xref: /linux/drivers/md/dm-table.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 
24 #define DM_MSG_PREFIX "table"
25 
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 struct dm_table {
32 	struct mapped_device *md;
33 	unsigned type;
34 
35 	/* btree table */
36 	unsigned int depth;
37 	unsigned int counts[MAX_DEPTH];	/* in nodes */
38 	sector_t *index[MAX_DEPTH];
39 
40 	unsigned int num_targets;
41 	unsigned int num_allocated;
42 	sector_t *highs;
43 	struct dm_target *targets;
44 
45 	struct target_type *immutable_target_type;
46 	unsigned integrity_supported:1;
47 	unsigned singleton:1;
48 
49 	/*
50 	 * Indicates the rw permissions for the new logical
51 	 * device.  This should be a combination of FMODE_READ
52 	 * and FMODE_WRITE.
53 	 */
54 	fmode_t mode;
55 
56 	/* a list of devices used by this table */
57 	struct list_head devices;
58 
59 	/* events get handed up using this callback */
60 	void (*event_fn)(void *);
61 	void *event_context;
62 
63 	struct dm_md_mempools *mempools;
64 
65 	struct list_head target_callbacks;
66 };
67 
68 /*
69  * Similar to ceiling(log_size(n))
70  */
71 static unsigned int int_log(unsigned int n, unsigned int base)
72 {
73 	int result = 0;
74 
75 	while (n > 1) {
76 		n = dm_div_up(n, base);
77 		result++;
78 	}
79 
80 	return result;
81 }
82 
83 /*
84  * Calculate the index of the child node of the n'th node k'th key.
85  */
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
87 {
88 	return (n * CHILDREN_PER_NODE) + k;
89 }
90 
91 /*
92  * Return the n'th node of level l from table t.
93  */
94 static inline sector_t *get_node(struct dm_table *t,
95 				 unsigned int l, unsigned int n)
96 {
97 	return t->index[l] + (n * KEYS_PER_NODE);
98 }
99 
100 /*
101  * Return the highest key that you could lookup from the n'th
102  * node on level l of the btree.
103  */
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105 {
106 	for (; l < t->depth - 1; l++)
107 		n = get_child(n, CHILDREN_PER_NODE - 1);
108 
109 	if (n >= t->counts[l])
110 		return (sector_t) - 1;
111 
112 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
113 }
114 
115 /*
116  * Fills in a level of the btree based on the highs of the level
117  * below it.
118  */
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
120 {
121 	unsigned int n, k;
122 	sector_t *node;
123 
124 	for (n = 0U; n < t->counts[l]; n++) {
125 		node = get_node(t, l, n);
126 
127 		for (k = 0U; k < KEYS_PER_NODE; k++)
128 			node[k] = high(t, l + 1, get_child(n, k));
129 	}
130 
131 	return 0;
132 }
133 
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135 {
136 	unsigned long size;
137 	void *addr;
138 
139 	/*
140 	 * Check that we're not going to overflow.
141 	 */
142 	if (nmemb > (ULONG_MAX / elem_size))
143 		return NULL;
144 
145 	size = nmemb * elem_size;
146 	addr = vzalloc(size);
147 
148 	return addr;
149 }
150 EXPORT_SYMBOL(dm_vcalloc);
151 
152 /*
153  * highs, and targets are managed as dynamic arrays during a
154  * table load.
155  */
156 static int alloc_targets(struct dm_table *t, unsigned int num)
157 {
158 	sector_t *n_highs;
159 	struct dm_target *n_targets;
160 
161 	/*
162 	 * Allocate both the target array and offset array at once.
163 	 * Append an empty entry to catch sectors beyond the end of
164 	 * the device.
165 	 */
166 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167 					  sizeof(sector_t));
168 	if (!n_highs)
169 		return -ENOMEM;
170 
171 	n_targets = (struct dm_target *) (n_highs + num);
172 
173 	memset(n_highs, -1, sizeof(*n_highs) * num);
174 	vfree(t->highs);
175 
176 	t->num_allocated = num;
177 	t->highs = n_highs;
178 	t->targets = n_targets;
179 
180 	return 0;
181 }
182 
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184 		    unsigned num_targets, struct mapped_device *md)
185 {
186 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187 
188 	if (!t)
189 		return -ENOMEM;
190 
191 	INIT_LIST_HEAD(&t->devices);
192 	INIT_LIST_HEAD(&t->target_callbacks);
193 
194 	if (!num_targets)
195 		num_targets = KEYS_PER_NODE;
196 
197 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198 
199 	if (!num_targets) {
200 		kfree(t);
201 		return -ENOMEM;
202 	}
203 
204 	if (alloc_targets(t, num_targets)) {
205 		kfree(t);
206 		return -ENOMEM;
207 	}
208 
209 	t->mode = mode;
210 	t->md = md;
211 	*result = t;
212 	return 0;
213 }
214 
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
216 {
217 	struct list_head *tmp, *next;
218 
219 	list_for_each_safe(tmp, next, devices) {
220 		struct dm_dev_internal *dd =
221 		    list_entry(tmp, struct dm_dev_internal, list);
222 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223 		       dm_device_name(md), dd->dm_dev->name);
224 		dm_put_table_device(md, dd->dm_dev);
225 		kfree(dd);
226 	}
227 }
228 
229 void dm_table_destroy(struct dm_table *t)
230 {
231 	unsigned int i;
232 
233 	if (!t)
234 		return;
235 
236 	/* free the indexes */
237 	if (t->depth >= 2)
238 		vfree(t->index[t->depth - 2]);
239 
240 	/* free the targets */
241 	for (i = 0; i < t->num_targets; i++) {
242 		struct dm_target *tgt = t->targets + i;
243 
244 		if (tgt->type->dtr)
245 			tgt->type->dtr(tgt);
246 
247 		dm_put_target_type(tgt->type);
248 	}
249 
250 	vfree(t->highs);
251 
252 	/* free the device list */
253 	free_devices(&t->devices, t->md);
254 
255 	dm_free_md_mempools(t->mempools);
256 
257 	kfree(t);
258 }
259 
260 /*
261  * See if we've already got a device in the list.
262  */
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264 {
265 	struct dm_dev_internal *dd;
266 
267 	list_for_each_entry (dd, l, list)
268 		if (dd->dm_dev->bdev->bd_dev == dev)
269 			return dd;
270 
271 	return NULL;
272 }
273 
274 /*
275  * If possible, this checks an area of a destination device is invalid.
276  */
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278 				  sector_t start, sector_t len, void *data)
279 {
280 	struct request_queue *q;
281 	struct queue_limits *limits = data;
282 	struct block_device *bdev = dev->bdev;
283 	sector_t dev_size =
284 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285 	unsigned short logical_block_size_sectors =
286 		limits->logical_block_size >> SECTOR_SHIFT;
287 	char b[BDEVNAME_SIZE];
288 
289 	/*
290 	 * Some devices exist without request functions,
291 	 * such as loop devices not yet bound to backing files.
292 	 * Forbid the use of such devices.
293 	 */
294 	q = bdev_get_queue(bdev);
295 	if (!q || !q->make_request_fn) {
296 		DMWARN("%s: %s is not yet initialised: "
297 		       "start=%llu, len=%llu, dev_size=%llu",
298 		       dm_device_name(ti->table->md), bdevname(bdev, b),
299 		       (unsigned long long)start,
300 		       (unsigned long long)len,
301 		       (unsigned long long)dev_size);
302 		return 1;
303 	}
304 
305 	if (!dev_size)
306 		return 0;
307 
308 	if ((start >= dev_size) || (start + len > dev_size)) {
309 		DMWARN("%s: %s too small for target: "
310 		       "start=%llu, len=%llu, dev_size=%llu",
311 		       dm_device_name(ti->table->md), bdevname(bdev, b),
312 		       (unsigned long long)start,
313 		       (unsigned long long)len,
314 		       (unsigned long long)dev_size);
315 		return 1;
316 	}
317 
318 	if (logical_block_size_sectors <= 1)
319 		return 0;
320 
321 	if (start & (logical_block_size_sectors - 1)) {
322 		DMWARN("%s: start=%llu not aligned to h/w "
323 		       "logical block size %u of %s",
324 		       dm_device_name(ti->table->md),
325 		       (unsigned long long)start,
326 		       limits->logical_block_size, bdevname(bdev, b));
327 		return 1;
328 	}
329 
330 	if (len & (logical_block_size_sectors - 1)) {
331 		DMWARN("%s: len=%llu not aligned to h/w "
332 		       "logical block size %u of %s",
333 		       dm_device_name(ti->table->md),
334 		       (unsigned long long)len,
335 		       limits->logical_block_size, bdevname(bdev, b));
336 		return 1;
337 	}
338 
339 	return 0;
340 }
341 
342 /*
343  * This upgrades the mode on an already open dm_dev, being
344  * careful to leave things as they were if we fail to reopen the
345  * device and not to touch the existing bdev field in case
346  * it is accessed concurrently inside dm_table_any_congested().
347  */
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349 			struct mapped_device *md)
350 {
351 	int r;
352 	struct dm_dev *old_dev, *new_dev;
353 
354 	old_dev = dd->dm_dev;
355 
356 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357 				dd->dm_dev->mode | new_mode, &new_dev);
358 	if (r)
359 		return r;
360 
361 	dd->dm_dev = new_dev;
362 	dm_put_table_device(md, old_dev);
363 
364 	return 0;
365 }
366 
367 /*
368  * Add a device to the list, or just increment the usage count if
369  * it's already present.
370  */
371 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
372 		  struct dm_dev **result)
373 {
374 	int r;
375 	dev_t uninitialized_var(dev);
376 	struct dm_dev_internal *dd;
377 	struct dm_table *t = ti->table;
378 	struct block_device *bdev;
379 
380 	BUG_ON(!t);
381 
382 	/* convert the path to a device */
383 	bdev = lookup_bdev(path);
384 	if (IS_ERR(bdev)) {
385 		dev = name_to_dev_t(path);
386 		if (!dev)
387 			return -ENODEV;
388 	} else {
389 		dev = bdev->bd_dev;
390 		bdput(bdev);
391 	}
392 
393 	dd = find_device(&t->devices, dev);
394 	if (!dd) {
395 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
396 		if (!dd)
397 			return -ENOMEM;
398 
399 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
400 			kfree(dd);
401 			return r;
402 		}
403 
404 		atomic_set(&dd->count, 0);
405 		list_add(&dd->list, &t->devices);
406 
407 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
408 		r = upgrade_mode(dd, mode, t->md);
409 		if (r)
410 			return r;
411 	}
412 	atomic_inc(&dd->count);
413 
414 	*result = dd->dm_dev;
415 	return 0;
416 }
417 EXPORT_SYMBOL(dm_get_device);
418 
419 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
420 				sector_t start, sector_t len, void *data)
421 {
422 	struct queue_limits *limits = data;
423 	struct block_device *bdev = dev->bdev;
424 	struct request_queue *q = bdev_get_queue(bdev);
425 	char b[BDEVNAME_SIZE];
426 
427 	if (unlikely(!q)) {
428 		DMWARN("%s: Cannot set limits for nonexistent device %s",
429 		       dm_device_name(ti->table->md), bdevname(bdev, b));
430 		return 0;
431 	}
432 
433 	if (bdev_stack_limits(limits, bdev, start) < 0)
434 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435 		       "physical_block_size=%u, logical_block_size=%u, "
436 		       "alignment_offset=%u, start=%llu",
437 		       dm_device_name(ti->table->md), bdevname(bdev, b),
438 		       q->limits.physical_block_size,
439 		       q->limits.logical_block_size,
440 		       q->limits.alignment_offset,
441 		       (unsigned long long) start << SECTOR_SHIFT);
442 
443 	/*
444 	 * Check if merge fn is supported.
445 	 * If not we'll force DM to use PAGE_SIZE or
446 	 * smaller I/O, just to be safe.
447 	 */
448 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
449 		blk_limits_max_hw_sectors(limits,
450 					  (unsigned int) (PAGE_SIZE >> 9));
451 	return 0;
452 }
453 
454 /*
455  * Decrement a device's use count and remove it if necessary.
456  */
457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459 	int found = 0;
460 	struct list_head *devices = &ti->table->devices;
461 	struct dm_dev_internal *dd;
462 
463 	list_for_each_entry(dd, devices, list) {
464 		if (dd->dm_dev == d) {
465 			found = 1;
466 			break;
467 		}
468 	}
469 	if (!found) {
470 		DMWARN("%s: device %s not in table devices list",
471 		       dm_device_name(ti->table->md), d->name);
472 		return;
473 	}
474 	if (atomic_dec_and_test(&dd->count)) {
475 		dm_put_table_device(ti->table->md, d);
476 		list_del(&dd->list);
477 		kfree(dd);
478 	}
479 }
480 EXPORT_SYMBOL(dm_put_device);
481 
482 /*
483  * Checks to see if the target joins onto the end of the table.
484  */
485 static int adjoin(struct dm_table *table, struct dm_target *ti)
486 {
487 	struct dm_target *prev;
488 
489 	if (!table->num_targets)
490 		return !ti->begin;
491 
492 	prev = &table->targets[table->num_targets - 1];
493 	return (ti->begin == (prev->begin + prev->len));
494 }
495 
496 /*
497  * Used to dynamically allocate the arg array.
498  *
499  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
500  * process messages even if some device is suspended. These messages have a
501  * small fixed number of arguments.
502  *
503  * On the other hand, dm-switch needs to process bulk data using messages and
504  * excessive use of GFP_NOIO could cause trouble.
505  */
506 static char **realloc_argv(unsigned *array_size, char **old_argv)
507 {
508 	char **argv;
509 	unsigned new_size;
510 	gfp_t gfp;
511 
512 	if (*array_size) {
513 		new_size = *array_size * 2;
514 		gfp = GFP_KERNEL;
515 	} else {
516 		new_size = 8;
517 		gfp = GFP_NOIO;
518 	}
519 	argv = kmalloc(new_size * sizeof(*argv), gfp);
520 	if (argv) {
521 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
522 		*array_size = new_size;
523 	}
524 
525 	kfree(old_argv);
526 	return argv;
527 }
528 
529 /*
530  * Destructively splits up the argument list to pass to ctr.
531  */
532 int dm_split_args(int *argc, char ***argvp, char *input)
533 {
534 	char *start, *end = input, *out, **argv = NULL;
535 	unsigned array_size = 0;
536 
537 	*argc = 0;
538 
539 	if (!input) {
540 		*argvp = NULL;
541 		return 0;
542 	}
543 
544 	argv = realloc_argv(&array_size, argv);
545 	if (!argv)
546 		return -ENOMEM;
547 
548 	while (1) {
549 		/* Skip whitespace */
550 		start = skip_spaces(end);
551 
552 		if (!*start)
553 			break;	/* success, we hit the end */
554 
555 		/* 'out' is used to remove any back-quotes */
556 		end = out = start;
557 		while (*end) {
558 			/* Everything apart from '\0' can be quoted */
559 			if (*end == '\\' && *(end + 1)) {
560 				*out++ = *(end + 1);
561 				end += 2;
562 				continue;
563 			}
564 
565 			if (isspace(*end))
566 				break;	/* end of token */
567 
568 			*out++ = *end++;
569 		}
570 
571 		/* have we already filled the array ? */
572 		if ((*argc + 1) > array_size) {
573 			argv = realloc_argv(&array_size, argv);
574 			if (!argv)
575 				return -ENOMEM;
576 		}
577 
578 		/* we know this is whitespace */
579 		if (*end)
580 			end++;
581 
582 		/* terminate the string and put it in the array */
583 		*out = '\0';
584 		argv[*argc] = start;
585 		(*argc)++;
586 	}
587 
588 	*argvp = argv;
589 	return 0;
590 }
591 
592 /*
593  * Impose necessary and sufficient conditions on a devices's table such
594  * that any incoming bio which respects its logical_block_size can be
595  * processed successfully.  If it falls across the boundary between
596  * two or more targets, the size of each piece it gets split into must
597  * be compatible with the logical_block_size of the target processing it.
598  */
599 static int validate_hardware_logical_block_alignment(struct dm_table *table,
600 						 struct queue_limits *limits)
601 {
602 	/*
603 	 * This function uses arithmetic modulo the logical_block_size
604 	 * (in units of 512-byte sectors).
605 	 */
606 	unsigned short device_logical_block_size_sects =
607 		limits->logical_block_size >> SECTOR_SHIFT;
608 
609 	/*
610 	 * Offset of the start of the next table entry, mod logical_block_size.
611 	 */
612 	unsigned short next_target_start = 0;
613 
614 	/*
615 	 * Given an aligned bio that extends beyond the end of a
616 	 * target, how many sectors must the next target handle?
617 	 */
618 	unsigned short remaining = 0;
619 
620 	struct dm_target *uninitialized_var(ti);
621 	struct queue_limits ti_limits;
622 	unsigned i = 0;
623 
624 	/*
625 	 * Check each entry in the table in turn.
626 	 */
627 	while (i < dm_table_get_num_targets(table)) {
628 		ti = dm_table_get_target(table, i++);
629 
630 		blk_set_stacking_limits(&ti_limits);
631 
632 		/* combine all target devices' limits */
633 		if (ti->type->iterate_devices)
634 			ti->type->iterate_devices(ti, dm_set_device_limits,
635 						  &ti_limits);
636 
637 		/*
638 		 * If the remaining sectors fall entirely within this
639 		 * table entry are they compatible with its logical_block_size?
640 		 */
641 		if (remaining < ti->len &&
642 		    remaining & ((ti_limits.logical_block_size >>
643 				  SECTOR_SHIFT) - 1))
644 			break;	/* Error */
645 
646 		next_target_start =
647 		    (unsigned short) ((next_target_start + ti->len) &
648 				      (device_logical_block_size_sects - 1));
649 		remaining = next_target_start ?
650 		    device_logical_block_size_sects - next_target_start : 0;
651 	}
652 
653 	if (remaining) {
654 		DMWARN("%s: table line %u (start sect %llu len %llu) "
655 		       "not aligned to h/w logical block size %u",
656 		       dm_device_name(table->md), i,
657 		       (unsigned long long) ti->begin,
658 		       (unsigned long long) ti->len,
659 		       limits->logical_block_size);
660 		return -EINVAL;
661 	}
662 
663 	return 0;
664 }
665 
666 int dm_table_add_target(struct dm_table *t, const char *type,
667 			sector_t start, sector_t len, char *params)
668 {
669 	int r = -EINVAL, argc;
670 	char **argv;
671 	struct dm_target *tgt;
672 
673 	if (t->singleton) {
674 		DMERR("%s: target type %s must appear alone in table",
675 		      dm_device_name(t->md), t->targets->type->name);
676 		return -EINVAL;
677 	}
678 
679 	BUG_ON(t->num_targets >= t->num_allocated);
680 
681 	tgt = t->targets + t->num_targets;
682 	memset(tgt, 0, sizeof(*tgt));
683 
684 	if (!len) {
685 		DMERR("%s: zero-length target", dm_device_name(t->md));
686 		return -EINVAL;
687 	}
688 
689 	tgt->type = dm_get_target_type(type);
690 	if (!tgt->type) {
691 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
692 		      type);
693 		return -EINVAL;
694 	}
695 
696 	if (dm_target_needs_singleton(tgt->type)) {
697 		if (t->num_targets) {
698 			DMERR("%s: target type %s must appear alone in table",
699 			      dm_device_name(t->md), type);
700 			return -EINVAL;
701 		}
702 		t->singleton = 1;
703 	}
704 
705 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
706 		DMERR("%s: target type %s may not be included in read-only tables",
707 		      dm_device_name(t->md), type);
708 		return -EINVAL;
709 	}
710 
711 	if (t->immutable_target_type) {
712 		if (t->immutable_target_type != tgt->type) {
713 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
714 			      dm_device_name(t->md), t->immutable_target_type->name);
715 			return -EINVAL;
716 		}
717 	} else if (dm_target_is_immutable(tgt->type)) {
718 		if (t->num_targets) {
719 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
720 			      dm_device_name(t->md), tgt->type->name);
721 			return -EINVAL;
722 		}
723 		t->immutable_target_type = tgt->type;
724 	}
725 
726 	tgt->table = t;
727 	tgt->begin = start;
728 	tgt->len = len;
729 	tgt->error = "Unknown error";
730 
731 	/*
732 	 * Does this target adjoin the previous one ?
733 	 */
734 	if (!adjoin(t, tgt)) {
735 		tgt->error = "Gap in table";
736 		r = -EINVAL;
737 		goto bad;
738 	}
739 
740 	r = dm_split_args(&argc, &argv, params);
741 	if (r) {
742 		tgt->error = "couldn't split parameters (insufficient memory)";
743 		goto bad;
744 	}
745 
746 	r = tgt->type->ctr(tgt, argc, argv);
747 	kfree(argv);
748 	if (r)
749 		goto bad;
750 
751 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
752 
753 	if (!tgt->num_discard_bios && tgt->discards_supported)
754 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
755 		       dm_device_name(t->md), type);
756 
757 	return 0;
758 
759  bad:
760 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
761 	dm_put_target_type(tgt->type);
762 	return r;
763 }
764 
765 /*
766  * Target argument parsing helpers.
767  */
768 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
769 			     unsigned *value, char **error, unsigned grouped)
770 {
771 	const char *arg_str = dm_shift_arg(arg_set);
772 	char dummy;
773 
774 	if (!arg_str ||
775 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
776 	    (*value < arg->min) ||
777 	    (*value > arg->max) ||
778 	    (grouped && arg_set->argc < *value)) {
779 		*error = arg->error;
780 		return -EINVAL;
781 	}
782 
783 	return 0;
784 }
785 
786 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
787 		unsigned *value, char **error)
788 {
789 	return validate_next_arg(arg, arg_set, value, error, 0);
790 }
791 EXPORT_SYMBOL(dm_read_arg);
792 
793 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
794 		      unsigned *value, char **error)
795 {
796 	return validate_next_arg(arg, arg_set, value, error, 1);
797 }
798 EXPORT_SYMBOL(dm_read_arg_group);
799 
800 const char *dm_shift_arg(struct dm_arg_set *as)
801 {
802 	char *r;
803 
804 	if (as->argc) {
805 		as->argc--;
806 		r = *as->argv;
807 		as->argv++;
808 		return r;
809 	}
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(dm_shift_arg);
814 
815 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
816 {
817 	BUG_ON(as->argc < num_args);
818 	as->argc -= num_args;
819 	as->argv += num_args;
820 }
821 EXPORT_SYMBOL(dm_consume_args);
822 
823 static int dm_table_set_type(struct dm_table *t)
824 {
825 	unsigned i;
826 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
827 	bool use_blk_mq = false;
828 	struct dm_target *tgt;
829 	struct dm_dev_internal *dd;
830 	struct list_head *devices;
831 	unsigned live_md_type = dm_get_md_type(t->md);
832 
833 	for (i = 0; i < t->num_targets; i++) {
834 		tgt = t->targets + i;
835 		if (dm_target_hybrid(tgt))
836 			hybrid = 1;
837 		else if (dm_target_request_based(tgt))
838 			request_based = 1;
839 		else
840 			bio_based = 1;
841 
842 		if (bio_based && request_based) {
843 			DMWARN("Inconsistent table: different target types"
844 			       " can't be mixed up");
845 			return -EINVAL;
846 		}
847 	}
848 
849 	if (hybrid && !bio_based && !request_based) {
850 		/*
851 		 * The targets can work either way.
852 		 * Determine the type from the live device.
853 		 * Default to bio-based if device is new.
854 		 */
855 		if (live_md_type == DM_TYPE_REQUEST_BASED ||
856 		    live_md_type == DM_TYPE_MQ_REQUEST_BASED)
857 			request_based = 1;
858 		else
859 			bio_based = 1;
860 	}
861 
862 	if (bio_based) {
863 		/* We must use this table as bio-based */
864 		t->type = DM_TYPE_BIO_BASED;
865 		return 0;
866 	}
867 
868 	BUG_ON(!request_based); /* No targets in this table */
869 
870 	/*
871 	 * Request-based dm supports only tables that have a single target now.
872 	 * To support multiple targets, request splitting support is needed,
873 	 * and that needs lots of changes in the block-layer.
874 	 * (e.g. request completion process for partial completion.)
875 	 */
876 	if (t->num_targets > 1) {
877 		DMWARN("Request-based dm doesn't support multiple targets yet");
878 		return -EINVAL;
879 	}
880 
881 	/* Non-request-stackable devices can't be used for request-based dm */
882 	devices = dm_table_get_devices(t);
883 	list_for_each_entry(dd, devices, list) {
884 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
885 
886 		if (!blk_queue_stackable(q)) {
887 			DMERR("table load rejected: including"
888 			      " non-request-stackable devices");
889 			return -EINVAL;
890 		}
891 
892 		if (q->mq_ops)
893 			use_blk_mq = true;
894 	}
895 
896 	if (use_blk_mq) {
897 		/* verify _all_ devices in the table are blk-mq devices */
898 		list_for_each_entry(dd, devices, list)
899 			if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
900 				DMERR("table load rejected: not all devices"
901 				      " are blk-mq request-stackable");
902 				return -EINVAL;
903 			}
904 		t->type = DM_TYPE_MQ_REQUEST_BASED;
905 
906 	} else if (hybrid && list_empty(devices) && live_md_type != DM_TYPE_NONE) {
907 		/* inherit live MD type */
908 		t->type = live_md_type;
909 
910 	} else
911 		t->type = DM_TYPE_REQUEST_BASED;
912 
913 	return 0;
914 }
915 
916 unsigned dm_table_get_type(struct dm_table *t)
917 {
918 	return t->type;
919 }
920 
921 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
922 {
923 	return t->immutable_target_type;
924 }
925 
926 bool dm_table_request_based(struct dm_table *t)
927 {
928 	unsigned table_type = dm_table_get_type(t);
929 
930 	return (table_type == DM_TYPE_REQUEST_BASED ||
931 		table_type == DM_TYPE_MQ_REQUEST_BASED);
932 }
933 
934 bool dm_table_mq_request_based(struct dm_table *t)
935 {
936 	return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
937 }
938 
939 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
940 {
941 	unsigned type = dm_table_get_type(t);
942 	unsigned per_bio_data_size = 0;
943 	struct dm_target *tgt;
944 	unsigned i;
945 
946 	if (unlikely(type == DM_TYPE_NONE)) {
947 		DMWARN("no table type is set, can't allocate mempools");
948 		return -EINVAL;
949 	}
950 
951 	if (type == DM_TYPE_BIO_BASED)
952 		for (i = 0; i < t->num_targets; i++) {
953 			tgt = t->targets + i;
954 			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
955 		}
956 
957 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
958 	if (!t->mempools)
959 		return -ENOMEM;
960 
961 	return 0;
962 }
963 
964 void dm_table_free_md_mempools(struct dm_table *t)
965 {
966 	dm_free_md_mempools(t->mempools);
967 	t->mempools = NULL;
968 }
969 
970 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
971 {
972 	return t->mempools;
973 }
974 
975 static int setup_indexes(struct dm_table *t)
976 {
977 	int i;
978 	unsigned int total = 0;
979 	sector_t *indexes;
980 
981 	/* allocate the space for *all* the indexes */
982 	for (i = t->depth - 2; i >= 0; i--) {
983 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
984 		total += t->counts[i];
985 	}
986 
987 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
988 	if (!indexes)
989 		return -ENOMEM;
990 
991 	/* set up internal nodes, bottom-up */
992 	for (i = t->depth - 2; i >= 0; i--) {
993 		t->index[i] = indexes;
994 		indexes += (KEYS_PER_NODE * t->counts[i]);
995 		setup_btree_index(i, t);
996 	}
997 
998 	return 0;
999 }
1000 
1001 /*
1002  * Builds the btree to index the map.
1003  */
1004 static int dm_table_build_index(struct dm_table *t)
1005 {
1006 	int r = 0;
1007 	unsigned int leaf_nodes;
1008 
1009 	/* how many indexes will the btree have ? */
1010 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1011 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1012 
1013 	/* leaf layer has already been set up */
1014 	t->counts[t->depth - 1] = leaf_nodes;
1015 	t->index[t->depth - 1] = t->highs;
1016 
1017 	if (t->depth >= 2)
1018 		r = setup_indexes(t);
1019 
1020 	return r;
1021 }
1022 
1023 /*
1024  * Get a disk whose integrity profile reflects the table's profile.
1025  * If %match_all is true, all devices' profiles must match.
1026  * If %match_all is false, all devices must at least have an
1027  * allocated integrity profile; but uninitialized is ok.
1028  * Returns NULL if integrity support was inconsistent or unavailable.
1029  */
1030 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1031 						    bool match_all)
1032 {
1033 	struct list_head *devices = dm_table_get_devices(t);
1034 	struct dm_dev_internal *dd = NULL;
1035 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1036 
1037 	list_for_each_entry(dd, devices, list) {
1038 		template_disk = dd->dm_dev->bdev->bd_disk;
1039 		if (!blk_get_integrity(template_disk))
1040 			goto no_integrity;
1041 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1042 			continue; /* skip uninitialized profiles */
1043 		else if (prev_disk &&
1044 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1045 			goto no_integrity;
1046 		prev_disk = template_disk;
1047 	}
1048 
1049 	return template_disk;
1050 
1051 no_integrity:
1052 	if (prev_disk)
1053 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1054 		       dm_device_name(t->md),
1055 		       prev_disk->disk_name,
1056 		       template_disk->disk_name);
1057 	return NULL;
1058 }
1059 
1060 /*
1061  * Register the mapped device for blk_integrity support if
1062  * the underlying devices have an integrity profile.  But all devices
1063  * may not have matching profiles (checking all devices isn't reliable
1064  * during table load because this table may use other DM device(s) which
1065  * must be resumed before they will have an initialized integity profile).
1066  * Stacked DM devices force a 2 stage integrity profile validation:
1067  * 1 - during load, validate all initialized integrity profiles match
1068  * 2 - during resume, validate all integrity profiles match
1069  */
1070 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1071 {
1072 	struct gendisk *template_disk = NULL;
1073 
1074 	template_disk = dm_table_get_integrity_disk(t, false);
1075 	if (!template_disk)
1076 		return 0;
1077 
1078 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1079 		t->integrity_supported = 1;
1080 		return blk_integrity_register(dm_disk(md), NULL);
1081 	}
1082 
1083 	/*
1084 	 * If DM device already has an initalized integrity
1085 	 * profile the new profile should not conflict.
1086 	 */
1087 	if (blk_integrity_is_initialized(template_disk) &&
1088 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1089 		DMWARN("%s: conflict with existing integrity profile: "
1090 		       "%s profile mismatch",
1091 		       dm_device_name(t->md),
1092 		       template_disk->disk_name);
1093 		return 1;
1094 	}
1095 
1096 	/* Preserve existing initialized integrity profile */
1097 	t->integrity_supported = 1;
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Prepares the table for use by building the indices,
1103  * setting the type, and allocating mempools.
1104  */
1105 int dm_table_complete(struct dm_table *t)
1106 {
1107 	int r;
1108 
1109 	r = dm_table_set_type(t);
1110 	if (r) {
1111 		DMERR("unable to set table type");
1112 		return r;
1113 	}
1114 
1115 	r = dm_table_build_index(t);
1116 	if (r) {
1117 		DMERR("unable to build btrees");
1118 		return r;
1119 	}
1120 
1121 	r = dm_table_prealloc_integrity(t, t->md);
1122 	if (r) {
1123 		DMERR("could not register integrity profile.");
1124 		return r;
1125 	}
1126 
1127 	r = dm_table_alloc_md_mempools(t, t->md);
1128 	if (r)
1129 		DMERR("unable to allocate mempools");
1130 
1131 	return r;
1132 }
1133 
1134 static DEFINE_MUTEX(_event_lock);
1135 void dm_table_event_callback(struct dm_table *t,
1136 			     void (*fn)(void *), void *context)
1137 {
1138 	mutex_lock(&_event_lock);
1139 	t->event_fn = fn;
1140 	t->event_context = context;
1141 	mutex_unlock(&_event_lock);
1142 }
1143 
1144 void dm_table_event(struct dm_table *t)
1145 {
1146 	/*
1147 	 * You can no longer call dm_table_event() from interrupt
1148 	 * context, use a bottom half instead.
1149 	 */
1150 	BUG_ON(in_interrupt());
1151 
1152 	mutex_lock(&_event_lock);
1153 	if (t->event_fn)
1154 		t->event_fn(t->event_context);
1155 	mutex_unlock(&_event_lock);
1156 }
1157 EXPORT_SYMBOL(dm_table_event);
1158 
1159 sector_t dm_table_get_size(struct dm_table *t)
1160 {
1161 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1162 }
1163 EXPORT_SYMBOL(dm_table_get_size);
1164 
1165 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1166 {
1167 	if (index >= t->num_targets)
1168 		return NULL;
1169 
1170 	return t->targets + index;
1171 }
1172 
1173 /*
1174  * Search the btree for the correct target.
1175  *
1176  * Caller should check returned pointer with dm_target_is_valid()
1177  * to trap I/O beyond end of device.
1178  */
1179 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1180 {
1181 	unsigned int l, n = 0, k = 0;
1182 	sector_t *node;
1183 
1184 	for (l = 0; l < t->depth; l++) {
1185 		n = get_child(n, k);
1186 		node = get_node(t, l, n);
1187 
1188 		for (k = 0; k < KEYS_PER_NODE; k++)
1189 			if (node[k] >= sector)
1190 				break;
1191 	}
1192 
1193 	return &t->targets[(KEYS_PER_NODE * n) + k];
1194 }
1195 
1196 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1197 			sector_t start, sector_t len, void *data)
1198 {
1199 	unsigned *num_devices = data;
1200 
1201 	(*num_devices)++;
1202 
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Check whether a table has no data devices attached using each
1208  * target's iterate_devices method.
1209  * Returns false if the result is unknown because a target doesn't
1210  * support iterate_devices.
1211  */
1212 bool dm_table_has_no_data_devices(struct dm_table *table)
1213 {
1214 	struct dm_target *uninitialized_var(ti);
1215 	unsigned i = 0, num_devices = 0;
1216 
1217 	while (i < dm_table_get_num_targets(table)) {
1218 		ti = dm_table_get_target(table, i++);
1219 
1220 		if (!ti->type->iterate_devices)
1221 			return false;
1222 
1223 		ti->type->iterate_devices(ti, count_device, &num_devices);
1224 		if (num_devices)
1225 			return false;
1226 	}
1227 
1228 	return true;
1229 }
1230 
1231 /*
1232  * Establish the new table's queue_limits and validate them.
1233  */
1234 int dm_calculate_queue_limits(struct dm_table *table,
1235 			      struct queue_limits *limits)
1236 {
1237 	struct dm_target *uninitialized_var(ti);
1238 	struct queue_limits ti_limits;
1239 	unsigned i = 0;
1240 
1241 	blk_set_stacking_limits(limits);
1242 
1243 	while (i < dm_table_get_num_targets(table)) {
1244 		blk_set_stacking_limits(&ti_limits);
1245 
1246 		ti = dm_table_get_target(table, i++);
1247 
1248 		if (!ti->type->iterate_devices)
1249 			goto combine_limits;
1250 
1251 		/*
1252 		 * Combine queue limits of all the devices this target uses.
1253 		 */
1254 		ti->type->iterate_devices(ti, dm_set_device_limits,
1255 					  &ti_limits);
1256 
1257 		/* Set I/O hints portion of queue limits */
1258 		if (ti->type->io_hints)
1259 			ti->type->io_hints(ti, &ti_limits);
1260 
1261 		/*
1262 		 * Check each device area is consistent with the target's
1263 		 * overall queue limits.
1264 		 */
1265 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1266 					      &ti_limits))
1267 			return -EINVAL;
1268 
1269 combine_limits:
1270 		/*
1271 		 * Merge this target's queue limits into the overall limits
1272 		 * for the table.
1273 		 */
1274 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1275 			DMWARN("%s: adding target device "
1276 			       "(start sect %llu len %llu) "
1277 			       "caused an alignment inconsistency",
1278 			       dm_device_name(table->md),
1279 			       (unsigned long long) ti->begin,
1280 			       (unsigned long long) ti->len);
1281 	}
1282 
1283 	return validate_hardware_logical_block_alignment(table, limits);
1284 }
1285 
1286 /*
1287  * Set the integrity profile for this device if all devices used have
1288  * matching profiles.  We're quite deep in the resume path but still
1289  * don't know if all devices (particularly DM devices this device
1290  * may be stacked on) have matching profiles.  Even if the profiles
1291  * don't match we have no way to fail (to resume) at this point.
1292  */
1293 static void dm_table_set_integrity(struct dm_table *t)
1294 {
1295 	struct gendisk *template_disk = NULL;
1296 
1297 	if (!blk_get_integrity(dm_disk(t->md)))
1298 		return;
1299 
1300 	template_disk = dm_table_get_integrity_disk(t, true);
1301 	if (template_disk)
1302 		blk_integrity_register(dm_disk(t->md),
1303 				       blk_get_integrity(template_disk));
1304 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1305 		DMWARN("%s: device no longer has a valid integrity profile",
1306 		       dm_device_name(t->md));
1307 	else
1308 		DMWARN("%s: unable to establish an integrity profile",
1309 		       dm_device_name(t->md));
1310 }
1311 
1312 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1313 				sector_t start, sector_t len, void *data)
1314 {
1315 	unsigned flush = (*(unsigned *)data);
1316 	struct request_queue *q = bdev_get_queue(dev->bdev);
1317 
1318 	return q && (q->flush_flags & flush);
1319 }
1320 
1321 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1322 {
1323 	struct dm_target *ti;
1324 	unsigned i = 0;
1325 
1326 	/*
1327 	 * Require at least one underlying device to support flushes.
1328 	 * t->devices includes internal dm devices such as mirror logs
1329 	 * so we need to use iterate_devices here, which targets
1330 	 * supporting flushes must provide.
1331 	 */
1332 	while (i < dm_table_get_num_targets(t)) {
1333 		ti = dm_table_get_target(t, i++);
1334 
1335 		if (!ti->num_flush_bios)
1336 			continue;
1337 
1338 		if (ti->flush_supported)
1339 			return true;
1340 
1341 		if (ti->type->iterate_devices &&
1342 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1343 			return true;
1344 	}
1345 
1346 	return false;
1347 }
1348 
1349 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1350 {
1351 	struct dm_target *ti;
1352 	unsigned i = 0;
1353 
1354 	/* Ensure that all targets supports discard_zeroes_data. */
1355 	while (i < dm_table_get_num_targets(t)) {
1356 		ti = dm_table_get_target(t, i++);
1357 
1358 		if (ti->discard_zeroes_data_unsupported)
1359 			return false;
1360 	}
1361 
1362 	return true;
1363 }
1364 
1365 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1366 			    sector_t start, sector_t len, void *data)
1367 {
1368 	struct request_queue *q = bdev_get_queue(dev->bdev);
1369 
1370 	return q && blk_queue_nonrot(q);
1371 }
1372 
1373 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1374 			     sector_t start, sector_t len, void *data)
1375 {
1376 	struct request_queue *q = bdev_get_queue(dev->bdev);
1377 
1378 	return q && !blk_queue_add_random(q);
1379 }
1380 
1381 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1382 				   sector_t start, sector_t len, void *data)
1383 {
1384 	struct request_queue *q = bdev_get_queue(dev->bdev);
1385 
1386 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1387 }
1388 
1389 static int queue_supports_sg_gaps(struct dm_target *ti, struct dm_dev *dev,
1390 				  sector_t start, sector_t len, void *data)
1391 {
1392 	struct request_queue *q = bdev_get_queue(dev->bdev);
1393 
1394 	return q && !test_bit(QUEUE_FLAG_SG_GAPS, &q->queue_flags);
1395 }
1396 
1397 static bool dm_table_all_devices_attribute(struct dm_table *t,
1398 					   iterate_devices_callout_fn func)
1399 {
1400 	struct dm_target *ti;
1401 	unsigned i = 0;
1402 
1403 	while (i < dm_table_get_num_targets(t)) {
1404 		ti = dm_table_get_target(t, i++);
1405 
1406 		if (!ti->type->iterate_devices ||
1407 		    !ti->type->iterate_devices(ti, func, NULL))
1408 			return false;
1409 	}
1410 
1411 	return true;
1412 }
1413 
1414 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1415 					 sector_t start, sector_t len, void *data)
1416 {
1417 	struct request_queue *q = bdev_get_queue(dev->bdev);
1418 
1419 	return q && !q->limits.max_write_same_sectors;
1420 }
1421 
1422 static bool dm_table_supports_write_same(struct dm_table *t)
1423 {
1424 	struct dm_target *ti;
1425 	unsigned i = 0;
1426 
1427 	while (i < dm_table_get_num_targets(t)) {
1428 		ti = dm_table_get_target(t, i++);
1429 
1430 		if (!ti->num_write_same_bios)
1431 			return false;
1432 
1433 		if (!ti->type->iterate_devices ||
1434 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1435 			return false;
1436 	}
1437 
1438 	return true;
1439 }
1440 
1441 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1442 				  sector_t start, sector_t len, void *data)
1443 {
1444 	struct request_queue *q = bdev_get_queue(dev->bdev);
1445 
1446 	return q && blk_queue_discard(q);
1447 }
1448 
1449 static bool dm_table_supports_discards(struct dm_table *t)
1450 {
1451 	struct dm_target *ti;
1452 	unsigned i = 0;
1453 
1454 	/*
1455 	 * Unless any target used by the table set discards_supported,
1456 	 * require at least one underlying device to support discards.
1457 	 * t->devices includes internal dm devices such as mirror logs
1458 	 * so we need to use iterate_devices here, which targets
1459 	 * supporting discard selectively must provide.
1460 	 */
1461 	while (i < dm_table_get_num_targets(t)) {
1462 		ti = dm_table_get_target(t, i++);
1463 
1464 		if (!ti->num_discard_bios)
1465 			continue;
1466 
1467 		if (ti->discards_supported)
1468 			return true;
1469 
1470 		if (ti->type->iterate_devices &&
1471 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1472 			return true;
1473 	}
1474 
1475 	return false;
1476 }
1477 
1478 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1479 			       struct queue_limits *limits)
1480 {
1481 	unsigned flush = 0;
1482 
1483 	/*
1484 	 * Copy table's limits to the DM device's request_queue
1485 	 */
1486 	q->limits = *limits;
1487 
1488 	if (!dm_table_supports_discards(t))
1489 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1490 	else
1491 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1492 
1493 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1494 		flush |= REQ_FLUSH;
1495 		if (dm_table_supports_flush(t, REQ_FUA))
1496 			flush |= REQ_FUA;
1497 	}
1498 	blk_queue_flush(q, flush);
1499 
1500 	if (!dm_table_discard_zeroes_data(t))
1501 		q->limits.discard_zeroes_data = 0;
1502 
1503 	/* Ensure that all underlying devices are non-rotational. */
1504 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1505 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1506 	else
1507 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1508 
1509 	if (!dm_table_supports_write_same(t))
1510 		q->limits.max_write_same_sectors = 0;
1511 
1512 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1513 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1514 	else
1515 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1516 
1517 	if (dm_table_all_devices_attribute(t, queue_supports_sg_gaps))
1518 		queue_flag_clear_unlocked(QUEUE_FLAG_SG_GAPS, q);
1519 	else
1520 		queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, q);
1521 
1522 	dm_table_set_integrity(t);
1523 
1524 	/*
1525 	 * Determine whether or not this queue's I/O timings contribute
1526 	 * to the entropy pool, Only request-based targets use this.
1527 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1528 	 * have it set.
1529 	 */
1530 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1531 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1532 
1533 	/*
1534 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1535 	 * visible to other CPUs because, once the flag is set, incoming bios
1536 	 * are processed by request-based dm, which refers to the queue
1537 	 * settings.
1538 	 * Until the flag set, bios are passed to bio-based dm and queued to
1539 	 * md->deferred where queue settings are not needed yet.
1540 	 * Those bios are passed to request-based dm at the resume time.
1541 	 */
1542 	smp_mb();
1543 	if (dm_table_request_based(t))
1544 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1545 }
1546 
1547 unsigned int dm_table_get_num_targets(struct dm_table *t)
1548 {
1549 	return t->num_targets;
1550 }
1551 
1552 struct list_head *dm_table_get_devices(struct dm_table *t)
1553 {
1554 	return &t->devices;
1555 }
1556 
1557 fmode_t dm_table_get_mode(struct dm_table *t)
1558 {
1559 	return t->mode;
1560 }
1561 EXPORT_SYMBOL(dm_table_get_mode);
1562 
1563 enum suspend_mode {
1564 	PRESUSPEND,
1565 	PRESUSPEND_UNDO,
1566 	POSTSUSPEND,
1567 };
1568 
1569 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1570 {
1571 	int i = t->num_targets;
1572 	struct dm_target *ti = t->targets;
1573 
1574 	while (i--) {
1575 		switch (mode) {
1576 		case PRESUSPEND:
1577 			if (ti->type->presuspend)
1578 				ti->type->presuspend(ti);
1579 			break;
1580 		case PRESUSPEND_UNDO:
1581 			if (ti->type->presuspend_undo)
1582 				ti->type->presuspend_undo(ti);
1583 			break;
1584 		case POSTSUSPEND:
1585 			if (ti->type->postsuspend)
1586 				ti->type->postsuspend(ti);
1587 			break;
1588 		}
1589 		ti++;
1590 	}
1591 }
1592 
1593 void dm_table_presuspend_targets(struct dm_table *t)
1594 {
1595 	if (!t)
1596 		return;
1597 
1598 	suspend_targets(t, PRESUSPEND);
1599 }
1600 
1601 void dm_table_presuspend_undo_targets(struct dm_table *t)
1602 {
1603 	if (!t)
1604 		return;
1605 
1606 	suspend_targets(t, PRESUSPEND_UNDO);
1607 }
1608 
1609 void dm_table_postsuspend_targets(struct dm_table *t)
1610 {
1611 	if (!t)
1612 		return;
1613 
1614 	suspend_targets(t, POSTSUSPEND);
1615 }
1616 
1617 int dm_table_resume_targets(struct dm_table *t)
1618 {
1619 	int i, r = 0;
1620 
1621 	for (i = 0; i < t->num_targets; i++) {
1622 		struct dm_target *ti = t->targets + i;
1623 
1624 		if (!ti->type->preresume)
1625 			continue;
1626 
1627 		r = ti->type->preresume(ti);
1628 		if (r) {
1629 			DMERR("%s: %s: preresume failed, error = %d",
1630 			      dm_device_name(t->md), ti->type->name, r);
1631 			return r;
1632 		}
1633 	}
1634 
1635 	for (i = 0; i < t->num_targets; i++) {
1636 		struct dm_target *ti = t->targets + i;
1637 
1638 		if (ti->type->resume)
1639 			ti->type->resume(ti);
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1646 {
1647 	list_add(&cb->list, &t->target_callbacks);
1648 }
1649 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1650 
1651 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1652 {
1653 	struct dm_dev_internal *dd;
1654 	struct list_head *devices = dm_table_get_devices(t);
1655 	struct dm_target_callbacks *cb;
1656 	int r = 0;
1657 
1658 	list_for_each_entry(dd, devices, list) {
1659 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1660 		char b[BDEVNAME_SIZE];
1661 
1662 		if (likely(q))
1663 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1664 		else
1665 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1666 				     dm_device_name(t->md),
1667 				     bdevname(dd->dm_dev->bdev, b));
1668 	}
1669 
1670 	list_for_each_entry(cb, &t->target_callbacks, list)
1671 		if (cb->congested_fn)
1672 			r |= cb->congested_fn(cb, bdi_bits);
1673 
1674 	return r;
1675 }
1676 
1677 struct mapped_device *dm_table_get_md(struct dm_table *t)
1678 {
1679 	return t->md;
1680 }
1681 EXPORT_SYMBOL(dm_table_get_md);
1682 
1683 void dm_table_run_md_queue_async(struct dm_table *t)
1684 {
1685 	struct mapped_device *md;
1686 	struct request_queue *queue;
1687 	unsigned long flags;
1688 
1689 	if (!dm_table_request_based(t))
1690 		return;
1691 
1692 	md = dm_table_get_md(t);
1693 	queue = dm_get_md_queue(md);
1694 	if (queue) {
1695 		if (queue->mq_ops)
1696 			blk_mq_run_hw_queues(queue, true);
1697 		else {
1698 			spin_lock_irqsave(queue->queue_lock, flags);
1699 			blk_run_queue_async(queue);
1700 			spin_unlock_irqrestore(queue->queue_lock, flags);
1701 		}
1702 	}
1703 }
1704 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1705 
1706