1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t; 133 134 if (num_targets > DM_MAX_TARGETS) 135 return -EOVERFLOW; 136 137 t = kzalloc(sizeof(*t), GFP_KERNEL); 138 139 if (!t) 140 return -ENOMEM; 141 142 INIT_LIST_HEAD(&t->devices); 143 init_rwsem(&t->devices_lock); 144 145 if (!num_targets) 146 num_targets = KEYS_PER_NODE; 147 148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 149 150 if (!num_targets) { 151 kfree(t); 152 return -EOVERFLOW; 153 } 154 155 if (alloc_targets(t, num_targets)) { 156 kfree(t); 157 return -ENOMEM; 158 } 159 160 t->type = DM_TYPE_NONE; 161 t->mode = mode; 162 t->md = md; 163 t->flush_bypasses_map = true; 164 *result = t; 165 return 0; 166 } 167 168 static void free_devices(struct list_head *devices, struct mapped_device *md) 169 { 170 struct list_head *tmp, *next; 171 172 list_for_each_safe(tmp, next, devices) { 173 struct dm_dev_internal *dd = 174 list_entry(tmp, struct dm_dev_internal, list); 175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 176 dm_device_name(md), dd->dm_dev->name); 177 dm_put_table_device(md, dd->dm_dev); 178 kfree(dd); 179 } 180 } 181 182 static void dm_table_destroy_crypto_profile(struct dm_table *t); 183 184 void dm_table_destroy(struct dm_table *t) 185 { 186 if (!t) 187 return; 188 189 /* free the indexes */ 190 if (t->depth >= 2) 191 kvfree(t->index[t->depth - 2]); 192 193 /* free the targets */ 194 for (unsigned int i = 0; i < t->num_targets; i++) { 195 struct dm_target *ti = dm_table_get_target(t, i); 196 197 if (ti->type->dtr) 198 ti->type->dtr(ti); 199 200 dm_put_target_type(ti->type); 201 } 202 203 kvfree(t->highs); 204 205 /* free the device list */ 206 free_devices(&t->devices, t->md); 207 208 dm_free_md_mempools(t->mempools); 209 210 dm_table_destroy_crypto_profile(t); 211 212 kfree(t); 213 } 214 215 /* 216 * See if we've already got a device in the list. 217 */ 218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 219 { 220 struct dm_dev_internal *dd; 221 222 list_for_each_entry(dd, l, list) 223 if (dd->dm_dev->bdev->bd_dev == dev) 224 return dd; 225 226 return NULL; 227 } 228 229 /* 230 * If possible, this checks an area of a destination device is invalid. 231 */ 232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 233 sector_t start, sector_t len, void *data) 234 { 235 struct queue_limits *limits = data; 236 struct block_device *bdev = dev->bdev; 237 sector_t dev_size = bdev_nr_sectors(bdev); 238 unsigned short logical_block_size_sectors = 239 limits->logical_block_size >> SECTOR_SHIFT; 240 241 if (!dev_size) 242 return 0; 243 244 if ((start >= dev_size) || (start + len > dev_size)) { 245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 246 dm_device_name(ti->table->md), bdev, 247 (unsigned long long)start, 248 (unsigned long long)len, 249 (unsigned long long)dev_size); 250 return 1; 251 } 252 253 /* 254 * If the target is mapped to zoned block device(s), check 255 * that the zones are not partially mapped. 256 */ 257 if (bdev_is_zoned(bdev)) { 258 unsigned int zone_sectors = bdev_zone_sectors(bdev); 259 260 if (start & (zone_sectors - 1)) { 261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 262 dm_device_name(ti->table->md), 263 (unsigned long long)start, 264 zone_sectors, bdev); 265 return 1; 266 } 267 268 /* 269 * Note: The last zone of a zoned block device may be smaller 270 * than other zones. So for a target mapping the end of a 271 * zoned block device with such a zone, len would not be zone 272 * aligned. We do not allow such last smaller zone to be part 273 * of the mapping here to ensure that mappings with multiple 274 * devices do not end up with a smaller zone in the middle of 275 * the sector range. 276 */ 277 if (len & (zone_sectors - 1)) { 278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 279 dm_device_name(ti->table->md), 280 (unsigned long long)len, 281 zone_sectors, bdev); 282 return 1; 283 } 284 } 285 286 if (logical_block_size_sectors <= 1) 287 return 0; 288 289 if (start & (logical_block_size_sectors - 1)) { 290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 291 dm_device_name(ti->table->md), 292 (unsigned long long)start, 293 limits->logical_block_size, bdev); 294 return 1; 295 } 296 297 if (len & (logical_block_size_sectors - 1)) { 298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 299 dm_device_name(ti->table->md), 300 (unsigned long long)len, 301 limits->logical_block_size, bdev); 302 return 1; 303 } 304 305 return 0; 306 } 307 308 /* 309 * This upgrades the mode on an already open dm_dev, being 310 * careful to leave things as they were if we fail to reopen the 311 * device and not to touch the existing bdev field in case 312 * it is accessed concurrently. 313 */ 314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 315 struct mapped_device *md) 316 { 317 int r; 318 struct dm_dev *old_dev, *new_dev; 319 320 old_dev = dd->dm_dev; 321 322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 323 dd->dm_dev->mode | new_mode, &new_dev); 324 if (r) 325 return r; 326 327 dd->dm_dev = new_dev; 328 dm_put_table_device(md, old_dev); 329 330 return 0; 331 } 332 333 /* 334 * Note: the __ref annotation is because this function can call the __init 335 * marked early_lookup_bdev when called during early boot code from dm-init.c. 336 */ 337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p) 338 { 339 int r; 340 dev_t dev; 341 unsigned int major, minor; 342 char dummy; 343 344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 345 /* Extract the major/minor numbers */ 346 dev = MKDEV(major, minor); 347 if (MAJOR(dev) != major || MINOR(dev) != minor) 348 return -EOVERFLOW; 349 } else { 350 r = lookup_bdev(path, &dev); 351 #ifndef MODULE 352 if (r && system_state < SYSTEM_RUNNING) 353 r = early_lookup_bdev(path, &dev); 354 #endif 355 if (r) 356 return r; 357 } 358 *dev_p = dev; 359 return 0; 360 } 361 EXPORT_SYMBOL(dm_devt_from_path); 362 363 /* 364 * Add a device to the list, or just increment the usage count if 365 * it's already present. 366 */ 367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 368 struct dm_dev **result) 369 { 370 int r; 371 dev_t dev; 372 struct dm_dev_internal *dd; 373 struct dm_table *t = ti->table; 374 375 BUG_ON(!t); 376 377 r = dm_devt_from_path(path, &dev); 378 if (r) 379 return r; 380 381 if (dev == disk_devt(t->md->disk)) 382 return -EINVAL; 383 384 down_write(&t->devices_lock); 385 386 dd = find_device(&t->devices, dev); 387 if (!dd) { 388 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 389 if (!dd) { 390 r = -ENOMEM; 391 goto unlock_ret_r; 392 } 393 394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 395 if (r) { 396 kfree(dd); 397 goto unlock_ret_r; 398 } 399 400 refcount_set(&dd->count, 1); 401 list_add(&dd->list, &t->devices); 402 goto out; 403 404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 405 r = upgrade_mode(dd, mode, t->md); 406 if (r) 407 goto unlock_ret_r; 408 } 409 refcount_inc(&dd->count); 410 out: 411 up_write(&t->devices_lock); 412 *result = dd->dm_dev; 413 return 0; 414 415 unlock_ret_r: 416 up_write(&t->devices_lock); 417 return r; 418 } 419 EXPORT_SYMBOL(dm_get_device); 420 421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 422 sector_t start, sector_t len, void *data) 423 { 424 struct queue_limits *limits = data; 425 struct block_device *bdev = dev->bdev; 426 struct request_queue *q = bdev_get_queue(bdev); 427 428 if (unlikely(!q)) { 429 DMWARN("%s: Cannot set limits for nonexistent device %pg", 430 dm_device_name(ti->table->md), bdev); 431 return 0; 432 } 433 434 if (blk_stack_limits(limits, &q->limits, 435 get_start_sect(bdev) + start) < 0) 436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 437 "physical_block_size=%u, logical_block_size=%u, " 438 "alignment_offset=%u, start=%llu", 439 dm_device_name(ti->table->md), bdev, 440 q->limits.physical_block_size, 441 q->limits.logical_block_size, 442 q->limits.alignment_offset, 443 (unsigned long long) start << SECTOR_SHIFT); 444 445 /* 446 * Only stack the integrity profile if the target doesn't have native 447 * integrity support. 448 */ 449 if (!dm_target_has_integrity(ti->type)) 450 queue_limits_stack_integrity_bdev(limits, bdev); 451 return 0; 452 } 453 454 /* 455 * Decrement a device's use count and remove it if necessary. 456 */ 457 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 458 { 459 int found = 0; 460 struct dm_table *t = ti->table; 461 struct list_head *devices = &t->devices; 462 struct dm_dev_internal *dd; 463 464 down_write(&t->devices_lock); 465 466 list_for_each_entry(dd, devices, list) { 467 if (dd->dm_dev == d) { 468 found = 1; 469 break; 470 } 471 } 472 if (!found) { 473 DMERR("%s: device %s not in table devices list", 474 dm_device_name(t->md), d->name); 475 goto unlock_ret; 476 } 477 if (refcount_dec_and_test(&dd->count)) { 478 dm_put_table_device(t->md, d); 479 list_del(&dd->list); 480 kfree(dd); 481 } 482 483 unlock_ret: 484 up_write(&t->devices_lock); 485 } 486 EXPORT_SYMBOL(dm_put_device); 487 488 /* 489 * Checks to see if the target joins onto the end of the table. 490 */ 491 static int adjoin(struct dm_table *t, struct dm_target *ti) 492 { 493 struct dm_target *prev; 494 495 if (!t->num_targets) 496 return !ti->begin; 497 498 prev = &t->targets[t->num_targets - 1]; 499 return (ti->begin == (prev->begin + prev->len)); 500 } 501 502 /* 503 * Used to dynamically allocate the arg array. 504 * 505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 506 * process messages even if some device is suspended. These messages have a 507 * small fixed number of arguments. 508 * 509 * On the other hand, dm-switch needs to process bulk data using messages and 510 * excessive use of GFP_NOIO could cause trouble. 511 */ 512 static char **realloc_argv(unsigned int *size, char **old_argv) 513 { 514 char **argv; 515 unsigned int new_size; 516 gfp_t gfp; 517 518 if (*size) { 519 new_size = *size * 2; 520 gfp = GFP_KERNEL; 521 } else { 522 new_size = 8; 523 gfp = GFP_NOIO; 524 } 525 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 526 if (argv && old_argv) { 527 memcpy(argv, old_argv, *size * sizeof(*argv)); 528 *size = new_size; 529 } 530 531 kfree(old_argv); 532 return argv; 533 } 534 535 /* 536 * Destructively splits up the argument list to pass to ctr. 537 */ 538 int dm_split_args(int *argc, char ***argvp, char *input) 539 { 540 char *start, *end = input, *out, **argv = NULL; 541 unsigned int array_size = 0; 542 543 *argc = 0; 544 545 if (!input) { 546 *argvp = NULL; 547 return 0; 548 } 549 550 argv = realloc_argv(&array_size, argv); 551 if (!argv) 552 return -ENOMEM; 553 554 while (1) { 555 /* Skip whitespace */ 556 start = skip_spaces(end); 557 558 if (!*start) 559 break; /* success, we hit the end */ 560 561 /* 'out' is used to remove any back-quotes */ 562 end = out = start; 563 while (*end) { 564 /* Everything apart from '\0' can be quoted */ 565 if (*end == '\\' && *(end + 1)) { 566 *out++ = *(end + 1); 567 end += 2; 568 continue; 569 } 570 571 if (isspace(*end)) 572 break; /* end of token */ 573 574 *out++ = *end++; 575 } 576 577 /* have we already filled the array ? */ 578 if ((*argc + 1) > array_size) { 579 argv = realloc_argv(&array_size, argv); 580 if (!argv) 581 return -ENOMEM; 582 } 583 584 /* we know this is whitespace */ 585 if (*end) 586 end++; 587 588 /* terminate the string and put it in the array */ 589 *out = '\0'; 590 argv[*argc] = start; 591 (*argc)++; 592 } 593 594 *argvp = argv; 595 return 0; 596 } 597 598 static void dm_set_stacking_limits(struct queue_limits *limits) 599 { 600 blk_set_stacking_limits(limits); 601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL; 602 } 603 604 /* 605 * Impose necessary and sufficient conditions on a devices's table such 606 * that any incoming bio which respects its logical_block_size can be 607 * processed successfully. If it falls across the boundary between 608 * two or more targets, the size of each piece it gets split into must 609 * be compatible with the logical_block_size of the target processing it. 610 */ 611 static int validate_hardware_logical_block_alignment(struct dm_table *t, 612 struct queue_limits *limits) 613 { 614 /* 615 * This function uses arithmetic modulo the logical_block_size 616 * (in units of 512-byte sectors). 617 */ 618 unsigned short device_logical_block_size_sects = 619 limits->logical_block_size >> SECTOR_SHIFT; 620 621 /* 622 * Offset of the start of the next table entry, mod logical_block_size. 623 */ 624 unsigned short next_target_start = 0; 625 626 /* 627 * Given an aligned bio that extends beyond the end of a 628 * target, how many sectors must the next target handle? 629 */ 630 unsigned short remaining = 0; 631 632 struct dm_target *ti; 633 struct queue_limits ti_limits; 634 unsigned int i; 635 636 /* 637 * Check each entry in the table in turn. 638 */ 639 for (i = 0; i < t->num_targets; i++) { 640 ti = dm_table_get_target(t, i); 641 642 dm_set_stacking_limits(&ti_limits); 643 644 /* combine all target devices' limits */ 645 if (ti->type->iterate_devices) 646 ti->type->iterate_devices(ti, dm_set_device_limits, 647 &ti_limits); 648 649 /* 650 * If the remaining sectors fall entirely within this 651 * table entry are they compatible with its logical_block_size? 652 */ 653 if (remaining < ti->len && 654 remaining & ((ti_limits.logical_block_size >> 655 SECTOR_SHIFT) - 1)) 656 break; /* Error */ 657 658 next_target_start = 659 (unsigned short) ((next_target_start + ti->len) & 660 (device_logical_block_size_sects - 1)); 661 remaining = next_target_start ? 662 device_logical_block_size_sects - next_target_start : 0; 663 } 664 665 if (remaining) { 666 DMERR("%s: table line %u (start sect %llu len %llu) " 667 "not aligned to h/w logical block size %u", 668 dm_device_name(t->md), i, 669 (unsigned long long) ti->begin, 670 (unsigned long long) ti->len, 671 limits->logical_block_size); 672 return -EINVAL; 673 } 674 675 return 0; 676 } 677 678 int dm_table_add_target(struct dm_table *t, const char *type, 679 sector_t start, sector_t len, char *params) 680 { 681 int r = -EINVAL, argc; 682 char **argv; 683 struct dm_target *ti; 684 685 if (t->singleton) { 686 DMERR("%s: target type %s must appear alone in table", 687 dm_device_name(t->md), t->targets->type->name); 688 return -EINVAL; 689 } 690 691 BUG_ON(t->num_targets >= t->num_allocated); 692 693 ti = t->targets + t->num_targets; 694 memset(ti, 0, sizeof(*ti)); 695 696 if (!len) { 697 DMERR("%s: zero-length target", dm_device_name(t->md)); 698 return -EINVAL; 699 } 700 701 ti->type = dm_get_target_type(type); 702 if (!ti->type) { 703 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 704 return -EINVAL; 705 } 706 707 if (dm_target_needs_singleton(ti->type)) { 708 if (t->num_targets) { 709 ti->error = "singleton target type must appear alone in table"; 710 goto bad; 711 } 712 t->singleton = true; 713 } 714 715 if (dm_target_always_writeable(ti->type) && 716 !(t->mode & BLK_OPEN_WRITE)) { 717 ti->error = "target type may not be included in a read-only table"; 718 goto bad; 719 } 720 721 if (t->immutable_target_type) { 722 if (t->immutable_target_type != ti->type) { 723 ti->error = "immutable target type cannot be mixed with other target types"; 724 goto bad; 725 } 726 } else if (dm_target_is_immutable(ti->type)) { 727 if (t->num_targets) { 728 ti->error = "immutable target type cannot be mixed with other target types"; 729 goto bad; 730 } 731 t->immutable_target_type = ti->type; 732 } 733 734 ti->table = t; 735 ti->begin = start; 736 ti->len = len; 737 ti->error = "Unknown error"; 738 739 /* 740 * Does this target adjoin the previous one ? 741 */ 742 if (!adjoin(t, ti)) { 743 ti->error = "Gap in table"; 744 goto bad; 745 } 746 747 r = dm_split_args(&argc, &argv, params); 748 if (r) { 749 ti->error = "couldn't split parameters"; 750 goto bad; 751 } 752 753 r = ti->type->ctr(ti, argc, argv); 754 kfree(argv); 755 if (r) 756 goto bad; 757 758 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 759 760 if (!ti->num_discard_bios && ti->discards_supported) 761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 762 dm_device_name(t->md), type); 763 764 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 765 static_branch_enable(&swap_bios_enabled); 766 767 if (!ti->flush_bypasses_map) 768 t->flush_bypasses_map = false; 769 770 return 0; 771 772 bad: 773 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 774 dm_put_target_type(ti->type); 775 return r; 776 } 777 778 /* 779 * Target argument parsing helpers. 780 */ 781 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 782 unsigned int *value, char **error, unsigned int grouped) 783 { 784 const char *arg_str = dm_shift_arg(arg_set); 785 char dummy; 786 787 if (!arg_str || 788 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 789 (*value < arg->min) || 790 (*value > arg->max) || 791 (grouped && arg_set->argc < *value)) { 792 *error = arg->error; 793 return -EINVAL; 794 } 795 796 return 0; 797 } 798 799 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 800 unsigned int *value, char **error) 801 { 802 return validate_next_arg(arg, arg_set, value, error, 0); 803 } 804 EXPORT_SYMBOL(dm_read_arg); 805 806 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 807 unsigned int *value, char **error) 808 { 809 return validate_next_arg(arg, arg_set, value, error, 1); 810 } 811 EXPORT_SYMBOL(dm_read_arg_group); 812 813 const char *dm_shift_arg(struct dm_arg_set *as) 814 { 815 char *r; 816 817 if (as->argc) { 818 as->argc--; 819 r = *as->argv; 820 as->argv++; 821 return r; 822 } 823 824 return NULL; 825 } 826 EXPORT_SYMBOL(dm_shift_arg); 827 828 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 829 { 830 BUG_ON(as->argc < num_args); 831 as->argc -= num_args; 832 as->argv += num_args; 833 } 834 EXPORT_SYMBOL(dm_consume_args); 835 836 static bool __table_type_bio_based(enum dm_queue_mode table_type) 837 { 838 return (table_type == DM_TYPE_BIO_BASED || 839 table_type == DM_TYPE_DAX_BIO_BASED); 840 } 841 842 static bool __table_type_request_based(enum dm_queue_mode table_type) 843 { 844 return table_type == DM_TYPE_REQUEST_BASED; 845 } 846 847 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 848 { 849 t->type = type; 850 } 851 EXPORT_SYMBOL_GPL(dm_table_set_type); 852 853 /* validate the dax capability of the target device span */ 854 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 855 sector_t start, sector_t len, void *data) 856 { 857 if (dev->dax_dev) 858 return false; 859 860 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 861 return true; 862 } 863 864 /* Check devices support synchronous DAX */ 865 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 866 sector_t start, sector_t len, void *data) 867 { 868 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 869 } 870 871 static bool dm_table_supports_dax(struct dm_table *t, 872 iterate_devices_callout_fn iterate_fn) 873 { 874 /* Ensure that all targets support DAX. */ 875 for (unsigned int i = 0; i < t->num_targets; i++) { 876 struct dm_target *ti = dm_table_get_target(t, i); 877 878 if (!ti->type->direct_access) 879 return false; 880 881 if (dm_target_is_wildcard(ti->type) || 882 !ti->type->iterate_devices || 883 ti->type->iterate_devices(ti, iterate_fn, NULL)) 884 return false; 885 } 886 887 return true; 888 } 889 890 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 891 sector_t start, sector_t len, void *data) 892 { 893 struct block_device *bdev = dev->bdev; 894 struct request_queue *q = bdev_get_queue(bdev); 895 896 /* request-based cannot stack on partitions! */ 897 if (bdev_is_partition(bdev)) 898 return false; 899 900 return queue_is_mq(q); 901 } 902 903 static int dm_table_determine_type(struct dm_table *t) 904 { 905 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 906 struct dm_target *ti; 907 struct list_head *devices = dm_table_get_devices(t); 908 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 909 910 if (t->type != DM_TYPE_NONE) { 911 /* target already set the table's type */ 912 if (t->type == DM_TYPE_BIO_BASED) { 913 /* possibly upgrade to a variant of bio-based */ 914 goto verify_bio_based; 915 } 916 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 917 goto verify_rq_based; 918 } 919 920 for (unsigned int i = 0; i < t->num_targets; i++) { 921 ti = dm_table_get_target(t, i); 922 if (dm_target_hybrid(ti)) 923 hybrid = 1; 924 else if (dm_target_request_based(ti)) 925 request_based = 1; 926 else 927 bio_based = 1; 928 929 if (bio_based && request_based) { 930 DMERR("Inconsistent table: different target types can't be mixed up"); 931 return -EINVAL; 932 } 933 } 934 935 if (hybrid && !bio_based && !request_based) { 936 /* 937 * The targets can work either way. 938 * Determine the type from the live device. 939 * Default to bio-based if device is new. 940 */ 941 if (__table_type_request_based(live_md_type)) 942 request_based = 1; 943 else 944 bio_based = 1; 945 } 946 947 if (bio_based) { 948 verify_bio_based: 949 /* We must use this table as bio-based */ 950 t->type = DM_TYPE_BIO_BASED; 951 if (dm_table_supports_dax(t, device_not_dax_capable) || 952 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 953 t->type = DM_TYPE_DAX_BIO_BASED; 954 } 955 return 0; 956 } 957 958 BUG_ON(!request_based); /* No targets in this table */ 959 960 t->type = DM_TYPE_REQUEST_BASED; 961 962 verify_rq_based: 963 /* 964 * Request-based dm supports only tables that have a single target now. 965 * To support multiple targets, request splitting support is needed, 966 * and that needs lots of changes in the block-layer. 967 * (e.g. request completion process for partial completion.) 968 */ 969 if (t->num_targets > 1) { 970 DMERR("request-based DM doesn't support multiple targets"); 971 return -EINVAL; 972 } 973 974 if (list_empty(devices)) { 975 int srcu_idx; 976 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 977 978 /* inherit live table's type */ 979 if (live_table) 980 t->type = live_table->type; 981 dm_put_live_table(t->md, srcu_idx); 982 return 0; 983 } 984 985 ti = dm_table_get_immutable_target(t); 986 if (!ti) { 987 DMERR("table load rejected: immutable target is required"); 988 return -EINVAL; 989 } else if (ti->max_io_len) { 990 DMERR("table load rejected: immutable target that splits IO is not supported"); 991 return -EINVAL; 992 } 993 994 /* Non-request-stackable devices can't be used for request-based dm */ 995 if (!ti->type->iterate_devices || 996 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 997 DMERR("table load rejected: including non-request-stackable devices"); 998 return -EINVAL; 999 } 1000 1001 return 0; 1002 } 1003 1004 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1005 { 1006 return t->type; 1007 } 1008 1009 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1010 { 1011 return t->immutable_target_type; 1012 } 1013 1014 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1015 { 1016 /* Immutable target is implicitly a singleton */ 1017 if (t->num_targets > 1 || 1018 !dm_target_is_immutable(t->targets[0].type)) 1019 return NULL; 1020 1021 return t->targets; 1022 } 1023 1024 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1025 { 1026 for (unsigned int i = 0; i < t->num_targets; i++) { 1027 struct dm_target *ti = dm_table_get_target(t, i); 1028 1029 if (dm_target_is_wildcard(ti->type)) 1030 return ti; 1031 } 1032 1033 return NULL; 1034 } 1035 1036 bool dm_table_request_based(struct dm_table *t) 1037 { 1038 return __table_type_request_based(dm_table_get_type(t)); 1039 } 1040 1041 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1042 { 1043 enum dm_queue_mode type = dm_table_get_type(t); 1044 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1045 unsigned int min_pool_size = 0, pool_size; 1046 struct dm_md_mempools *pools; 1047 unsigned int bioset_flags = 0; 1048 bool mempool_needs_integrity = t->integrity_supported; 1049 1050 if (unlikely(type == DM_TYPE_NONE)) { 1051 DMERR("no table type is set, can't allocate mempools"); 1052 return -EINVAL; 1053 } 1054 1055 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1056 if (!pools) 1057 return -ENOMEM; 1058 1059 if (type == DM_TYPE_REQUEST_BASED) { 1060 pool_size = dm_get_reserved_rq_based_ios(); 1061 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1062 goto init_bs; 1063 } 1064 1065 if (md->queue->limits.features & BLK_FEAT_POLL) 1066 bioset_flags |= BIOSET_PERCPU_CACHE; 1067 1068 for (unsigned int i = 0; i < t->num_targets; i++) { 1069 struct dm_target *ti = dm_table_get_target(t, i); 1070 1071 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1072 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1073 1074 mempool_needs_integrity |= ti->mempool_needs_integrity; 1075 } 1076 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1077 front_pad = roundup(per_io_data_size, 1078 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1079 1080 io_front_pad = roundup(per_io_data_size, 1081 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1082 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags)) 1083 goto out_free_pools; 1084 init_bs: 1085 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1086 goto out_free_pools; 1087 1088 t->mempools = pools; 1089 return 0; 1090 1091 out_free_pools: 1092 dm_free_md_mempools(pools); 1093 return -ENOMEM; 1094 } 1095 1096 static int setup_indexes(struct dm_table *t) 1097 { 1098 int i; 1099 unsigned int total = 0; 1100 sector_t *indexes; 1101 1102 /* allocate the space for *all* the indexes */ 1103 for (i = t->depth - 2; i >= 0; i--) { 1104 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1105 total += t->counts[i]; 1106 } 1107 1108 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1109 if (!indexes) 1110 return -ENOMEM; 1111 1112 /* set up internal nodes, bottom-up */ 1113 for (i = t->depth - 2; i >= 0; i--) { 1114 t->index[i] = indexes; 1115 indexes += (KEYS_PER_NODE * t->counts[i]); 1116 setup_btree_index(i, t); 1117 } 1118 1119 return 0; 1120 } 1121 1122 /* 1123 * Builds the btree to index the map. 1124 */ 1125 static int dm_table_build_index(struct dm_table *t) 1126 { 1127 int r = 0; 1128 unsigned int leaf_nodes; 1129 1130 /* how many indexes will the btree have ? */ 1131 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1132 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1133 1134 /* leaf layer has already been set up */ 1135 t->counts[t->depth - 1] = leaf_nodes; 1136 t->index[t->depth - 1] = t->highs; 1137 1138 if (t->depth >= 2) 1139 r = setup_indexes(t); 1140 1141 return r; 1142 } 1143 1144 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1145 1146 struct dm_crypto_profile { 1147 struct blk_crypto_profile profile; 1148 struct mapped_device *md; 1149 }; 1150 1151 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1152 sector_t start, sector_t len, void *data) 1153 { 1154 const struct blk_crypto_key *key = data; 1155 1156 blk_crypto_evict_key(dev->bdev, key); 1157 return 0; 1158 } 1159 1160 /* 1161 * When an inline encryption key is evicted from a device-mapper device, evict 1162 * it from all the underlying devices. 1163 */ 1164 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1165 const struct blk_crypto_key *key, unsigned int slot) 1166 { 1167 struct mapped_device *md = 1168 container_of(profile, struct dm_crypto_profile, profile)->md; 1169 struct dm_table *t; 1170 int srcu_idx; 1171 1172 t = dm_get_live_table(md, &srcu_idx); 1173 if (!t) 1174 return 0; 1175 1176 for (unsigned int i = 0; i < t->num_targets; i++) { 1177 struct dm_target *ti = dm_table_get_target(t, i); 1178 1179 if (!ti->type->iterate_devices) 1180 continue; 1181 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1182 (void *)key); 1183 } 1184 1185 dm_put_live_table(md, srcu_idx); 1186 return 0; 1187 } 1188 1189 static int 1190 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1191 sector_t start, sector_t len, void *data) 1192 { 1193 struct blk_crypto_profile *parent = data; 1194 struct blk_crypto_profile *child = 1195 bdev_get_queue(dev->bdev)->crypto_profile; 1196 1197 blk_crypto_intersect_capabilities(parent, child); 1198 return 0; 1199 } 1200 1201 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1202 { 1203 struct dm_crypto_profile *dmcp = container_of(profile, 1204 struct dm_crypto_profile, 1205 profile); 1206 1207 if (!profile) 1208 return; 1209 1210 blk_crypto_profile_destroy(profile); 1211 kfree(dmcp); 1212 } 1213 1214 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1215 { 1216 dm_destroy_crypto_profile(t->crypto_profile); 1217 t->crypto_profile = NULL; 1218 } 1219 1220 /* 1221 * Constructs and initializes t->crypto_profile with a crypto profile that 1222 * represents the common set of crypto capabilities of the devices described by 1223 * the dm_table. However, if the constructed crypto profile doesn't support all 1224 * crypto capabilities that are supported by the current mapped_device, it 1225 * returns an error instead, since we don't support removing crypto capabilities 1226 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1227 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1228 */ 1229 static int dm_table_construct_crypto_profile(struct dm_table *t) 1230 { 1231 struct dm_crypto_profile *dmcp; 1232 struct blk_crypto_profile *profile; 1233 unsigned int i; 1234 bool empty_profile = true; 1235 1236 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1237 if (!dmcp) 1238 return -ENOMEM; 1239 dmcp->md = t->md; 1240 1241 profile = &dmcp->profile; 1242 blk_crypto_profile_init(profile, 0); 1243 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1244 profile->max_dun_bytes_supported = UINT_MAX; 1245 memset(profile->modes_supported, 0xFF, 1246 sizeof(profile->modes_supported)); 1247 profile->key_types_supported = ~0; 1248 1249 for (i = 0; i < t->num_targets; i++) { 1250 struct dm_target *ti = dm_table_get_target(t, i); 1251 1252 if (!dm_target_passes_crypto(ti->type)) { 1253 blk_crypto_intersect_capabilities(profile, NULL); 1254 break; 1255 } 1256 if (!ti->type->iterate_devices) 1257 continue; 1258 ti->type->iterate_devices(ti, 1259 device_intersect_crypto_capabilities, 1260 profile); 1261 } 1262 1263 if (t->md->queue && 1264 !blk_crypto_has_capabilities(profile, 1265 t->md->queue->crypto_profile)) { 1266 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1267 dm_destroy_crypto_profile(profile); 1268 return -EINVAL; 1269 } 1270 1271 /* 1272 * If the new profile doesn't actually support any crypto capabilities, 1273 * we may as well represent it with a NULL profile. 1274 */ 1275 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1276 if (profile->modes_supported[i]) { 1277 empty_profile = false; 1278 break; 1279 } 1280 } 1281 1282 if (empty_profile) { 1283 dm_destroy_crypto_profile(profile); 1284 profile = NULL; 1285 } 1286 1287 /* 1288 * t->crypto_profile is only set temporarily while the table is being 1289 * set up, and it gets set to NULL after the profile has been 1290 * transferred to the request_queue. 1291 */ 1292 t->crypto_profile = profile; 1293 1294 return 0; 1295 } 1296 1297 static void dm_update_crypto_profile(struct request_queue *q, 1298 struct dm_table *t) 1299 { 1300 if (!t->crypto_profile) 1301 return; 1302 1303 /* Make the crypto profile less restrictive. */ 1304 if (!q->crypto_profile) { 1305 blk_crypto_register(t->crypto_profile, q); 1306 } else { 1307 blk_crypto_update_capabilities(q->crypto_profile, 1308 t->crypto_profile); 1309 dm_destroy_crypto_profile(t->crypto_profile); 1310 } 1311 t->crypto_profile = NULL; 1312 } 1313 1314 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1315 1316 static int dm_table_construct_crypto_profile(struct dm_table *t) 1317 { 1318 return 0; 1319 } 1320 1321 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1322 { 1323 } 1324 1325 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1326 { 1327 } 1328 1329 static void dm_update_crypto_profile(struct request_queue *q, 1330 struct dm_table *t) 1331 { 1332 } 1333 1334 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1335 1336 /* 1337 * Prepares the table for use by building the indices, 1338 * setting the type, and allocating mempools. 1339 */ 1340 int dm_table_complete(struct dm_table *t) 1341 { 1342 int r; 1343 1344 r = dm_table_determine_type(t); 1345 if (r) { 1346 DMERR("unable to determine table type"); 1347 return r; 1348 } 1349 1350 r = dm_table_build_index(t); 1351 if (r) { 1352 DMERR("unable to build btrees"); 1353 return r; 1354 } 1355 1356 r = dm_table_construct_crypto_profile(t); 1357 if (r) { 1358 DMERR("could not construct crypto profile."); 1359 return r; 1360 } 1361 1362 r = dm_table_alloc_md_mempools(t, t->md); 1363 if (r) 1364 DMERR("unable to allocate mempools"); 1365 1366 return r; 1367 } 1368 1369 static DEFINE_MUTEX(_event_lock); 1370 void dm_table_event_callback(struct dm_table *t, 1371 void (*fn)(void *), void *context) 1372 { 1373 mutex_lock(&_event_lock); 1374 t->event_fn = fn; 1375 t->event_context = context; 1376 mutex_unlock(&_event_lock); 1377 } 1378 1379 void dm_table_event(struct dm_table *t) 1380 { 1381 mutex_lock(&_event_lock); 1382 if (t->event_fn) 1383 t->event_fn(t->event_context); 1384 mutex_unlock(&_event_lock); 1385 } 1386 EXPORT_SYMBOL(dm_table_event); 1387 1388 inline sector_t dm_table_get_size(struct dm_table *t) 1389 { 1390 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1391 } 1392 EXPORT_SYMBOL(dm_table_get_size); 1393 1394 /* 1395 * Search the btree for the correct target. 1396 * 1397 * Caller should check returned pointer for NULL 1398 * to trap I/O beyond end of device. 1399 */ 1400 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1401 { 1402 unsigned int l, n = 0, k = 0; 1403 sector_t *node; 1404 1405 if (unlikely(sector >= dm_table_get_size(t))) 1406 return NULL; 1407 1408 for (l = 0; l < t->depth; l++) { 1409 n = get_child(n, k); 1410 node = get_node(t, l, n); 1411 1412 for (k = 0; k < KEYS_PER_NODE; k++) 1413 if (node[k] >= sector) 1414 break; 1415 } 1416 1417 return &t->targets[(KEYS_PER_NODE * n) + k]; 1418 } 1419 1420 /* 1421 * type->iterate_devices() should be called when the sanity check needs to 1422 * iterate and check all underlying data devices. iterate_devices() will 1423 * iterate all underlying data devices until it encounters a non-zero return 1424 * code, returned by whether the input iterate_devices_callout_fn, or 1425 * iterate_devices() itself internally. 1426 * 1427 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1428 * iterate multiple underlying devices internally, in which case a non-zero 1429 * return code returned by iterate_devices_callout_fn will stop the iteration 1430 * in advance. 1431 * 1432 * Cases requiring _any_ underlying device supporting some kind of attribute, 1433 * should use the iteration structure like dm_table_any_dev_attr(), or call 1434 * it directly. @func should handle semantics of positive examples, e.g. 1435 * capable of something. 1436 * 1437 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1438 * should use the iteration structure like dm_table_supports_nowait() or 1439 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1440 * uses an @anti_func that handle semantics of counter examples, e.g. not 1441 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1442 */ 1443 static bool dm_table_any_dev_attr(struct dm_table *t, 1444 iterate_devices_callout_fn func, void *data) 1445 { 1446 for (unsigned int i = 0; i < t->num_targets; i++) { 1447 struct dm_target *ti = dm_table_get_target(t, i); 1448 1449 if (ti->type->iterate_devices && 1450 ti->type->iterate_devices(ti, func, data)) 1451 return true; 1452 } 1453 1454 return false; 1455 } 1456 1457 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1458 sector_t start, sector_t len, void *data) 1459 { 1460 unsigned int *num_devices = data; 1461 1462 (*num_devices)++; 1463 1464 return 0; 1465 } 1466 1467 /* 1468 * Check whether a table has no data devices attached using each 1469 * target's iterate_devices method. 1470 * Returns false if the result is unknown because a target doesn't 1471 * support iterate_devices. 1472 */ 1473 bool dm_table_has_no_data_devices(struct dm_table *t) 1474 { 1475 for (unsigned int i = 0; i < t->num_targets; i++) { 1476 struct dm_target *ti = dm_table_get_target(t, i); 1477 unsigned int num_devices = 0; 1478 1479 if (!ti->type->iterate_devices) 1480 return false; 1481 1482 ti->type->iterate_devices(ti, count_device, &num_devices); 1483 if (num_devices) 1484 return false; 1485 } 1486 1487 return true; 1488 } 1489 1490 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1491 sector_t start, sector_t len, void *data) 1492 { 1493 bool *zoned = data; 1494 1495 return bdev_is_zoned(dev->bdev) != *zoned; 1496 } 1497 1498 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1499 sector_t start, sector_t len, void *data) 1500 { 1501 return bdev_is_zoned(dev->bdev); 1502 } 1503 1504 /* 1505 * Check the device zoned model based on the target feature flag. If the target 1506 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1507 * also accepted but all devices must have the same zoned model. If the target 1508 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1509 * zoned model with all zoned devices having the same zone size. 1510 */ 1511 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1512 { 1513 for (unsigned int i = 0; i < t->num_targets; i++) { 1514 struct dm_target *ti = dm_table_get_target(t, i); 1515 1516 /* 1517 * For the wildcard target (dm-error), if we do not have a 1518 * backing device, we must always return false. If we have a 1519 * backing device, the result must depend on checking zoned 1520 * model, like for any other target. So for this, check directly 1521 * if the target backing device is zoned as we get "false" when 1522 * dm-error was set without a backing device. 1523 */ 1524 if (dm_target_is_wildcard(ti->type) && 1525 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1526 return false; 1527 1528 if (dm_target_supports_zoned_hm(ti->type)) { 1529 if (!ti->type->iterate_devices || 1530 ti->type->iterate_devices(ti, device_not_zoned, 1531 &zoned)) 1532 return false; 1533 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1534 if (zoned) 1535 return false; 1536 } 1537 } 1538 1539 return true; 1540 } 1541 1542 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1543 sector_t start, sector_t len, void *data) 1544 { 1545 unsigned int *zone_sectors = data; 1546 1547 if (!bdev_is_zoned(dev->bdev)) 1548 return 0; 1549 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1550 } 1551 1552 /* 1553 * Check consistency of zoned model and zone sectors across all targets. For 1554 * zone sectors, if the destination device is a zoned block device, it shall 1555 * have the specified zone_sectors. 1556 */ 1557 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1558 unsigned int zone_sectors) 1559 { 1560 if (!zoned) 1561 return 0; 1562 1563 if (!dm_table_supports_zoned(t, zoned)) { 1564 DMERR("%s: zoned model is not consistent across all devices", 1565 dm_device_name(t->md)); 1566 return -EINVAL; 1567 } 1568 1569 /* Check zone size validity and compatibility */ 1570 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1571 return -EINVAL; 1572 1573 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1574 DMERR("%s: zone sectors is not consistent across all zoned devices", 1575 dm_device_name(t->md)); 1576 return -EINVAL; 1577 } 1578 1579 return 0; 1580 } 1581 1582 /* 1583 * Establish the new table's queue_limits and validate them. 1584 */ 1585 int dm_calculate_queue_limits(struct dm_table *t, 1586 struct queue_limits *limits) 1587 { 1588 struct queue_limits ti_limits; 1589 unsigned int zone_sectors = 0; 1590 bool zoned = false; 1591 1592 dm_set_stacking_limits(limits); 1593 1594 t->integrity_supported = true; 1595 for (unsigned int i = 0; i < t->num_targets; i++) { 1596 struct dm_target *ti = dm_table_get_target(t, i); 1597 1598 if (!dm_target_passes_integrity(ti->type)) 1599 t->integrity_supported = false; 1600 } 1601 1602 for (unsigned int i = 0; i < t->num_targets; i++) { 1603 struct dm_target *ti = dm_table_get_target(t, i); 1604 1605 dm_set_stacking_limits(&ti_limits); 1606 1607 if (!ti->type->iterate_devices) { 1608 /* Set I/O hints portion of queue limits */ 1609 if (ti->type->io_hints) 1610 ti->type->io_hints(ti, &ti_limits); 1611 goto combine_limits; 1612 } 1613 1614 /* 1615 * Combine queue limits of all the devices this target uses. 1616 */ 1617 ti->type->iterate_devices(ti, dm_set_device_limits, 1618 &ti_limits); 1619 1620 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) { 1621 /* 1622 * After stacking all limits, validate all devices 1623 * in table support this zoned model and zone sectors. 1624 */ 1625 zoned = (ti_limits.features & BLK_FEAT_ZONED); 1626 zone_sectors = ti_limits.chunk_sectors; 1627 } 1628 1629 /* Set I/O hints portion of queue limits */ 1630 if (ti->type->io_hints) 1631 ti->type->io_hints(ti, &ti_limits); 1632 1633 /* 1634 * Check each device area is consistent with the target's 1635 * overall queue limits. 1636 */ 1637 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1638 &ti_limits)) 1639 return -EINVAL; 1640 1641 combine_limits: 1642 /* 1643 * Merge this target's queue limits into the overall limits 1644 * for the table. 1645 */ 1646 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1647 DMWARN("%s: adding target device (start sect %llu len %llu) " 1648 "caused an alignment inconsistency", 1649 dm_device_name(t->md), 1650 (unsigned long long) ti->begin, 1651 (unsigned long long) ti->len); 1652 1653 if (t->integrity_supported || 1654 dm_target_has_integrity(ti->type)) { 1655 if (!queue_limits_stack_integrity(limits, &ti_limits)) { 1656 DMWARN("%s: adding target device (start sect %llu len %llu) " 1657 "disabled integrity support due to incompatibility", 1658 dm_device_name(t->md), 1659 (unsigned long long) ti->begin, 1660 (unsigned long long) ti->len); 1661 t->integrity_supported = false; 1662 } 1663 } 1664 } 1665 1666 /* 1667 * Verify that the zoned model and zone sectors, as determined before 1668 * any .io_hints override, are the same across all devices in the table. 1669 * - this is especially relevant if .io_hints is emulating a disk-managed 1670 * zoned model on host-managed zoned block devices. 1671 * BUT... 1672 */ 1673 if (limits->features & BLK_FEAT_ZONED) { 1674 /* 1675 * ...IF the above limits stacking determined a zoned model 1676 * validate that all of the table's devices conform to it. 1677 */ 1678 zoned = limits->features & BLK_FEAT_ZONED; 1679 zone_sectors = limits->chunk_sectors; 1680 } 1681 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1682 return -EINVAL; 1683 1684 return validate_hardware_logical_block_alignment(t, limits); 1685 } 1686 1687 /* 1688 * Check if a target requires flush support even if none of the underlying 1689 * devices need it (e.g. to persist target-specific metadata). 1690 */ 1691 static bool dm_table_supports_flush(struct dm_table *t) 1692 { 1693 for (unsigned int i = 0; i < t->num_targets; i++) { 1694 struct dm_target *ti = dm_table_get_target(t, i); 1695 1696 if (ti->num_flush_bios && ti->flush_supported) 1697 return true; 1698 } 1699 1700 return false; 1701 } 1702 1703 static int device_dax_write_cache_enabled(struct dm_target *ti, 1704 struct dm_dev *dev, sector_t start, 1705 sector_t len, void *data) 1706 { 1707 struct dax_device *dax_dev = dev->dax_dev; 1708 1709 if (!dax_dev) 1710 return false; 1711 1712 if (dax_write_cache_enabled(dax_dev)) 1713 return true; 1714 return false; 1715 } 1716 1717 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1718 sector_t start, sector_t len, void *data) 1719 { 1720 struct request_queue *q = bdev_get_queue(dev->bdev); 1721 1722 return !q->limits.max_write_zeroes_sectors; 1723 } 1724 1725 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1726 { 1727 for (unsigned int i = 0; i < t->num_targets; i++) { 1728 struct dm_target *ti = dm_table_get_target(t, i); 1729 1730 if (!ti->num_write_zeroes_bios) 1731 return false; 1732 1733 if (!ti->type->iterate_devices || 1734 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1735 return false; 1736 } 1737 1738 return true; 1739 } 1740 1741 static bool dm_table_supports_nowait(struct dm_table *t) 1742 { 1743 for (unsigned int i = 0; i < t->num_targets; i++) { 1744 struct dm_target *ti = dm_table_get_target(t, i); 1745 1746 if (!dm_target_supports_nowait(ti->type)) 1747 return false; 1748 } 1749 1750 return true; 1751 } 1752 1753 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1754 sector_t start, sector_t len, void *data) 1755 { 1756 return !bdev_max_discard_sectors(dev->bdev); 1757 } 1758 1759 static bool dm_table_supports_discards(struct dm_table *t) 1760 { 1761 for (unsigned int i = 0; i < t->num_targets; i++) { 1762 struct dm_target *ti = dm_table_get_target(t, i); 1763 1764 if (!ti->num_discard_bios) 1765 return false; 1766 1767 /* 1768 * Either the target provides discard support (as implied by setting 1769 * 'discards_supported') or it relies on _all_ data devices having 1770 * discard support. 1771 */ 1772 if (!ti->discards_supported && 1773 (!ti->type->iterate_devices || 1774 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1775 return false; 1776 } 1777 1778 return true; 1779 } 1780 1781 static int device_not_secure_erase_capable(struct dm_target *ti, 1782 struct dm_dev *dev, sector_t start, 1783 sector_t len, void *data) 1784 { 1785 return !bdev_max_secure_erase_sectors(dev->bdev); 1786 } 1787 1788 static bool dm_table_supports_secure_erase(struct dm_table *t) 1789 { 1790 for (unsigned int i = 0; i < t->num_targets; i++) { 1791 struct dm_target *ti = dm_table_get_target(t, i); 1792 1793 if (!ti->num_secure_erase_bios) 1794 return false; 1795 1796 if (!ti->type->iterate_devices || 1797 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1798 return false; 1799 } 1800 1801 return true; 1802 } 1803 1804 static int device_not_atomic_write_capable(struct dm_target *ti, 1805 struct dm_dev *dev, sector_t start, 1806 sector_t len, void *data) 1807 { 1808 return !bdev_can_atomic_write(dev->bdev); 1809 } 1810 1811 static bool dm_table_supports_atomic_writes(struct dm_table *t) 1812 { 1813 for (unsigned int i = 0; i < t->num_targets; i++) { 1814 struct dm_target *ti = dm_table_get_target(t, i); 1815 1816 if (!dm_target_supports_atomic_writes(ti->type)) 1817 return false; 1818 1819 if (!ti->type->iterate_devices) 1820 return false; 1821 1822 if (ti->type->iterate_devices(ti, 1823 device_not_atomic_write_capable, NULL)) { 1824 return false; 1825 } 1826 } 1827 return true; 1828 } 1829 1830 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1831 struct queue_limits *limits) 1832 { 1833 int r; 1834 1835 if (!dm_table_supports_nowait(t)) 1836 limits->features &= ~BLK_FEAT_NOWAIT; 1837 1838 /* 1839 * The current polling impementation does not support request based 1840 * stacking. 1841 */ 1842 if (!__table_type_bio_based(t->type)) 1843 limits->features &= ~BLK_FEAT_POLL; 1844 1845 if (!dm_table_supports_discards(t)) { 1846 limits->max_hw_discard_sectors = 0; 1847 limits->discard_granularity = 0; 1848 limits->discard_alignment = 0; 1849 } 1850 1851 if (!dm_table_supports_write_zeroes(t)) 1852 limits->max_write_zeroes_sectors = 0; 1853 1854 if (!dm_table_supports_secure_erase(t)) 1855 limits->max_secure_erase_sectors = 0; 1856 1857 if (dm_table_supports_flush(t)) 1858 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 1859 1860 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1861 limits->features |= BLK_FEAT_DAX; 1862 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1863 set_dax_synchronous(t->md->dax_dev); 1864 } else 1865 limits->features &= ~BLK_FEAT_DAX; 1866 1867 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1868 dax_write_cache(t->md->dax_dev, true); 1869 1870 /* For a zoned table, setup the zone related queue attributes. */ 1871 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1872 (limits->features & BLK_FEAT_ZONED)) { 1873 r = dm_set_zones_restrictions(t, q, limits); 1874 if (r) 1875 return r; 1876 } 1877 1878 if (dm_table_supports_atomic_writes(t)) 1879 limits->features |= BLK_FEAT_ATOMIC_WRITES; 1880 1881 r = queue_limits_set(q, limits); 1882 if (r) 1883 return r; 1884 1885 /* 1886 * Now that the limits are set, check the zones mapped by the table 1887 * and setup the resources for zone append emulation if necessary. 1888 */ 1889 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1890 (limits->features & BLK_FEAT_ZONED)) { 1891 r = dm_revalidate_zones(t, q); 1892 if (r) 1893 return r; 1894 } 1895 1896 dm_update_crypto_profile(q, t); 1897 return 0; 1898 } 1899 1900 struct list_head *dm_table_get_devices(struct dm_table *t) 1901 { 1902 return &t->devices; 1903 } 1904 1905 blk_mode_t dm_table_get_mode(struct dm_table *t) 1906 { 1907 return t->mode; 1908 } 1909 EXPORT_SYMBOL(dm_table_get_mode); 1910 1911 enum suspend_mode { 1912 PRESUSPEND, 1913 PRESUSPEND_UNDO, 1914 POSTSUSPEND, 1915 }; 1916 1917 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1918 { 1919 lockdep_assert_held(&t->md->suspend_lock); 1920 1921 for (unsigned int i = 0; i < t->num_targets; i++) { 1922 struct dm_target *ti = dm_table_get_target(t, i); 1923 1924 switch (mode) { 1925 case PRESUSPEND: 1926 if (ti->type->presuspend) 1927 ti->type->presuspend(ti); 1928 break; 1929 case PRESUSPEND_UNDO: 1930 if (ti->type->presuspend_undo) 1931 ti->type->presuspend_undo(ti); 1932 break; 1933 case POSTSUSPEND: 1934 if (ti->type->postsuspend) 1935 ti->type->postsuspend(ti); 1936 break; 1937 } 1938 } 1939 } 1940 1941 void dm_table_presuspend_targets(struct dm_table *t) 1942 { 1943 if (!t) 1944 return; 1945 1946 suspend_targets(t, PRESUSPEND); 1947 } 1948 1949 void dm_table_presuspend_undo_targets(struct dm_table *t) 1950 { 1951 if (!t) 1952 return; 1953 1954 suspend_targets(t, PRESUSPEND_UNDO); 1955 } 1956 1957 void dm_table_postsuspend_targets(struct dm_table *t) 1958 { 1959 if (!t) 1960 return; 1961 1962 suspend_targets(t, POSTSUSPEND); 1963 } 1964 1965 int dm_table_resume_targets(struct dm_table *t) 1966 { 1967 unsigned int i; 1968 int r = 0; 1969 1970 lockdep_assert_held(&t->md->suspend_lock); 1971 1972 for (i = 0; i < t->num_targets; i++) { 1973 struct dm_target *ti = dm_table_get_target(t, i); 1974 1975 if (!ti->type->preresume) 1976 continue; 1977 1978 r = ti->type->preresume(ti); 1979 if (r) { 1980 DMERR("%s: %s: preresume failed, error = %d", 1981 dm_device_name(t->md), ti->type->name, r); 1982 return r; 1983 } 1984 } 1985 1986 for (i = 0; i < t->num_targets; i++) { 1987 struct dm_target *ti = dm_table_get_target(t, i); 1988 1989 if (ti->type->resume) 1990 ti->type->resume(ti); 1991 } 1992 1993 return 0; 1994 } 1995 1996 struct mapped_device *dm_table_get_md(struct dm_table *t) 1997 { 1998 return t->md; 1999 } 2000 EXPORT_SYMBOL(dm_table_get_md); 2001 2002 const char *dm_table_device_name(struct dm_table *t) 2003 { 2004 return dm_device_name(t->md); 2005 } 2006 EXPORT_SYMBOL_GPL(dm_table_device_name); 2007 2008 void dm_table_run_md_queue_async(struct dm_table *t) 2009 { 2010 if (!dm_table_request_based(t)) 2011 return; 2012 2013 if (t->md->queue) 2014 blk_mq_run_hw_queues(t->md->queue, true); 2015 } 2016 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2017 2018