1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <asm/atomic.h> 19 20 #define DM_MSG_PREFIX "table" 21 22 #define MAX_DEPTH 16 23 #define NODE_SIZE L1_CACHE_BYTES 24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 26 27 struct dm_table { 28 struct mapped_device *md; 29 atomic_t holders; 30 31 /* btree table */ 32 unsigned int depth; 33 unsigned int counts[MAX_DEPTH]; /* in nodes */ 34 sector_t *index[MAX_DEPTH]; 35 36 unsigned int num_targets; 37 unsigned int num_allocated; 38 sector_t *highs; 39 struct dm_target *targets; 40 41 /* 42 * Indicates the rw permissions for the new logical 43 * device. This should be a combination of FMODE_READ 44 * and FMODE_WRITE. 45 */ 46 int mode; 47 48 /* a list of devices used by this table */ 49 struct list_head devices; 50 51 /* 52 * These are optimistic limits taken from all the 53 * targets, some targets will need smaller limits. 54 */ 55 struct io_restrictions limits; 56 57 /* events get handed up using this callback */ 58 void (*event_fn)(void *); 59 void *event_context; 60 }; 61 62 /* 63 * Similar to ceiling(log_size(n)) 64 */ 65 static unsigned int int_log(unsigned int n, unsigned int base) 66 { 67 int result = 0; 68 69 while (n > 1) { 70 n = dm_div_up(n, base); 71 result++; 72 } 73 74 return result; 75 } 76 77 /* 78 * Returns the minimum that is _not_ zero, unless both are zero. 79 */ 80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 81 82 /* 83 * Combine two io_restrictions, always taking the lower value. 84 */ 85 static void combine_restrictions_low(struct io_restrictions *lhs, 86 struct io_restrictions *rhs) 87 { 88 lhs->max_sectors = 89 min_not_zero(lhs->max_sectors, rhs->max_sectors); 90 91 lhs->max_phys_segments = 92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 93 94 lhs->max_hw_segments = 95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 96 97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 98 99 lhs->max_segment_size = 100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 101 102 lhs->seg_boundary_mask = 103 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 104 105 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); 106 107 lhs->no_cluster |= rhs->no_cluster; 108 } 109 110 /* 111 * Calculate the index of the child node of the n'th node k'th key. 112 */ 113 static inline unsigned int get_child(unsigned int n, unsigned int k) 114 { 115 return (n * CHILDREN_PER_NODE) + k; 116 } 117 118 /* 119 * Return the n'th node of level l from table t. 120 */ 121 static inline sector_t *get_node(struct dm_table *t, 122 unsigned int l, unsigned int n) 123 { 124 return t->index[l] + (n * KEYS_PER_NODE); 125 } 126 127 /* 128 * Return the highest key that you could lookup from the n'th 129 * node on level l of the btree. 130 */ 131 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 132 { 133 for (; l < t->depth - 1; l++) 134 n = get_child(n, CHILDREN_PER_NODE - 1); 135 136 if (n >= t->counts[l]) 137 return (sector_t) - 1; 138 139 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 140 } 141 142 /* 143 * Fills in a level of the btree based on the highs of the level 144 * below it. 145 */ 146 static int setup_btree_index(unsigned int l, struct dm_table *t) 147 { 148 unsigned int n, k; 149 sector_t *node; 150 151 for (n = 0U; n < t->counts[l]; n++) { 152 node = get_node(t, l, n); 153 154 for (k = 0U; k < KEYS_PER_NODE; k++) 155 node[k] = high(t, l + 1, get_child(n, k)); 156 } 157 158 return 0; 159 } 160 161 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 162 { 163 unsigned long size; 164 void *addr; 165 166 /* 167 * Check that we're not going to overflow. 168 */ 169 if (nmemb > (ULONG_MAX / elem_size)) 170 return NULL; 171 172 size = nmemb * elem_size; 173 addr = vmalloc(size); 174 if (addr) 175 memset(addr, 0, size); 176 177 return addr; 178 } 179 180 /* 181 * highs, and targets are managed as dynamic arrays during a 182 * table load. 183 */ 184 static int alloc_targets(struct dm_table *t, unsigned int num) 185 { 186 sector_t *n_highs; 187 struct dm_target *n_targets; 188 int n = t->num_targets; 189 190 /* 191 * Allocate both the target array and offset array at once. 192 */ 193 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 194 sizeof(sector_t)); 195 if (!n_highs) 196 return -ENOMEM; 197 198 n_targets = (struct dm_target *) (n_highs + num); 199 200 if (n) { 201 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 202 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 203 } 204 205 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 206 vfree(t->highs); 207 208 t->num_allocated = num; 209 t->highs = n_highs; 210 t->targets = n_targets; 211 212 return 0; 213 } 214 215 int dm_table_create(struct dm_table **result, int mode, 216 unsigned num_targets, struct mapped_device *md) 217 { 218 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 219 220 if (!t) 221 return -ENOMEM; 222 223 INIT_LIST_HEAD(&t->devices); 224 atomic_set(&t->holders, 1); 225 226 if (!num_targets) 227 num_targets = KEYS_PER_NODE; 228 229 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 230 231 if (alloc_targets(t, num_targets)) { 232 kfree(t); 233 t = NULL; 234 return -ENOMEM; 235 } 236 237 t->mode = mode; 238 t->md = md; 239 *result = t; 240 return 0; 241 } 242 243 int dm_create_error_table(struct dm_table **result, struct mapped_device *md) 244 { 245 struct dm_table *t; 246 sector_t dev_size = 1; 247 int r; 248 249 /* 250 * Find current size of device. 251 * Default to 1 sector if inactive. 252 */ 253 t = dm_get_table(md); 254 if (t) { 255 dev_size = dm_table_get_size(t); 256 dm_table_put(t); 257 } 258 259 r = dm_table_create(&t, FMODE_READ, 1, md); 260 if (r) 261 return r; 262 263 r = dm_table_add_target(t, "error", 0, dev_size, NULL); 264 if (r) 265 goto out; 266 267 r = dm_table_complete(t); 268 if (r) 269 goto out; 270 271 *result = t; 272 273 out: 274 if (r) 275 dm_table_put(t); 276 277 return r; 278 } 279 EXPORT_SYMBOL_GPL(dm_create_error_table); 280 281 static void free_devices(struct list_head *devices) 282 { 283 struct list_head *tmp, *next; 284 285 for (tmp = devices->next; tmp != devices; tmp = next) { 286 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list); 287 next = tmp->next; 288 kfree(dd); 289 } 290 } 291 292 static void table_destroy(struct dm_table *t) 293 { 294 unsigned int i; 295 296 /* free the indexes (see dm_table_complete) */ 297 if (t->depth >= 2) 298 vfree(t->index[t->depth - 2]); 299 300 /* free the targets */ 301 for (i = 0; i < t->num_targets; i++) { 302 struct dm_target *tgt = t->targets + i; 303 304 if (tgt->type->dtr) 305 tgt->type->dtr(tgt); 306 307 dm_put_target_type(tgt->type); 308 } 309 310 vfree(t->highs); 311 312 /* free the device list */ 313 if (t->devices.next != &t->devices) { 314 DMWARN("devices still present during destroy: " 315 "dm_table_remove_device calls missing"); 316 317 free_devices(&t->devices); 318 } 319 320 kfree(t); 321 } 322 323 void dm_table_get(struct dm_table *t) 324 { 325 atomic_inc(&t->holders); 326 } 327 328 void dm_table_put(struct dm_table *t) 329 { 330 if (!t) 331 return; 332 333 if (atomic_dec_and_test(&t->holders)) 334 table_destroy(t); 335 } 336 337 /* 338 * Checks to see if we need to extend highs or targets. 339 */ 340 static inline int check_space(struct dm_table *t) 341 { 342 if (t->num_targets >= t->num_allocated) 343 return alloc_targets(t, t->num_allocated * 2); 344 345 return 0; 346 } 347 348 /* 349 * Convert a device path to a dev_t. 350 */ 351 static int lookup_device(const char *path, dev_t *dev) 352 { 353 int r; 354 struct nameidata nd; 355 struct inode *inode; 356 357 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd))) 358 return r; 359 360 inode = nd.dentry->d_inode; 361 if (!inode) { 362 r = -ENOENT; 363 goto out; 364 } 365 366 if (!S_ISBLK(inode->i_mode)) { 367 r = -ENOTBLK; 368 goto out; 369 } 370 371 *dev = inode->i_rdev; 372 373 out: 374 path_release(&nd); 375 return r; 376 } 377 378 /* 379 * See if we've already got a device in the list. 380 */ 381 static struct dm_dev *find_device(struct list_head *l, dev_t dev) 382 { 383 struct dm_dev *dd; 384 385 list_for_each_entry (dd, l, list) 386 if (dd->bdev->bd_dev == dev) 387 return dd; 388 389 return NULL; 390 } 391 392 /* 393 * Open a device so we can use it as a map destination. 394 */ 395 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md) 396 { 397 static char *_claim_ptr = "I belong to device-mapper"; 398 struct block_device *bdev; 399 400 int r; 401 402 BUG_ON(d->bdev); 403 404 bdev = open_by_devnum(dev, d->mode); 405 if (IS_ERR(bdev)) 406 return PTR_ERR(bdev); 407 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 408 if (r) 409 blkdev_put(bdev); 410 else 411 d->bdev = bdev; 412 return r; 413 } 414 415 /* 416 * Close a device that we've been using. 417 */ 418 static void close_dev(struct dm_dev *d, struct mapped_device *md) 419 { 420 if (!d->bdev) 421 return; 422 423 bd_release_from_disk(d->bdev, dm_disk(md)); 424 blkdev_put(d->bdev); 425 d->bdev = NULL; 426 } 427 428 /* 429 * If possible, this checks an area of a destination device is valid. 430 */ 431 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len) 432 { 433 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT; 434 435 if (!dev_size) 436 return 1; 437 438 return ((start < dev_size) && (len <= (dev_size - start))); 439 } 440 441 /* 442 * This upgrades the mode on an already open dm_dev. Being 443 * careful to leave things as they were if we fail to reopen the 444 * device. 445 */ 446 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md) 447 { 448 int r; 449 struct dm_dev dd_copy; 450 dev_t dev = dd->bdev->bd_dev; 451 452 dd_copy = *dd; 453 454 dd->mode |= new_mode; 455 dd->bdev = NULL; 456 r = open_dev(dd, dev, md); 457 if (!r) 458 close_dev(&dd_copy, md); 459 else 460 *dd = dd_copy; 461 462 return r; 463 } 464 465 /* 466 * Add a device to the list, or just increment the usage count if 467 * it's already present. 468 */ 469 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 470 const char *path, sector_t start, sector_t len, 471 int mode, struct dm_dev **result) 472 { 473 int r; 474 dev_t dev; 475 struct dm_dev *dd; 476 unsigned int major, minor; 477 478 BUG_ON(!t); 479 480 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 481 /* Extract the major/minor numbers */ 482 dev = MKDEV(major, minor); 483 if (MAJOR(dev) != major || MINOR(dev) != minor) 484 return -EOVERFLOW; 485 } else { 486 /* convert the path to a device */ 487 if ((r = lookup_device(path, &dev))) 488 return r; 489 } 490 491 dd = find_device(&t->devices, dev); 492 if (!dd) { 493 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 494 if (!dd) 495 return -ENOMEM; 496 497 dd->mode = mode; 498 dd->bdev = NULL; 499 500 if ((r = open_dev(dd, dev, t->md))) { 501 kfree(dd); 502 return r; 503 } 504 505 format_dev_t(dd->name, dev); 506 507 atomic_set(&dd->count, 0); 508 list_add(&dd->list, &t->devices); 509 510 } else if (dd->mode != (mode | dd->mode)) { 511 r = upgrade_mode(dd, mode, t->md); 512 if (r) 513 return r; 514 } 515 atomic_inc(&dd->count); 516 517 if (!check_device_area(dd, start, len)) { 518 DMWARN("device %s too small for target", path); 519 dm_put_device(ti, dd); 520 return -EINVAL; 521 } 522 523 *result = dd; 524 525 return 0; 526 } 527 528 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) 529 { 530 struct request_queue *q = bdev_get_queue(bdev); 531 struct io_restrictions *rs = &ti->limits; 532 533 /* 534 * Combine the device limits low. 535 * 536 * FIXME: if we move an io_restriction struct 537 * into q this would just be a call to 538 * combine_restrictions_low() 539 */ 540 rs->max_sectors = 541 min_not_zero(rs->max_sectors, q->max_sectors); 542 543 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM 544 * currently doesn't honor MD's merge_bvec_fn routine. 545 * In this case, we'll force DM to use PAGE_SIZE or 546 * smaller I/O, just to be safe. A better fix is in the 547 * works, but add this for the time being so it will at 548 * least operate correctly. 549 */ 550 if (q->merge_bvec_fn) 551 rs->max_sectors = 552 min_not_zero(rs->max_sectors, 553 (unsigned int) (PAGE_SIZE >> 9)); 554 555 rs->max_phys_segments = 556 min_not_zero(rs->max_phys_segments, 557 q->max_phys_segments); 558 559 rs->max_hw_segments = 560 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 561 562 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 563 564 rs->max_segment_size = 565 min_not_zero(rs->max_segment_size, q->max_segment_size); 566 567 rs->seg_boundary_mask = 568 min_not_zero(rs->seg_boundary_mask, 569 q->seg_boundary_mask); 570 571 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); 572 573 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 574 } 575 EXPORT_SYMBOL_GPL(dm_set_device_limits); 576 577 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 578 sector_t len, int mode, struct dm_dev **result) 579 { 580 int r = __table_get_device(ti->table, ti, path, 581 start, len, mode, result); 582 583 if (!r) 584 dm_set_device_limits(ti, (*result)->bdev); 585 586 return r; 587 } 588 589 /* 590 * Decrement a devices use count and remove it if necessary. 591 */ 592 void dm_put_device(struct dm_target *ti, struct dm_dev *dd) 593 { 594 if (atomic_dec_and_test(&dd->count)) { 595 close_dev(dd, ti->table->md); 596 list_del(&dd->list); 597 kfree(dd); 598 } 599 } 600 601 /* 602 * Checks to see if the target joins onto the end of the table. 603 */ 604 static int adjoin(struct dm_table *table, struct dm_target *ti) 605 { 606 struct dm_target *prev; 607 608 if (!table->num_targets) 609 return !ti->begin; 610 611 prev = &table->targets[table->num_targets - 1]; 612 return (ti->begin == (prev->begin + prev->len)); 613 } 614 615 /* 616 * Used to dynamically allocate the arg array. 617 */ 618 static char **realloc_argv(unsigned *array_size, char **old_argv) 619 { 620 char **argv; 621 unsigned new_size; 622 623 new_size = *array_size ? *array_size * 2 : 64; 624 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 625 if (argv) { 626 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 627 *array_size = new_size; 628 } 629 630 kfree(old_argv); 631 return argv; 632 } 633 634 /* 635 * Destructively splits up the argument list to pass to ctr. 636 */ 637 int dm_split_args(int *argc, char ***argvp, char *input) 638 { 639 char *start, *end = input, *out, **argv = NULL; 640 unsigned array_size = 0; 641 642 *argc = 0; 643 644 if (!input) { 645 *argvp = NULL; 646 return 0; 647 } 648 649 argv = realloc_argv(&array_size, argv); 650 if (!argv) 651 return -ENOMEM; 652 653 while (1) { 654 start = end; 655 656 /* Skip whitespace */ 657 while (*start && isspace(*start)) 658 start++; 659 660 if (!*start) 661 break; /* success, we hit the end */ 662 663 /* 'out' is used to remove any back-quotes */ 664 end = out = start; 665 while (*end) { 666 /* Everything apart from '\0' can be quoted */ 667 if (*end == '\\' && *(end + 1)) { 668 *out++ = *(end + 1); 669 end += 2; 670 continue; 671 } 672 673 if (isspace(*end)) 674 break; /* end of token */ 675 676 *out++ = *end++; 677 } 678 679 /* have we already filled the array ? */ 680 if ((*argc + 1) > array_size) { 681 argv = realloc_argv(&array_size, argv); 682 if (!argv) 683 return -ENOMEM; 684 } 685 686 /* we know this is whitespace */ 687 if (*end) 688 end++; 689 690 /* terminate the string and put it in the array */ 691 *out = '\0'; 692 argv[*argc] = start; 693 (*argc)++; 694 } 695 696 *argvp = argv; 697 return 0; 698 } 699 700 static void check_for_valid_limits(struct io_restrictions *rs) 701 { 702 if (!rs->max_sectors) 703 rs->max_sectors = SAFE_MAX_SECTORS; 704 if (!rs->max_phys_segments) 705 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 706 if (!rs->max_hw_segments) 707 rs->max_hw_segments = MAX_HW_SEGMENTS; 708 if (!rs->hardsect_size) 709 rs->hardsect_size = 1 << SECTOR_SHIFT; 710 if (!rs->max_segment_size) 711 rs->max_segment_size = MAX_SEGMENT_SIZE; 712 if (!rs->seg_boundary_mask) 713 rs->seg_boundary_mask = -1; 714 if (!rs->bounce_pfn) 715 rs->bounce_pfn = -1; 716 } 717 718 int dm_table_add_target(struct dm_table *t, const char *type, 719 sector_t start, sector_t len, char *params) 720 { 721 int r = -EINVAL, argc; 722 char **argv; 723 struct dm_target *tgt; 724 725 if ((r = check_space(t))) 726 return r; 727 728 tgt = t->targets + t->num_targets; 729 memset(tgt, 0, sizeof(*tgt)); 730 731 if (!len) { 732 DMERR("%s: zero-length target", dm_device_name(t->md)); 733 return -EINVAL; 734 } 735 736 tgt->type = dm_get_target_type(type); 737 if (!tgt->type) { 738 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 739 type); 740 return -EINVAL; 741 } 742 743 tgt->table = t; 744 tgt->begin = start; 745 tgt->len = len; 746 tgt->error = "Unknown error"; 747 748 /* 749 * Does this target adjoin the previous one ? 750 */ 751 if (!adjoin(t, tgt)) { 752 tgt->error = "Gap in table"; 753 r = -EINVAL; 754 goto bad; 755 } 756 757 r = dm_split_args(&argc, &argv, params); 758 if (r) { 759 tgt->error = "couldn't split parameters (insufficient memory)"; 760 goto bad; 761 } 762 763 r = tgt->type->ctr(tgt, argc, argv); 764 kfree(argv); 765 if (r) 766 goto bad; 767 768 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 769 770 /* FIXME: the plan is to combine high here and then have 771 * the merge fn apply the target level restrictions. */ 772 combine_restrictions_low(&t->limits, &tgt->limits); 773 return 0; 774 775 bad: 776 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 777 dm_put_target_type(tgt->type); 778 return r; 779 } 780 781 static int setup_indexes(struct dm_table *t) 782 { 783 int i; 784 unsigned int total = 0; 785 sector_t *indexes; 786 787 /* allocate the space for *all* the indexes */ 788 for (i = t->depth - 2; i >= 0; i--) { 789 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 790 total += t->counts[i]; 791 } 792 793 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 794 if (!indexes) 795 return -ENOMEM; 796 797 /* set up internal nodes, bottom-up */ 798 for (i = t->depth - 2, total = 0; i >= 0; i--) { 799 t->index[i] = indexes; 800 indexes += (KEYS_PER_NODE * t->counts[i]); 801 setup_btree_index(i, t); 802 } 803 804 return 0; 805 } 806 807 /* 808 * Builds the btree to index the map. 809 */ 810 int dm_table_complete(struct dm_table *t) 811 { 812 int r = 0; 813 unsigned int leaf_nodes; 814 815 check_for_valid_limits(&t->limits); 816 817 /* how many indexes will the btree have ? */ 818 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 819 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 820 821 /* leaf layer has already been set up */ 822 t->counts[t->depth - 1] = leaf_nodes; 823 t->index[t->depth - 1] = t->highs; 824 825 if (t->depth >= 2) 826 r = setup_indexes(t); 827 828 return r; 829 } 830 831 static DEFINE_MUTEX(_event_lock); 832 void dm_table_event_callback(struct dm_table *t, 833 void (*fn)(void *), void *context) 834 { 835 mutex_lock(&_event_lock); 836 t->event_fn = fn; 837 t->event_context = context; 838 mutex_unlock(&_event_lock); 839 } 840 841 void dm_table_event(struct dm_table *t) 842 { 843 /* 844 * You can no longer call dm_table_event() from interrupt 845 * context, use a bottom half instead. 846 */ 847 BUG_ON(in_interrupt()); 848 849 mutex_lock(&_event_lock); 850 if (t->event_fn) 851 t->event_fn(t->event_context); 852 mutex_unlock(&_event_lock); 853 } 854 855 sector_t dm_table_get_size(struct dm_table *t) 856 { 857 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 858 } 859 860 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 861 { 862 if (index >= t->num_targets) 863 return NULL; 864 865 return t->targets + index; 866 } 867 868 /* 869 * Search the btree for the correct target. 870 */ 871 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 872 { 873 unsigned int l, n = 0, k = 0; 874 sector_t *node; 875 876 for (l = 0; l < t->depth; l++) { 877 n = get_child(n, k); 878 node = get_node(t, l, n); 879 880 for (k = 0; k < KEYS_PER_NODE; k++) 881 if (node[k] >= sector) 882 break; 883 } 884 885 return &t->targets[(KEYS_PER_NODE * n) + k]; 886 } 887 888 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 889 { 890 /* 891 * Make sure we obey the optimistic sub devices 892 * restrictions. 893 */ 894 blk_queue_max_sectors(q, t->limits.max_sectors); 895 q->max_phys_segments = t->limits.max_phys_segments; 896 q->max_hw_segments = t->limits.max_hw_segments; 897 q->hardsect_size = t->limits.hardsect_size; 898 q->max_segment_size = t->limits.max_segment_size; 899 q->seg_boundary_mask = t->limits.seg_boundary_mask; 900 q->bounce_pfn = t->limits.bounce_pfn; 901 if (t->limits.no_cluster) 902 q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER); 903 else 904 q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER); 905 906 } 907 908 unsigned int dm_table_get_num_targets(struct dm_table *t) 909 { 910 return t->num_targets; 911 } 912 913 struct list_head *dm_table_get_devices(struct dm_table *t) 914 { 915 return &t->devices; 916 } 917 918 int dm_table_get_mode(struct dm_table *t) 919 { 920 return t->mode; 921 } 922 923 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 924 { 925 int i = t->num_targets; 926 struct dm_target *ti = t->targets; 927 928 while (i--) { 929 if (postsuspend) { 930 if (ti->type->postsuspend) 931 ti->type->postsuspend(ti); 932 } else if (ti->type->presuspend) 933 ti->type->presuspend(ti); 934 935 ti++; 936 } 937 } 938 939 void dm_table_presuspend_targets(struct dm_table *t) 940 { 941 if (!t) 942 return; 943 944 return suspend_targets(t, 0); 945 } 946 947 void dm_table_postsuspend_targets(struct dm_table *t) 948 { 949 if (!t) 950 return; 951 952 return suspend_targets(t, 1); 953 } 954 955 int dm_table_resume_targets(struct dm_table *t) 956 { 957 int i, r = 0; 958 959 for (i = 0; i < t->num_targets; i++) { 960 struct dm_target *ti = t->targets + i; 961 962 if (!ti->type->preresume) 963 continue; 964 965 r = ti->type->preresume(ti); 966 if (r) 967 return r; 968 } 969 970 for (i = 0; i < t->num_targets; i++) { 971 struct dm_target *ti = t->targets + i; 972 973 if (ti->type->resume) 974 ti->type->resume(ti); 975 } 976 977 return 0; 978 } 979 980 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 981 { 982 struct list_head *d, *devices; 983 int r = 0; 984 985 devices = dm_table_get_devices(t); 986 for (d = devices->next; d != devices; d = d->next) { 987 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 988 struct request_queue *q = bdev_get_queue(dd->bdev); 989 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 990 } 991 992 return r; 993 } 994 995 void dm_table_unplug_all(struct dm_table *t) 996 { 997 struct list_head *d, *devices = dm_table_get_devices(t); 998 999 for (d = devices->next; d != devices; d = d->next) { 1000 struct dm_dev *dd = list_entry(d, struct dm_dev, list); 1001 struct request_queue *q = bdev_get_queue(dd->bdev); 1002 1003 if (q->unplug_fn) 1004 q->unplug_fn(q); 1005 } 1006 } 1007 1008 struct mapped_device *dm_table_get_md(struct dm_table *t) 1009 { 1010 dm_get(t->md); 1011 1012 return t->md; 1013 } 1014 1015 EXPORT_SYMBOL(dm_vcalloc); 1016 EXPORT_SYMBOL(dm_get_device); 1017 EXPORT_SYMBOL(dm_put_device); 1018 EXPORT_SYMBOL(dm_table_event); 1019 EXPORT_SYMBOL(dm_table_get_size); 1020 EXPORT_SYMBOL(dm_table_get_mode); 1021 EXPORT_SYMBOL(dm_table_get_md); 1022 EXPORT_SYMBOL(dm_table_put); 1023 EXPORT_SYMBOL(dm_table_get); 1024 EXPORT_SYMBOL(dm_table_unplug_all); 1025