xref: /linux/drivers/md/dm-table.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 /*
30  * The table has always exactly one reference from either mapped_device->map
31  * or hash_cell->new_map. This reference is not counted in table->holders.
32  * A pair of dm_create_table/dm_destroy_table functions is used for table
33  * creation/destruction.
34  *
35  * Temporary references from the other code increase table->holders. A pair
36  * of dm_table_get/dm_table_put functions is used to manipulate it.
37  *
38  * When the table is about to be destroyed, we wait for table->holders to
39  * drop to zero.
40  */
41 
42 struct dm_table {
43 	struct mapped_device *md;
44 	atomic_t holders;
45 	unsigned type;
46 
47 	/* btree table */
48 	unsigned int depth;
49 	unsigned int counts[MAX_DEPTH];	/* in nodes */
50 	sector_t *index[MAX_DEPTH];
51 
52 	unsigned int num_targets;
53 	unsigned int num_allocated;
54 	sector_t *highs;
55 	struct dm_target *targets;
56 
57 	struct target_type *immutable_target_type;
58 	unsigned integrity_supported:1;
59 	unsigned singleton:1;
60 
61 	/*
62 	 * Indicates the rw permissions for the new logical
63 	 * device.  This should be a combination of FMODE_READ
64 	 * and FMODE_WRITE.
65 	 */
66 	fmode_t mode;
67 
68 	/* a list of devices used by this table */
69 	struct list_head devices;
70 
71 	/* events get handed up using this callback */
72 	void (*event_fn)(void *);
73 	void *event_context;
74 
75 	struct dm_md_mempools *mempools;
76 
77 	struct list_head target_callbacks;
78 };
79 
80 /*
81  * Similar to ceiling(log_size(n))
82  */
83 static unsigned int int_log(unsigned int n, unsigned int base)
84 {
85 	int result = 0;
86 
87 	while (n > 1) {
88 		n = dm_div_up(n, base);
89 		result++;
90 	}
91 
92 	return result;
93 }
94 
95 /*
96  * Calculate the index of the child node of the n'th node k'th key.
97  */
98 static inline unsigned int get_child(unsigned int n, unsigned int k)
99 {
100 	return (n * CHILDREN_PER_NODE) + k;
101 }
102 
103 /*
104  * Return the n'th node of level l from table t.
105  */
106 static inline sector_t *get_node(struct dm_table *t,
107 				 unsigned int l, unsigned int n)
108 {
109 	return t->index[l] + (n * KEYS_PER_NODE);
110 }
111 
112 /*
113  * Return the highest key that you could lookup from the n'th
114  * node on level l of the btree.
115  */
116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
117 {
118 	for (; l < t->depth - 1; l++)
119 		n = get_child(n, CHILDREN_PER_NODE - 1);
120 
121 	if (n >= t->counts[l])
122 		return (sector_t) - 1;
123 
124 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
125 }
126 
127 /*
128  * Fills in a level of the btree based on the highs of the level
129  * below it.
130  */
131 static int setup_btree_index(unsigned int l, struct dm_table *t)
132 {
133 	unsigned int n, k;
134 	sector_t *node;
135 
136 	for (n = 0U; n < t->counts[l]; n++) {
137 		node = get_node(t, l, n);
138 
139 		for (k = 0U; k < KEYS_PER_NODE; k++)
140 			node[k] = high(t, l + 1, get_child(n, k));
141 	}
142 
143 	return 0;
144 }
145 
146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
147 {
148 	unsigned long size;
149 	void *addr;
150 
151 	/*
152 	 * Check that we're not going to overflow.
153 	 */
154 	if (nmemb > (ULONG_MAX / elem_size))
155 		return NULL;
156 
157 	size = nmemb * elem_size;
158 	addr = vzalloc(size);
159 
160 	return addr;
161 }
162 EXPORT_SYMBOL(dm_vcalloc);
163 
164 /*
165  * highs, and targets are managed as dynamic arrays during a
166  * table load.
167  */
168 static int alloc_targets(struct dm_table *t, unsigned int num)
169 {
170 	sector_t *n_highs;
171 	struct dm_target *n_targets;
172 	int n = t->num_targets;
173 
174 	/*
175 	 * Allocate both the target array and offset array at once.
176 	 * Append an empty entry to catch sectors beyond the end of
177 	 * the device.
178 	 */
179 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
180 					  sizeof(sector_t));
181 	if (!n_highs)
182 		return -ENOMEM;
183 
184 	n_targets = (struct dm_target *) (n_highs + num);
185 
186 	if (n) {
187 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
188 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 	}
190 
191 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
192 	vfree(t->highs);
193 
194 	t->num_allocated = num;
195 	t->highs = n_highs;
196 	t->targets = n_targets;
197 
198 	return 0;
199 }
200 
201 int dm_table_create(struct dm_table **result, fmode_t mode,
202 		    unsigned num_targets, struct mapped_device *md)
203 {
204 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205 
206 	if (!t)
207 		return -ENOMEM;
208 
209 	INIT_LIST_HEAD(&t->devices);
210 	INIT_LIST_HEAD(&t->target_callbacks);
211 	atomic_set(&t->holders, 0);
212 
213 	if (!num_targets)
214 		num_targets = KEYS_PER_NODE;
215 
216 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
217 
218 	if (alloc_targets(t, num_targets)) {
219 		kfree(t);
220 		t = NULL;
221 		return -ENOMEM;
222 	}
223 
224 	t->mode = mode;
225 	t->md = md;
226 	*result = t;
227 	return 0;
228 }
229 
230 static void free_devices(struct list_head *devices)
231 {
232 	struct list_head *tmp, *next;
233 
234 	list_for_each_safe(tmp, next, devices) {
235 		struct dm_dev_internal *dd =
236 		    list_entry(tmp, struct dm_dev_internal, list);
237 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
238 		       dd->dm_dev.name);
239 		kfree(dd);
240 	}
241 }
242 
243 void dm_table_destroy(struct dm_table *t)
244 {
245 	unsigned int i;
246 
247 	if (!t)
248 		return;
249 
250 	while (atomic_read(&t->holders))
251 		msleep(1);
252 	smp_mb();
253 
254 	/* free the indexes */
255 	if (t->depth >= 2)
256 		vfree(t->index[t->depth - 2]);
257 
258 	/* free the targets */
259 	for (i = 0; i < t->num_targets; i++) {
260 		struct dm_target *tgt = t->targets + i;
261 
262 		if (tgt->type->dtr)
263 			tgt->type->dtr(tgt);
264 
265 		dm_put_target_type(tgt->type);
266 	}
267 
268 	vfree(t->highs);
269 
270 	/* free the device list */
271 	if (t->devices.next != &t->devices)
272 		free_devices(&t->devices);
273 
274 	dm_free_md_mempools(t->mempools);
275 
276 	kfree(t);
277 }
278 
279 void dm_table_get(struct dm_table *t)
280 {
281 	atomic_inc(&t->holders);
282 }
283 EXPORT_SYMBOL(dm_table_get);
284 
285 void dm_table_put(struct dm_table *t)
286 {
287 	if (!t)
288 		return;
289 
290 	smp_mb__before_atomic_dec();
291 	atomic_dec(&t->holders);
292 }
293 EXPORT_SYMBOL(dm_table_put);
294 
295 /*
296  * Checks to see if we need to extend highs or targets.
297  */
298 static inline int check_space(struct dm_table *t)
299 {
300 	if (t->num_targets >= t->num_allocated)
301 		return alloc_targets(t, t->num_allocated * 2);
302 
303 	return 0;
304 }
305 
306 /*
307  * See if we've already got a device in the list.
308  */
309 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
310 {
311 	struct dm_dev_internal *dd;
312 
313 	list_for_each_entry (dd, l, list)
314 		if (dd->dm_dev.bdev->bd_dev == dev)
315 			return dd;
316 
317 	return NULL;
318 }
319 
320 /*
321  * Open a device so we can use it as a map destination.
322  */
323 static int open_dev(struct dm_dev_internal *d, dev_t dev,
324 		    struct mapped_device *md)
325 {
326 	static char *_claim_ptr = "I belong to device-mapper";
327 	struct block_device *bdev;
328 
329 	int r;
330 
331 	BUG_ON(d->dm_dev.bdev);
332 
333 	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
334 	if (IS_ERR(bdev))
335 		return PTR_ERR(bdev);
336 
337 	r = bd_link_disk_holder(bdev, dm_disk(md));
338 	if (r) {
339 		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
340 		return r;
341 	}
342 
343 	d->dm_dev.bdev = bdev;
344 	return 0;
345 }
346 
347 /*
348  * Close a device that we've been using.
349  */
350 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
351 {
352 	if (!d->dm_dev.bdev)
353 		return;
354 
355 	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
356 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
357 	d->dm_dev.bdev = NULL;
358 }
359 
360 /*
361  * If possible, this checks an area of a destination device is invalid.
362  */
363 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
364 				  sector_t start, sector_t len, void *data)
365 {
366 	struct request_queue *q;
367 	struct queue_limits *limits = data;
368 	struct block_device *bdev = dev->bdev;
369 	sector_t dev_size =
370 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
371 	unsigned short logical_block_size_sectors =
372 		limits->logical_block_size >> SECTOR_SHIFT;
373 	char b[BDEVNAME_SIZE];
374 
375 	/*
376 	 * Some devices exist without request functions,
377 	 * such as loop devices not yet bound to backing files.
378 	 * Forbid the use of such devices.
379 	 */
380 	q = bdev_get_queue(bdev);
381 	if (!q || !q->make_request_fn) {
382 		DMWARN("%s: %s is not yet initialised: "
383 		       "start=%llu, len=%llu, dev_size=%llu",
384 		       dm_device_name(ti->table->md), bdevname(bdev, b),
385 		       (unsigned long long)start,
386 		       (unsigned long long)len,
387 		       (unsigned long long)dev_size);
388 		return 1;
389 	}
390 
391 	if (!dev_size)
392 		return 0;
393 
394 	if ((start >= dev_size) || (start + len > dev_size)) {
395 		DMWARN("%s: %s too small for target: "
396 		       "start=%llu, len=%llu, dev_size=%llu",
397 		       dm_device_name(ti->table->md), bdevname(bdev, b),
398 		       (unsigned long long)start,
399 		       (unsigned long long)len,
400 		       (unsigned long long)dev_size);
401 		return 1;
402 	}
403 
404 	if (logical_block_size_sectors <= 1)
405 		return 0;
406 
407 	if (start & (logical_block_size_sectors - 1)) {
408 		DMWARN("%s: start=%llu not aligned to h/w "
409 		       "logical block size %u of %s",
410 		       dm_device_name(ti->table->md),
411 		       (unsigned long long)start,
412 		       limits->logical_block_size, bdevname(bdev, b));
413 		return 1;
414 	}
415 
416 	if (len & (logical_block_size_sectors - 1)) {
417 		DMWARN("%s: len=%llu not aligned to h/w "
418 		       "logical block size %u of %s",
419 		       dm_device_name(ti->table->md),
420 		       (unsigned long long)len,
421 		       limits->logical_block_size, bdevname(bdev, b));
422 		return 1;
423 	}
424 
425 	return 0;
426 }
427 
428 /*
429  * This upgrades the mode on an already open dm_dev, being
430  * careful to leave things as they were if we fail to reopen the
431  * device and not to touch the existing bdev field in case
432  * it is accessed concurrently inside dm_table_any_congested().
433  */
434 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
435 			struct mapped_device *md)
436 {
437 	int r;
438 	struct dm_dev_internal dd_new, dd_old;
439 
440 	dd_new = dd_old = *dd;
441 
442 	dd_new.dm_dev.mode |= new_mode;
443 	dd_new.dm_dev.bdev = NULL;
444 
445 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
446 	if (r)
447 		return r;
448 
449 	dd->dm_dev.mode |= new_mode;
450 	close_dev(&dd_old, md);
451 
452 	return 0;
453 }
454 
455 /*
456  * Add a device to the list, or just increment the usage count if
457  * it's already present.
458  */
459 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
460 		  struct dm_dev **result)
461 {
462 	int r;
463 	dev_t uninitialized_var(dev);
464 	struct dm_dev_internal *dd;
465 	unsigned int major, minor;
466 	struct dm_table *t = ti->table;
467 
468 	BUG_ON(!t);
469 
470 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
471 		/* Extract the major/minor numbers */
472 		dev = MKDEV(major, minor);
473 		if (MAJOR(dev) != major || MINOR(dev) != minor)
474 			return -EOVERFLOW;
475 	} else {
476 		/* convert the path to a device */
477 		struct block_device *bdev = lookup_bdev(path);
478 
479 		if (IS_ERR(bdev))
480 			return PTR_ERR(bdev);
481 		dev = bdev->bd_dev;
482 		bdput(bdev);
483 	}
484 
485 	dd = find_device(&t->devices, dev);
486 	if (!dd) {
487 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
488 		if (!dd)
489 			return -ENOMEM;
490 
491 		dd->dm_dev.mode = mode;
492 		dd->dm_dev.bdev = NULL;
493 
494 		if ((r = open_dev(dd, dev, t->md))) {
495 			kfree(dd);
496 			return r;
497 		}
498 
499 		format_dev_t(dd->dm_dev.name, dev);
500 
501 		atomic_set(&dd->count, 0);
502 		list_add(&dd->list, &t->devices);
503 
504 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
505 		r = upgrade_mode(dd, mode, t->md);
506 		if (r)
507 			return r;
508 	}
509 	atomic_inc(&dd->count);
510 
511 	*result = &dd->dm_dev;
512 	return 0;
513 }
514 EXPORT_SYMBOL(dm_get_device);
515 
516 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
517 			 sector_t start, sector_t len, void *data)
518 {
519 	struct queue_limits *limits = data;
520 	struct block_device *bdev = dev->bdev;
521 	struct request_queue *q = bdev_get_queue(bdev);
522 	char b[BDEVNAME_SIZE];
523 
524 	if (unlikely(!q)) {
525 		DMWARN("%s: Cannot set limits for nonexistent device %s",
526 		       dm_device_name(ti->table->md), bdevname(bdev, b));
527 		return 0;
528 	}
529 
530 	if (bdev_stack_limits(limits, bdev, start) < 0)
531 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
532 		       "physical_block_size=%u, logical_block_size=%u, "
533 		       "alignment_offset=%u, start=%llu",
534 		       dm_device_name(ti->table->md), bdevname(bdev, b),
535 		       q->limits.physical_block_size,
536 		       q->limits.logical_block_size,
537 		       q->limits.alignment_offset,
538 		       (unsigned long long) start << SECTOR_SHIFT);
539 
540 	/*
541 	 * Check if merge fn is supported.
542 	 * If not we'll force DM to use PAGE_SIZE or
543 	 * smaller I/O, just to be safe.
544 	 */
545 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
546 		blk_limits_max_hw_sectors(limits,
547 					  (unsigned int) (PAGE_SIZE >> 9));
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(dm_set_device_limits);
551 
552 /*
553  * Decrement a device's use count and remove it if necessary.
554  */
555 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
556 {
557 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
558 						  dm_dev);
559 
560 	if (atomic_dec_and_test(&dd->count)) {
561 		close_dev(dd, ti->table->md);
562 		list_del(&dd->list);
563 		kfree(dd);
564 	}
565 }
566 EXPORT_SYMBOL(dm_put_device);
567 
568 /*
569  * Checks to see if the target joins onto the end of the table.
570  */
571 static int adjoin(struct dm_table *table, struct dm_target *ti)
572 {
573 	struct dm_target *prev;
574 
575 	if (!table->num_targets)
576 		return !ti->begin;
577 
578 	prev = &table->targets[table->num_targets - 1];
579 	return (ti->begin == (prev->begin + prev->len));
580 }
581 
582 /*
583  * Used to dynamically allocate the arg array.
584  */
585 static char **realloc_argv(unsigned *array_size, char **old_argv)
586 {
587 	char **argv;
588 	unsigned new_size;
589 
590 	new_size = *array_size ? *array_size * 2 : 64;
591 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
592 	if (argv) {
593 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
594 		*array_size = new_size;
595 	}
596 
597 	kfree(old_argv);
598 	return argv;
599 }
600 
601 /*
602  * Destructively splits up the argument list to pass to ctr.
603  */
604 int dm_split_args(int *argc, char ***argvp, char *input)
605 {
606 	char *start, *end = input, *out, **argv = NULL;
607 	unsigned array_size = 0;
608 
609 	*argc = 0;
610 
611 	if (!input) {
612 		*argvp = NULL;
613 		return 0;
614 	}
615 
616 	argv = realloc_argv(&array_size, argv);
617 	if (!argv)
618 		return -ENOMEM;
619 
620 	while (1) {
621 		/* Skip whitespace */
622 		start = skip_spaces(end);
623 
624 		if (!*start)
625 			break;	/* success, we hit the end */
626 
627 		/* 'out' is used to remove any back-quotes */
628 		end = out = start;
629 		while (*end) {
630 			/* Everything apart from '\0' can be quoted */
631 			if (*end == '\\' && *(end + 1)) {
632 				*out++ = *(end + 1);
633 				end += 2;
634 				continue;
635 			}
636 
637 			if (isspace(*end))
638 				break;	/* end of token */
639 
640 			*out++ = *end++;
641 		}
642 
643 		/* have we already filled the array ? */
644 		if ((*argc + 1) > array_size) {
645 			argv = realloc_argv(&array_size, argv);
646 			if (!argv)
647 				return -ENOMEM;
648 		}
649 
650 		/* we know this is whitespace */
651 		if (*end)
652 			end++;
653 
654 		/* terminate the string and put it in the array */
655 		*out = '\0';
656 		argv[*argc] = start;
657 		(*argc)++;
658 	}
659 
660 	*argvp = argv;
661 	return 0;
662 }
663 
664 /*
665  * Impose necessary and sufficient conditions on a devices's table such
666  * that any incoming bio which respects its logical_block_size can be
667  * processed successfully.  If it falls across the boundary between
668  * two or more targets, the size of each piece it gets split into must
669  * be compatible with the logical_block_size of the target processing it.
670  */
671 static int validate_hardware_logical_block_alignment(struct dm_table *table,
672 						 struct queue_limits *limits)
673 {
674 	/*
675 	 * This function uses arithmetic modulo the logical_block_size
676 	 * (in units of 512-byte sectors).
677 	 */
678 	unsigned short device_logical_block_size_sects =
679 		limits->logical_block_size >> SECTOR_SHIFT;
680 
681 	/*
682 	 * Offset of the start of the next table entry, mod logical_block_size.
683 	 */
684 	unsigned short next_target_start = 0;
685 
686 	/*
687 	 * Given an aligned bio that extends beyond the end of a
688 	 * target, how many sectors must the next target handle?
689 	 */
690 	unsigned short remaining = 0;
691 
692 	struct dm_target *uninitialized_var(ti);
693 	struct queue_limits ti_limits;
694 	unsigned i = 0;
695 
696 	/*
697 	 * Check each entry in the table in turn.
698 	 */
699 	while (i < dm_table_get_num_targets(table)) {
700 		ti = dm_table_get_target(table, i++);
701 
702 		blk_set_stacking_limits(&ti_limits);
703 
704 		/* combine all target devices' limits */
705 		if (ti->type->iterate_devices)
706 			ti->type->iterate_devices(ti, dm_set_device_limits,
707 						  &ti_limits);
708 
709 		/*
710 		 * If the remaining sectors fall entirely within this
711 		 * table entry are they compatible with its logical_block_size?
712 		 */
713 		if (remaining < ti->len &&
714 		    remaining & ((ti_limits.logical_block_size >>
715 				  SECTOR_SHIFT) - 1))
716 			break;	/* Error */
717 
718 		next_target_start =
719 		    (unsigned short) ((next_target_start + ti->len) &
720 				      (device_logical_block_size_sects - 1));
721 		remaining = next_target_start ?
722 		    device_logical_block_size_sects - next_target_start : 0;
723 	}
724 
725 	if (remaining) {
726 		DMWARN("%s: table line %u (start sect %llu len %llu) "
727 		       "not aligned to h/w logical block size %u",
728 		       dm_device_name(table->md), i,
729 		       (unsigned long long) ti->begin,
730 		       (unsigned long long) ti->len,
731 		       limits->logical_block_size);
732 		return -EINVAL;
733 	}
734 
735 	return 0;
736 }
737 
738 int dm_table_add_target(struct dm_table *t, const char *type,
739 			sector_t start, sector_t len, char *params)
740 {
741 	int r = -EINVAL, argc;
742 	char **argv;
743 	struct dm_target *tgt;
744 
745 	if (t->singleton) {
746 		DMERR("%s: target type %s must appear alone in table",
747 		      dm_device_name(t->md), t->targets->type->name);
748 		return -EINVAL;
749 	}
750 
751 	if ((r = check_space(t)))
752 		return r;
753 
754 	tgt = t->targets + t->num_targets;
755 	memset(tgt, 0, sizeof(*tgt));
756 
757 	if (!len) {
758 		DMERR("%s: zero-length target", dm_device_name(t->md));
759 		return -EINVAL;
760 	}
761 
762 	tgt->type = dm_get_target_type(type);
763 	if (!tgt->type) {
764 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
765 		      type);
766 		return -EINVAL;
767 	}
768 
769 	if (dm_target_needs_singleton(tgt->type)) {
770 		if (t->num_targets) {
771 			DMERR("%s: target type %s must appear alone in table",
772 			      dm_device_name(t->md), type);
773 			return -EINVAL;
774 		}
775 		t->singleton = 1;
776 	}
777 
778 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
779 		DMERR("%s: target type %s may not be included in read-only tables",
780 		      dm_device_name(t->md), type);
781 		return -EINVAL;
782 	}
783 
784 	if (t->immutable_target_type) {
785 		if (t->immutable_target_type != tgt->type) {
786 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
787 			      dm_device_name(t->md), t->immutable_target_type->name);
788 			return -EINVAL;
789 		}
790 	} else if (dm_target_is_immutable(tgt->type)) {
791 		if (t->num_targets) {
792 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
793 			      dm_device_name(t->md), tgt->type->name);
794 			return -EINVAL;
795 		}
796 		t->immutable_target_type = tgt->type;
797 	}
798 
799 	tgt->table = t;
800 	tgt->begin = start;
801 	tgt->len = len;
802 	tgt->error = "Unknown error";
803 
804 	/*
805 	 * Does this target adjoin the previous one ?
806 	 */
807 	if (!adjoin(t, tgt)) {
808 		tgt->error = "Gap in table";
809 		r = -EINVAL;
810 		goto bad;
811 	}
812 
813 	r = dm_split_args(&argc, &argv, params);
814 	if (r) {
815 		tgt->error = "couldn't split parameters (insufficient memory)";
816 		goto bad;
817 	}
818 
819 	r = tgt->type->ctr(tgt, argc, argv);
820 	kfree(argv);
821 	if (r)
822 		goto bad;
823 
824 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
825 
826 	if (!tgt->num_discard_requests && tgt->discards_supported)
827 		DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
828 		       dm_device_name(t->md), type);
829 
830 	return 0;
831 
832  bad:
833 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
834 	dm_put_target_type(tgt->type);
835 	return r;
836 }
837 
838 /*
839  * Target argument parsing helpers.
840  */
841 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
842 			     unsigned *value, char **error, unsigned grouped)
843 {
844 	const char *arg_str = dm_shift_arg(arg_set);
845 
846 	if (!arg_str ||
847 	    (sscanf(arg_str, "%u", value) != 1) ||
848 	    (*value < arg->min) ||
849 	    (*value > arg->max) ||
850 	    (grouped && arg_set->argc < *value)) {
851 		*error = arg->error;
852 		return -EINVAL;
853 	}
854 
855 	return 0;
856 }
857 
858 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
859 		unsigned *value, char **error)
860 {
861 	return validate_next_arg(arg, arg_set, value, error, 0);
862 }
863 EXPORT_SYMBOL(dm_read_arg);
864 
865 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
866 		      unsigned *value, char **error)
867 {
868 	return validate_next_arg(arg, arg_set, value, error, 1);
869 }
870 EXPORT_SYMBOL(dm_read_arg_group);
871 
872 const char *dm_shift_arg(struct dm_arg_set *as)
873 {
874 	char *r;
875 
876 	if (as->argc) {
877 		as->argc--;
878 		r = *as->argv;
879 		as->argv++;
880 		return r;
881 	}
882 
883 	return NULL;
884 }
885 EXPORT_SYMBOL(dm_shift_arg);
886 
887 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
888 {
889 	BUG_ON(as->argc < num_args);
890 	as->argc -= num_args;
891 	as->argv += num_args;
892 }
893 EXPORT_SYMBOL(dm_consume_args);
894 
895 static int dm_table_set_type(struct dm_table *t)
896 {
897 	unsigned i;
898 	unsigned bio_based = 0, request_based = 0;
899 	struct dm_target *tgt;
900 	struct dm_dev_internal *dd;
901 	struct list_head *devices;
902 
903 	for (i = 0; i < t->num_targets; i++) {
904 		tgt = t->targets + i;
905 		if (dm_target_request_based(tgt))
906 			request_based = 1;
907 		else
908 			bio_based = 1;
909 
910 		if (bio_based && request_based) {
911 			DMWARN("Inconsistent table: different target types"
912 			       " can't be mixed up");
913 			return -EINVAL;
914 		}
915 	}
916 
917 	if (bio_based) {
918 		/* We must use this table as bio-based */
919 		t->type = DM_TYPE_BIO_BASED;
920 		return 0;
921 	}
922 
923 	BUG_ON(!request_based); /* No targets in this table */
924 
925 	/* Non-request-stackable devices can't be used for request-based dm */
926 	devices = dm_table_get_devices(t);
927 	list_for_each_entry(dd, devices, list) {
928 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
929 			DMWARN("table load rejected: including"
930 			       " non-request-stackable devices");
931 			return -EINVAL;
932 		}
933 	}
934 
935 	/*
936 	 * Request-based dm supports only tables that have a single target now.
937 	 * To support multiple targets, request splitting support is needed,
938 	 * and that needs lots of changes in the block-layer.
939 	 * (e.g. request completion process for partial completion.)
940 	 */
941 	if (t->num_targets > 1) {
942 		DMWARN("Request-based dm doesn't support multiple targets yet");
943 		return -EINVAL;
944 	}
945 
946 	t->type = DM_TYPE_REQUEST_BASED;
947 
948 	return 0;
949 }
950 
951 unsigned dm_table_get_type(struct dm_table *t)
952 {
953 	return t->type;
954 }
955 
956 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
957 {
958 	return t->immutable_target_type;
959 }
960 
961 bool dm_table_request_based(struct dm_table *t)
962 {
963 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
964 }
965 
966 int dm_table_alloc_md_mempools(struct dm_table *t)
967 {
968 	unsigned type = dm_table_get_type(t);
969 
970 	if (unlikely(type == DM_TYPE_NONE)) {
971 		DMWARN("no table type is set, can't allocate mempools");
972 		return -EINVAL;
973 	}
974 
975 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
976 	if (!t->mempools)
977 		return -ENOMEM;
978 
979 	return 0;
980 }
981 
982 void dm_table_free_md_mempools(struct dm_table *t)
983 {
984 	dm_free_md_mempools(t->mempools);
985 	t->mempools = NULL;
986 }
987 
988 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
989 {
990 	return t->mempools;
991 }
992 
993 static int setup_indexes(struct dm_table *t)
994 {
995 	int i;
996 	unsigned int total = 0;
997 	sector_t *indexes;
998 
999 	/* allocate the space for *all* the indexes */
1000 	for (i = t->depth - 2; i >= 0; i--) {
1001 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1002 		total += t->counts[i];
1003 	}
1004 
1005 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1006 	if (!indexes)
1007 		return -ENOMEM;
1008 
1009 	/* set up internal nodes, bottom-up */
1010 	for (i = t->depth - 2; i >= 0; i--) {
1011 		t->index[i] = indexes;
1012 		indexes += (KEYS_PER_NODE * t->counts[i]);
1013 		setup_btree_index(i, t);
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Builds the btree to index the map.
1021  */
1022 static int dm_table_build_index(struct dm_table *t)
1023 {
1024 	int r = 0;
1025 	unsigned int leaf_nodes;
1026 
1027 	/* how many indexes will the btree have ? */
1028 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1029 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1030 
1031 	/* leaf layer has already been set up */
1032 	t->counts[t->depth - 1] = leaf_nodes;
1033 	t->index[t->depth - 1] = t->highs;
1034 
1035 	if (t->depth >= 2)
1036 		r = setup_indexes(t);
1037 
1038 	return r;
1039 }
1040 
1041 /*
1042  * Get a disk whose integrity profile reflects the table's profile.
1043  * If %match_all is true, all devices' profiles must match.
1044  * If %match_all is false, all devices must at least have an
1045  * allocated integrity profile; but uninitialized is ok.
1046  * Returns NULL if integrity support was inconsistent or unavailable.
1047  */
1048 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1049 						    bool match_all)
1050 {
1051 	struct list_head *devices = dm_table_get_devices(t);
1052 	struct dm_dev_internal *dd = NULL;
1053 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1054 
1055 	list_for_each_entry(dd, devices, list) {
1056 		template_disk = dd->dm_dev.bdev->bd_disk;
1057 		if (!blk_get_integrity(template_disk))
1058 			goto no_integrity;
1059 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1060 			continue; /* skip uninitialized profiles */
1061 		else if (prev_disk &&
1062 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1063 			goto no_integrity;
1064 		prev_disk = template_disk;
1065 	}
1066 
1067 	return template_disk;
1068 
1069 no_integrity:
1070 	if (prev_disk)
1071 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1072 		       dm_device_name(t->md),
1073 		       prev_disk->disk_name,
1074 		       template_disk->disk_name);
1075 	return NULL;
1076 }
1077 
1078 /*
1079  * Register the mapped device for blk_integrity support if
1080  * the underlying devices have an integrity profile.  But all devices
1081  * may not have matching profiles (checking all devices isn't reliable
1082  * during table load because this table may use other DM device(s) which
1083  * must be resumed before they will have an initialized integity profile).
1084  * Stacked DM devices force a 2 stage integrity profile validation:
1085  * 1 - during load, validate all initialized integrity profiles match
1086  * 2 - during resume, validate all integrity profiles match
1087  */
1088 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1089 {
1090 	struct gendisk *template_disk = NULL;
1091 
1092 	template_disk = dm_table_get_integrity_disk(t, false);
1093 	if (!template_disk)
1094 		return 0;
1095 
1096 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1097 		t->integrity_supported = 1;
1098 		return blk_integrity_register(dm_disk(md), NULL);
1099 	}
1100 
1101 	/*
1102 	 * If DM device already has an initalized integrity
1103 	 * profile the new profile should not conflict.
1104 	 */
1105 	if (blk_integrity_is_initialized(template_disk) &&
1106 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1107 		DMWARN("%s: conflict with existing integrity profile: "
1108 		       "%s profile mismatch",
1109 		       dm_device_name(t->md),
1110 		       template_disk->disk_name);
1111 		return 1;
1112 	}
1113 
1114 	/* Preserve existing initialized integrity profile */
1115 	t->integrity_supported = 1;
1116 	return 0;
1117 }
1118 
1119 /*
1120  * Prepares the table for use by building the indices,
1121  * setting the type, and allocating mempools.
1122  */
1123 int dm_table_complete(struct dm_table *t)
1124 {
1125 	int r;
1126 
1127 	r = dm_table_set_type(t);
1128 	if (r) {
1129 		DMERR("unable to set table type");
1130 		return r;
1131 	}
1132 
1133 	r = dm_table_build_index(t);
1134 	if (r) {
1135 		DMERR("unable to build btrees");
1136 		return r;
1137 	}
1138 
1139 	r = dm_table_prealloc_integrity(t, t->md);
1140 	if (r) {
1141 		DMERR("could not register integrity profile.");
1142 		return r;
1143 	}
1144 
1145 	r = dm_table_alloc_md_mempools(t);
1146 	if (r)
1147 		DMERR("unable to allocate mempools");
1148 
1149 	return r;
1150 }
1151 
1152 static DEFINE_MUTEX(_event_lock);
1153 void dm_table_event_callback(struct dm_table *t,
1154 			     void (*fn)(void *), void *context)
1155 {
1156 	mutex_lock(&_event_lock);
1157 	t->event_fn = fn;
1158 	t->event_context = context;
1159 	mutex_unlock(&_event_lock);
1160 }
1161 
1162 void dm_table_event(struct dm_table *t)
1163 {
1164 	/*
1165 	 * You can no longer call dm_table_event() from interrupt
1166 	 * context, use a bottom half instead.
1167 	 */
1168 	BUG_ON(in_interrupt());
1169 
1170 	mutex_lock(&_event_lock);
1171 	if (t->event_fn)
1172 		t->event_fn(t->event_context);
1173 	mutex_unlock(&_event_lock);
1174 }
1175 EXPORT_SYMBOL(dm_table_event);
1176 
1177 sector_t dm_table_get_size(struct dm_table *t)
1178 {
1179 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1180 }
1181 EXPORT_SYMBOL(dm_table_get_size);
1182 
1183 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1184 {
1185 	if (index >= t->num_targets)
1186 		return NULL;
1187 
1188 	return t->targets + index;
1189 }
1190 
1191 /*
1192  * Search the btree for the correct target.
1193  *
1194  * Caller should check returned pointer with dm_target_is_valid()
1195  * to trap I/O beyond end of device.
1196  */
1197 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1198 {
1199 	unsigned int l, n = 0, k = 0;
1200 	sector_t *node;
1201 
1202 	for (l = 0; l < t->depth; l++) {
1203 		n = get_child(n, k);
1204 		node = get_node(t, l, n);
1205 
1206 		for (k = 0; k < KEYS_PER_NODE; k++)
1207 			if (node[k] >= sector)
1208 				break;
1209 	}
1210 
1211 	return &t->targets[(KEYS_PER_NODE * n) + k];
1212 }
1213 
1214 /*
1215  * Establish the new table's queue_limits and validate them.
1216  */
1217 int dm_calculate_queue_limits(struct dm_table *table,
1218 			      struct queue_limits *limits)
1219 {
1220 	struct dm_target *uninitialized_var(ti);
1221 	struct queue_limits ti_limits;
1222 	unsigned i = 0;
1223 
1224 	blk_set_stacking_limits(limits);
1225 
1226 	while (i < dm_table_get_num_targets(table)) {
1227 		blk_set_stacking_limits(&ti_limits);
1228 
1229 		ti = dm_table_get_target(table, i++);
1230 
1231 		if (!ti->type->iterate_devices)
1232 			goto combine_limits;
1233 
1234 		/*
1235 		 * Combine queue limits of all the devices this target uses.
1236 		 */
1237 		ti->type->iterate_devices(ti, dm_set_device_limits,
1238 					  &ti_limits);
1239 
1240 		/* Set I/O hints portion of queue limits */
1241 		if (ti->type->io_hints)
1242 			ti->type->io_hints(ti, &ti_limits);
1243 
1244 		/*
1245 		 * Check each device area is consistent with the target's
1246 		 * overall queue limits.
1247 		 */
1248 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1249 					      &ti_limits))
1250 			return -EINVAL;
1251 
1252 combine_limits:
1253 		/*
1254 		 * Merge this target's queue limits into the overall limits
1255 		 * for the table.
1256 		 */
1257 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1258 			DMWARN("%s: adding target device "
1259 			       "(start sect %llu len %llu) "
1260 			       "caused an alignment inconsistency",
1261 			       dm_device_name(table->md),
1262 			       (unsigned long long) ti->begin,
1263 			       (unsigned long long) ti->len);
1264 	}
1265 
1266 	return validate_hardware_logical_block_alignment(table, limits);
1267 }
1268 
1269 /*
1270  * Set the integrity profile for this device if all devices used have
1271  * matching profiles.  We're quite deep in the resume path but still
1272  * don't know if all devices (particularly DM devices this device
1273  * may be stacked on) have matching profiles.  Even if the profiles
1274  * don't match we have no way to fail (to resume) at this point.
1275  */
1276 static void dm_table_set_integrity(struct dm_table *t)
1277 {
1278 	struct gendisk *template_disk = NULL;
1279 
1280 	if (!blk_get_integrity(dm_disk(t->md)))
1281 		return;
1282 
1283 	template_disk = dm_table_get_integrity_disk(t, true);
1284 	if (template_disk)
1285 		blk_integrity_register(dm_disk(t->md),
1286 				       blk_get_integrity(template_disk));
1287 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1288 		DMWARN("%s: device no longer has a valid integrity profile",
1289 		       dm_device_name(t->md));
1290 	else
1291 		DMWARN("%s: unable to establish an integrity profile",
1292 		       dm_device_name(t->md));
1293 }
1294 
1295 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1296 				sector_t start, sector_t len, void *data)
1297 {
1298 	unsigned flush = (*(unsigned *)data);
1299 	struct request_queue *q = bdev_get_queue(dev->bdev);
1300 
1301 	return q && (q->flush_flags & flush);
1302 }
1303 
1304 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1305 {
1306 	struct dm_target *ti;
1307 	unsigned i = 0;
1308 
1309 	/*
1310 	 * Require at least one underlying device to support flushes.
1311 	 * t->devices includes internal dm devices such as mirror logs
1312 	 * so we need to use iterate_devices here, which targets
1313 	 * supporting flushes must provide.
1314 	 */
1315 	while (i < dm_table_get_num_targets(t)) {
1316 		ti = dm_table_get_target(t, i++);
1317 
1318 		if (!ti->num_flush_requests)
1319 			continue;
1320 
1321 		if (ti->type->iterate_devices &&
1322 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1323 			return 1;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1330 {
1331 	struct dm_target *ti;
1332 	unsigned i = 0;
1333 
1334 	/* Ensure that all targets supports discard_zeroes_data. */
1335 	while (i < dm_table_get_num_targets(t)) {
1336 		ti = dm_table_get_target(t, i++);
1337 
1338 		if (ti->discard_zeroes_data_unsupported)
1339 			return 0;
1340 	}
1341 
1342 	return 1;
1343 }
1344 
1345 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1346 			    sector_t start, sector_t len, void *data)
1347 {
1348 	struct request_queue *q = bdev_get_queue(dev->bdev);
1349 
1350 	return q && blk_queue_nonrot(q);
1351 }
1352 
1353 static bool dm_table_is_nonrot(struct dm_table *t)
1354 {
1355 	struct dm_target *ti;
1356 	unsigned i = 0;
1357 
1358 	/* Ensure that all underlying device are non-rotational. */
1359 	while (i < dm_table_get_num_targets(t)) {
1360 		ti = dm_table_get_target(t, i++);
1361 
1362 		if (!ti->type->iterate_devices ||
1363 		    !ti->type->iterate_devices(ti, device_is_nonrot, NULL))
1364 			return 0;
1365 	}
1366 
1367 	return 1;
1368 }
1369 
1370 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1371 			       struct queue_limits *limits)
1372 {
1373 	unsigned flush = 0;
1374 
1375 	/*
1376 	 * Copy table's limits to the DM device's request_queue
1377 	 */
1378 	q->limits = *limits;
1379 
1380 	if (!dm_table_supports_discards(t))
1381 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1382 	else
1383 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1384 
1385 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1386 		flush |= REQ_FLUSH;
1387 		if (dm_table_supports_flush(t, REQ_FUA))
1388 			flush |= REQ_FUA;
1389 	}
1390 	blk_queue_flush(q, flush);
1391 
1392 	if (!dm_table_discard_zeroes_data(t))
1393 		q->limits.discard_zeroes_data = 0;
1394 
1395 	if (dm_table_is_nonrot(t))
1396 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1397 	else
1398 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1399 
1400 	dm_table_set_integrity(t);
1401 
1402 	/*
1403 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1404 	 * visible to other CPUs because, once the flag is set, incoming bios
1405 	 * are processed by request-based dm, which refers to the queue
1406 	 * settings.
1407 	 * Until the flag set, bios are passed to bio-based dm and queued to
1408 	 * md->deferred where queue settings are not needed yet.
1409 	 * Those bios are passed to request-based dm at the resume time.
1410 	 */
1411 	smp_mb();
1412 	if (dm_table_request_based(t))
1413 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1414 }
1415 
1416 unsigned int dm_table_get_num_targets(struct dm_table *t)
1417 {
1418 	return t->num_targets;
1419 }
1420 
1421 struct list_head *dm_table_get_devices(struct dm_table *t)
1422 {
1423 	return &t->devices;
1424 }
1425 
1426 fmode_t dm_table_get_mode(struct dm_table *t)
1427 {
1428 	return t->mode;
1429 }
1430 EXPORT_SYMBOL(dm_table_get_mode);
1431 
1432 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1433 {
1434 	int i = t->num_targets;
1435 	struct dm_target *ti = t->targets;
1436 
1437 	while (i--) {
1438 		if (postsuspend) {
1439 			if (ti->type->postsuspend)
1440 				ti->type->postsuspend(ti);
1441 		} else if (ti->type->presuspend)
1442 			ti->type->presuspend(ti);
1443 
1444 		ti++;
1445 	}
1446 }
1447 
1448 void dm_table_presuspend_targets(struct dm_table *t)
1449 {
1450 	if (!t)
1451 		return;
1452 
1453 	suspend_targets(t, 0);
1454 }
1455 
1456 void dm_table_postsuspend_targets(struct dm_table *t)
1457 {
1458 	if (!t)
1459 		return;
1460 
1461 	suspend_targets(t, 1);
1462 }
1463 
1464 int dm_table_resume_targets(struct dm_table *t)
1465 {
1466 	int i, r = 0;
1467 
1468 	for (i = 0; i < t->num_targets; i++) {
1469 		struct dm_target *ti = t->targets + i;
1470 
1471 		if (!ti->type->preresume)
1472 			continue;
1473 
1474 		r = ti->type->preresume(ti);
1475 		if (r)
1476 			return r;
1477 	}
1478 
1479 	for (i = 0; i < t->num_targets; i++) {
1480 		struct dm_target *ti = t->targets + i;
1481 
1482 		if (ti->type->resume)
1483 			ti->type->resume(ti);
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1490 {
1491 	list_add(&cb->list, &t->target_callbacks);
1492 }
1493 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1494 
1495 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1496 {
1497 	struct dm_dev_internal *dd;
1498 	struct list_head *devices = dm_table_get_devices(t);
1499 	struct dm_target_callbacks *cb;
1500 	int r = 0;
1501 
1502 	list_for_each_entry(dd, devices, list) {
1503 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1504 		char b[BDEVNAME_SIZE];
1505 
1506 		if (likely(q))
1507 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1508 		else
1509 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1510 				     dm_device_name(t->md),
1511 				     bdevname(dd->dm_dev.bdev, b));
1512 	}
1513 
1514 	list_for_each_entry(cb, &t->target_callbacks, list)
1515 		if (cb->congested_fn)
1516 			r |= cb->congested_fn(cb, bdi_bits);
1517 
1518 	return r;
1519 }
1520 
1521 int dm_table_any_busy_target(struct dm_table *t)
1522 {
1523 	unsigned i;
1524 	struct dm_target *ti;
1525 
1526 	for (i = 0; i < t->num_targets; i++) {
1527 		ti = t->targets + i;
1528 		if (ti->type->busy && ti->type->busy(ti))
1529 			return 1;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 struct mapped_device *dm_table_get_md(struct dm_table *t)
1536 {
1537 	return t->md;
1538 }
1539 EXPORT_SYMBOL(dm_table_get_md);
1540 
1541 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1542 				  sector_t start, sector_t len, void *data)
1543 {
1544 	struct request_queue *q = bdev_get_queue(dev->bdev);
1545 
1546 	return q && blk_queue_discard(q);
1547 }
1548 
1549 bool dm_table_supports_discards(struct dm_table *t)
1550 {
1551 	struct dm_target *ti;
1552 	unsigned i = 0;
1553 
1554 	/*
1555 	 * Unless any target used by the table set discards_supported,
1556 	 * require at least one underlying device to support discards.
1557 	 * t->devices includes internal dm devices such as mirror logs
1558 	 * so we need to use iterate_devices here, which targets
1559 	 * supporting discard selectively must provide.
1560 	 */
1561 	while (i < dm_table_get_num_targets(t)) {
1562 		ti = dm_table_get_target(t, i++);
1563 
1564 		if (!ti->num_discard_requests)
1565 			continue;
1566 
1567 		if (ti->discards_supported)
1568 			return 1;
1569 
1570 		if (ti->type->iterate_devices &&
1571 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1572 			return 1;
1573 	}
1574 
1575 	return 0;
1576 }
1577