1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/namei.h> 15 #include <linux/ctype.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/interrupt.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/mount.h> 24 #include <linux/dax.h> 25 26 #define DM_MSG_PREFIX "table" 27 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 /* 33 * Similar to ceiling(log_size(n)) 34 */ 35 static unsigned int int_log(unsigned int n, unsigned int base) 36 { 37 int result = 0; 38 39 while (n > 1) { 40 n = dm_div_up(n, base); 41 result++; 42 } 43 44 return result; 45 } 46 47 /* 48 * Calculate the index of the child node of the n'th node k'th key. 49 */ 50 static inline unsigned int get_child(unsigned int n, unsigned int k) 51 { 52 return (n * CHILDREN_PER_NODE) + k; 53 } 54 55 /* 56 * Return the n'th node of level l from table t. 57 */ 58 static inline sector_t *get_node(struct dm_table *t, 59 unsigned int l, unsigned int n) 60 { 61 return t->index[l] + (n * KEYS_PER_NODE); 62 } 63 64 /* 65 * Return the highest key that you could lookup from the n'th 66 * node on level l of the btree. 67 */ 68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 69 { 70 for (; l < t->depth - 1; l++) 71 n = get_child(n, CHILDREN_PER_NODE - 1); 72 73 if (n >= t->counts[l]) 74 return (sector_t) - 1; 75 76 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 77 } 78 79 /* 80 * Fills in a level of the btree based on the highs of the level 81 * below it. 82 */ 83 static int setup_btree_index(unsigned int l, struct dm_table *t) 84 { 85 unsigned int n, k; 86 sector_t *node; 87 88 for (n = 0U; n < t->counts[l]; n++) { 89 node = get_node(t, l, n); 90 91 for (k = 0U; k < KEYS_PER_NODE; k++) 92 node[k] = high(t, l + 1, get_child(n, k)); 93 } 94 95 return 0; 96 } 97 98 /* 99 * highs, and targets are managed as dynamic arrays during a 100 * table load. 101 */ 102 static int alloc_targets(struct dm_table *t, unsigned int num) 103 { 104 sector_t *n_highs; 105 struct dm_target *n_targets; 106 107 /* 108 * Allocate both the target array and offset array at once. 109 */ 110 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 111 GFP_KERNEL); 112 if (!n_highs) 113 return -ENOMEM; 114 115 n_targets = (struct dm_target *) (n_highs + num); 116 117 memset(n_highs, -1, sizeof(*n_highs) * num); 118 kvfree(t->highs); 119 120 t->num_allocated = num; 121 t->highs = n_highs; 122 t->targets = n_targets; 123 124 return 0; 125 } 126 127 int dm_table_create(struct dm_table **result, fmode_t mode, 128 unsigned num_targets, struct mapped_device *md) 129 { 130 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 131 132 if (!t) 133 return -ENOMEM; 134 135 INIT_LIST_HEAD(&t->devices); 136 137 if (!num_targets) 138 num_targets = KEYS_PER_NODE; 139 140 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 141 142 if (!num_targets) { 143 kfree(t); 144 return -ENOMEM; 145 } 146 147 if (alloc_targets(t, num_targets)) { 148 kfree(t); 149 return -ENOMEM; 150 } 151 152 t->type = DM_TYPE_NONE; 153 t->mode = mode; 154 t->md = md; 155 *result = t; 156 return 0; 157 } 158 159 static void free_devices(struct list_head *devices, struct mapped_device *md) 160 { 161 struct list_head *tmp, *next; 162 163 list_for_each_safe(tmp, next, devices) { 164 struct dm_dev_internal *dd = 165 list_entry(tmp, struct dm_dev_internal, list); 166 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 167 dm_device_name(md), dd->dm_dev->name); 168 dm_put_table_device(md, dd->dm_dev); 169 kfree(dd); 170 } 171 } 172 173 static void dm_table_destroy_crypto_profile(struct dm_table *t); 174 175 void dm_table_destroy(struct dm_table *t) 176 { 177 unsigned int i; 178 179 if (!t) 180 return; 181 182 /* free the indexes */ 183 if (t->depth >= 2) 184 kvfree(t->index[t->depth - 2]); 185 186 /* free the targets */ 187 for (i = 0; i < t->num_targets; i++) { 188 struct dm_target *tgt = t->targets + i; 189 190 if (tgt->type->dtr) 191 tgt->type->dtr(tgt); 192 193 dm_put_target_type(tgt->type); 194 } 195 196 kvfree(t->highs); 197 198 /* free the device list */ 199 free_devices(&t->devices, t->md); 200 201 dm_free_md_mempools(t->mempools); 202 203 dm_table_destroy_crypto_profile(t); 204 205 kfree(t); 206 } 207 208 /* 209 * See if we've already got a device in the list. 210 */ 211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 212 { 213 struct dm_dev_internal *dd; 214 215 list_for_each_entry (dd, l, list) 216 if (dd->dm_dev->bdev->bd_dev == dev) 217 return dd; 218 219 return NULL; 220 } 221 222 /* 223 * If possible, this checks an area of a destination device is invalid. 224 */ 225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 226 sector_t start, sector_t len, void *data) 227 { 228 struct queue_limits *limits = data; 229 struct block_device *bdev = dev->bdev; 230 sector_t dev_size = bdev_nr_sectors(bdev); 231 unsigned short logical_block_size_sectors = 232 limits->logical_block_size >> SECTOR_SHIFT; 233 char b[BDEVNAME_SIZE]; 234 235 if (!dev_size) 236 return 0; 237 238 if ((start >= dev_size) || (start + len > dev_size)) { 239 DMWARN("%s: %s too small for target: " 240 "start=%llu, len=%llu, dev_size=%llu", 241 dm_device_name(ti->table->md), bdevname(bdev, b), 242 (unsigned long long)start, 243 (unsigned long long)len, 244 (unsigned long long)dev_size); 245 return 1; 246 } 247 248 /* 249 * If the target is mapped to zoned block device(s), check 250 * that the zones are not partially mapped. 251 */ 252 if (bdev_is_zoned(bdev)) { 253 unsigned int zone_sectors = bdev_zone_sectors(bdev); 254 255 if (start & (zone_sectors - 1)) { 256 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 257 dm_device_name(ti->table->md), 258 (unsigned long long)start, 259 zone_sectors, bdevname(bdev, b)); 260 return 1; 261 } 262 263 /* 264 * Note: The last zone of a zoned block device may be smaller 265 * than other zones. So for a target mapping the end of a 266 * zoned block device with such a zone, len would not be zone 267 * aligned. We do not allow such last smaller zone to be part 268 * of the mapping here to ensure that mappings with multiple 269 * devices do not end up with a smaller zone in the middle of 270 * the sector range. 271 */ 272 if (len & (zone_sectors - 1)) { 273 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 274 dm_device_name(ti->table->md), 275 (unsigned long long)len, 276 zone_sectors, bdevname(bdev, b)); 277 return 1; 278 } 279 } 280 281 if (logical_block_size_sectors <= 1) 282 return 0; 283 284 if (start & (logical_block_size_sectors - 1)) { 285 DMWARN("%s: start=%llu not aligned to h/w " 286 "logical block size %u of %s", 287 dm_device_name(ti->table->md), 288 (unsigned long long)start, 289 limits->logical_block_size, bdevname(bdev, b)); 290 return 1; 291 } 292 293 if (len & (logical_block_size_sectors - 1)) { 294 DMWARN("%s: len=%llu not aligned to h/w " 295 "logical block size %u of %s", 296 dm_device_name(ti->table->md), 297 (unsigned long long)len, 298 limits->logical_block_size, bdevname(bdev, b)); 299 return 1; 300 } 301 302 return 0; 303 } 304 305 /* 306 * This upgrades the mode on an already open dm_dev, being 307 * careful to leave things as they were if we fail to reopen the 308 * device and not to touch the existing bdev field in case 309 * it is accessed concurrently. 310 */ 311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 312 struct mapped_device *md) 313 { 314 int r; 315 struct dm_dev *old_dev, *new_dev; 316 317 old_dev = dd->dm_dev; 318 319 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 320 dd->dm_dev->mode | new_mode, &new_dev); 321 if (r) 322 return r; 323 324 dd->dm_dev = new_dev; 325 dm_put_table_device(md, old_dev); 326 327 return 0; 328 } 329 330 /* 331 * Convert the path to a device 332 */ 333 dev_t dm_get_dev_t(const char *path) 334 { 335 dev_t dev; 336 337 if (lookup_bdev(path, &dev)) 338 dev = name_to_dev_t(path); 339 return dev; 340 } 341 EXPORT_SYMBOL_GPL(dm_get_dev_t); 342 343 /* 344 * Add a device to the list, or just increment the usage count if 345 * it's already present. 346 */ 347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 348 struct dm_dev **result) 349 { 350 int r; 351 dev_t dev; 352 unsigned int major, minor; 353 char dummy; 354 struct dm_dev_internal *dd; 355 struct dm_table *t = ti->table; 356 357 BUG_ON(!t); 358 359 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 360 /* Extract the major/minor numbers */ 361 dev = MKDEV(major, minor); 362 if (MAJOR(dev) != major || MINOR(dev) != minor) 363 return -EOVERFLOW; 364 } else { 365 dev = dm_get_dev_t(path); 366 if (!dev) 367 return -ENODEV; 368 } 369 370 dd = find_device(&t->devices, dev); 371 if (!dd) { 372 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 373 if (!dd) 374 return -ENOMEM; 375 376 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 377 kfree(dd); 378 return r; 379 } 380 381 refcount_set(&dd->count, 1); 382 list_add(&dd->list, &t->devices); 383 goto out; 384 385 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 386 r = upgrade_mode(dd, mode, t->md); 387 if (r) 388 return r; 389 } 390 refcount_inc(&dd->count); 391 out: 392 *result = dd->dm_dev; 393 return 0; 394 } 395 EXPORT_SYMBOL(dm_get_device); 396 397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 398 sector_t start, sector_t len, void *data) 399 { 400 struct queue_limits *limits = data; 401 struct block_device *bdev = dev->bdev; 402 struct request_queue *q = bdev_get_queue(bdev); 403 char b[BDEVNAME_SIZE]; 404 405 if (unlikely(!q)) { 406 DMWARN("%s: Cannot set limits for nonexistent device %s", 407 dm_device_name(ti->table->md), bdevname(bdev, b)); 408 return 0; 409 } 410 411 if (blk_stack_limits(limits, &q->limits, 412 get_start_sect(bdev) + start) < 0) 413 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 414 "physical_block_size=%u, logical_block_size=%u, " 415 "alignment_offset=%u, start=%llu", 416 dm_device_name(ti->table->md), bdevname(bdev, b), 417 q->limits.physical_block_size, 418 q->limits.logical_block_size, 419 q->limits.alignment_offset, 420 (unsigned long long) start << SECTOR_SHIFT); 421 return 0; 422 } 423 424 /* 425 * Decrement a device's use count and remove it if necessary. 426 */ 427 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 428 { 429 int found = 0; 430 struct list_head *devices = &ti->table->devices; 431 struct dm_dev_internal *dd; 432 433 list_for_each_entry(dd, devices, list) { 434 if (dd->dm_dev == d) { 435 found = 1; 436 break; 437 } 438 } 439 if (!found) { 440 DMWARN("%s: device %s not in table devices list", 441 dm_device_name(ti->table->md), d->name); 442 return; 443 } 444 if (refcount_dec_and_test(&dd->count)) { 445 dm_put_table_device(ti->table->md, d); 446 list_del(&dd->list); 447 kfree(dd); 448 } 449 } 450 EXPORT_SYMBOL(dm_put_device); 451 452 /* 453 * Checks to see if the target joins onto the end of the table. 454 */ 455 static int adjoin(struct dm_table *table, struct dm_target *ti) 456 { 457 struct dm_target *prev; 458 459 if (!table->num_targets) 460 return !ti->begin; 461 462 prev = &table->targets[table->num_targets - 1]; 463 return (ti->begin == (prev->begin + prev->len)); 464 } 465 466 /* 467 * Used to dynamically allocate the arg array. 468 * 469 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 470 * process messages even if some device is suspended. These messages have a 471 * small fixed number of arguments. 472 * 473 * On the other hand, dm-switch needs to process bulk data using messages and 474 * excessive use of GFP_NOIO could cause trouble. 475 */ 476 static char **realloc_argv(unsigned *size, char **old_argv) 477 { 478 char **argv; 479 unsigned new_size; 480 gfp_t gfp; 481 482 if (*size) { 483 new_size = *size * 2; 484 gfp = GFP_KERNEL; 485 } else { 486 new_size = 8; 487 gfp = GFP_NOIO; 488 } 489 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 490 if (argv && old_argv) { 491 memcpy(argv, old_argv, *size * sizeof(*argv)); 492 *size = new_size; 493 } 494 495 kfree(old_argv); 496 return argv; 497 } 498 499 /* 500 * Destructively splits up the argument list to pass to ctr. 501 */ 502 int dm_split_args(int *argc, char ***argvp, char *input) 503 { 504 char *start, *end = input, *out, **argv = NULL; 505 unsigned array_size = 0; 506 507 *argc = 0; 508 509 if (!input) { 510 *argvp = NULL; 511 return 0; 512 } 513 514 argv = realloc_argv(&array_size, argv); 515 if (!argv) 516 return -ENOMEM; 517 518 while (1) { 519 /* Skip whitespace */ 520 start = skip_spaces(end); 521 522 if (!*start) 523 break; /* success, we hit the end */ 524 525 /* 'out' is used to remove any back-quotes */ 526 end = out = start; 527 while (*end) { 528 /* Everything apart from '\0' can be quoted */ 529 if (*end == '\\' && *(end + 1)) { 530 *out++ = *(end + 1); 531 end += 2; 532 continue; 533 } 534 535 if (isspace(*end)) 536 break; /* end of token */ 537 538 *out++ = *end++; 539 } 540 541 /* have we already filled the array ? */ 542 if ((*argc + 1) > array_size) { 543 argv = realloc_argv(&array_size, argv); 544 if (!argv) 545 return -ENOMEM; 546 } 547 548 /* we know this is whitespace */ 549 if (*end) 550 end++; 551 552 /* terminate the string and put it in the array */ 553 *out = '\0'; 554 argv[*argc] = start; 555 (*argc)++; 556 } 557 558 *argvp = argv; 559 return 0; 560 } 561 562 /* 563 * Impose necessary and sufficient conditions on a devices's table such 564 * that any incoming bio which respects its logical_block_size can be 565 * processed successfully. If it falls across the boundary between 566 * two or more targets, the size of each piece it gets split into must 567 * be compatible with the logical_block_size of the target processing it. 568 */ 569 static int validate_hardware_logical_block_alignment(struct dm_table *table, 570 struct queue_limits *limits) 571 { 572 /* 573 * This function uses arithmetic modulo the logical_block_size 574 * (in units of 512-byte sectors). 575 */ 576 unsigned short device_logical_block_size_sects = 577 limits->logical_block_size >> SECTOR_SHIFT; 578 579 /* 580 * Offset of the start of the next table entry, mod logical_block_size. 581 */ 582 unsigned short next_target_start = 0; 583 584 /* 585 * Given an aligned bio that extends beyond the end of a 586 * target, how many sectors must the next target handle? 587 */ 588 unsigned short remaining = 0; 589 590 struct dm_target *ti; 591 struct queue_limits ti_limits; 592 unsigned i; 593 594 /* 595 * Check each entry in the table in turn. 596 */ 597 for (i = 0; i < dm_table_get_num_targets(table); i++) { 598 ti = dm_table_get_target(table, i); 599 600 blk_set_stacking_limits(&ti_limits); 601 602 /* combine all target devices' limits */ 603 if (ti->type->iterate_devices) 604 ti->type->iterate_devices(ti, dm_set_device_limits, 605 &ti_limits); 606 607 /* 608 * If the remaining sectors fall entirely within this 609 * table entry are they compatible with its logical_block_size? 610 */ 611 if (remaining < ti->len && 612 remaining & ((ti_limits.logical_block_size >> 613 SECTOR_SHIFT) - 1)) 614 break; /* Error */ 615 616 next_target_start = 617 (unsigned short) ((next_target_start + ti->len) & 618 (device_logical_block_size_sects - 1)); 619 remaining = next_target_start ? 620 device_logical_block_size_sects - next_target_start : 0; 621 } 622 623 if (remaining) { 624 DMWARN("%s: table line %u (start sect %llu len %llu) " 625 "not aligned to h/w logical block size %u", 626 dm_device_name(table->md), i, 627 (unsigned long long) ti->begin, 628 (unsigned long long) ti->len, 629 limits->logical_block_size); 630 return -EINVAL; 631 } 632 633 return 0; 634 } 635 636 int dm_table_add_target(struct dm_table *t, const char *type, 637 sector_t start, sector_t len, char *params) 638 { 639 int r = -EINVAL, argc; 640 char **argv; 641 struct dm_target *tgt; 642 643 if (t->singleton) { 644 DMERR("%s: target type %s must appear alone in table", 645 dm_device_name(t->md), t->targets->type->name); 646 return -EINVAL; 647 } 648 649 BUG_ON(t->num_targets >= t->num_allocated); 650 651 tgt = t->targets + t->num_targets; 652 memset(tgt, 0, sizeof(*tgt)); 653 654 if (!len) { 655 DMERR("%s: zero-length target", dm_device_name(t->md)); 656 return -EINVAL; 657 } 658 659 tgt->type = dm_get_target_type(type); 660 if (!tgt->type) { 661 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 662 return -EINVAL; 663 } 664 665 if (dm_target_needs_singleton(tgt->type)) { 666 if (t->num_targets) { 667 tgt->error = "singleton target type must appear alone in table"; 668 goto bad; 669 } 670 t->singleton = true; 671 } 672 673 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 674 tgt->error = "target type may not be included in a read-only table"; 675 goto bad; 676 } 677 678 if (t->immutable_target_type) { 679 if (t->immutable_target_type != tgt->type) { 680 tgt->error = "immutable target type cannot be mixed with other target types"; 681 goto bad; 682 } 683 } else if (dm_target_is_immutable(tgt->type)) { 684 if (t->num_targets) { 685 tgt->error = "immutable target type cannot be mixed with other target types"; 686 goto bad; 687 } 688 t->immutable_target_type = tgt->type; 689 } 690 691 if (dm_target_has_integrity(tgt->type)) 692 t->integrity_added = 1; 693 694 tgt->table = t; 695 tgt->begin = start; 696 tgt->len = len; 697 tgt->error = "Unknown error"; 698 699 /* 700 * Does this target adjoin the previous one ? 701 */ 702 if (!adjoin(t, tgt)) { 703 tgt->error = "Gap in table"; 704 goto bad; 705 } 706 707 r = dm_split_args(&argc, &argv, params); 708 if (r) { 709 tgt->error = "couldn't split parameters"; 710 goto bad; 711 } 712 713 r = tgt->type->ctr(tgt, argc, argv); 714 kfree(argv); 715 if (r) 716 goto bad; 717 718 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 719 720 if (!tgt->num_discard_bios && tgt->discards_supported) 721 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 722 dm_device_name(t->md), type); 723 724 return 0; 725 726 bad: 727 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r)); 728 dm_put_target_type(tgt->type); 729 return r; 730 } 731 732 /* 733 * Target argument parsing helpers. 734 */ 735 static int validate_next_arg(const struct dm_arg *arg, 736 struct dm_arg_set *arg_set, 737 unsigned *value, char **error, unsigned grouped) 738 { 739 const char *arg_str = dm_shift_arg(arg_set); 740 char dummy; 741 742 if (!arg_str || 743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 744 (*value < arg->min) || 745 (*value > arg->max) || 746 (grouped && arg_set->argc < *value)) { 747 *error = arg->error; 748 return -EINVAL; 749 } 750 751 return 0; 752 } 753 754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 755 unsigned *value, char **error) 756 { 757 return validate_next_arg(arg, arg_set, value, error, 0); 758 } 759 EXPORT_SYMBOL(dm_read_arg); 760 761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 762 unsigned *value, char **error) 763 { 764 return validate_next_arg(arg, arg_set, value, error, 1); 765 } 766 EXPORT_SYMBOL(dm_read_arg_group); 767 768 const char *dm_shift_arg(struct dm_arg_set *as) 769 { 770 char *r; 771 772 if (as->argc) { 773 as->argc--; 774 r = *as->argv; 775 as->argv++; 776 return r; 777 } 778 779 return NULL; 780 } 781 EXPORT_SYMBOL(dm_shift_arg); 782 783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 784 { 785 BUG_ON(as->argc < num_args); 786 as->argc -= num_args; 787 as->argv += num_args; 788 } 789 EXPORT_SYMBOL(dm_consume_args); 790 791 static bool __table_type_bio_based(enum dm_queue_mode table_type) 792 { 793 return (table_type == DM_TYPE_BIO_BASED || 794 table_type == DM_TYPE_DAX_BIO_BASED); 795 } 796 797 static bool __table_type_request_based(enum dm_queue_mode table_type) 798 { 799 return table_type == DM_TYPE_REQUEST_BASED; 800 } 801 802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 803 { 804 t->type = type; 805 } 806 EXPORT_SYMBOL_GPL(dm_table_set_type); 807 808 /* validate the dax capability of the target device span */ 809 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 810 sector_t start, sector_t len, void *data) 811 { 812 if (dev->dax_dev) 813 return false; 814 815 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 816 return true; 817 } 818 819 /* Check devices support synchronous DAX */ 820 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 821 sector_t start, sector_t len, void *data) 822 { 823 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 824 } 825 826 static bool dm_table_supports_dax(struct dm_table *t, 827 iterate_devices_callout_fn iterate_fn) 828 { 829 struct dm_target *ti; 830 unsigned i; 831 832 /* Ensure that all targets support DAX. */ 833 for (i = 0; i < dm_table_get_num_targets(t); i++) { 834 ti = dm_table_get_target(t, i); 835 836 if (!ti->type->direct_access) 837 return false; 838 839 if (!ti->type->iterate_devices || 840 ti->type->iterate_devices(ti, iterate_fn, NULL)) 841 return false; 842 } 843 844 return true; 845 } 846 847 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 848 sector_t start, sector_t len, void *data) 849 { 850 struct block_device *bdev = dev->bdev; 851 struct request_queue *q = bdev_get_queue(bdev); 852 853 /* request-based cannot stack on partitions! */ 854 if (bdev_is_partition(bdev)) 855 return false; 856 857 return queue_is_mq(q); 858 } 859 860 static int dm_table_determine_type(struct dm_table *t) 861 { 862 unsigned i; 863 unsigned bio_based = 0, request_based = 0, hybrid = 0; 864 struct dm_target *tgt; 865 struct list_head *devices = dm_table_get_devices(t); 866 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 867 868 if (t->type != DM_TYPE_NONE) { 869 /* target already set the table's type */ 870 if (t->type == DM_TYPE_BIO_BASED) { 871 /* possibly upgrade to a variant of bio-based */ 872 goto verify_bio_based; 873 } 874 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 875 goto verify_rq_based; 876 } 877 878 for (i = 0; i < t->num_targets; i++) { 879 tgt = t->targets + i; 880 if (dm_target_hybrid(tgt)) 881 hybrid = 1; 882 else if (dm_target_request_based(tgt)) 883 request_based = 1; 884 else 885 bio_based = 1; 886 887 if (bio_based && request_based) { 888 DMERR("Inconsistent table: different target types" 889 " can't be mixed up"); 890 return -EINVAL; 891 } 892 } 893 894 if (hybrid && !bio_based && !request_based) { 895 /* 896 * The targets can work either way. 897 * Determine the type from the live device. 898 * Default to bio-based if device is new. 899 */ 900 if (__table_type_request_based(live_md_type)) 901 request_based = 1; 902 else 903 bio_based = 1; 904 } 905 906 if (bio_based) { 907 verify_bio_based: 908 /* We must use this table as bio-based */ 909 t->type = DM_TYPE_BIO_BASED; 910 if (dm_table_supports_dax(t, device_not_dax_capable) || 911 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 912 t->type = DM_TYPE_DAX_BIO_BASED; 913 } 914 return 0; 915 } 916 917 BUG_ON(!request_based); /* No targets in this table */ 918 919 t->type = DM_TYPE_REQUEST_BASED; 920 921 verify_rq_based: 922 /* 923 * Request-based dm supports only tables that have a single target now. 924 * To support multiple targets, request splitting support is needed, 925 * and that needs lots of changes in the block-layer. 926 * (e.g. request completion process for partial completion.) 927 */ 928 if (t->num_targets > 1) { 929 DMERR("request-based DM doesn't support multiple targets"); 930 return -EINVAL; 931 } 932 933 if (list_empty(devices)) { 934 int srcu_idx; 935 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 936 937 /* inherit live table's type */ 938 if (live_table) 939 t->type = live_table->type; 940 dm_put_live_table(t->md, srcu_idx); 941 return 0; 942 } 943 944 tgt = dm_table_get_immutable_target(t); 945 if (!tgt) { 946 DMERR("table load rejected: immutable target is required"); 947 return -EINVAL; 948 } else if (tgt->max_io_len) { 949 DMERR("table load rejected: immutable target that splits IO is not supported"); 950 return -EINVAL; 951 } 952 953 /* Non-request-stackable devices can't be used for request-based dm */ 954 if (!tgt->type->iterate_devices || 955 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 956 DMERR("table load rejected: including non-request-stackable devices"); 957 return -EINVAL; 958 } 959 960 return 0; 961 } 962 963 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 964 { 965 return t->type; 966 } 967 968 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 969 { 970 return t->immutable_target_type; 971 } 972 973 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 974 { 975 /* Immutable target is implicitly a singleton */ 976 if (t->num_targets > 1 || 977 !dm_target_is_immutable(t->targets[0].type)) 978 return NULL; 979 980 return t->targets; 981 } 982 983 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 984 { 985 struct dm_target *ti; 986 unsigned i; 987 988 for (i = 0; i < dm_table_get_num_targets(t); i++) { 989 ti = dm_table_get_target(t, i); 990 if (dm_target_is_wildcard(ti->type)) 991 return ti; 992 } 993 994 return NULL; 995 } 996 997 bool dm_table_bio_based(struct dm_table *t) 998 { 999 return __table_type_bio_based(dm_table_get_type(t)); 1000 } 1001 1002 bool dm_table_request_based(struct dm_table *t) 1003 { 1004 return __table_type_request_based(dm_table_get_type(t)); 1005 } 1006 1007 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1008 { 1009 enum dm_queue_mode type = dm_table_get_type(t); 1010 unsigned per_io_data_size = 0; 1011 unsigned min_pool_size = 0; 1012 struct dm_target *ti; 1013 unsigned i; 1014 1015 if (unlikely(type == DM_TYPE_NONE)) { 1016 DMWARN("no table type is set, can't allocate mempools"); 1017 return -EINVAL; 1018 } 1019 1020 if (__table_type_bio_based(type)) 1021 for (i = 0; i < t->num_targets; i++) { 1022 ti = t->targets + i; 1023 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1024 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1025 } 1026 1027 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1028 per_io_data_size, min_pool_size); 1029 if (!t->mempools) 1030 return -ENOMEM; 1031 1032 return 0; 1033 } 1034 1035 void dm_table_free_md_mempools(struct dm_table *t) 1036 { 1037 dm_free_md_mempools(t->mempools); 1038 t->mempools = NULL; 1039 } 1040 1041 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1042 { 1043 return t->mempools; 1044 } 1045 1046 static int setup_indexes(struct dm_table *t) 1047 { 1048 int i; 1049 unsigned int total = 0; 1050 sector_t *indexes; 1051 1052 /* allocate the space for *all* the indexes */ 1053 for (i = t->depth - 2; i >= 0; i--) { 1054 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1055 total += t->counts[i]; 1056 } 1057 1058 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1059 if (!indexes) 1060 return -ENOMEM; 1061 1062 /* set up internal nodes, bottom-up */ 1063 for (i = t->depth - 2; i >= 0; i--) { 1064 t->index[i] = indexes; 1065 indexes += (KEYS_PER_NODE * t->counts[i]); 1066 setup_btree_index(i, t); 1067 } 1068 1069 return 0; 1070 } 1071 1072 /* 1073 * Builds the btree to index the map. 1074 */ 1075 static int dm_table_build_index(struct dm_table *t) 1076 { 1077 int r = 0; 1078 unsigned int leaf_nodes; 1079 1080 /* how many indexes will the btree have ? */ 1081 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1082 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1083 1084 /* leaf layer has already been set up */ 1085 t->counts[t->depth - 1] = leaf_nodes; 1086 t->index[t->depth - 1] = t->highs; 1087 1088 if (t->depth >= 2) 1089 r = setup_indexes(t); 1090 1091 return r; 1092 } 1093 1094 static bool integrity_profile_exists(struct gendisk *disk) 1095 { 1096 return !!blk_get_integrity(disk); 1097 } 1098 1099 /* 1100 * Get a disk whose integrity profile reflects the table's profile. 1101 * Returns NULL if integrity support was inconsistent or unavailable. 1102 */ 1103 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1104 { 1105 struct list_head *devices = dm_table_get_devices(t); 1106 struct dm_dev_internal *dd = NULL; 1107 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1108 unsigned i; 1109 1110 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1111 struct dm_target *ti = dm_table_get_target(t, i); 1112 if (!dm_target_passes_integrity(ti->type)) 1113 goto no_integrity; 1114 } 1115 1116 list_for_each_entry(dd, devices, list) { 1117 template_disk = dd->dm_dev->bdev->bd_disk; 1118 if (!integrity_profile_exists(template_disk)) 1119 goto no_integrity; 1120 else if (prev_disk && 1121 blk_integrity_compare(prev_disk, template_disk) < 0) 1122 goto no_integrity; 1123 prev_disk = template_disk; 1124 } 1125 1126 return template_disk; 1127 1128 no_integrity: 1129 if (prev_disk) 1130 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1131 dm_device_name(t->md), 1132 prev_disk->disk_name, 1133 template_disk->disk_name); 1134 return NULL; 1135 } 1136 1137 /* 1138 * Register the mapped device for blk_integrity support if the 1139 * underlying devices have an integrity profile. But all devices may 1140 * not have matching profiles (checking all devices isn't reliable 1141 * during table load because this table may use other DM device(s) which 1142 * must be resumed before they will have an initialized integity 1143 * profile). Consequently, stacked DM devices force a 2 stage integrity 1144 * profile validation: First pass during table load, final pass during 1145 * resume. 1146 */ 1147 static int dm_table_register_integrity(struct dm_table *t) 1148 { 1149 struct mapped_device *md = t->md; 1150 struct gendisk *template_disk = NULL; 1151 1152 /* If target handles integrity itself do not register it here. */ 1153 if (t->integrity_added) 1154 return 0; 1155 1156 template_disk = dm_table_get_integrity_disk(t); 1157 if (!template_disk) 1158 return 0; 1159 1160 if (!integrity_profile_exists(dm_disk(md))) { 1161 t->integrity_supported = true; 1162 /* 1163 * Register integrity profile during table load; we can do 1164 * this because the final profile must match during resume. 1165 */ 1166 blk_integrity_register(dm_disk(md), 1167 blk_get_integrity(template_disk)); 1168 return 0; 1169 } 1170 1171 /* 1172 * If DM device already has an initialized integrity 1173 * profile the new profile should not conflict. 1174 */ 1175 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1176 DMWARN("%s: conflict with existing integrity profile: " 1177 "%s profile mismatch", 1178 dm_device_name(t->md), 1179 template_disk->disk_name); 1180 return 1; 1181 } 1182 1183 /* Preserve existing integrity profile */ 1184 t->integrity_supported = true; 1185 return 0; 1186 } 1187 1188 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1189 1190 struct dm_crypto_profile { 1191 struct blk_crypto_profile profile; 1192 struct mapped_device *md; 1193 }; 1194 1195 struct dm_keyslot_evict_args { 1196 const struct blk_crypto_key *key; 1197 int err; 1198 }; 1199 1200 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1201 sector_t start, sector_t len, void *data) 1202 { 1203 struct dm_keyslot_evict_args *args = data; 1204 int err; 1205 1206 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key); 1207 if (!args->err) 1208 args->err = err; 1209 /* Always try to evict the key from all devices. */ 1210 return 0; 1211 } 1212 1213 /* 1214 * When an inline encryption key is evicted from a device-mapper device, evict 1215 * it from all the underlying devices. 1216 */ 1217 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1218 const struct blk_crypto_key *key, unsigned int slot) 1219 { 1220 struct mapped_device *md = 1221 container_of(profile, struct dm_crypto_profile, profile)->md; 1222 struct dm_keyslot_evict_args args = { key }; 1223 struct dm_table *t; 1224 int srcu_idx; 1225 int i; 1226 struct dm_target *ti; 1227 1228 t = dm_get_live_table(md, &srcu_idx); 1229 if (!t) 1230 return 0; 1231 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1232 ti = dm_table_get_target(t, i); 1233 if (!ti->type->iterate_devices) 1234 continue; 1235 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args); 1236 } 1237 dm_put_live_table(md, srcu_idx); 1238 return args.err; 1239 } 1240 1241 static int 1242 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1243 sector_t start, sector_t len, void *data) 1244 { 1245 struct blk_crypto_profile *parent = data; 1246 struct blk_crypto_profile *child = 1247 bdev_get_queue(dev->bdev)->crypto_profile; 1248 1249 blk_crypto_intersect_capabilities(parent, child); 1250 return 0; 1251 } 1252 1253 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1254 { 1255 struct dm_crypto_profile *dmcp = container_of(profile, 1256 struct dm_crypto_profile, 1257 profile); 1258 1259 if (!profile) 1260 return; 1261 1262 blk_crypto_profile_destroy(profile); 1263 kfree(dmcp); 1264 } 1265 1266 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1267 { 1268 dm_destroy_crypto_profile(t->crypto_profile); 1269 t->crypto_profile = NULL; 1270 } 1271 1272 /* 1273 * Constructs and initializes t->crypto_profile with a crypto profile that 1274 * represents the common set of crypto capabilities of the devices described by 1275 * the dm_table. However, if the constructed crypto profile doesn't support all 1276 * crypto capabilities that are supported by the current mapped_device, it 1277 * returns an error instead, since we don't support removing crypto capabilities 1278 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1279 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1280 */ 1281 static int dm_table_construct_crypto_profile(struct dm_table *t) 1282 { 1283 struct dm_crypto_profile *dmcp; 1284 struct blk_crypto_profile *profile; 1285 struct dm_target *ti; 1286 unsigned int i; 1287 bool empty_profile = true; 1288 1289 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1290 if (!dmcp) 1291 return -ENOMEM; 1292 dmcp->md = t->md; 1293 1294 profile = &dmcp->profile; 1295 blk_crypto_profile_init(profile, 0); 1296 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1297 profile->max_dun_bytes_supported = UINT_MAX; 1298 memset(profile->modes_supported, 0xFF, 1299 sizeof(profile->modes_supported)); 1300 1301 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1302 ti = dm_table_get_target(t, i); 1303 1304 if (!dm_target_passes_crypto(ti->type)) { 1305 blk_crypto_intersect_capabilities(profile, NULL); 1306 break; 1307 } 1308 if (!ti->type->iterate_devices) 1309 continue; 1310 ti->type->iterate_devices(ti, 1311 device_intersect_crypto_capabilities, 1312 profile); 1313 } 1314 1315 if (t->md->queue && 1316 !blk_crypto_has_capabilities(profile, 1317 t->md->queue->crypto_profile)) { 1318 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1319 dm_destroy_crypto_profile(profile); 1320 return -EINVAL; 1321 } 1322 1323 /* 1324 * If the new profile doesn't actually support any crypto capabilities, 1325 * we may as well represent it with a NULL profile. 1326 */ 1327 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1328 if (profile->modes_supported[i]) { 1329 empty_profile = false; 1330 break; 1331 } 1332 } 1333 1334 if (empty_profile) { 1335 dm_destroy_crypto_profile(profile); 1336 profile = NULL; 1337 } 1338 1339 /* 1340 * t->crypto_profile is only set temporarily while the table is being 1341 * set up, and it gets set to NULL after the profile has been 1342 * transferred to the request_queue. 1343 */ 1344 t->crypto_profile = profile; 1345 1346 return 0; 1347 } 1348 1349 static void dm_update_crypto_profile(struct request_queue *q, 1350 struct dm_table *t) 1351 { 1352 if (!t->crypto_profile) 1353 return; 1354 1355 /* Make the crypto profile less restrictive. */ 1356 if (!q->crypto_profile) { 1357 blk_crypto_register(t->crypto_profile, q); 1358 } else { 1359 blk_crypto_update_capabilities(q->crypto_profile, 1360 t->crypto_profile); 1361 dm_destroy_crypto_profile(t->crypto_profile); 1362 } 1363 t->crypto_profile = NULL; 1364 } 1365 1366 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1367 1368 static int dm_table_construct_crypto_profile(struct dm_table *t) 1369 { 1370 return 0; 1371 } 1372 1373 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1374 { 1375 } 1376 1377 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1378 { 1379 } 1380 1381 static void dm_update_crypto_profile(struct request_queue *q, 1382 struct dm_table *t) 1383 { 1384 } 1385 1386 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1387 1388 /* 1389 * Prepares the table for use by building the indices, 1390 * setting the type, and allocating mempools. 1391 */ 1392 int dm_table_complete(struct dm_table *t) 1393 { 1394 int r; 1395 1396 r = dm_table_determine_type(t); 1397 if (r) { 1398 DMERR("unable to determine table type"); 1399 return r; 1400 } 1401 1402 r = dm_table_build_index(t); 1403 if (r) { 1404 DMERR("unable to build btrees"); 1405 return r; 1406 } 1407 1408 r = dm_table_register_integrity(t); 1409 if (r) { 1410 DMERR("could not register integrity profile."); 1411 return r; 1412 } 1413 1414 r = dm_table_construct_crypto_profile(t); 1415 if (r) { 1416 DMERR("could not construct crypto profile."); 1417 return r; 1418 } 1419 1420 r = dm_table_alloc_md_mempools(t, t->md); 1421 if (r) 1422 DMERR("unable to allocate mempools"); 1423 1424 return r; 1425 } 1426 1427 static DEFINE_MUTEX(_event_lock); 1428 void dm_table_event_callback(struct dm_table *t, 1429 void (*fn)(void *), void *context) 1430 { 1431 mutex_lock(&_event_lock); 1432 t->event_fn = fn; 1433 t->event_context = context; 1434 mutex_unlock(&_event_lock); 1435 } 1436 1437 void dm_table_event(struct dm_table *t) 1438 { 1439 mutex_lock(&_event_lock); 1440 if (t->event_fn) 1441 t->event_fn(t->event_context); 1442 mutex_unlock(&_event_lock); 1443 } 1444 EXPORT_SYMBOL(dm_table_event); 1445 1446 inline sector_t dm_table_get_size(struct dm_table *t) 1447 { 1448 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1449 } 1450 EXPORT_SYMBOL(dm_table_get_size); 1451 1452 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1453 { 1454 if (index >= t->num_targets) 1455 return NULL; 1456 1457 return t->targets + index; 1458 } 1459 1460 /* 1461 * Search the btree for the correct target. 1462 * 1463 * Caller should check returned pointer for NULL 1464 * to trap I/O beyond end of device. 1465 */ 1466 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1467 { 1468 unsigned int l, n = 0, k = 0; 1469 sector_t *node; 1470 1471 if (unlikely(sector >= dm_table_get_size(t))) 1472 return NULL; 1473 1474 for (l = 0; l < t->depth; l++) { 1475 n = get_child(n, k); 1476 node = get_node(t, l, n); 1477 1478 for (k = 0; k < KEYS_PER_NODE; k++) 1479 if (node[k] >= sector) 1480 break; 1481 } 1482 1483 return &t->targets[(KEYS_PER_NODE * n) + k]; 1484 } 1485 1486 /* 1487 * type->iterate_devices() should be called when the sanity check needs to 1488 * iterate and check all underlying data devices. iterate_devices() will 1489 * iterate all underlying data devices until it encounters a non-zero return 1490 * code, returned by whether the input iterate_devices_callout_fn, or 1491 * iterate_devices() itself internally. 1492 * 1493 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1494 * iterate multiple underlying devices internally, in which case a non-zero 1495 * return code returned by iterate_devices_callout_fn will stop the iteration 1496 * in advance. 1497 * 1498 * Cases requiring _any_ underlying device supporting some kind of attribute, 1499 * should use the iteration structure like dm_table_any_dev_attr(), or call 1500 * it directly. @func should handle semantics of positive examples, e.g. 1501 * capable of something. 1502 * 1503 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1504 * should use the iteration structure like dm_table_supports_nowait() or 1505 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1506 * uses an @anti_func that handle semantics of counter examples, e.g. not 1507 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1508 */ 1509 static bool dm_table_any_dev_attr(struct dm_table *t, 1510 iterate_devices_callout_fn func, void *data) 1511 { 1512 struct dm_target *ti; 1513 unsigned int i; 1514 1515 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1516 ti = dm_table_get_target(t, i); 1517 1518 if (ti->type->iterate_devices && 1519 ti->type->iterate_devices(ti, func, data)) 1520 return true; 1521 } 1522 1523 return false; 1524 } 1525 1526 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1527 sector_t start, sector_t len, void *data) 1528 { 1529 unsigned *num_devices = data; 1530 1531 (*num_devices)++; 1532 1533 return 0; 1534 } 1535 1536 /* 1537 * Check whether a table has no data devices attached using each 1538 * target's iterate_devices method. 1539 * Returns false if the result is unknown because a target doesn't 1540 * support iterate_devices. 1541 */ 1542 bool dm_table_has_no_data_devices(struct dm_table *table) 1543 { 1544 struct dm_target *ti; 1545 unsigned i, num_devices; 1546 1547 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1548 ti = dm_table_get_target(table, i); 1549 1550 if (!ti->type->iterate_devices) 1551 return false; 1552 1553 num_devices = 0; 1554 ti->type->iterate_devices(ti, count_device, &num_devices); 1555 if (num_devices) 1556 return false; 1557 } 1558 1559 return true; 1560 } 1561 1562 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1563 sector_t start, sector_t len, void *data) 1564 { 1565 struct request_queue *q = bdev_get_queue(dev->bdev); 1566 enum blk_zoned_model *zoned_model = data; 1567 1568 return blk_queue_zoned_model(q) != *zoned_model; 1569 } 1570 1571 /* 1572 * Check the device zoned model based on the target feature flag. If the target 1573 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1574 * also accepted but all devices must have the same zoned model. If the target 1575 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1576 * zoned model with all zoned devices having the same zone size. 1577 */ 1578 static bool dm_table_supports_zoned_model(struct dm_table *t, 1579 enum blk_zoned_model zoned_model) 1580 { 1581 struct dm_target *ti; 1582 unsigned i; 1583 1584 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1585 ti = dm_table_get_target(t, i); 1586 1587 if (dm_target_supports_zoned_hm(ti->type)) { 1588 if (!ti->type->iterate_devices || 1589 ti->type->iterate_devices(ti, device_not_zoned_model, 1590 &zoned_model)) 1591 return false; 1592 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1593 if (zoned_model == BLK_ZONED_HM) 1594 return false; 1595 } 1596 } 1597 1598 return true; 1599 } 1600 1601 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1602 sector_t start, sector_t len, void *data) 1603 { 1604 struct request_queue *q = bdev_get_queue(dev->bdev); 1605 unsigned int *zone_sectors = data; 1606 1607 if (!blk_queue_is_zoned(q)) 1608 return 0; 1609 1610 return blk_queue_zone_sectors(q) != *zone_sectors; 1611 } 1612 1613 /* 1614 * Check consistency of zoned model and zone sectors across all targets. For 1615 * zone sectors, if the destination device is a zoned block device, it shall 1616 * have the specified zone_sectors. 1617 */ 1618 static int validate_hardware_zoned_model(struct dm_table *table, 1619 enum blk_zoned_model zoned_model, 1620 unsigned int zone_sectors) 1621 { 1622 if (zoned_model == BLK_ZONED_NONE) 1623 return 0; 1624 1625 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1626 DMERR("%s: zoned model is not consistent across all devices", 1627 dm_device_name(table->md)); 1628 return -EINVAL; 1629 } 1630 1631 /* Check zone size validity and compatibility */ 1632 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1633 return -EINVAL; 1634 1635 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) { 1636 DMERR("%s: zone sectors is not consistent across all zoned devices", 1637 dm_device_name(table->md)); 1638 return -EINVAL; 1639 } 1640 1641 return 0; 1642 } 1643 1644 /* 1645 * Establish the new table's queue_limits and validate them. 1646 */ 1647 int dm_calculate_queue_limits(struct dm_table *table, 1648 struct queue_limits *limits) 1649 { 1650 struct dm_target *ti; 1651 struct queue_limits ti_limits; 1652 unsigned i; 1653 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1654 unsigned int zone_sectors = 0; 1655 1656 blk_set_stacking_limits(limits); 1657 1658 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1659 blk_set_stacking_limits(&ti_limits); 1660 1661 ti = dm_table_get_target(table, i); 1662 1663 if (!ti->type->iterate_devices) 1664 goto combine_limits; 1665 1666 /* 1667 * Combine queue limits of all the devices this target uses. 1668 */ 1669 ti->type->iterate_devices(ti, dm_set_device_limits, 1670 &ti_limits); 1671 1672 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1673 /* 1674 * After stacking all limits, validate all devices 1675 * in table support this zoned model and zone sectors. 1676 */ 1677 zoned_model = ti_limits.zoned; 1678 zone_sectors = ti_limits.chunk_sectors; 1679 } 1680 1681 /* Set I/O hints portion of queue limits */ 1682 if (ti->type->io_hints) 1683 ti->type->io_hints(ti, &ti_limits); 1684 1685 /* 1686 * Check each device area is consistent with the target's 1687 * overall queue limits. 1688 */ 1689 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1690 &ti_limits)) 1691 return -EINVAL; 1692 1693 combine_limits: 1694 /* 1695 * Merge this target's queue limits into the overall limits 1696 * for the table. 1697 */ 1698 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1699 DMWARN("%s: adding target device " 1700 "(start sect %llu len %llu) " 1701 "caused an alignment inconsistency", 1702 dm_device_name(table->md), 1703 (unsigned long long) ti->begin, 1704 (unsigned long long) ti->len); 1705 } 1706 1707 /* 1708 * Verify that the zoned model and zone sectors, as determined before 1709 * any .io_hints override, are the same across all devices in the table. 1710 * - this is especially relevant if .io_hints is emulating a disk-managed 1711 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1712 * BUT... 1713 */ 1714 if (limits->zoned != BLK_ZONED_NONE) { 1715 /* 1716 * ...IF the above limits stacking determined a zoned model 1717 * validate that all of the table's devices conform to it. 1718 */ 1719 zoned_model = limits->zoned; 1720 zone_sectors = limits->chunk_sectors; 1721 } 1722 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1723 return -EINVAL; 1724 1725 return validate_hardware_logical_block_alignment(table, limits); 1726 } 1727 1728 /* 1729 * Verify that all devices have an integrity profile that matches the 1730 * DM device's registered integrity profile. If the profiles don't 1731 * match then unregister the DM device's integrity profile. 1732 */ 1733 static void dm_table_verify_integrity(struct dm_table *t) 1734 { 1735 struct gendisk *template_disk = NULL; 1736 1737 if (t->integrity_added) 1738 return; 1739 1740 if (t->integrity_supported) { 1741 /* 1742 * Verify that the original integrity profile 1743 * matches all the devices in this table. 1744 */ 1745 template_disk = dm_table_get_integrity_disk(t); 1746 if (template_disk && 1747 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1748 return; 1749 } 1750 1751 if (integrity_profile_exists(dm_disk(t->md))) { 1752 DMWARN("%s: unable to establish an integrity profile", 1753 dm_device_name(t->md)); 1754 blk_integrity_unregister(dm_disk(t->md)); 1755 } 1756 } 1757 1758 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1759 sector_t start, sector_t len, void *data) 1760 { 1761 unsigned long flush = (unsigned long) data; 1762 struct request_queue *q = bdev_get_queue(dev->bdev); 1763 1764 return (q->queue_flags & flush); 1765 } 1766 1767 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1768 { 1769 struct dm_target *ti; 1770 unsigned i; 1771 1772 /* 1773 * Require at least one underlying device to support flushes. 1774 * t->devices includes internal dm devices such as mirror logs 1775 * so we need to use iterate_devices here, which targets 1776 * supporting flushes must provide. 1777 */ 1778 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1779 ti = dm_table_get_target(t, i); 1780 1781 if (!ti->num_flush_bios) 1782 continue; 1783 1784 if (ti->flush_supported) 1785 return true; 1786 1787 if (ti->type->iterate_devices && 1788 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1789 return true; 1790 } 1791 1792 return false; 1793 } 1794 1795 static int device_dax_write_cache_enabled(struct dm_target *ti, 1796 struct dm_dev *dev, sector_t start, 1797 sector_t len, void *data) 1798 { 1799 struct dax_device *dax_dev = dev->dax_dev; 1800 1801 if (!dax_dev) 1802 return false; 1803 1804 if (dax_write_cache_enabled(dax_dev)) 1805 return true; 1806 return false; 1807 } 1808 1809 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1810 sector_t start, sector_t len, void *data) 1811 { 1812 struct request_queue *q = bdev_get_queue(dev->bdev); 1813 1814 return !blk_queue_nonrot(q); 1815 } 1816 1817 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1818 sector_t start, sector_t len, void *data) 1819 { 1820 struct request_queue *q = bdev_get_queue(dev->bdev); 1821 1822 return !blk_queue_add_random(q); 1823 } 1824 1825 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1826 sector_t start, sector_t len, void *data) 1827 { 1828 struct request_queue *q = bdev_get_queue(dev->bdev); 1829 1830 return !q->limits.max_write_same_sectors; 1831 } 1832 1833 static bool dm_table_supports_write_same(struct dm_table *t) 1834 { 1835 struct dm_target *ti; 1836 unsigned i; 1837 1838 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1839 ti = dm_table_get_target(t, i); 1840 1841 if (!ti->num_write_same_bios) 1842 return false; 1843 1844 if (!ti->type->iterate_devices || 1845 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1846 return false; 1847 } 1848 1849 return true; 1850 } 1851 1852 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1853 sector_t start, sector_t len, void *data) 1854 { 1855 struct request_queue *q = bdev_get_queue(dev->bdev); 1856 1857 return !q->limits.max_write_zeroes_sectors; 1858 } 1859 1860 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1861 { 1862 struct dm_target *ti; 1863 unsigned i = 0; 1864 1865 while (i < dm_table_get_num_targets(t)) { 1866 ti = dm_table_get_target(t, i++); 1867 1868 if (!ti->num_write_zeroes_bios) 1869 return false; 1870 1871 if (!ti->type->iterate_devices || 1872 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1873 return false; 1874 } 1875 1876 return true; 1877 } 1878 1879 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1880 sector_t start, sector_t len, void *data) 1881 { 1882 struct request_queue *q = bdev_get_queue(dev->bdev); 1883 1884 return !blk_queue_nowait(q); 1885 } 1886 1887 static bool dm_table_supports_nowait(struct dm_table *t) 1888 { 1889 struct dm_target *ti; 1890 unsigned i = 0; 1891 1892 while (i < dm_table_get_num_targets(t)) { 1893 ti = dm_table_get_target(t, i++); 1894 1895 if (!dm_target_supports_nowait(ti->type)) 1896 return false; 1897 1898 if (!ti->type->iterate_devices || 1899 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1900 return false; 1901 } 1902 1903 return true; 1904 } 1905 1906 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1907 sector_t start, sector_t len, void *data) 1908 { 1909 struct request_queue *q = bdev_get_queue(dev->bdev); 1910 1911 return !blk_queue_discard(q); 1912 } 1913 1914 static bool dm_table_supports_discards(struct dm_table *t) 1915 { 1916 struct dm_target *ti; 1917 unsigned i; 1918 1919 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1920 ti = dm_table_get_target(t, i); 1921 1922 if (!ti->num_discard_bios) 1923 return false; 1924 1925 /* 1926 * Either the target provides discard support (as implied by setting 1927 * 'discards_supported') or it relies on _all_ data devices having 1928 * discard support. 1929 */ 1930 if (!ti->discards_supported && 1931 (!ti->type->iterate_devices || 1932 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1933 return false; 1934 } 1935 1936 return true; 1937 } 1938 1939 static int device_not_secure_erase_capable(struct dm_target *ti, 1940 struct dm_dev *dev, sector_t start, 1941 sector_t len, void *data) 1942 { 1943 struct request_queue *q = bdev_get_queue(dev->bdev); 1944 1945 return !blk_queue_secure_erase(q); 1946 } 1947 1948 static bool dm_table_supports_secure_erase(struct dm_table *t) 1949 { 1950 struct dm_target *ti; 1951 unsigned int i; 1952 1953 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1954 ti = dm_table_get_target(t, i); 1955 1956 if (!ti->num_secure_erase_bios) 1957 return false; 1958 1959 if (!ti->type->iterate_devices || 1960 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1961 return false; 1962 } 1963 1964 return true; 1965 } 1966 1967 static int device_requires_stable_pages(struct dm_target *ti, 1968 struct dm_dev *dev, sector_t start, 1969 sector_t len, void *data) 1970 { 1971 struct request_queue *q = bdev_get_queue(dev->bdev); 1972 1973 return blk_queue_stable_writes(q); 1974 } 1975 1976 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1977 struct queue_limits *limits) 1978 { 1979 bool wc = false, fua = false; 1980 int r; 1981 1982 /* 1983 * Copy table's limits to the DM device's request_queue 1984 */ 1985 q->limits = *limits; 1986 1987 if (dm_table_supports_nowait(t)) 1988 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1989 else 1990 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1991 1992 if (!dm_table_supports_discards(t)) { 1993 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1994 /* Must also clear discard limits... */ 1995 q->limits.max_discard_sectors = 0; 1996 q->limits.max_hw_discard_sectors = 0; 1997 q->limits.discard_granularity = 0; 1998 q->limits.discard_alignment = 0; 1999 q->limits.discard_misaligned = 0; 2000 } else 2001 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 2002 2003 if (dm_table_supports_secure_erase(t)) 2004 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 2005 2006 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 2007 wc = true; 2008 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 2009 fua = true; 2010 } 2011 blk_queue_write_cache(q, wc, fua); 2012 2013 if (dm_table_supports_dax(t, device_not_dax_capable)) { 2014 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 2015 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 2016 set_dax_synchronous(t->md->dax_dev); 2017 } 2018 else 2019 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 2020 2021 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 2022 dax_write_cache(t->md->dax_dev, true); 2023 2024 /* Ensure that all underlying devices are non-rotational. */ 2025 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 2026 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2027 else 2028 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2029 2030 if (!dm_table_supports_write_same(t)) 2031 q->limits.max_write_same_sectors = 0; 2032 if (!dm_table_supports_write_zeroes(t)) 2033 q->limits.max_write_zeroes_sectors = 0; 2034 2035 dm_table_verify_integrity(t); 2036 2037 /* 2038 * Some devices don't use blk_integrity but still want stable pages 2039 * because they do their own checksumming. 2040 * If any underlying device requires stable pages, a table must require 2041 * them as well. Only targets that support iterate_devices are considered: 2042 * don't want error, zero, etc to require stable pages. 2043 */ 2044 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 2045 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 2046 else 2047 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 2048 2049 /* 2050 * Determine whether or not this queue's I/O timings contribute 2051 * to the entropy pool, Only request-based targets use this. 2052 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 2053 * have it set. 2054 */ 2055 if (blk_queue_add_random(q) && 2056 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 2057 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2058 2059 /* 2060 * For a zoned target, setup the zones related queue attributes 2061 * and resources necessary for zone append emulation if necessary. 2062 */ 2063 if (blk_queue_is_zoned(q)) { 2064 r = dm_set_zones_restrictions(t, q); 2065 if (r) 2066 return r; 2067 } 2068 2069 dm_update_crypto_profile(q, t); 2070 disk_update_readahead(t->md->disk); 2071 2072 return 0; 2073 } 2074 2075 unsigned int dm_table_get_num_targets(struct dm_table *t) 2076 { 2077 return t->num_targets; 2078 } 2079 2080 struct list_head *dm_table_get_devices(struct dm_table *t) 2081 { 2082 return &t->devices; 2083 } 2084 2085 fmode_t dm_table_get_mode(struct dm_table *t) 2086 { 2087 return t->mode; 2088 } 2089 EXPORT_SYMBOL(dm_table_get_mode); 2090 2091 enum suspend_mode { 2092 PRESUSPEND, 2093 PRESUSPEND_UNDO, 2094 POSTSUSPEND, 2095 }; 2096 2097 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2098 { 2099 int i = t->num_targets; 2100 struct dm_target *ti = t->targets; 2101 2102 lockdep_assert_held(&t->md->suspend_lock); 2103 2104 while (i--) { 2105 switch (mode) { 2106 case PRESUSPEND: 2107 if (ti->type->presuspend) 2108 ti->type->presuspend(ti); 2109 break; 2110 case PRESUSPEND_UNDO: 2111 if (ti->type->presuspend_undo) 2112 ti->type->presuspend_undo(ti); 2113 break; 2114 case POSTSUSPEND: 2115 if (ti->type->postsuspend) 2116 ti->type->postsuspend(ti); 2117 break; 2118 } 2119 ti++; 2120 } 2121 } 2122 2123 void dm_table_presuspend_targets(struct dm_table *t) 2124 { 2125 if (!t) 2126 return; 2127 2128 suspend_targets(t, PRESUSPEND); 2129 } 2130 2131 void dm_table_presuspend_undo_targets(struct dm_table *t) 2132 { 2133 if (!t) 2134 return; 2135 2136 suspend_targets(t, PRESUSPEND_UNDO); 2137 } 2138 2139 void dm_table_postsuspend_targets(struct dm_table *t) 2140 { 2141 if (!t) 2142 return; 2143 2144 suspend_targets(t, POSTSUSPEND); 2145 } 2146 2147 int dm_table_resume_targets(struct dm_table *t) 2148 { 2149 int i, r = 0; 2150 2151 lockdep_assert_held(&t->md->suspend_lock); 2152 2153 for (i = 0; i < t->num_targets; i++) { 2154 struct dm_target *ti = t->targets + i; 2155 2156 if (!ti->type->preresume) 2157 continue; 2158 2159 r = ti->type->preresume(ti); 2160 if (r) { 2161 DMERR("%s: %s: preresume failed, error = %d", 2162 dm_device_name(t->md), ti->type->name, r); 2163 return r; 2164 } 2165 } 2166 2167 for (i = 0; i < t->num_targets; i++) { 2168 struct dm_target *ti = t->targets + i; 2169 2170 if (ti->type->resume) 2171 ti->type->resume(ti); 2172 } 2173 2174 return 0; 2175 } 2176 2177 struct mapped_device *dm_table_get_md(struct dm_table *t) 2178 { 2179 return t->md; 2180 } 2181 EXPORT_SYMBOL(dm_table_get_md); 2182 2183 const char *dm_table_device_name(struct dm_table *t) 2184 { 2185 return dm_device_name(t->md); 2186 } 2187 EXPORT_SYMBOL_GPL(dm_table_device_name); 2188 2189 void dm_table_run_md_queue_async(struct dm_table *t) 2190 { 2191 if (!dm_table_request_based(t)) 2192 return; 2193 2194 if (t->md->queue) 2195 blk_mq_run_hw_queues(t->md->queue, true); 2196 } 2197 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2198 2199