xref: /linux/drivers/md/dm-table.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
19 
20 #define DM_MSG_PREFIX "table"
21 
22 #define MAX_DEPTH 16
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
26 
27 struct dm_table {
28 	struct mapped_device *md;
29 	atomic_t holders;
30 
31 	/* btree table */
32 	unsigned int depth;
33 	unsigned int counts[MAX_DEPTH];	/* in nodes */
34 	sector_t *index[MAX_DEPTH];
35 
36 	unsigned int num_targets;
37 	unsigned int num_allocated;
38 	sector_t *highs;
39 	struct dm_target *targets;
40 
41 	/*
42 	 * Indicates the rw permissions for the new logical
43 	 * device.  This should be a combination of FMODE_READ
44 	 * and FMODE_WRITE.
45 	 */
46 	int mode;
47 
48 	/* a list of devices used by this table */
49 	struct list_head devices;
50 
51 	/*
52 	 * These are optimistic limits taken from all the
53 	 * targets, some targets will need smaller limits.
54 	 */
55 	struct io_restrictions limits;
56 
57 	/* events get handed up using this callback */
58 	void (*event_fn)(void *);
59 	void *event_context;
60 };
61 
62 /*
63  * Similar to ceiling(log_size(n))
64  */
65 static unsigned int int_log(unsigned int n, unsigned int base)
66 {
67 	int result = 0;
68 
69 	while (n > 1) {
70 		n = dm_div_up(n, base);
71 		result++;
72 	}
73 
74 	return result;
75 }
76 
77 /*
78  * Returns the minimum that is _not_ zero, unless both are zero.
79  */
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
81 
82 /*
83  * Combine two io_restrictions, always taking the lower value.
84  */
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 				     struct io_restrictions *rhs)
87 {
88 	lhs->max_sectors =
89 		min_not_zero(lhs->max_sectors, rhs->max_sectors);
90 
91 	lhs->max_phys_segments =
92 		min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
93 
94 	lhs->max_hw_segments =
95 		min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
96 
97 	lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
98 
99 	lhs->max_segment_size =
100 		min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
101 
102 	lhs->max_hw_sectors =
103 		min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
104 
105 	lhs->seg_boundary_mask =
106 		min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
107 
108 	lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
109 
110 	lhs->no_cluster |= rhs->no_cluster;
111 }
112 
113 /*
114  * Calculate the index of the child node of the n'th node k'th key.
115  */
116 static inline unsigned int get_child(unsigned int n, unsigned int k)
117 {
118 	return (n * CHILDREN_PER_NODE) + k;
119 }
120 
121 /*
122  * Return the n'th node of level l from table t.
123  */
124 static inline sector_t *get_node(struct dm_table *t,
125 				 unsigned int l, unsigned int n)
126 {
127 	return t->index[l] + (n * KEYS_PER_NODE);
128 }
129 
130 /*
131  * Return the highest key that you could lookup from the n'th
132  * node on level l of the btree.
133  */
134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
135 {
136 	for (; l < t->depth - 1; l++)
137 		n = get_child(n, CHILDREN_PER_NODE - 1);
138 
139 	if (n >= t->counts[l])
140 		return (sector_t) - 1;
141 
142 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
143 }
144 
145 /*
146  * Fills in a level of the btree based on the highs of the level
147  * below it.
148  */
149 static int setup_btree_index(unsigned int l, struct dm_table *t)
150 {
151 	unsigned int n, k;
152 	sector_t *node;
153 
154 	for (n = 0U; n < t->counts[l]; n++) {
155 		node = get_node(t, l, n);
156 
157 		for (k = 0U; k < KEYS_PER_NODE; k++)
158 			node[k] = high(t, l + 1, get_child(n, k));
159 	}
160 
161 	return 0;
162 }
163 
164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
165 {
166 	unsigned long size;
167 	void *addr;
168 
169 	/*
170 	 * Check that we're not going to overflow.
171 	 */
172 	if (nmemb > (ULONG_MAX / elem_size))
173 		return NULL;
174 
175 	size = nmemb * elem_size;
176 	addr = vmalloc(size);
177 	if (addr)
178 		memset(addr, 0, size);
179 
180 	return addr;
181 }
182 
183 /*
184  * highs, and targets are managed as dynamic arrays during a
185  * table load.
186  */
187 static int alloc_targets(struct dm_table *t, unsigned int num)
188 {
189 	sector_t *n_highs;
190 	struct dm_target *n_targets;
191 	int n = t->num_targets;
192 
193 	/*
194 	 * Allocate both the target array and offset array at once.
195 	 * Append an empty entry to catch sectors beyond the end of
196 	 * the device.
197 	 */
198 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
199 					  sizeof(sector_t));
200 	if (!n_highs)
201 		return -ENOMEM;
202 
203 	n_targets = (struct dm_target *) (n_highs + num);
204 
205 	if (n) {
206 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
207 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
208 	}
209 
210 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
211 	vfree(t->highs);
212 
213 	t->num_allocated = num;
214 	t->highs = n_highs;
215 	t->targets = n_targets;
216 
217 	return 0;
218 }
219 
220 int dm_table_create(struct dm_table **result, int mode,
221 		    unsigned num_targets, struct mapped_device *md)
222 {
223 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
224 
225 	if (!t)
226 		return -ENOMEM;
227 
228 	INIT_LIST_HEAD(&t->devices);
229 	atomic_set(&t->holders, 1);
230 
231 	if (!num_targets)
232 		num_targets = KEYS_PER_NODE;
233 
234 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
235 
236 	if (alloc_targets(t, num_targets)) {
237 		kfree(t);
238 		t = NULL;
239 		return -ENOMEM;
240 	}
241 
242 	t->mode = mode;
243 	t->md = md;
244 	*result = t;
245 	return 0;
246 }
247 
248 int dm_create_error_table(struct dm_table **result, struct mapped_device *md)
249 {
250 	struct dm_table *t;
251 	sector_t dev_size = 1;
252 	int r;
253 
254 	/*
255 	 * Find current size of device.
256 	 * Default to 1 sector if inactive.
257 	 */
258 	t = dm_get_table(md);
259 	if (t) {
260 		dev_size = dm_table_get_size(t);
261 		dm_table_put(t);
262 	}
263 
264 	r = dm_table_create(&t, FMODE_READ, 1, md);
265 	if (r)
266 		return r;
267 
268 	r = dm_table_add_target(t, "error", 0, dev_size, NULL);
269 	if (r)
270 		goto out;
271 
272 	r = dm_table_complete(t);
273 	if (r)
274 		goto out;
275 
276 	*result = t;
277 
278 out:
279 	if (r)
280 		dm_table_put(t);
281 
282 	return r;
283 }
284 EXPORT_SYMBOL_GPL(dm_create_error_table);
285 
286 static void free_devices(struct list_head *devices)
287 {
288 	struct list_head *tmp, *next;
289 
290 	for (tmp = devices->next; tmp != devices; tmp = next) {
291 		struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
292 		next = tmp->next;
293 		kfree(dd);
294 	}
295 }
296 
297 static void table_destroy(struct dm_table *t)
298 {
299 	unsigned int i;
300 
301 	/* free the indexes (see dm_table_complete) */
302 	if (t->depth >= 2)
303 		vfree(t->index[t->depth - 2]);
304 
305 	/* free the targets */
306 	for (i = 0; i < t->num_targets; i++) {
307 		struct dm_target *tgt = t->targets + i;
308 
309 		if (tgt->type->dtr)
310 			tgt->type->dtr(tgt);
311 
312 		dm_put_target_type(tgt->type);
313 	}
314 
315 	vfree(t->highs);
316 
317 	/* free the device list */
318 	if (t->devices.next != &t->devices) {
319 		DMWARN("devices still present during destroy: "
320 		       "dm_table_remove_device calls missing");
321 
322 		free_devices(&t->devices);
323 	}
324 
325 	kfree(t);
326 }
327 
328 void dm_table_get(struct dm_table *t)
329 {
330 	atomic_inc(&t->holders);
331 }
332 
333 void dm_table_put(struct dm_table *t)
334 {
335 	if (!t)
336 		return;
337 
338 	if (atomic_dec_and_test(&t->holders))
339 		table_destroy(t);
340 }
341 
342 /*
343  * Checks to see if we need to extend highs or targets.
344  */
345 static inline int check_space(struct dm_table *t)
346 {
347 	if (t->num_targets >= t->num_allocated)
348 		return alloc_targets(t, t->num_allocated * 2);
349 
350 	return 0;
351 }
352 
353 /*
354  * Convert a device path to a dev_t.
355  */
356 static int lookup_device(const char *path, dev_t *dev)
357 {
358 	int r;
359 	struct nameidata nd;
360 	struct inode *inode;
361 
362 	if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
363 		return r;
364 
365 	inode = nd.dentry->d_inode;
366 	if (!inode) {
367 		r = -ENOENT;
368 		goto out;
369 	}
370 
371 	if (!S_ISBLK(inode->i_mode)) {
372 		r = -ENOTBLK;
373 		goto out;
374 	}
375 
376 	*dev = inode->i_rdev;
377 
378  out:
379 	path_release(&nd);
380 	return r;
381 }
382 
383 /*
384  * See if we've already got a device in the list.
385  */
386 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
387 {
388 	struct dm_dev *dd;
389 
390 	list_for_each_entry (dd, l, list)
391 		if (dd->bdev->bd_dev == dev)
392 			return dd;
393 
394 	return NULL;
395 }
396 
397 /*
398  * Open a device so we can use it as a map destination.
399  */
400 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
401 {
402 	static char *_claim_ptr = "I belong to device-mapper";
403 	struct block_device *bdev;
404 
405 	int r;
406 
407 	BUG_ON(d->bdev);
408 
409 	bdev = open_by_devnum(dev, d->mode);
410 	if (IS_ERR(bdev))
411 		return PTR_ERR(bdev);
412 	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
413 	if (r)
414 		blkdev_put(bdev);
415 	else
416 		d->bdev = bdev;
417 	return r;
418 }
419 
420 /*
421  * Close a device that we've been using.
422  */
423 static void close_dev(struct dm_dev *d, struct mapped_device *md)
424 {
425 	if (!d->bdev)
426 		return;
427 
428 	bd_release_from_disk(d->bdev, dm_disk(md));
429 	blkdev_put(d->bdev);
430 	d->bdev = NULL;
431 }
432 
433 /*
434  * If possible, this checks an area of a destination device is valid.
435  */
436 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
437 {
438 	sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
439 
440 	if (!dev_size)
441 		return 1;
442 
443 	return ((start < dev_size) && (len <= (dev_size - start)));
444 }
445 
446 /*
447  * This upgrades the mode on an already open dm_dev.  Being
448  * careful to leave things as they were if we fail to reopen the
449  * device.
450  */
451 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
452 {
453 	int r;
454 	struct dm_dev dd_copy;
455 	dev_t dev = dd->bdev->bd_dev;
456 
457 	dd_copy = *dd;
458 
459 	dd->mode |= new_mode;
460 	dd->bdev = NULL;
461 	r = open_dev(dd, dev, md);
462 	if (!r)
463 		close_dev(&dd_copy, md);
464 	else
465 		*dd = dd_copy;
466 
467 	return r;
468 }
469 
470 /*
471  * Add a device to the list, or just increment the usage count if
472  * it's already present.
473  */
474 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
475 			      const char *path, sector_t start, sector_t len,
476 			      int mode, struct dm_dev **result)
477 {
478 	int r;
479 	dev_t dev;
480 	struct dm_dev *dd;
481 	unsigned int major, minor;
482 
483 	BUG_ON(!t);
484 
485 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
486 		/* Extract the major/minor numbers */
487 		dev = MKDEV(major, minor);
488 		if (MAJOR(dev) != major || MINOR(dev) != minor)
489 			return -EOVERFLOW;
490 	} else {
491 		/* convert the path to a device */
492 		if ((r = lookup_device(path, &dev)))
493 			return r;
494 	}
495 
496 	dd = find_device(&t->devices, dev);
497 	if (!dd) {
498 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
499 		if (!dd)
500 			return -ENOMEM;
501 
502 		dd->mode = mode;
503 		dd->bdev = NULL;
504 
505 		if ((r = open_dev(dd, dev, t->md))) {
506 			kfree(dd);
507 			return r;
508 		}
509 
510 		format_dev_t(dd->name, dev);
511 
512 		atomic_set(&dd->count, 0);
513 		list_add(&dd->list, &t->devices);
514 
515 	} else if (dd->mode != (mode | dd->mode)) {
516 		r = upgrade_mode(dd, mode, t->md);
517 		if (r)
518 			return r;
519 	}
520 	atomic_inc(&dd->count);
521 
522 	if (!check_device_area(dd, start, len)) {
523 		DMWARN("device %s too small for target", path);
524 		dm_put_device(ti, dd);
525 		return -EINVAL;
526 	}
527 
528 	*result = dd;
529 
530 	return 0;
531 }
532 
533 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
534 {
535 	struct request_queue *q = bdev_get_queue(bdev);
536 	struct io_restrictions *rs = &ti->limits;
537 
538 	/*
539 	 * Combine the device limits low.
540 	 *
541 	 * FIXME: if we move an io_restriction struct
542 	 *        into q this would just be a call to
543 	 *        combine_restrictions_low()
544 	 */
545 	rs->max_sectors =
546 		min_not_zero(rs->max_sectors, q->max_sectors);
547 
548 	/* FIXME: Device-Mapper on top of RAID-0 breaks because DM
549 	 *        currently doesn't honor MD's merge_bvec_fn routine.
550 	 *        In this case, we'll force DM to use PAGE_SIZE or
551 	 *        smaller I/O, just to be safe. A better fix is in the
552 	 *        works, but add this for the time being so it will at
553 	 *        least operate correctly.
554 	 */
555 	if (q->merge_bvec_fn)
556 		rs->max_sectors =
557 			min_not_zero(rs->max_sectors,
558 				     (unsigned int) (PAGE_SIZE >> 9));
559 
560 	rs->max_phys_segments =
561 		min_not_zero(rs->max_phys_segments,
562 			     q->max_phys_segments);
563 
564 	rs->max_hw_segments =
565 		min_not_zero(rs->max_hw_segments, q->max_hw_segments);
566 
567 	rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
568 
569 	rs->max_segment_size =
570 		min_not_zero(rs->max_segment_size, q->max_segment_size);
571 
572 	rs->max_hw_sectors =
573 		min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
574 
575 	rs->seg_boundary_mask =
576 		min_not_zero(rs->seg_boundary_mask,
577 			     q->seg_boundary_mask);
578 
579 	rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
580 
581 	rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
582 }
583 EXPORT_SYMBOL_GPL(dm_set_device_limits);
584 
585 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
586 		  sector_t len, int mode, struct dm_dev **result)
587 {
588 	int r = __table_get_device(ti->table, ti, path,
589 				   start, len, mode, result);
590 
591 	if (!r)
592 		dm_set_device_limits(ti, (*result)->bdev);
593 
594 	return r;
595 }
596 
597 /*
598  * Decrement a devices use count and remove it if necessary.
599  */
600 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
601 {
602 	if (atomic_dec_and_test(&dd->count)) {
603 		close_dev(dd, ti->table->md);
604 		list_del(&dd->list);
605 		kfree(dd);
606 	}
607 }
608 
609 /*
610  * Checks to see if the target joins onto the end of the table.
611  */
612 static int adjoin(struct dm_table *table, struct dm_target *ti)
613 {
614 	struct dm_target *prev;
615 
616 	if (!table->num_targets)
617 		return !ti->begin;
618 
619 	prev = &table->targets[table->num_targets - 1];
620 	return (ti->begin == (prev->begin + prev->len));
621 }
622 
623 /*
624  * Used to dynamically allocate the arg array.
625  */
626 static char **realloc_argv(unsigned *array_size, char **old_argv)
627 {
628 	char **argv;
629 	unsigned new_size;
630 
631 	new_size = *array_size ? *array_size * 2 : 64;
632 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
633 	if (argv) {
634 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
635 		*array_size = new_size;
636 	}
637 
638 	kfree(old_argv);
639 	return argv;
640 }
641 
642 /*
643  * Destructively splits up the argument list to pass to ctr.
644  */
645 int dm_split_args(int *argc, char ***argvp, char *input)
646 {
647 	char *start, *end = input, *out, **argv = NULL;
648 	unsigned array_size = 0;
649 
650 	*argc = 0;
651 
652 	if (!input) {
653 		*argvp = NULL;
654 		return 0;
655 	}
656 
657 	argv = realloc_argv(&array_size, argv);
658 	if (!argv)
659 		return -ENOMEM;
660 
661 	while (1) {
662 		start = end;
663 
664 		/* Skip whitespace */
665 		while (*start && isspace(*start))
666 			start++;
667 
668 		if (!*start)
669 			break;	/* success, we hit the end */
670 
671 		/* 'out' is used to remove any back-quotes */
672 		end = out = start;
673 		while (*end) {
674 			/* Everything apart from '\0' can be quoted */
675 			if (*end == '\\' && *(end + 1)) {
676 				*out++ = *(end + 1);
677 				end += 2;
678 				continue;
679 			}
680 
681 			if (isspace(*end))
682 				break;	/* end of token */
683 
684 			*out++ = *end++;
685 		}
686 
687 		/* have we already filled the array ? */
688 		if ((*argc + 1) > array_size) {
689 			argv = realloc_argv(&array_size, argv);
690 			if (!argv)
691 				return -ENOMEM;
692 		}
693 
694 		/* we know this is whitespace */
695 		if (*end)
696 			end++;
697 
698 		/* terminate the string and put it in the array */
699 		*out = '\0';
700 		argv[*argc] = start;
701 		(*argc)++;
702 	}
703 
704 	*argvp = argv;
705 	return 0;
706 }
707 
708 static void check_for_valid_limits(struct io_restrictions *rs)
709 {
710 	if (!rs->max_sectors)
711 		rs->max_sectors = SAFE_MAX_SECTORS;
712 	if (!rs->max_hw_sectors)
713 		rs->max_hw_sectors = SAFE_MAX_SECTORS;
714 	if (!rs->max_phys_segments)
715 		rs->max_phys_segments = MAX_PHYS_SEGMENTS;
716 	if (!rs->max_hw_segments)
717 		rs->max_hw_segments = MAX_HW_SEGMENTS;
718 	if (!rs->hardsect_size)
719 		rs->hardsect_size = 1 << SECTOR_SHIFT;
720 	if (!rs->max_segment_size)
721 		rs->max_segment_size = MAX_SEGMENT_SIZE;
722 	if (!rs->seg_boundary_mask)
723 		rs->seg_boundary_mask = -1;
724 	if (!rs->bounce_pfn)
725 		rs->bounce_pfn = -1;
726 }
727 
728 int dm_table_add_target(struct dm_table *t, const char *type,
729 			sector_t start, sector_t len, char *params)
730 {
731 	int r = -EINVAL, argc;
732 	char **argv;
733 	struct dm_target *tgt;
734 
735 	if ((r = check_space(t)))
736 		return r;
737 
738 	tgt = t->targets + t->num_targets;
739 	memset(tgt, 0, sizeof(*tgt));
740 
741 	if (!len) {
742 		DMERR("%s: zero-length target", dm_device_name(t->md));
743 		return -EINVAL;
744 	}
745 
746 	tgt->type = dm_get_target_type(type);
747 	if (!tgt->type) {
748 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
749 		      type);
750 		return -EINVAL;
751 	}
752 
753 	tgt->table = t;
754 	tgt->begin = start;
755 	tgt->len = len;
756 	tgt->error = "Unknown error";
757 
758 	/*
759 	 * Does this target adjoin the previous one ?
760 	 */
761 	if (!adjoin(t, tgt)) {
762 		tgt->error = "Gap in table";
763 		r = -EINVAL;
764 		goto bad;
765 	}
766 
767 	r = dm_split_args(&argc, &argv, params);
768 	if (r) {
769 		tgt->error = "couldn't split parameters (insufficient memory)";
770 		goto bad;
771 	}
772 
773 	r = tgt->type->ctr(tgt, argc, argv);
774 	kfree(argv);
775 	if (r)
776 		goto bad;
777 
778 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
779 
780 	/* FIXME: the plan is to combine high here and then have
781 	 * the merge fn apply the target level restrictions. */
782 	combine_restrictions_low(&t->limits, &tgt->limits);
783 	return 0;
784 
785  bad:
786 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
787 	dm_put_target_type(tgt->type);
788 	return r;
789 }
790 
791 static int setup_indexes(struct dm_table *t)
792 {
793 	int i;
794 	unsigned int total = 0;
795 	sector_t *indexes;
796 
797 	/* allocate the space for *all* the indexes */
798 	for (i = t->depth - 2; i >= 0; i--) {
799 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
800 		total += t->counts[i];
801 	}
802 
803 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
804 	if (!indexes)
805 		return -ENOMEM;
806 
807 	/* set up internal nodes, bottom-up */
808 	for (i = t->depth - 2, total = 0; i >= 0; i--) {
809 		t->index[i] = indexes;
810 		indexes += (KEYS_PER_NODE * t->counts[i]);
811 		setup_btree_index(i, t);
812 	}
813 
814 	return 0;
815 }
816 
817 /*
818  * Builds the btree to index the map.
819  */
820 int dm_table_complete(struct dm_table *t)
821 {
822 	int r = 0;
823 	unsigned int leaf_nodes;
824 
825 	check_for_valid_limits(&t->limits);
826 
827 	/* how many indexes will the btree have ? */
828 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
829 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
830 
831 	/* leaf layer has already been set up */
832 	t->counts[t->depth - 1] = leaf_nodes;
833 	t->index[t->depth - 1] = t->highs;
834 
835 	if (t->depth >= 2)
836 		r = setup_indexes(t);
837 
838 	return r;
839 }
840 
841 static DEFINE_MUTEX(_event_lock);
842 void dm_table_event_callback(struct dm_table *t,
843 			     void (*fn)(void *), void *context)
844 {
845 	mutex_lock(&_event_lock);
846 	t->event_fn = fn;
847 	t->event_context = context;
848 	mutex_unlock(&_event_lock);
849 }
850 
851 void dm_table_event(struct dm_table *t)
852 {
853 	/*
854 	 * You can no longer call dm_table_event() from interrupt
855 	 * context, use a bottom half instead.
856 	 */
857 	BUG_ON(in_interrupt());
858 
859 	mutex_lock(&_event_lock);
860 	if (t->event_fn)
861 		t->event_fn(t->event_context);
862 	mutex_unlock(&_event_lock);
863 }
864 
865 sector_t dm_table_get_size(struct dm_table *t)
866 {
867 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
868 }
869 
870 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
871 {
872 	if (index >= t->num_targets)
873 		return NULL;
874 
875 	return t->targets + index;
876 }
877 
878 /*
879  * Search the btree for the correct target.
880  *
881  * Caller should check returned pointer with dm_target_is_valid()
882  * to trap I/O beyond end of device.
883  */
884 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
885 {
886 	unsigned int l, n = 0, k = 0;
887 	sector_t *node;
888 
889 	for (l = 0; l < t->depth; l++) {
890 		n = get_child(n, k);
891 		node = get_node(t, l, n);
892 
893 		for (k = 0; k < KEYS_PER_NODE; k++)
894 			if (node[k] >= sector)
895 				break;
896 	}
897 
898 	return &t->targets[(KEYS_PER_NODE * n) + k];
899 }
900 
901 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
902 {
903 	/*
904 	 * Make sure we obey the optimistic sub devices
905 	 * restrictions.
906 	 */
907 	blk_queue_max_sectors(q, t->limits.max_sectors);
908 	q->max_phys_segments = t->limits.max_phys_segments;
909 	q->max_hw_segments = t->limits.max_hw_segments;
910 	q->hardsect_size = t->limits.hardsect_size;
911 	q->max_segment_size = t->limits.max_segment_size;
912 	q->max_hw_sectors = t->limits.max_hw_sectors;
913 	q->seg_boundary_mask = t->limits.seg_boundary_mask;
914 	q->bounce_pfn = t->limits.bounce_pfn;
915 	if (t->limits.no_cluster)
916 		q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER);
917 	else
918 		q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER);
919 
920 }
921 
922 unsigned int dm_table_get_num_targets(struct dm_table *t)
923 {
924 	return t->num_targets;
925 }
926 
927 struct list_head *dm_table_get_devices(struct dm_table *t)
928 {
929 	return &t->devices;
930 }
931 
932 int dm_table_get_mode(struct dm_table *t)
933 {
934 	return t->mode;
935 }
936 
937 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
938 {
939 	int i = t->num_targets;
940 	struct dm_target *ti = t->targets;
941 
942 	while (i--) {
943 		if (postsuspend) {
944 			if (ti->type->postsuspend)
945 				ti->type->postsuspend(ti);
946 		} else if (ti->type->presuspend)
947 			ti->type->presuspend(ti);
948 
949 		ti++;
950 	}
951 }
952 
953 void dm_table_presuspend_targets(struct dm_table *t)
954 {
955 	if (!t)
956 		return;
957 
958 	return suspend_targets(t, 0);
959 }
960 
961 void dm_table_postsuspend_targets(struct dm_table *t)
962 {
963 	if (!t)
964 		return;
965 
966 	return suspend_targets(t, 1);
967 }
968 
969 int dm_table_resume_targets(struct dm_table *t)
970 {
971 	int i, r = 0;
972 
973 	for (i = 0; i < t->num_targets; i++) {
974 		struct dm_target *ti = t->targets + i;
975 
976 		if (!ti->type->preresume)
977 			continue;
978 
979 		r = ti->type->preresume(ti);
980 		if (r)
981 			return r;
982 	}
983 
984 	for (i = 0; i < t->num_targets; i++) {
985 		struct dm_target *ti = t->targets + i;
986 
987 		if (ti->type->resume)
988 			ti->type->resume(ti);
989 	}
990 
991 	return 0;
992 }
993 
994 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
995 {
996 	struct list_head *d, *devices;
997 	int r = 0;
998 
999 	devices = dm_table_get_devices(t);
1000 	for (d = devices->next; d != devices; d = d->next) {
1001 		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
1002 		struct request_queue *q = bdev_get_queue(dd->bdev);
1003 		r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1004 	}
1005 
1006 	return r;
1007 }
1008 
1009 void dm_table_unplug_all(struct dm_table *t)
1010 {
1011 	struct list_head *d, *devices = dm_table_get_devices(t);
1012 
1013 	for (d = devices->next; d != devices; d = d->next) {
1014 		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
1015 		struct request_queue *q = bdev_get_queue(dd->bdev);
1016 
1017 		blk_unplug(q);
1018 	}
1019 }
1020 
1021 struct mapped_device *dm_table_get_md(struct dm_table *t)
1022 {
1023 	dm_get(t->md);
1024 
1025 	return t->md;
1026 }
1027 
1028 EXPORT_SYMBOL(dm_vcalloc);
1029 EXPORT_SYMBOL(dm_get_device);
1030 EXPORT_SYMBOL(dm_put_device);
1031 EXPORT_SYMBOL(dm_table_event);
1032 EXPORT_SYMBOL(dm_table_get_size);
1033 EXPORT_SYMBOL(dm_table_get_mode);
1034 EXPORT_SYMBOL(dm_table_get_md);
1035 EXPORT_SYMBOL(dm_table_put);
1036 EXPORT_SYMBOL(dm_table_get);
1037 EXPORT_SYMBOL(dm_table_unplug_all);
1038