
1460 	mutex_unlock(&_event_lock);
1461 }
1462 EXPORT_SYMBOL(dm_table_event);
1463 
1464 inline sector_t dm_table_get_size(struct dm_table *t)
1465 {
1466 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467 }
1468 EXPORT_SYMBOL(dm_table_get_size);
1469 
1470 /*
1471  * Search the btree for the correct target.
1472  *
1473  * Caller should check returned pointer for NULL
1474  * to trap I/O beyond end of device.
1475  */
1476 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477 {
1478 	unsigned int l, n = 0, k = 0;
1479 	sector_t *node;
1480 
1481 	if (unlikely(sector >= dm_table_get_size(t)))
1482 		return NULL;
1483 
1484 	for (l = 0; l < t->depth; l++) {
1485 		n = get_child(n, k);
1486 		node = get_node(t, l, n);
1487 
1488 		for (k = 0; k < KEYS_PER_NODE; k++)
1489 			if (node[k] >= sector)
1490 				break;
1491 	}
1492 
1493 	return &t->targets[(KEYS_PER_NODE * n) + k];
1494 }
1495 
1496 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497 				   sector_t start, sector_t len, void *data)
1498 {
1499 	struct request_queue *q = bdev_get_queue(dev->bdev);
1500 
1501 	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502 }
1503 
1504 /*
1505  * type->iterate_devices() should be called when the sanity check needs to
1506  * iterate and check all underlying data devices. iterate_devices() will
1507  * iterate all underlying data devices until it encounters a non-zero return
1508  * code, returned by whether the input iterate_devices_callout_fn, or
1509  * iterate_devices() itself internally.
1510  *
1511  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512  * iterate multiple underlying devices internally, in which case a non-zero
1513  * return code returned by iterate_devices_callout_fn will stop the iteration
1514  * in advance.
1515  *
1516  * Cases requiring _any_ underlying device supporting some kind of attribute,
1517  * should use the iteration structure like dm_table_any_dev_attr(), or call
1518  * it directly. @func should handle semantics of positive examples, e.g.
1519  * capable of something.
1520  *
1521  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522  * should use the iteration structure like dm_table_supports_nowait() or
1523  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524  * uses an @anti_func that handle semantics of counter examples, e.g. not
1525  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526  */
1527 static bool dm_table_any_dev_attr(struct dm_table *t,
1528 				  iterate_devices_callout_fn func, void *data)
1529 {
1530 	for (unsigned int i = 0; i < t->num_targets; i++) {
1531 		struct dm_target *ti = dm_table_get_target(t, i);
1532 
1533 		if (ti->type->iterate_devices &&
1534 		    ti->type->iterate_devices(ti, func, data))
1535 			return true;
1536 	}
1537 
1538 	return false;
1539 }
1540 
1541 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542 			sector_t start, sector_t len, void *data)
1543 {
1544 	unsigned int *num_devices = data;
1545 
1546 	(*num_devices)++;
1547 
1548 	return 0;
1549 }
1550 
1551 static bool dm_table_supports_poll(struct dm_table *t)
1552 {
1553 	for (unsigned int i = 0; i < t->num_targets; i++) {
1554 		struct dm_target *ti = dm_table_get_target(t, i);
1555 
1556 		if (!ti->type->iterate_devices ||
1557 		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558 			return false;
1559 	}
1560 
1561 	return true;
1562 }
1563 
1564 /*
1565  * Check whether a table has no data devices attached using each
1566  * target's iterate_devices method.
1567  * Returns false if the result is unknown because a target doesn't
1568  * support iterate_devices.
1569  */
1570 bool dm_table_has_no_data_devices(struct dm_table *t)
1571 {
1572 	for (unsigned int i = 0; i < t->num_targets; i++) {
1573 		struct dm_target *ti = dm_table_get_target(t, i);
1574 		unsigned int num_devices = 0;
1575 
1576 		if (!ti->type->iterate_devices)
1577 			return false;
1578 
1579 		ti->type->iterate_devices(ti, count_device, &num_devices);
1580 		if (num_devices)
1581 			return false;
1582 	}
1583 
1584 	return true;
1585 }
1586 
1587 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588 			    sector_t start, sector_t len, void *data)
1589 {
1590 	bool *zoned = data;
1591 
1592 	return bdev_is_zoned(dev->bdev) != *zoned;
1593 }
1594 
1595 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596 				 sector_t start, sector_t len, void *data)
1597 {
1598 	return bdev_is_zoned(dev->bdev);
1599 }
1600 
1601 /*
1602  * Check the device zoned model based on the target feature flag. If the target
1603  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604  * also accepted but all devices must have the same zoned model. If the target
1605  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606  * zoned model with all zoned devices having the same zone size.
1607  */
1608 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609 {
1610 	for (unsigned int i = 0; i < t->num_targets; i++) {
1611 		struct dm_target *ti = dm_table_get_target(t, i);
1612 
1613 		/*
1614 		 * For the wildcard target (dm-error), if we do not have a
1615 		 * backing device, we must always return false. If we have a
1616 		 * backing device, the result must depend on checking zoned
1617 		 * model, like for any other target. So for this, check directly
1618 		 * if the target backing device is zoned as we get "false" when
1619 		 * dm-error was set without a backing device.
1620 		 */
1621 		if (dm_target_is_wildcard(ti->type) &&
1622 		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623 			return false;
1624 
1625 		if (dm_target_supports_zoned_hm(ti->type)) {
1626 			if (!ti->type->iterate_devices ||
1627 			    ti->type->iterate_devices(ti, device_not_zoned,
1628 						      &zoned))
1629 				return false;
1630 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631 			if (zoned)
1632 				return false;
1633 		}
1634 	}
1635 
1636 	return true;
1637 }
1638 
1639 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640 					   sector_t start, sector_t len, void *data)
1641 {
1642 	unsigned int *zone_sectors = data;
1643 
1644 	if (!bdev_is_zoned(dev->bdev))
1645 		return 0;
1646 	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647 }
1648 
1649 /*
1650  * Check consistency of zoned model and zone sectors across all targets. For
1651  * zone sectors, if the destination device is a zoned block device, it shall
1652  * have the specified zone_sectors.
1653  */
1654 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655 				   unsigned int zone_sectors)
1656 {
1657 	if (!zoned)
1658 		return 0;
1659 
1660 	if (!dm_table_supports_zoned(t, zoned)) {
1661 		DMERR("%s: zoned model is not consistent across all devices",
1662 		      dm_device_name(t->md));
1663 		return -EINVAL;
1664 	}
1665 
1666 	/* Check zone size validity and compatibility */
1667 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1668 		return -EINVAL;
1669 
1670 	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1672 		      dm_device_name(t->md));
1673 		return -EINVAL;
1674 	}
1675 
1676 	return 0;
1677 }
1678 
1679 /*
1680  * Establish the new table's queue_limits and validate them.
1681  */
1682 int dm_calculate_queue_limits(struct dm_table *t,
1683 			      struct queue_limits *limits)
1684 {
1685 	struct queue_limits ti_limits;
1686 	unsigned int zone_sectors = 0;
1687 	bool zoned = false;
1688 
1689 	blk_set_stacking_limits(limits);
1690 
1691 	for (unsigned int i = 0; i < t->num_targets; i++) {
1692 		struct dm_target *ti = dm_table_get_target(t, i);
1693 
1694 		blk_set_stacking_limits(&ti_limits);
1695 
1696 		if (!ti->type->iterate_devices) {
1697 			/* Set I/O hints portion of queue limits */
1698 			if (ti->type->io_hints)
1699 				ti->type->io_hints(ti, &ti_limits);
1700 			goto combine_limits;
1701 		}
1702 
1703 		/*
1704 		 * Combine queue limits of all the devices this target uses.
1705 		 */
1706 		ti->type->iterate_devices(ti, dm_set_device_limits,
1707 					  &ti_limits);
1708 
1709 		if (!zoned && ti_limits.zoned) {
1710 			/*
1711 			 * After stacking all limits, validate all devices
1712 			 * in table support this zoned model and zone sectors.
1713 			 */
1714 			zoned = ti_limits.zoned;
1715 			zone_sectors = ti_limits.chunk_sectors;
1716 		}
1717 
1718 		/* Set I/O hints portion of queue limits */
1719 		if (ti->type->io_hints)
1720 			ti->type->io_hints(ti, &ti_limits);
1721 
1722 		/*
1723 		 * Check each device area is consistent with the target's
1724 		 * overall queue limits.
1725 		 */
1726 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727 					      &ti_limits))
1728 			return -EINVAL;
1729 
1730 combine_limits:
1731 		/*
1732 		 * Merge this target's queue limits into the overall limits
1733 		 * for the table.
1734 		 */
1735 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736 			DMWARN("%s: adding target device (start sect %llu len %llu) "
1737 			       "caused an alignment inconsistency",
1738 			       dm_device_name(t->md),
1739 			       (unsigned long long) ti->begin,
1740 			       (unsigned long long) ti->len);
1741 	}
1742 
1743 	/*
1744 	 * Verify that the zoned model and zone sectors, as determined before
1745 	 * any .io_hints override, are the same across all devices in the table.
1746 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1747 	 *   zoned model on host-managed zoned block devices.
1748 	 * BUT...
1749 	 */
1750 	if (limits->zoned) {
1751 		/*
1752 		 * ...IF the above limits stacking determined a zoned model
1753 		 * validate that all of the table's devices conform to it.
1754 		 */
1755 		zoned = limits->zoned;
1756 		zone_sectors = limits->chunk_sectors;
1757 	}
1758 	if (validate_hardware_zoned(t, zoned, zone_sectors))
1759 		return -EINVAL;
1760 
1761 	return validate_hardware_logical_block_alignment(t, limits);
1762 }
1763 
1764 /*
1765  * Verify that all devices have an integrity profile that matches the
1766  * DM device's registered integrity profile.  If the profiles don't
1767  * match then unregister the DM device's integrity profile.
1768  */
1769 static void dm_table_verify_integrity(struct dm_table *t)
1770 {
1771 	struct gendisk *template_disk = NULL;
1772 
1773 	if (t->integrity_added)
1774 		return;
1775 
1776 	if (t->integrity_supported) {
1777 		/*
1778 		 * Verify that the original integrity profile
1779 		 * matches all the devices in this table.
1780 		 */
1781 		template_disk = dm_table_get_integrity_disk(t);
1782 		if (template_disk &&
1783 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784 			return;
1785 	}
1786 
1787 	if (integrity_profile_exists(dm_disk(t->md))) {
1788 		DMWARN("%s: unable to establish an integrity profile",
1789 		       dm_device_name(t->md));
1790 		blk_integrity_unregister(dm_disk(t->md));
1791 	}
1792 }
1793 
1794 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795 				sector_t start, sector_t len, void *data)
1796 {
1797 	unsigned long flush = (unsigned long) data;
1798 	struct request_queue *q = bdev_get_queue(dev->bdev);
1799 
1800 	return (q->queue_flags & flush);
1801 }
1802 
1803 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804 {
1805 	/*
1806 	 * Require at least one underlying device to support flushes.
1807 	 * t->devices includes internal dm devices such as mirror logs
1808 	 * so we need to use iterate_devices here, which targets
1809 	 * supporting flushes must provide.
1810 	 */
1811 	for (unsigned int i = 0; i < t->num_targets; i++) {
1812 		struct dm_target *ti = dm_table_get_target(t, i);
1813 
1814 		if (!ti->num_flush_bios)
1815 			continue;
1816 
1817 		if (ti->flush_supported)
1818 			return true;
1819 
1820 		if (ti->type->iterate_devices &&
1821 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822 			return true;
1823 	}
1824 
1825 	return false;
1826 }
1827 
1828 static int device_dax_write_cache_enabled(struct dm_target *ti,
1829 					  struct dm_dev *dev, sector_t start,
1830 					  sector_t len, void *data)
1831 {
1832 	struct dax_device *dax_dev = dev->dax_dev;
1833 
1834 	if (!dax_dev)
1835 		return false;
1836 
1837 	if (dax_write_cache_enabled(dax_dev))
1838 		return true;
1839 	return false;
1840 }
1841 
1842 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843 				sector_t start, sector_t len, void *data)
1844 {
1845 	return !bdev_nonrot(dev->bdev);
1846 }
1847 
1848 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849 			     sector_t start, sector_t len, void *data)
1850 {
1851 	struct request_queue *q = bdev_get_queue(dev->bdev);
1852 
1853 	return !blk_queue_add_random(q);
1854 }
1855 
1856 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857 					   sector_t start, sector_t len, void *data)
1858 {
1859 	struct request_queue *q = bdev_get_queue(dev->bdev);
1860 
1861 	return !q->limits.max_write_zeroes_sectors;
1862 }
1863 
1864 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1865 {
1866 	for (unsigned int i = 0; i < t->num_targets; i++) {
1867 		struct dm_target *ti = dm_table_get_target(t, i);
1868 
1869 		if (!ti->num_write_zeroes_bios)
1870 			return false;
1871 
1872 		if (!ti->type->iterate_devices ||
1873 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874 			return false;
1875 	}
1876 
1877 	return true;
1878 }
1879 
1880 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881 				     sector_t start, sector_t len, void *data)
1882 {
1883 	return !bdev_nowait(dev->bdev);
1884 }
1885 
1886 static bool dm_table_supports_nowait(struct dm_table *t)
1887 {
1888 	for (unsigned int i = 0; i < t->num_targets; i++) {
1889 		struct dm_target *ti = dm_table_get_target(t, i);
1890 
1891 		if (!dm_target_supports_nowait(ti->type))
1892 			return false;
1893 
1894 		if (!ti->type->iterate_devices ||
1895 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896 			return false;
1897 	}
1898 
1899 	return true;
1900 }
1901 
1902 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903 				      sector_t start, sector_t len, void *data)
1904 {
1905 	return !bdev_max_discard_sectors(dev->bdev);
1906 }
1907 
1908 static bool dm_table_supports_discards(struct dm_table *t)
1909 {
1910 	for (unsigned int i = 0; i < t->num_targets; i++) {
1911 		struct dm_target *ti = dm_table_get_target(t, i);
1912 
1913 		if (!ti->num_discard_bios)
1914 			return false;
1915 
1916 		/*
1917 		 * Either the target provides discard support (as implied by setting
1918 		 * 'discards_supported') or it relies on _all_ data devices having
1919 		 * discard support.
1920 		 */
1921 		if (!ti->discards_supported &&
1922 		    (!ti->type->iterate_devices ||
1923 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924 			return false;
1925 	}
1926 
1927 	return true;
1928 }
1929 
1930 static int device_not_secure_erase_capable(struct dm_target *ti,
1931 					   struct dm_dev *dev, sector_t start,
1932 					   sector_t len, void *data)
1933 {
1934 	return !bdev_max_secure_erase_sectors(dev->bdev);
1935 }
1936 
1937 static bool dm_table_supports_secure_erase(struct dm_table *t)
1938 {
1939 	for (unsigned int i = 0; i < t->num_targets; i++) {
1940 		struct dm_target *ti = dm_table_get_target(t, i);
1941 
1942 		if (!ti->num_secure_erase_bios)
1943 			return false;
1944 
1945 		if (!ti->type->iterate_devices ||
1946 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947 			return false;
1948 	}
1949 
1950 	return true;
1951 }
1952 
1953 static int device_requires_stable_pages(struct dm_target *ti,
1954 					struct dm_dev *dev, sector_t start,
1955 					sector_t len, void *data)
1956 {
1957 	return bdev_stable_writes(dev->bdev);
1958 }
1959 
1960 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961 			      struct queue_limits *limits)
1962 {
1963 	bool wc = false, fua = false;
1964 	int r;
1965 
1966 	/*
1967 	 * Copy table's limits to the DM device's request_queue
1968 	 */
1969 	q->limits = *limits;
1970 
1971 	if (dm_table_supports_nowait(t))
1972 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973 	else
1974 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975 
1976 	if (!dm_table_supports_discards(t)) {
1977 		q->limits.max_discard_sectors = 0;
1978 		q->limits.max_hw_discard_sectors = 0;
1979 		q->limits.discard_granularity = 0;
1980 		q->limits.discard_alignment = 0;
1981 		q->limits.discard_misaligned = 0;
1982 	}
1983 
1984 	if (!dm_table_supports_secure_erase(t))
1985 		q->limits.max_secure_erase_sectors = 0;
1986 
1987 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988 		wc = true;
1989 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990 			fua = true;
1991 	}
1992 	blk_queue_write_cache(q, wc, fua);
1993 
1994 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997 			set_dax_synchronous(t->md->dax_dev);
1998 	} else
1999 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2000 
2001 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2002 		dax_write_cache(t->md->dax_dev, true);
2003 
2004 	/* Ensure that all underlying devices are non-rotational. */
2005 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2006 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2007 	else
2008 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2009 
2010 	if (!dm_table_supports_write_zeroes(t))
2011 		q->limits.max_write_zeroes_sectors = 0;
2012 
2013 	dm_table_verify_integrity(t);
2014 
2015 	/*
2016 	 * Some devices don't use blk_integrity but still want stable pages
2017 	 * because they do their own checksumming.
2018 	 * If any underlying device requires stable pages, a table must require
2019 	 * them as well.  Only targets that support iterate_devices are considered:
2020 	 * don't want error, zero, etc to require stable pages.
2021 	 */
2022 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2023 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2024 	else
2025 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2026 
2027 	/*
2028 	 * Determine whether or not this queue's I/O timings contribute
2029 	 * to the entropy pool, Only request-based targets use this.
2030 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2031 	 * have it set.
2032 	 */
2033 	if (blk_queue_add_random(q) &&
2034 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2035 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2036 
2037 	/*
2038 	 * For a zoned target, setup the zones related queue attributes
2039 	 * and resources necessary for zone append emulation if necessary.
2040 	 */
2041 	if (blk_queue_is_zoned(q)) {
2042 		r = dm_set_zones_restrictions(t, q);
2043 		if (r)
2044 			return r;
2045 		if (!static_key_enabled(&zoned_enabled.key))
2046 			static_branch_enable(&zoned_enabled);
2047 	}
2048 
2049 	dm_update_crypto_profile(q, t);
2050 	disk_update_readahead(t->md->disk);
2051 
2052 	/*
2053 	 * Check for request-based device is left to
2054 	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2055 	 *
2056 	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2057 	 * underlying devices supporting polling.
2058 	 */
2059 	if (__table_type_bio_based(t->type)) {
2060 		if (dm_table_supports_poll(t))
2061 			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2062 		else
2063 			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 struct list_head *dm_table_get_devices(struct dm_table *t)
2070 {
2071 	return &t->devices;
2072 }
2073 
2074 blk_mode_t dm_table_get_mode(struct dm_table *t)
2075 {
2076 	return t->mode;
2077 }
2078 EXPORT_SYMBOL(dm_table_get_mode);
2079 
2080 enum suspend_mode {
2081 	PRESUSPEND,
2082 	PRESUSPEND_UNDO,
2083 	POSTSUSPEND,
2084 };
2085 
2086 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2087 {
2088 	lockdep_assert_held(&t->md->suspend_lock);
2089 
2090 	for (unsigned int i = 0; i < t->num_targets; i++) {
2091 		struct dm_target *ti = dm_table_get_target(t, i);
2092 
2093 		switch (mode) {
2094 		case PRESUSPEND:
2095 			if (ti->type->presuspend)
2096 				ti->type->presuspend(ti);
2097 			break;
2098 		case PRESUSPEND_UNDO:
2099 			if (ti->type->presuspend_undo)
2100 				ti->type->presuspend_undo(ti);
2101 			break;
2102 		case POSTSUSPEND:
2103 			if (ti->type->postsuspend)
2104 				ti->type->postsuspend(ti);
2105 			break;
2106 		}
2107 	}
2108 }
2109 
2110 void dm_table_presuspend_targets(struct dm_table *t)
2111 {
2112 	if (!t)
2113 		return;
2114 
2115 	suspend_targets(t, PRESUSPEND);
2116 }
2117 
2118 void dm_table_presuspend_undo_targets(struct dm_table *t)
2119 {
2120 	if (!t)
2121 		return;
2122 
2123 	suspend_targets(t, PRESUSPEND_UNDO);
2124 }
2125 
2126 void dm_table_postsuspend_targets(struct dm_table *t)
2127 {
2128 	if (!t)
2129 		return;
2130 
2131 	suspend_targets(t, POSTSUSPEND);
2132 }
2133 
2134 int dm_table_resume_targets(struct dm_table *t)
2135 {
2136 	unsigned int i;
2137 	int r = 0;
2138 
2139 	lockdep_assert_held(&t->md->suspend_lock);
2140 
2141 	for (i = 0; i < t->num_targets; i++) {
2142 		struct dm_target *ti = dm_table_get_target(t, i);
2143 
2144 		if (!ti->type->preresume)
2145 			continue;
2146 
2147 		r = ti->type->preresume(ti);
2148 		if (r) {
2149 			DMERR("%s: %s: preresume failed, error = %d",
2150 			      dm_device_name(t->md), ti->type->name, r);
2151 			return r;
2152 		}
2153 	}
2154 
2155 	for (i = 0; i < t->num_targets; i++) {
2156 		struct dm_target *ti = dm_table_get_target(t, i);
2157 
2158 		if (ti->type->resume)
2159 			ti->type->resume(ti);
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 struct mapped_device *dm_table_get_md(struct dm_table *t)
2166 {
2167 	return t->md;
2168 }
2169 EXPORT_SYMBOL(dm_table_get_md);
2170 
2171 const char *dm_table_device_name(struct dm_table *t)
2172 {
2173 	return dm_device_name(t->md);
2174 }
2175 EXPORT_SYMBOL_GPL(dm_table_device_name);
2176 
2177 void dm_table_run_md_queue_async(struct dm_table *t)
2178 {
2179 	if (!dm_table_request_based(t))
2180 		return;
2181 
2182 	if (t->md->queue)
2183 		blk_mq_run_hw_queues(t->md->queue, true);
2184 }
2185 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2186 
2187