1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 /* 30 * The table has always exactly one reference from either mapped_device->map 31 * or hash_cell->new_map. This reference is not counted in table->holders. 32 * A pair of dm_create_table/dm_destroy_table functions is used for table 33 * creation/destruction. 34 * 35 * Temporary references from the other code increase table->holders. A pair 36 * of dm_table_get/dm_table_put functions is used to manipulate it. 37 * 38 * When the table is about to be destroyed, we wait for table->holders to 39 * drop to zero. 40 */ 41 42 struct dm_table { 43 struct mapped_device *md; 44 atomic_t holders; 45 unsigned type; 46 47 /* btree table */ 48 unsigned int depth; 49 unsigned int counts[MAX_DEPTH]; /* in nodes */ 50 sector_t *index[MAX_DEPTH]; 51 52 unsigned int num_targets; 53 unsigned int num_allocated; 54 sector_t *highs; 55 struct dm_target *targets; 56 57 struct target_type *immutable_target_type; 58 unsigned integrity_supported:1; 59 unsigned singleton:1; 60 61 /* 62 * Indicates the rw permissions for the new logical 63 * device. This should be a combination of FMODE_READ 64 * and FMODE_WRITE. 65 */ 66 fmode_t mode; 67 68 /* a list of devices used by this table */ 69 struct list_head devices; 70 71 /* events get handed up using this callback */ 72 void (*event_fn)(void *); 73 void *event_context; 74 75 struct dm_md_mempools *mempools; 76 77 struct list_head target_callbacks; 78 }; 79 80 /* 81 * Similar to ceiling(log_size(n)) 82 */ 83 static unsigned int int_log(unsigned int n, unsigned int base) 84 { 85 int result = 0; 86 87 while (n > 1) { 88 n = dm_div_up(n, base); 89 result++; 90 } 91 92 return result; 93 } 94 95 /* 96 * Calculate the index of the child node of the n'th node k'th key. 97 */ 98 static inline unsigned int get_child(unsigned int n, unsigned int k) 99 { 100 return (n * CHILDREN_PER_NODE) + k; 101 } 102 103 /* 104 * Return the n'th node of level l from table t. 105 */ 106 static inline sector_t *get_node(struct dm_table *t, 107 unsigned int l, unsigned int n) 108 { 109 return t->index[l] + (n * KEYS_PER_NODE); 110 } 111 112 /* 113 * Return the highest key that you could lookup from the n'th 114 * node on level l of the btree. 115 */ 116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 117 { 118 for (; l < t->depth - 1; l++) 119 n = get_child(n, CHILDREN_PER_NODE - 1); 120 121 if (n >= t->counts[l]) 122 return (sector_t) - 1; 123 124 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 125 } 126 127 /* 128 * Fills in a level of the btree based on the highs of the level 129 * below it. 130 */ 131 static int setup_btree_index(unsigned int l, struct dm_table *t) 132 { 133 unsigned int n, k; 134 sector_t *node; 135 136 for (n = 0U; n < t->counts[l]; n++) { 137 node = get_node(t, l, n); 138 139 for (k = 0U; k < KEYS_PER_NODE; k++) 140 node[k] = high(t, l + 1, get_child(n, k)); 141 } 142 143 return 0; 144 } 145 146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 147 { 148 unsigned long size; 149 void *addr; 150 151 /* 152 * Check that we're not going to overflow. 153 */ 154 if (nmemb > (ULONG_MAX / elem_size)) 155 return NULL; 156 157 size = nmemb * elem_size; 158 addr = vzalloc(size); 159 160 return addr; 161 } 162 EXPORT_SYMBOL(dm_vcalloc); 163 164 /* 165 * highs, and targets are managed as dynamic arrays during a 166 * table load. 167 */ 168 static int alloc_targets(struct dm_table *t, unsigned int num) 169 { 170 sector_t *n_highs; 171 struct dm_target *n_targets; 172 int n = t->num_targets; 173 174 /* 175 * Allocate both the target array and offset array at once. 176 * Append an empty entry to catch sectors beyond the end of 177 * the device. 178 */ 179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 180 sizeof(sector_t)); 181 if (!n_highs) 182 return -ENOMEM; 183 184 n_targets = (struct dm_target *) (n_highs + num); 185 186 if (n) { 187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 189 } 190 191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 192 vfree(t->highs); 193 194 t->num_allocated = num; 195 t->highs = n_highs; 196 t->targets = n_targets; 197 198 return 0; 199 } 200 201 int dm_table_create(struct dm_table **result, fmode_t mode, 202 unsigned num_targets, struct mapped_device *md) 203 { 204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 205 206 if (!t) 207 return -ENOMEM; 208 209 INIT_LIST_HEAD(&t->devices); 210 INIT_LIST_HEAD(&t->target_callbacks); 211 atomic_set(&t->holders, 0); 212 213 if (!num_targets) 214 num_targets = KEYS_PER_NODE; 215 216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 217 218 if (alloc_targets(t, num_targets)) { 219 kfree(t); 220 t = NULL; 221 return -ENOMEM; 222 } 223 224 t->mode = mode; 225 t->md = md; 226 *result = t; 227 return 0; 228 } 229 230 static void free_devices(struct list_head *devices) 231 { 232 struct list_head *tmp, *next; 233 234 list_for_each_safe(tmp, next, devices) { 235 struct dm_dev_internal *dd = 236 list_entry(tmp, struct dm_dev_internal, list); 237 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 238 dd->dm_dev.name); 239 kfree(dd); 240 } 241 } 242 243 void dm_table_destroy(struct dm_table *t) 244 { 245 unsigned int i; 246 247 if (!t) 248 return; 249 250 while (atomic_read(&t->holders)) 251 msleep(1); 252 smp_mb(); 253 254 /* free the indexes */ 255 if (t->depth >= 2) 256 vfree(t->index[t->depth - 2]); 257 258 /* free the targets */ 259 for (i = 0; i < t->num_targets; i++) { 260 struct dm_target *tgt = t->targets + i; 261 262 if (tgt->type->dtr) 263 tgt->type->dtr(tgt); 264 265 dm_put_target_type(tgt->type); 266 } 267 268 vfree(t->highs); 269 270 /* free the device list */ 271 if (t->devices.next != &t->devices) 272 free_devices(&t->devices); 273 274 dm_free_md_mempools(t->mempools); 275 276 kfree(t); 277 } 278 279 void dm_table_get(struct dm_table *t) 280 { 281 atomic_inc(&t->holders); 282 } 283 EXPORT_SYMBOL(dm_table_get); 284 285 void dm_table_put(struct dm_table *t) 286 { 287 if (!t) 288 return; 289 290 smp_mb__before_atomic_dec(); 291 atomic_dec(&t->holders); 292 } 293 EXPORT_SYMBOL(dm_table_put); 294 295 /* 296 * Checks to see if we need to extend highs or targets. 297 */ 298 static inline int check_space(struct dm_table *t) 299 { 300 if (t->num_targets >= t->num_allocated) 301 return alloc_targets(t, t->num_allocated * 2); 302 303 return 0; 304 } 305 306 /* 307 * See if we've already got a device in the list. 308 */ 309 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 310 { 311 struct dm_dev_internal *dd; 312 313 list_for_each_entry (dd, l, list) 314 if (dd->dm_dev.bdev->bd_dev == dev) 315 return dd; 316 317 return NULL; 318 } 319 320 /* 321 * Open a device so we can use it as a map destination. 322 */ 323 static int open_dev(struct dm_dev_internal *d, dev_t dev, 324 struct mapped_device *md) 325 { 326 static char *_claim_ptr = "I belong to device-mapper"; 327 struct block_device *bdev; 328 329 int r; 330 331 BUG_ON(d->dm_dev.bdev); 332 333 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 334 if (IS_ERR(bdev)) 335 return PTR_ERR(bdev); 336 337 r = bd_link_disk_holder(bdev, dm_disk(md)); 338 if (r) { 339 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 340 return r; 341 } 342 343 d->dm_dev.bdev = bdev; 344 return 0; 345 } 346 347 /* 348 * Close a device that we've been using. 349 */ 350 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 351 { 352 if (!d->dm_dev.bdev) 353 return; 354 355 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 356 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 357 d->dm_dev.bdev = NULL; 358 } 359 360 /* 361 * If possible, this checks an area of a destination device is invalid. 362 */ 363 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 364 sector_t start, sector_t len, void *data) 365 { 366 struct request_queue *q; 367 struct queue_limits *limits = data; 368 struct block_device *bdev = dev->bdev; 369 sector_t dev_size = 370 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 371 unsigned short logical_block_size_sectors = 372 limits->logical_block_size >> SECTOR_SHIFT; 373 char b[BDEVNAME_SIZE]; 374 375 /* 376 * Some devices exist without request functions, 377 * such as loop devices not yet bound to backing files. 378 * Forbid the use of such devices. 379 */ 380 q = bdev_get_queue(bdev); 381 if (!q || !q->make_request_fn) { 382 DMWARN("%s: %s is not yet initialised: " 383 "start=%llu, len=%llu, dev_size=%llu", 384 dm_device_name(ti->table->md), bdevname(bdev, b), 385 (unsigned long long)start, 386 (unsigned long long)len, 387 (unsigned long long)dev_size); 388 return 1; 389 } 390 391 if (!dev_size) 392 return 0; 393 394 if ((start >= dev_size) || (start + len > dev_size)) { 395 DMWARN("%s: %s too small for target: " 396 "start=%llu, len=%llu, dev_size=%llu", 397 dm_device_name(ti->table->md), bdevname(bdev, b), 398 (unsigned long long)start, 399 (unsigned long long)len, 400 (unsigned long long)dev_size); 401 return 1; 402 } 403 404 if (logical_block_size_sectors <= 1) 405 return 0; 406 407 if (start & (logical_block_size_sectors - 1)) { 408 DMWARN("%s: start=%llu not aligned to h/w " 409 "logical block size %u of %s", 410 dm_device_name(ti->table->md), 411 (unsigned long long)start, 412 limits->logical_block_size, bdevname(bdev, b)); 413 return 1; 414 } 415 416 if (len & (logical_block_size_sectors - 1)) { 417 DMWARN("%s: len=%llu not aligned to h/w " 418 "logical block size %u of %s", 419 dm_device_name(ti->table->md), 420 (unsigned long long)len, 421 limits->logical_block_size, bdevname(bdev, b)); 422 return 1; 423 } 424 425 return 0; 426 } 427 428 /* 429 * This upgrades the mode on an already open dm_dev, being 430 * careful to leave things as they were if we fail to reopen the 431 * device and not to touch the existing bdev field in case 432 * it is accessed concurrently inside dm_table_any_congested(). 433 */ 434 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 435 struct mapped_device *md) 436 { 437 int r; 438 struct dm_dev_internal dd_new, dd_old; 439 440 dd_new = dd_old = *dd; 441 442 dd_new.dm_dev.mode |= new_mode; 443 dd_new.dm_dev.bdev = NULL; 444 445 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 446 if (r) 447 return r; 448 449 dd->dm_dev.mode |= new_mode; 450 close_dev(&dd_old, md); 451 452 return 0; 453 } 454 455 /* 456 * Add a device to the list, or just increment the usage count if 457 * it's already present. 458 */ 459 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 460 struct dm_dev **result) 461 { 462 int r; 463 dev_t uninitialized_var(dev); 464 struct dm_dev_internal *dd; 465 unsigned int major, minor; 466 struct dm_table *t = ti->table; 467 468 BUG_ON(!t); 469 470 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 471 /* Extract the major/minor numbers */ 472 dev = MKDEV(major, minor); 473 if (MAJOR(dev) != major || MINOR(dev) != minor) 474 return -EOVERFLOW; 475 } else { 476 /* convert the path to a device */ 477 struct block_device *bdev = lookup_bdev(path); 478 479 if (IS_ERR(bdev)) 480 return PTR_ERR(bdev); 481 dev = bdev->bd_dev; 482 bdput(bdev); 483 } 484 485 dd = find_device(&t->devices, dev); 486 if (!dd) { 487 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 488 if (!dd) 489 return -ENOMEM; 490 491 dd->dm_dev.mode = mode; 492 dd->dm_dev.bdev = NULL; 493 494 if ((r = open_dev(dd, dev, t->md))) { 495 kfree(dd); 496 return r; 497 } 498 499 format_dev_t(dd->dm_dev.name, dev); 500 501 atomic_set(&dd->count, 0); 502 list_add(&dd->list, &t->devices); 503 504 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 505 r = upgrade_mode(dd, mode, t->md); 506 if (r) 507 return r; 508 } 509 atomic_inc(&dd->count); 510 511 *result = &dd->dm_dev; 512 return 0; 513 } 514 EXPORT_SYMBOL(dm_get_device); 515 516 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 517 sector_t start, sector_t len, void *data) 518 { 519 struct queue_limits *limits = data; 520 struct block_device *bdev = dev->bdev; 521 struct request_queue *q = bdev_get_queue(bdev); 522 char b[BDEVNAME_SIZE]; 523 524 if (unlikely(!q)) { 525 DMWARN("%s: Cannot set limits for nonexistent device %s", 526 dm_device_name(ti->table->md), bdevname(bdev, b)); 527 return 0; 528 } 529 530 if (bdev_stack_limits(limits, bdev, start) < 0) 531 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 532 "physical_block_size=%u, logical_block_size=%u, " 533 "alignment_offset=%u, start=%llu", 534 dm_device_name(ti->table->md), bdevname(bdev, b), 535 q->limits.physical_block_size, 536 q->limits.logical_block_size, 537 q->limits.alignment_offset, 538 (unsigned long long) start << SECTOR_SHIFT); 539 540 /* 541 * Check if merge fn is supported. 542 * If not we'll force DM to use PAGE_SIZE or 543 * smaller I/O, just to be safe. 544 */ 545 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge) 546 blk_limits_max_hw_sectors(limits, 547 (unsigned int) (PAGE_SIZE >> 9)); 548 return 0; 549 } 550 EXPORT_SYMBOL_GPL(dm_set_device_limits); 551 552 /* 553 * Decrement a device's use count and remove it if necessary. 554 */ 555 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 556 { 557 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 558 dm_dev); 559 560 if (atomic_dec_and_test(&dd->count)) { 561 close_dev(dd, ti->table->md); 562 list_del(&dd->list); 563 kfree(dd); 564 } 565 } 566 EXPORT_SYMBOL(dm_put_device); 567 568 /* 569 * Checks to see if the target joins onto the end of the table. 570 */ 571 static int adjoin(struct dm_table *table, struct dm_target *ti) 572 { 573 struct dm_target *prev; 574 575 if (!table->num_targets) 576 return !ti->begin; 577 578 prev = &table->targets[table->num_targets - 1]; 579 return (ti->begin == (prev->begin + prev->len)); 580 } 581 582 /* 583 * Used to dynamically allocate the arg array. 584 */ 585 static char **realloc_argv(unsigned *array_size, char **old_argv) 586 { 587 char **argv; 588 unsigned new_size; 589 590 new_size = *array_size ? *array_size * 2 : 64; 591 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 592 if (argv) { 593 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 594 *array_size = new_size; 595 } 596 597 kfree(old_argv); 598 return argv; 599 } 600 601 /* 602 * Destructively splits up the argument list to pass to ctr. 603 */ 604 int dm_split_args(int *argc, char ***argvp, char *input) 605 { 606 char *start, *end = input, *out, **argv = NULL; 607 unsigned array_size = 0; 608 609 *argc = 0; 610 611 if (!input) { 612 *argvp = NULL; 613 return 0; 614 } 615 616 argv = realloc_argv(&array_size, argv); 617 if (!argv) 618 return -ENOMEM; 619 620 while (1) { 621 /* Skip whitespace */ 622 start = skip_spaces(end); 623 624 if (!*start) 625 break; /* success, we hit the end */ 626 627 /* 'out' is used to remove any back-quotes */ 628 end = out = start; 629 while (*end) { 630 /* Everything apart from '\0' can be quoted */ 631 if (*end == '\\' && *(end + 1)) { 632 *out++ = *(end + 1); 633 end += 2; 634 continue; 635 } 636 637 if (isspace(*end)) 638 break; /* end of token */ 639 640 *out++ = *end++; 641 } 642 643 /* have we already filled the array ? */ 644 if ((*argc + 1) > array_size) { 645 argv = realloc_argv(&array_size, argv); 646 if (!argv) 647 return -ENOMEM; 648 } 649 650 /* we know this is whitespace */ 651 if (*end) 652 end++; 653 654 /* terminate the string and put it in the array */ 655 *out = '\0'; 656 argv[*argc] = start; 657 (*argc)++; 658 } 659 660 *argvp = argv; 661 return 0; 662 } 663 664 /* 665 * Impose necessary and sufficient conditions on a devices's table such 666 * that any incoming bio which respects its logical_block_size can be 667 * processed successfully. If it falls across the boundary between 668 * two or more targets, the size of each piece it gets split into must 669 * be compatible with the logical_block_size of the target processing it. 670 */ 671 static int validate_hardware_logical_block_alignment(struct dm_table *table, 672 struct queue_limits *limits) 673 { 674 /* 675 * This function uses arithmetic modulo the logical_block_size 676 * (in units of 512-byte sectors). 677 */ 678 unsigned short device_logical_block_size_sects = 679 limits->logical_block_size >> SECTOR_SHIFT; 680 681 /* 682 * Offset of the start of the next table entry, mod logical_block_size. 683 */ 684 unsigned short next_target_start = 0; 685 686 /* 687 * Given an aligned bio that extends beyond the end of a 688 * target, how many sectors must the next target handle? 689 */ 690 unsigned short remaining = 0; 691 692 struct dm_target *uninitialized_var(ti); 693 struct queue_limits ti_limits; 694 unsigned i = 0; 695 696 /* 697 * Check each entry in the table in turn. 698 */ 699 while (i < dm_table_get_num_targets(table)) { 700 ti = dm_table_get_target(table, i++); 701 702 blk_set_stacking_limits(&ti_limits); 703 704 /* combine all target devices' limits */ 705 if (ti->type->iterate_devices) 706 ti->type->iterate_devices(ti, dm_set_device_limits, 707 &ti_limits); 708 709 /* 710 * If the remaining sectors fall entirely within this 711 * table entry are they compatible with its logical_block_size? 712 */ 713 if (remaining < ti->len && 714 remaining & ((ti_limits.logical_block_size >> 715 SECTOR_SHIFT) - 1)) 716 break; /* Error */ 717 718 next_target_start = 719 (unsigned short) ((next_target_start + ti->len) & 720 (device_logical_block_size_sects - 1)); 721 remaining = next_target_start ? 722 device_logical_block_size_sects - next_target_start : 0; 723 } 724 725 if (remaining) { 726 DMWARN("%s: table line %u (start sect %llu len %llu) " 727 "not aligned to h/w logical block size %u", 728 dm_device_name(table->md), i, 729 (unsigned long long) ti->begin, 730 (unsigned long long) ti->len, 731 limits->logical_block_size); 732 return -EINVAL; 733 } 734 735 return 0; 736 } 737 738 int dm_table_add_target(struct dm_table *t, const char *type, 739 sector_t start, sector_t len, char *params) 740 { 741 int r = -EINVAL, argc; 742 char **argv; 743 struct dm_target *tgt; 744 745 if (t->singleton) { 746 DMERR("%s: target type %s must appear alone in table", 747 dm_device_name(t->md), t->targets->type->name); 748 return -EINVAL; 749 } 750 751 if ((r = check_space(t))) 752 return r; 753 754 tgt = t->targets + t->num_targets; 755 memset(tgt, 0, sizeof(*tgt)); 756 757 if (!len) { 758 DMERR("%s: zero-length target", dm_device_name(t->md)); 759 return -EINVAL; 760 } 761 762 tgt->type = dm_get_target_type(type); 763 if (!tgt->type) { 764 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 765 type); 766 return -EINVAL; 767 } 768 769 if (dm_target_needs_singleton(tgt->type)) { 770 if (t->num_targets) { 771 DMERR("%s: target type %s must appear alone in table", 772 dm_device_name(t->md), type); 773 return -EINVAL; 774 } 775 t->singleton = 1; 776 } 777 778 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 779 DMERR("%s: target type %s may not be included in read-only tables", 780 dm_device_name(t->md), type); 781 return -EINVAL; 782 } 783 784 if (t->immutable_target_type) { 785 if (t->immutable_target_type != tgt->type) { 786 DMERR("%s: immutable target type %s cannot be mixed with other target types", 787 dm_device_name(t->md), t->immutable_target_type->name); 788 return -EINVAL; 789 } 790 } else if (dm_target_is_immutable(tgt->type)) { 791 if (t->num_targets) { 792 DMERR("%s: immutable target type %s cannot be mixed with other target types", 793 dm_device_name(t->md), tgt->type->name); 794 return -EINVAL; 795 } 796 t->immutable_target_type = tgt->type; 797 } 798 799 tgt->table = t; 800 tgt->begin = start; 801 tgt->len = len; 802 tgt->error = "Unknown error"; 803 804 /* 805 * Does this target adjoin the previous one ? 806 */ 807 if (!adjoin(t, tgt)) { 808 tgt->error = "Gap in table"; 809 r = -EINVAL; 810 goto bad; 811 } 812 813 r = dm_split_args(&argc, &argv, params); 814 if (r) { 815 tgt->error = "couldn't split parameters (insufficient memory)"; 816 goto bad; 817 } 818 819 r = tgt->type->ctr(tgt, argc, argv); 820 kfree(argv); 821 if (r) 822 goto bad; 823 824 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 825 826 if (!tgt->num_discard_requests && tgt->discards_supported) 827 DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.", 828 dm_device_name(t->md), type); 829 830 return 0; 831 832 bad: 833 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 834 dm_put_target_type(tgt->type); 835 return r; 836 } 837 838 /* 839 * Target argument parsing helpers. 840 */ 841 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 842 unsigned *value, char **error, unsigned grouped) 843 { 844 const char *arg_str = dm_shift_arg(arg_set); 845 846 if (!arg_str || 847 (sscanf(arg_str, "%u", value) != 1) || 848 (*value < arg->min) || 849 (*value > arg->max) || 850 (grouped && arg_set->argc < *value)) { 851 *error = arg->error; 852 return -EINVAL; 853 } 854 855 return 0; 856 } 857 858 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 859 unsigned *value, char **error) 860 { 861 return validate_next_arg(arg, arg_set, value, error, 0); 862 } 863 EXPORT_SYMBOL(dm_read_arg); 864 865 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 866 unsigned *value, char **error) 867 { 868 return validate_next_arg(arg, arg_set, value, error, 1); 869 } 870 EXPORT_SYMBOL(dm_read_arg_group); 871 872 const char *dm_shift_arg(struct dm_arg_set *as) 873 { 874 char *r; 875 876 if (as->argc) { 877 as->argc--; 878 r = *as->argv; 879 as->argv++; 880 return r; 881 } 882 883 return NULL; 884 } 885 EXPORT_SYMBOL(dm_shift_arg); 886 887 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 888 { 889 BUG_ON(as->argc < num_args); 890 as->argc -= num_args; 891 as->argv += num_args; 892 } 893 EXPORT_SYMBOL(dm_consume_args); 894 895 static int dm_table_set_type(struct dm_table *t) 896 { 897 unsigned i; 898 unsigned bio_based = 0, request_based = 0; 899 struct dm_target *tgt; 900 struct dm_dev_internal *dd; 901 struct list_head *devices; 902 903 for (i = 0; i < t->num_targets; i++) { 904 tgt = t->targets + i; 905 if (dm_target_request_based(tgt)) 906 request_based = 1; 907 else 908 bio_based = 1; 909 910 if (bio_based && request_based) { 911 DMWARN("Inconsistent table: different target types" 912 " can't be mixed up"); 913 return -EINVAL; 914 } 915 } 916 917 if (bio_based) { 918 /* We must use this table as bio-based */ 919 t->type = DM_TYPE_BIO_BASED; 920 return 0; 921 } 922 923 BUG_ON(!request_based); /* No targets in this table */ 924 925 /* Non-request-stackable devices can't be used for request-based dm */ 926 devices = dm_table_get_devices(t); 927 list_for_each_entry(dd, devices, list) { 928 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 929 DMWARN("table load rejected: including" 930 " non-request-stackable devices"); 931 return -EINVAL; 932 } 933 } 934 935 /* 936 * Request-based dm supports only tables that have a single target now. 937 * To support multiple targets, request splitting support is needed, 938 * and that needs lots of changes in the block-layer. 939 * (e.g. request completion process for partial completion.) 940 */ 941 if (t->num_targets > 1) { 942 DMWARN("Request-based dm doesn't support multiple targets yet"); 943 return -EINVAL; 944 } 945 946 t->type = DM_TYPE_REQUEST_BASED; 947 948 return 0; 949 } 950 951 unsigned dm_table_get_type(struct dm_table *t) 952 { 953 return t->type; 954 } 955 956 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 957 { 958 return t->immutable_target_type; 959 } 960 961 bool dm_table_request_based(struct dm_table *t) 962 { 963 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 964 } 965 966 int dm_table_alloc_md_mempools(struct dm_table *t) 967 { 968 unsigned type = dm_table_get_type(t); 969 970 if (unlikely(type == DM_TYPE_NONE)) { 971 DMWARN("no table type is set, can't allocate mempools"); 972 return -EINVAL; 973 } 974 975 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported); 976 if (!t->mempools) 977 return -ENOMEM; 978 979 return 0; 980 } 981 982 void dm_table_free_md_mempools(struct dm_table *t) 983 { 984 dm_free_md_mempools(t->mempools); 985 t->mempools = NULL; 986 } 987 988 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 989 { 990 return t->mempools; 991 } 992 993 static int setup_indexes(struct dm_table *t) 994 { 995 int i; 996 unsigned int total = 0; 997 sector_t *indexes; 998 999 /* allocate the space for *all* the indexes */ 1000 for (i = t->depth - 2; i >= 0; i--) { 1001 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1002 total += t->counts[i]; 1003 } 1004 1005 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1006 if (!indexes) 1007 return -ENOMEM; 1008 1009 /* set up internal nodes, bottom-up */ 1010 for (i = t->depth - 2; i >= 0; i--) { 1011 t->index[i] = indexes; 1012 indexes += (KEYS_PER_NODE * t->counts[i]); 1013 setup_btree_index(i, t); 1014 } 1015 1016 return 0; 1017 } 1018 1019 /* 1020 * Builds the btree to index the map. 1021 */ 1022 static int dm_table_build_index(struct dm_table *t) 1023 { 1024 int r = 0; 1025 unsigned int leaf_nodes; 1026 1027 /* how many indexes will the btree have ? */ 1028 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1029 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1030 1031 /* leaf layer has already been set up */ 1032 t->counts[t->depth - 1] = leaf_nodes; 1033 t->index[t->depth - 1] = t->highs; 1034 1035 if (t->depth >= 2) 1036 r = setup_indexes(t); 1037 1038 return r; 1039 } 1040 1041 /* 1042 * Get a disk whose integrity profile reflects the table's profile. 1043 * If %match_all is true, all devices' profiles must match. 1044 * If %match_all is false, all devices must at least have an 1045 * allocated integrity profile; but uninitialized is ok. 1046 * Returns NULL if integrity support was inconsistent or unavailable. 1047 */ 1048 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 1049 bool match_all) 1050 { 1051 struct list_head *devices = dm_table_get_devices(t); 1052 struct dm_dev_internal *dd = NULL; 1053 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1054 1055 list_for_each_entry(dd, devices, list) { 1056 template_disk = dd->dm_dev.bdev->bd_disk; 1057 if (!blk_get_integrity(template_disk)) 1058 goto no_integrity; 1059 if (!match_all && !blk_integrity_is_initialized(template_disk)) 1060 continue; /* skip uninitialized profiles */ 1061 else if (prev_disk && 1062 blk_integrity_compare(prev_disk, template_disk) < 0) 1063 goto no_integrity; 1064 prev_disk = template_disk; 1065 } 1066 1067 return template_disk; 1068 1069 no_integrity: 1070 if (prev_disk) 1071 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1072 dm_device_name(t->md), 1073 prev_disk->disk_name, 1074 template_disk->disk_name); 1075 return NULL; 1076 } 1077 1078 /* 1079 * Register the mapped device for blk_integrity support if 1080 * the underlying devices have an integrity profile. But all devices 1081 * may not have matching profiles (checking all devices isn't reliable 1082 * during table load because this table may use other DM device(s) which 1083 * must be resumed before they will have an initialized integity profile). 1084 * Stacked DM devices force a 2 stage integrity profile validation: 1085 * 1 - during load, validate all initialized integrity profiles match 1086 * 2 - during resume, validate all integrity profiles match 1087 */ 1088 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 1089 { 1090 struct gendisk *template_disk = NULL; 1091 1092 template_disk = dm_table_get_integrity_disk(t, false); 1093 if (!template_disk) 1094 return 0; 1095 1096 if (!blk_integrity_is_initialized(dm_disk(md))) { 1097 t->integrity_supported = 1; 1098 return blk_integrity_register(dm_disk(md), NULL); 1099 } 1100 1101 /* 1102 * If DM device already has an initalized integrity 1103 * profile the new profile should not conflict. 1104 */ 1105 if (blk_integrity_is_initialized(template_disk) && 1106 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1107 DMWARN("%s: conflict with existing integrity profile: " 1108 "%s profile mismatch", 1109 dm_device_name(t->md), 1110 template_disk->disk_name); 1111 return 1; 1112 } 1113 1114 /* Preserve existing initialized integrity profile */ 1115 t->integrity_supported = 1; 1116 return 0; 1117 } 1118 1119 /* 1120 * Prepares the table for use by building the indices, 1121 * setting the type, and allocating mempools. 1122 */ 1123 int dm_table_complete(struct dm_table *t) 1124 { 1125 int r; 1126 1127 r = dm_table_set_type(t); 1128 if (r) { 1129 DMERR("unable to set table type"); 1130 return r; 1131 } 1132 1133 r = dm_table_build_index(t); 1134 if (r) { 1135 DMERR("unable to build btrees"); 1136 return r; 1137 } 1138 1139 r = dm_table_prealloc_integrity(t, t->md); 1140 if (r) { 1141 DMERR("could not register integrity profile."); 1142 return r; 1143 } 1144 1145 r = dm_table_alloc_md_mempools(t); 1146 if (r) 1147 DMERR("unable to allocate mempools"); 1148 1149 return r; 1150 } 1151 1152 static DEFINE_MUTEX(_event_lock); 1153 void dm_table_event_callback(struct dm_table *t, 1154 void (*fn)(void *), void *context) 1155 { 1156 mutex_lock(&_event_lock); 1157 t->event_fn = fn; 1158 t->event_context = context; 1159 mutex_unlock(&_event_lock); 1160 } 1161 1162 void dm_table_event(struct dm_table *t) 1163 { 1164 /* 1165 * You can no longer call dm_table_event() from interrupt 1166 * context, use a bottom half instead. 1167 */ 1168 BUG_ON(in_interrupt()); 1169 1170 mutex_lock(&_event_lock); 1171 if (t->event_fn) 1172 t->event_fn(t->event_context); 1173 mutex_unlock(&_event_lock); 1174 } 1175 EXPORT_SYMBOL(dm_table_event); 1176 1177 sector_t dm_table_get_size(struct dm_table *t) 1178 { 1179 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1180 } 1181 EXPORT_SYMBOL(dm_table_get_size); 1182 1183 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1184 { 1185 if (index >= t->num_targets) 1186 return NULL; 1187 1188 return t->targets + index; 1189 } 1190 1191 /* 1192 * Search the btree for the correct target. 1193 * 1194 * Caller should check returned pointer with dm_target_is_valid() 1195 * to trap I/O beyond end of device. 1196 */ 1197 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1198 { 1199 unsigned int l, n = 0, k = 0; 1200 sector_t *node; 1201 1202 for (l = 0; l < t->depth; l++) { 1203 n = get_child(n, k); 1204 node = get_node(t, l, n); 1205 1206 for (k = 0; k < KEYS_PER_NODE; k++) 1207 if (node[k] >= sector) 1208 break; 1209 } 1210 1211 return &t->targets[(KEYS_PER_NODE * n) + k]; 1212 } 1213 1214 /* 1215 * Establish the new table's queue_limits and validate them. 1216 */ 1217 int dm_calculate_queue_limits(struct dm_table *table, 1218 struct queue_limits *limits) 1219 { 1220 struct dm_target *uninitialized_var(ti); 1221 struct queue_limits ti_limits; 1222 unsigned i = 0; 1223 1224 blk_set_stacking_limits(limits); 1225 1226 while (i < dm_table_get_num_targets(table)) { 1227 blk_set_stacking_limits(&ti_limits); 1228 1229 ti = dm_table_get_target(table, i++); 1230 1231 if (!ti->type->iterate_devices) 1232 goto combine_limits; 1233 1234 /* 1235 * Combine queue limits of all the devices this target uses. 1236 */ 1237 ti->type->iterate_devices(ti, dm_set_device_limits, 1238 &ti_limits); 1239 1240 /* Set I/O hints portion of queue limits */ 1241 if (ti->type->io_hints) 1242 ti->type->io_hints(ti, &ti_limits); 1243 1244 /* 1245 * Check each device area is consistent with the target's 1246 * overall queue limits. 1247 */ 1248 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1249 &ti_limits)) 1250 return -EINVAL; 1251 1252 combine_limits: 1253 /* 1254 * Merge this target's queue limits into the overall limits 1255 * for the table. 1256 */ 1257 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1258 DMWARN("%s: adding target device " 1259 "(start sect %llu len %llu) " 1260 "caused an alignment inconsistency", 1261 dm_device_name(table->md), 1262 (unsigned long long) ti->begin, 1263 (unsigned long long) ti->len); 1264 } 1265 1266 return validate_hardware_logical_block_alignment(table, limits); 1267 } 1268 1269 /* 1270 * Set the integrity profile for this device if all devices used have 1271 * matching profiles. We're quite deep in the resume path but still 1272 * don't know if all devices (particularly DM devices this device 1273 * may be stacked on) have matching profiles. Even if the profiles 1274 * don't match we have no way to fail (to resume) at this point. 1275 */ 1276 static void dm_table_set_integrity(struct dm_table *t) 1277 { 1278 struct gendisk *template_disk = NULL; 1279 1280 if (!blk_get_integrity(dm_disk(t->md))) 1281 return; 1282 1283 template_disk = dm_table_get_integrity_disk(t, true); 1284 if (template_disk) 1285 blk_integrity_register(dm_disk(t->md), 1286 blk_get_integrity(template_disk)); 1287 else if (blk_integrity_is_initialized(dm_disk(t->md))) 1288 DMWARN("%s: device no longer has a valid integrity profile", 1289 dm_device_name(t->md)); 1290 else 1291 DMWARN("%s: unable to establish an integrity profile", 1292 dm_device_name(t->md)); 1293 } 1294 1295 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1296 sector_t start, sector_t len, void *data) 1297 { 1298 unsigned flush = (*(unsigned *)data); 1299 struct request_queue *q = bdev_get_queue(dev->bdev); 1300 1301 return q && (q->flush_flags & flush); 1302 } 1303 1304 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) 1305 { 1306 struct dm_target *ti; 1307 unsigned i = 0; 1308 1309 /* 1310 * Require at least one underlying device to support flushes. 1311 * t->devices includes internal dm devices such as mirror logs 1312 * so we need to use iterate_devices here, which targets 1313 * supporting flushes must provide. 1314 */ 1315 while (i < dm_table_get_num_targets(t)) { 1316 ti = dm_table_get_target(t, i++); 1317 1318 if (!ti->num_flush_requests) 1319 continue; 1320 1321 if (ti->type->iterate_devices && 1322 ti->type->iterate_devices(ti, device_flush_capable, &flush)) 1323 return 1; 1324 } 1325 1326 return 0; 1327 } 1328 1329 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1330 { 1331 struct dm_target *ti; 1332 unsigned i = 0; 1333 1334 /* Ensure that all targets supports discard_zeroes_data. */ 1335 while (i < dm_table_get_num_targets(t)) { 1336 ti = dm_table_get_target(t, i++); 1337 1338 if (ti->discard_zeroes_data_unsupported) 1339 return 0; 1340 } 1341 1342 return 1; 1343 } 1344 1345 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1346 sector_t start, sector_t len, void *data) 1347 { 1348 struct request_queue *q = bdev_get_queue(dev->bdev); 1349 1350 return q && blk_queue_nonrot(q); 1351 } 1352 1353 static bool dm_table_is_nonrot(struct dm_table *t) 1354 { 1355 struct dm_target *ti; 1356 unsigned i = 0; 1357 1358 /* Ensure that all underlying device are non-rotational. */ 1359 while (i < dm_table_get_num_targets(t)) { 1360 ti = dm_table_get_target(t, i++); 1361 1362 if (!ti->type->iterate_devices || 1363 !ti->type->iterate_devices(ti, device_is_nonrot, NULL)) 1364 return 0; 1365 } 1366 1367 return 1; 1368 } 1369 1370 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1371 struct queue_limits *limits) 1372 { 1373 unsigned flush = 0; 1374 1375 /* 1376 * Copy table's limits to the DM device's request_queue 1377 */ 1378 q->limits = *limits; 1379 1380 if (!dm_table_supports_discards(t)) 1381 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1382 else 1383 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1384 1385 if (dm_table_supports_flush(t, REQ_FLUSH)) { 1386 flush |= REQ_FLUSH; 1387 if (dm_table_supports_flush(t, REQ_FUA)) 1388 flush |= REQ_FUA; 1389 } 1390 blk_queue_flush(q, flush); 1391 1392 if (!dm_table_discard_zeroes_data(t)) 1393 q->limits.discard_zeroes_data = 0; 1394 1395 if (dm_table_is_nonrot(t)) 1396 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1397 else 1398 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1399 1400 dm_table_set_integrity(t); 1401 1402 /* 1403 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1404 * visible to other CPUs because, once the flag is set, incoming bios 1405 * are processed by request-based dm, which refers to the queue 1406 * settings. 1407 * Until the flag set, bios are passed to bio-based dm and queued to 1408 * md->deferred where queue settings are not needed yet. 1409 * Those bios are passed to request-based dm at the resume time. 1410 */ 1411 smp_mb(); 1412 if (dm_table_request_based(t)) 1413 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1414 } 1415 1416 unsigned int dm_table_get_num_targets(struct dm_table *t) 1417 { 1418 return t->num_targets; 1419 } 1420 1421 struct list_head *dm_table_get_devices(struct dm_table *t) 1422 { 1423 return &t->devices; 1424 } 1425 1426 fmode_t dm_table_get_mode(struct dm_table *t) 1427 { 1428 return t->mode; 1429 } 1430 EXPORT_SYMBOL(dm_table_get_mode); 1431 1432 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1433 { 1434 int i = t->num_targets; 1435 struct dm_target *ti = t->targets; 1436 1437 while (i--) { 1438 if (postsuspend) { 1439 if (ti->type->postsuspend) 1440 ti->type->postsuspend(ti); 1441 } else if (ti->type->presuspend) 1442 ti->type->presuspend(ti); 1443 1444 ti++; 1445 } 1446 } 1447 1448 void dm_table_presuspend_targets(struct dm_table *t) 1449 { 1450 if (!t) 1451 return; 1452 1453 suspend_targets(t, 0); 1454 } 1455 1456 void dm_table_postsuspend_targets(struct dm_table *t) 1457 { 1458 if (!t) 1459 return; 1460 1461 suspend_targets(t, 1); 1462 } 1463 1464 int dm_table_resume_targets(struct dm_table *t) 1465 { 1466 int i, r = 0; 1467 1468 for (i = 0; i < t->num_targets; i++) { 1469 struct dm_target *ti = t->targets + i; 1470 1471 if (!ti->type->preresume) 1472 continue; 1473 1474 r = ti->type->preresume(ti); 1475 if (r) 1476 return r; 1477 } 1478 1479 for (i = 0; i < t->num_targets; i++) { 1480 struct dm_target *ti = t->targets + i; 1481 1482 if (ti->type->resume) 1483 ti->type->resume(ti); 1484 } 1485 1486 return 0; 1487 } 1488 1489 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1490 { 1491 list_add(&cb->list, &t->target_callbacks); 1492 } 1493 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1494 1495 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1496 { 1497 struct dm_dev_internal *dd; 1498 struct list_head *devices = dm_table_get_devices(t); 1499 struct dm_target_callbacks *cb; 1500 int r = 0; 1501 1502 list_for_each_entry(dd, devices, list) { 1503 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1504 char b[BDEVNAME_SIZE]; 1505 1506 if (likely(q)) 1507 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1508 else 1509 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1510 dm_device_name(t->md), 1511 bdevname(dd->dm_dev.bdev, b)); 1512 } 1513 1514 list_for_each_entry(cb, &t->target_callbacks, list) 1515 if (cb->congested_fn) 1516 r |= cb->congested_fn(cb, bdi_bits); 1517 1518 return r; 1519 } 1520 1521 int dm_table_any_busy_target(struct dm_table *t) 1522 { 1523 unsigned i; 1524 struct dm_target *ti; 1525 1526 for (i = 0; i < t->num_targets; i++) { 1527 ti = t->targets + i; 1528 if (ti->type->busy && ti->type->busy(ti)) 1529 return 1; 1530 } 1531 1532 return 0; 1533 } 1534 1535 struct mapped_device *dm_table_get_md(struct dm_table *t) 1536 { 1537 return t->md; 1538 } 1539 EXPORT_SYMBOL(dm_table_get_md); 1540 1541 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1542 sector_t start, sector_t len, void *data) 1543 { 1544 struct request_queue *q = bdev_get_queue(dev->bdev); 1545 1546 return q && blk_queue_discard(q); 1547 } 1548 1549 bool dm_table_supports_discards(struct dm_table *t) 1550 { 1551 struct dm_target *ti; 1552 unsigned i = 0; 1553 1554 /* 1555 * Unless any target used by the table set discards_supported, 1556 * require at least one underlying device to support discards. 1557 * t->devices includes internal dm devices such as mirror logs 1558 * so we need to use iterate_devices here, which targets 1559 * supporting discard selectively must provide. 1560 */ 1561 while (i < dm_table_get_num_targets(t)) { 1562 ti = dm_table_get_target(t, i++); 1563 1564 if (!ti->num_discard_requests) 1565 continue; 1566 1567 if (ti->discards_supported) 1568 return 1; 1569 1570 if (ti->type->iterate_devices && 1571 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1572 return 1; 1573 } 1574 1575 return 0; 1576 } 1577