xref: /linux/drivers/md/dm-table.c (revision 76f623d2d4283cc36a9c8a5b585df74638f1efa5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27 
28 #define DM_MSG_PREFIX "table"
29 
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 
34 /*
35  * Similar to ceiling(log_size(n))
36  */
37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 	int result = 0;
40 
41 	while (n > 1) {
42 		n = dm_div_up(n, base);
43 		result++;
44 	}
45 
46 	return result;
47 }
48 
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 	return (n * CHILDREN_PER_NODE) + k;
55 }
56 
57 /*
58  * Return the n'th node of level l from table t.
59  */
60 static inline sector_t *get_node(struct dm_table *t,
61 				 unsigned int l, unsigned int n)
62 {
63 	return t->index[l] + (n * KEYS_PER_NODE);
64 }
65 
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 	for (; l < t->depth - 1; l++)
73 		n = get_child(n, CHILDREN_PER_NODE - 1);
74 
75 	if (n >= t->counts[l])
76 		return (sector_t) -1;
77 
78 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80 
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 	unsigned int n, k;
88 	sector_t *node;
89 
90 	for (n = 0U; n < t->counts[l]; n++) {
91 		node = get_node(t, l, n);
92 
93 		for (k = 0U; k < KEYS_PER_NODE; k++)
94 			node[k] = high(t, l + 1, get_child(n, k));
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 	sector_t *n_highs;
107 	struct dm_target *n_targets;
108 
109 	/*
110 	 * Allocate both the target array and offset array at once.
111 	 */
112 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 			   GFP_KERNEL);
114 	if (!n_highs)
115 		return -ENOMEM;
116 
117 	n_targets = (struct dm_target *) (n_highs + num);
118 
119 	memset(n_highs, -1, sizeof(*n_highs) * num);
120 	kvfree(t->highs);
121 
122 	t->num_allocated = num;
123 	t->highs = n_highs;
124 	t->targets = n_targets;
125 
126 	return 0;
127 }
128 
129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 		    unsigned int num_targets, struct mapped_device *md)
131 {
132 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
133 
134 	if (!t)
135 		return -ENOMEM;
136 
137 	INIT_LIST_HEAD(&t->devices);
138 	init_rwsem(&t->devices_lock);
139 
140 	if (!num_targets)
141 		num_targets = KEYS_PER_NODE;
142 
143 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
144 
145 	if (!num_targets) {
146 		kfree(t);
147 		return -ENOMEM;
148 	}
149 
150 	if (alloc_targets(t, num_targets)) {
151 		kfree(t);
152 		return -ENOMEM;
153 	}
154 
155 	t->type = DM_TYPE_NONE;
156 	t->mode = mode;
157 	t->md = md;
158 	*result = t;
159 	return 0;
160 }
161 
162 static void free_devices(struct list_head *devices, struct mapped_device *md)
163 {
164 	struct list_head *tmp, *next;
165 
166 	list_for_each_safe(tmp, next, devices) {
167 		struct dm_dev_internal *dd =
168 		    list_entry(tmp, struct dm_dev_internal, list);
169 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
170 		       dm_device_name(md), dd->dm_dev->name);
171 		dm_put_table_device(md, dd->dm_dev);
172 		kfree(dd);
173 	}
174 }
175 
176 static void dm_table_destroy_crypto_profile(struct dm_table *t);
177 
178 void dm_table_destroy(struct dm_table *t)
179 {
180 	if (!t)
181 		return;
182 
183 	/* free the indexes */
184 	if (t->depth >= 2)
185 		kvfree(t->index[t->depth - 2]);
186 
187 	/* free the targets */
188 	for (unsigned int i = 0; i < t->num_targets; i++) {
189 		struct dm_target *ti = dm_table_get_target(t, i);
190 
191 		if (ti->type->dtr)
192 			ti->type->dtr(ti);
193 
194 		dm_put_target_type(ti->type);
195 	}
196 
197 	kvfree(t->highs);
198 
199 	/* free the device list */
200 	free_devices(&t->devices, t->md);
201 
202 	dm_free_md_mempools(t->mempools);
203 
204 	dm_table_destroy_crypto_profile(t);
205 
206 	kfree(t);
207 }
208 
209 /*
210  * See if we've already got a device in the list.
211  */
212 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
213 {
214 	struct dm_dev_internal *dd;
215 
216 	list_for_each_entry(dd, l, list)
217 		if (dd->dm_dev->bdev->bd_dev == dev)
218 			return dd;
219 
220 	return NULL;
221 }
222 
223 /*
224  * If possible, this checks an area of a destination device is invalid.
225  */
226 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
227 				  sector_t start, sector_t len, void *data)
228 {
229 	struct queue_limits *limits = data;
230 	struct block_device *bdev = dev->bdev;
231 	sector_t dev_size = bdev_nr_sectors(bdev);
232 	unsigned short logical_block_size_sectors =
233 		limits->logical_block_size >> SECTOR_SHIFT;
234 
235 	if (!dev_size)
236 		return 0;
237 
238 	if ((start >= dev_size) || (start + len > dev_size)) {
239 		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
240 		      dm_device_name(ti->table->md), bdev,
241 		      (unsigned long long)start,
242 		      (unsigned long long)len,
243 		      (unsigned long long)dev_size);
244 		return 1;
245 	}
246 
247 	/*
248 	 * If the target is mapped to zoned block device(s), check
249 	 * that the zones are not partially mapped.
250 	 */
251 	if (bdev_is_zoned(bdev)) {
252 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
253 
254 		if (start & (zone_sectors - 1)) {
255 			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
256 			      dm_device_name(ti->table->md),
257 			      (unsigned long long)start,
258 			      zone_sectors, bdev);
259 			return 1;
260 		}
261 
262 		/*
263 		 * Note: The last zone of a zoned block device may be smaller
264 		 * than other zones. So for a target mapping the end of a
265 		 * zoned block device with such a zone, len would not be zone
266 		 * aligned. We do not allow such last smaller zone to be part
267 		 * of the mapping here to ensure that mappings with multiple
268 		 * devices do not end up with a smaller zone in the middle of
269 		 * the sector range.
270 		 */
271 		if (len & (zone_sectors - 1)) {
272 			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
273 			      dm_device_name(ti->table->md),
274 			      (unsigned long long)len,
275 			      zone_sectors, bdev);
276 			return 1;
277 		}
278 	}
279 
280 	if (logical_block_size_sectors <= 1)
281 		return 0;
282 
283 	if (start & (logical_block_size_sectors - 1)) {
284 		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
285 		      dm_device_name(ti->table->md),
286 		      (unsigned long long)start,
287 		      limits->logical_block_size, bdev);
288 		return 1;
289 	}
290 
291 	if (len & (logical_block_size_sectors - 1)) {
292 		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
293 		      dm_device_name(ti->table->md),
294 		      (unsigned long long)len,
295 		      limits->logical_block_size, bdev);
296 		return 1;
297 	}
298 
299 	return 0;
300 }
301 
302 /*
303  * This upgrades the mode on an already open dm_dev, being
304  * careful to leave things as they were if we fail to reopen the
305  * device and not to touch the existing bdev field in case
306  * it is accessed concurrently.
307  */
308 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
309 			struct mapped_device *md)
310 {
311 	int r;
312 	struct dm_dev *old_dev, *new_dev;
313 
314 	old_dev = dd->dm_dev;
315 
316 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
317 				dd->dm_dev->mode | new_mode, &new_dev);
318 	if (r)
319 		return r;
320 
321 	dd->dm_dev = new_dev;
322 	dm_put_table_device(md, old_dev);
323 
324 	return 0;
325 }
326 
327 /*
328  * Add a device to the list, or just increment the usage count if
329  * it's already present.
330  *
331  * Note: the __ref annotation is because this function can call the __init
332  * marked early_lookup_bdev when called during early boot code from dm-init.c.
333  */
334 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
335 		  struct dm_dev **result)
336 {
337 	int r;
338 	dev_t dev;
339 	unsigned int major, minor;
340 	char dummy;
341 	struct dm_dev_internal *dd;
342 	struct dm_table *t = ti->table;
343 
344 	BUG_ON(!t);
345 
346 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
347 		/* Extract the major/minor numbers */
348 		dev = MKDEV(major, minor);
349 		if (MAJOR(dev) != major || MINOR(dev) != minor)
350 			return -EOVERFLOW;
351 	} else {
352 		r = lookup_bdev(path, &dev);
353 #ifndef MODULE
354 		if (r && system_state < SYSTEM_RUNNING)
355 			r = early_lookup_bdev(path, &dev);
356 #endif
357 		if (r)
358 			return r;
359 	}
360 	if (dev == disk_devt(t->md->disk))
361 		return -EINVAL;
362 
363 	down_write(&t->devices_lock);
364 
365 	dd = find_device(&t->devices, dev);
366 	if (!dd) {
367 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
368 		if (!dd) {
369 			r = -ENOMEM;
370 			goto unlock_ret_r;
371 		}
372 
373 		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
374 		if (r) {
375 			kfree(dd);
376 			goto unlock_ret_r;
377 		}
378 
379 		refcount_set(&dd->count, 1);
380 		list_add(&dd->list, &t->devices);
381 		goto out;
382 
383 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
384 		r = upgrade_mode(dd, mode, t->md);
385 		if (r)
386 			goto unlock_ret_r;
387 	}
388 	refcount_inc(&dd->count);
389 out:
390 	up_write(&t->devices_lock);
391 	*result = dd->dm_dev;
392 	return 0;
393 
394 unlock_ret_r:
395 	up_write(&t->devices_lock);
396 	return r;
397 }
398 EXPORT_SYMBOL(dm_get_device);
399 
400 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
401 				sector_t start, sector_t len, void *data)
402 {
403 	struct queue_limits *limits = data;
404 	struct block_device *bdev = dev->bdev;
405 	struct request_queue *q = bdev_get_queue(bdev);
406 
407 	if (unlikely(!q)) {
408 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
409 		       dm_device_name(ti->table->md), bdev);
410 		return 0;
411 	}
412 
413 	if (blk_stack_limits(limits, &q->limits,
414 			get_start_sect(bdev) + start) < 0)
415 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
416 		       "physical_block_size=%u, logical_block_size=%u, "
417 		       "alignment_offset=%u, start=%llu",
418 		       dm_device_name(ti->table->md), bdev,
419 		       q->limits.physical_block_size,
420 		       q->limits.logical_block_size,
421 		       q->limits.alignment_offset,
422 		       (unsigned long long) start << SECTOR_SHIFT);
423 	return 0;
424 }
425 
426 /*
427  * Decrement a device's use count and remove it if necessary.
428  */
429 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
430 {
431 	int found = 0;
432 	struct dm_table *t = ti->table;
433 	struct list_head *devices = &t->devices;
434 	struct dm_dev_internal *dd;
435 
436 	down_write(&t->devices_lock);
437 
438 	list_for_each_entry(dd, devices, list) {
439 		if (dd->dm_dev == d) {
440 			found = 1;
441 			break;
442 		}
443 	}
444 	if (!found) {
445 		DMERR("%s: device %s not in table devices list",
446 		      dm_device_name(t->md), d->name);
447 		goto unlock_ret;
448 	}
449 	if (refcount_dec_and_test(&dd->count)) {
450 		dm_put_table_device(t->md, d);
451 		list_del(&dd->list);
452 		kfree(dd);
453 	}
454 
455 unlock_ret:
456 	up_write(&t->devices_lock);
457 }
458 EXPORT_SYMBOL(dm_put_device);
459 
460 /*
461  * Checks to see if the target joins onto the end of the table.
462  */
463 static int adjoin(struct dm_table *t, struct dm_target *ti)
464 {
465 	struct dm_target *prev;
466 
467 	if (!t->num_targets)
468 		return !ti->begin;
469 
470 	prev = &t->targets[t->num_targets - 1];
471 	return (ti->begin == (prev->begin + prev->len));
472 }
473 
474 /*
475  * Used to dynamically allocate the arg array.
476  *
477  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
478  * process messages even if some device is suspended. These messages have a
479  * small fixed number of arguments.
480  *
481  * On the other hand, dm-switch needs to process bulk data using messages and
482  * excessive use of GFP_NOIO could cause trouble.
483  */
484 static char **realloc_argv(unsigned int *size, char **old_argv)
485 {
486 	char **argv;
487 	unsigned int new_size;
488 	gfp_t gfp;
489 
490 	if (*size) {
491 		new_size = *size * 2;
492 		gfp = GFP_KERNEL;
493 	} else {
494 		new_size = 8;
495 		gfp = GFP_NOIO;
496 	}
497 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
498 	if (argv && old_argv) {
499 		memcpy(argv, old_argv, *size * sizeof(*argv));
500 		*size = new_size;
501 	}
502 
503 	kfree(old_argv);
504 	return argv;
505 }
506 
507 /*
508  * Destructively splits up the argument list to pass to ctr.
509  */
510 int dm_split_args(int *argc, char ***argvp, char *input)
511 {
512 	char *start, *end = input, *out, **argv = NULL;
513 	unsigned int array_size = 0;
514 
515 	*argc = 0;
516 
517 	if (!input) {
518 		*argvp = NULL;
519 		return 0;
520 	}
521 
522 	argv = realloc_argv(&array_size, argv);
523 	if (!argv)
524 		return -ENOMEM;
525 
526 	while (1) {
527 		/* Skip whitespace */
528 		start = skip_spaces(end);
529 
530 		if (!*start)
531 			break;	/* success, we hit the end */
532 
533 		/* 'out' is used to remove any back-quotes */
534 		end = out = start;
535 		while (*end) {
536 			/* Everything apart from '\0' can be quoted */
537 			if (*end == '\\' && *(end + 1)) {
538 				*out++ = *(end + 1);
539 				end += 2;
540 				continue;
541 			}
542 
543 			if (isspace(*end))
544 				break;	/* end of token */
545 
546 			*out++ = *end++;
547 		}
548 
549 		/* have we already filled the array ? */
550 		if ((*argc + 1) > array_size) {
551 			argv = realloc_argv(&array_size, argv);
552 			if (!argv)
553 				return -ENOMEM;
554 		}
555 
556 		/* we know this is whitespace */
557 		if (*end)
558 			end++;
559 
560 		/* terminate the string and put it in the array */
561 		*out = '\0';
562 		argv[*argc] = start;
563 		(*argc)++;
564 	}
565 
566 	*argvp = argv;
567 	return 0;
568 }
569 
570 /*
571  * Impose necessary and sufficient conditions on a devices's table such
572  * that any incoming bio which respects its logical_block_size can be
573  * processed successfully.  If it falls across the boundary between
574  * two or more targets, the size of each piece it gets split into must
575  * be compatible with the logical_block_size of the target processing it.
576  */
577 static int validate_hardware_logical_block_alignment(struct dm_table *t,
578 						     struct queue_limits *limits)
579 {
580 	/*
581 	 * This function uses arithmetic modulo the logical_block_size
582 	 * (in units of 512-byte sectors).
583 	 */
584 	unsigned short device_logical_block_size_sects =
585 		limits->logical_block_size >> SECTOR_SHIFT;
586 
587 	/*
588 	 * Offset of the start of the next table entry, mod logical_block_size.
589 	 */
590 	unsigned short next_target_start = 0;
591 
592 	/*
593 	 * Given an aligned bio that extends beyond the end of a
594 	 * target, how many sectors must the next target handle?
595 	 */
596 	unsigned short remaining = 0;
597 
598 	struct dm_target *ti;
599 	struct queue_limits ti_limits;
600 	unsigned int i;
601 
602 	/*
603 	 * Check each entry in the table in turn.
604 	 */
605 	for (i = 0; i < t->num_targets; i++) {
606 		ti = dm_table_get_target(t, i);
607 
608 		blk_set_stacking_limits(&ti_limits);
609 
610 		/* combine all target devices' limits */
611 		if (ti->type->iterate_devices)
612 			ti->type->iterate_devices(ti, dm_set_device_limits,
613 						  &ti_limits);
614 
615 		/*
616 		 * If the remaining sectors fall entirely within this
617 		 * table entry are they compatible with its logical_block_size?
618 		 */
619 		if (remaining < ti->len &&
620 		    remaining & ((ti_limits.logical_block_size >>
621 				  SECTOR_SHIFT) - 1))
622 			break;	/* Error */
623 
624 		next_target_start =
625 		    (unsigned short) ((next_target_start + ti->len) &
626 				      (device_logical_block_size_sects - 1));
627 		remaining = next_target_start ?
628 		    device_logical_block_size_sects - next_target_start : 0;
629 	}
630 
631 	if (remaining) {
632 		DMERR("%s: table line %u (start sect %llu len %llu) "
633 		      "not aligned to h/w logical block size %u",
634 		      dm_device_name(t->md), i,
635 		      (unsigned long long) ti->begin,
636 		      (unsigned long long) ti->len,
637 		      limits->logical_block_size);
638 		return -EINVAL;
639 	}
640 
641 	return 0;
642 }
643 
644 int dm_table_add_target(struct dm_table *t, const char *type,
645 			sector_t start, sector_t len, char *params)
646 {
647 	int r = -EINVAL, argc;
648 	char **argv;
649 	struct dm_target *ti;
650 
651 	if (t->singleton) {
652 		DMERR("%s: target type %s must appear alone in table",
653 		      dm_device_name(t->md), t->targets->type->name);
654 		return -EINVAL;
655 	}
656 
657 	BUG_ON(t->num_targets >= t->num_allocated);
658 
659 	ti = t->targets + t->num_targets;
660 	memset(ti, 0, sizeof(*ti));
661 
662 	if (!len) {
663 		DMERR("%s: zero-length target", dm_device_name(t->md));
664 		return -EINVAL;
665 	}
666 
667 	ti->type = dm_get_target_type(type);
668 	if (!ti->type) {
669 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
670 		return -EINVAL;
671 	}
672 
673 	if (dm_target_needs_singleton(ti->type)) {
674 		if (t->num_targets) {
675 			ti->error = "singleton target type must appear alone in table";
676 			goto bad;
677 		}
678 		t->singleton = true;
679 	}
680 
681 	if (dm_target_always_writeable(ti->type) &&
682 	    !(t->mode & BLK_OPEN_WRITE)) {
683 		ti->error = "target type may not be included in a read-only table";
684 		goto bad;
685 	}
686 
687 	if (t->immutable_target_type) {
688 		if (t->immutable_target_type != ti->type) {
689 			ti->error = "immutable target type cannot be mixed with other target types";
690 			goto bad;
691 		}
692 	} else if (dm_target_is_immutable(ti->type)) {
693 		if (t->num_targets) {
694 			ti->error = "immutable target type cannot be mixed with other target types";
695 			goto bad;
696 		}
697 		t->immutable_target_type = ti->type;
698 	}
699 
700 	if (dm_target_has_integrity(ti->type))
701 		t->integrity_added = 1;
702 
703 	ti->table = t;
704 	ti->begin = start;
705 	ti->len = len;
706 	ti->error = "Unknown error";
707 
708 	/*
709 	 * Does this target adjoin the previous one ?
710 	 */
711 	if (!adjoin(t, ti)) {
712 		ti->error = "Gap in table";
713 		goto bad;
714 	}
715 
716 	r = dm_split_args(&argc, &argv, params);
717 	if (r) {
718 		ti->error = "couldn't split parameters";
719 		goto bad;
720 	}
721 
722 	r = ti->type->ctr(ti, argc, argv);
723 	kfree(argv);
724 	if (r)
725 		goto bad;
726 
727 	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
728 
729 	if (!ti->num_discard_bios && ti->discards_supported)
730 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
731 		       dm_device_name(t->md), type);
732 
733 	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
734 		static_branch_enable(&swap_bios_enabled);
735 
736 	return 0;
737 
738  bad:
739 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
740 	dm_put_target_type(ti->type);
741 	return r;
742 }
743 
744 /*
745  * Target argument parsing helpers.
746  */
747 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
748 			     unsigned int *value, char **error, unsigned int grouped)
749 {
750 	const char *arg_str = dm_shift_arg(arg_set);
751 	char dummy;
752 
753 	if (!arg_str ||
754 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
755 	    (*value < arg->min) ||
756 	    (*value > arg->max) ||
757 	    (grouped && arg_set->argc < *value)) {
758 		*error = arg->error;
759 		return -EINVAL;
760 	}
761 
762 	return 0;
763 }
764 
765 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
766 		unsigned int *value, char **error)
767 {
768 	return validate_next_arg(arg, arg_set, value, error, 0);
769 }
770 EXPORT_SYMBOL(dm_read_arg);
771 
772 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
773 		      unsigned int *value, char **error)
774 {
775 	return validate_next_arg(arg, arg_set, value, error, 1);
776 }
777 EXPORT_SYMBOL(dm_read_arg_group);
778 
779 const char *dm_shift_arg(struct dm_arg_set *as)
780 {
781 	char *r;
782 
783 	if (as->argc) {
784 		as->argc--;
785 		r = *as->argv;
786 		as->argv++;
787 		return r;
788 	}
789 
790 	return NULL;
791 }
792 EXPORT_SYMBOL(dm_shift_arg);
793 
794 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
795 {
796 	BUG_ON(as->argc < num_args);
797 	as->argc -= num_args;
798 	as->argv += num_args;
799 }
800 EXPORT_SYMBOL(dm_consume_args);
801 
802 static bool __table_type_bio_based(enum dm_queue_mode table_type)
803 {
804 	return (table_type == DM_TYPE_BIO_BASED ||
805 		table_type == DM_TYPE_DAX_BIO_BASED);
806 }
807 
808 static bool __table_type_request_based(enum dm_queue_mode table_type)
809 {
810 	return table_type == DM_TYPE_REQUEST_BASED;
811 }
812 
813 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
814 {
815 	t->type = type;
816 }
817 EXPORT_SYMBOL_GPL(dm_table_set_type);
818 
819 /* validate the dax capability of the target device span */
820 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
821 			sector_t start, sector_t len, void *data)
822 {
823 	if (dev->dax_dev)
824 		return false;
825 
826 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
827 	return true;
828 }
829 
830 /* Check devices support synchronous DAX */
831 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
832 					      sector_t start, sector_t len, void *data)
833 {
834 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
835 }
836 
837 static bool dm_table_supports_dax(struct dm_table *t,
838 				  iterate_devices_callout_fn iterate_fn)
839 {
840 	/* Ensure that all targets support DAX. */
841 	for (unsigned int i = 0; i < t->num_targets; i++) {
842 		struct dm_target *ti = dm_table_get_target(t, i);
843 
844 		if (!ti->type->direct_access)
845 			return false;
846 
847 		if (dm_target_is_wildcard(ti->type) ||
848 		    !ti->type->iterate_devices ||
849 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
850 			return false;
851 	}
852 
853 	return true;
854 }
855 
856 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
857 				  sector_t start, sector_t len, void *data)
858 {
859 	struct block_device *bdev = dev->bdev;
860 	struct request_queue *q = bdev_get_queue(bdev);
861 
862 	/* request-based cannot stack on partitions! */
863 	if (bdev_is_partition(bdev))
864 		return false;
865 
866 	return queue_is_mq(q);
867 }
868 
869 static int dm_table_determine_type(struct dm_table *t)
870 {
871 	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
872 	struct dm_target *ti;
873 	struct list_head *devices = dm_table_get_devices(t);
874 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
875 
876 	if (t->type != DM_TYPE_NONE) {
877 		/* target already set the table's type */
878 		if (t->type == DM_TYPE_BIO_BASED) {
879 			/* possibly upgrade to a variant of bio-based */
880 			goto verify_bio_based;
881 		}
882 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
883 		goto verify_rq_based;
884 	}
885 
886 	for (unsigned int i = 0; i < t->num_targets; i++) {
887 		ti = dm_table_get_target(t, i);
888 		if (dm_target_hybrid(ti))
889 			hybrid = 1;
890 		else if (dm_target_request_based(ti))
891 			request_based = 1;
892 		else
893 			bio_based = 1;
894 
895 		if (bio_based && request_based) {
896 			DMERR("Inconsistent table: different target types can't be mixed up");
897 			return -EINVAL;
898 		}
899 	}
900 
901 	if (hybrid && !bio_based && !request_based) {
902 		/*
903 		 * The targets can work either way.
904 		 * Determine the type from the live device.
905 		 * Default to bio-based if device is new.
906 		 */
907 		if (__table_type_request_based(live_md_type))
908 			request_based = 1;
909 		else
910 			bio_based = 1;
911 	}
912 
913 	if (bio_based) {
914 verify_bio_based:
915 		/* We must use this table as bio-based */
916 		t->type = DM_TYPE_BIO_BASED;
917 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
918 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
919 			t->type = DM_TYPE_DAX_BIO_BASED;
920 		}
921 		return 0;
922 	}
923 
924 	BUG_ON(!request_based); /* No targets in this table */
925 
926 	t->type = DM_TYPE_REQUEST_BASED;
927 
928 verify_rq_based:
929 	/*
930 	 * Request-based dm supports only tables that have a single target now.
931 	 * To support multiple targets, request splitting support is needed,
932 	 * and that needs lots of changes in the block-layer.
933 	 * (e.g. request completion process for partial completion.)
934 	 */
935 	if (t->num_targets > 1) {
936 		DMERR("request-based DM doesn't support multiple targets");
937 		return -EINVAL;
938 	}
939 
940 	if (list_empty(devices)) {
941 		int srcu_idx;
942 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
943 
944 		/* inherit live table's type */
945 		if (live_table)
946 			t->type = live_table->type;
947 		dm_put_live_table(t->md, srcu_idx);
948 		return 0;
949 	}
950 
951 	ti = dm_table_get_immutable_target(t);
952 	if (!ti) {
953 		DMERR("table load rejected: immutable target is required");
954 		return -EINVAL;
955 	} else if (ti->max_io_len) {
956 		DMERR("table load rejected: immutable target that splits IO is not supported");
957 		return -EINVAL;
958 	}
959 
960 	/* Non-request-stackable devices can't be used for request-based dm */
961 	if (!ti->type->iterate_devices ||
962 	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
963 		DMERR("table load rejected: including non-request-stackable devices");
964 		return -EINVAL;
965 	}
966 
967 	return 0;
968 }
969 
970 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
971 {
972 	return t->type;
973 }
974 
975 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
976 {
977 	return t->immutable_target_type;
978 }
979 
980 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
981 {
982 	/* Immutable target is implicitly a singleton */
983 	if (t->num_targets > 1 ||
984 	    !dm_target_is_immutable(t->targets[0].type))
985 		return NULL;
986 
987 	return t->targets;
988 }
989 
990 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
991 {
992 	for (unsigned int i = 0; i < t->num_targets; i++) {
993 		struct dm_target *ti = dm_table_get_target(t, i);
994 
995 		if (dm_target_is_wildcard(ti->type))
996 			return ti;
997 	}
998 
999 	return NULL;
1000 }
1001 
1002 bool dm_table_bio_based(struct dm_table *t)
1003 {
1004 	return __table_type_bio_based(dm_table_get_type(t));
1005 }
1006 
1007 bool dm_table_request_based(struct dm_table *t)
1008 {
1009 	return __table_type_request_based(dm_table_get_type(t));
1010 }
1011 
1012 static bool dm_table_supports_poll(struct dm_table *t);
1013 
1014 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1015 {
1016 	enum dm_queue_mode type = dm_table_get_type(t);
1017 	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1018 	unsigned int min_pool_size = 0, pool_size;
1019 	struct dm_md_mempools *pools;
1020 
1021 	if (unlikely(type == DM_TYPE_NONE)) {
1022 		DMERR("no table type is set, can't allocate mempools");
1023 		return -EINVAL;
1024 	}
1025 
1026 	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1027 	if (!pools)
1028 		return -ENOMEM;
1029 
1030 	if (type == DM_TYPE_REQUEST_BASED) {
1031 		pool_size = dm_get_reserved_rq_based_ios();
1032 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1033 		goto init_bs;
1034 	}
1035 
1036 	for (unsigned int i = 0; i < t->num_targets; i++) {
1037 		struct dm_target *ti = dm_table_get_target(t, i);
1038 
1039 		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1040 		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1041 	}
1042 	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1043 	front_pad = roundup(per_io_data_size,
1044 		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1045 
1046 	io_front_pad = roundup(per_io_data_size,
1047 		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1048 	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1049 			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1050 		goto out_free_pools;
1051 	if (t->integrity_supported &&
1052 	    bioset_integrity_create(&pools->io_bs, pool_size))
1053 		goto out_free_pools;
1054 init_bs:
1055 	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1056 		goto out_free_pools;
1057 	if (t->integrity_supported &&
1058 	    bioset_integrity_create(&pools->bs, pool_size))
1059 		goto out_free_pools;
1060 
1061 	t->mempools = pools;
1062 	return 0;
1063 
1064 out_free_pools:
1065 	dm_free_md_mempools(pools);
1066 	return -ENOMEM;
1067 }
1068 
1069 static int setup_indexes(struct dm_table *t)
1070 {
1071 	int i;
1072 	unsigned int total = 0;
1073 	sector_t *indexes;
1074 
1075 	/* allocate the space for *all* the indexes */
1076 	for (i = t->depth - 2; i >= 0; i--) {
1077 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1078 		total += t->counts[i];
1079 	}
1080 
1081 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1082 	if (!indexes)
1083 		return -ENOMEM;
1084 
1085 	/* set up internal nodes, bottom-up */
1086 	for (i = t->depth - 2; i >= 0; i--) {
1087 		t->index[i] = indexes;
1088 		indexes += (KEYS_PER_NODE * t->counts[i]);
1089 		setup_btree_index(i, t);
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Builds the btree to index the map.
1097  */
1098 static int dm_table_build_index(struct dm_table *t)
1099 {
1100 	int r = 0;
1101 	unsigned int leaf_nodes;
1102 
1103 	/* how many indexes will the btree have ? */
1104 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1105 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1106 
1107 	/* leaf layer has already been set up */
1108 	t->counts[t->depth - 1] = leaf_nodes;
1109 	t->index[t->depth - 1] = t->highs;
1110 
1111 	if (t->depth >= 2)
1112 		r = setup_indexes(t);
1113 
1114 	return r;
1115 }
1116 
1117 static bool integrity_profile_exists(struct gendisk *disk)
1118 {
1119 	return !!blk_get_integrity(disk);
1120 }
1121 
1122 /*
1123  * Get a disk whose integrity profile reflects the table's profile.
1124  * Returns NULL if integrity support was inconsistent or unavailable.
1125  */
1126 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1127 {
1128 	struct list_head *devices = dm_table_get_devices(t);
1129 	struct dm_dev_internal *dd = NULL;
1130 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1131 
1132 	for (unsigned int i = 0; i < t->num_targets; i++) {
1133 		struct dm_target *ti = dm_table_get_target(t, i);
1134 
1135 		if (!dm_target_passes_integrity(ti->type))
1136 			goto no_integrity;
1137 	}
1138 
1139 	list_for_each_entry(dd, devices, list) {
1140 		template_disk = dd->dm_dev->bdev->bd_disk;
1141 		if (!integrity_profile_exists(template_disk))
1142 			goto no_integrity;
1143 		else if (prev_disk &&
1144 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1145 			goto no_integrity;
1146 		prev_disk = template_disk;
1147 	}
1148 
1149 	return template_disk;
1150 
1151 no_integrity:
1152 	if (prev_disk)
1153 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1154 		       dm_device_name(t->md),
1155 		       prev_disk->disk_name,
1156 		       template_disk->disk_name);
1157 	return NULL;
1158 }
1159 
1160 /*
1161  * Register the mapped device for blk_integrity support if the
1162  * underlying devices have an integrity profile.  But all devices may
1163  * not have matching profiles (checking all devices isn't reliable
1164  * during table load because this table may use other DM device(s) which
1165  * must be resumed before they will have an initialized integity
1166  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1167  * profile validation: First pass during table load, final pass during
1168  * resume.
1169  */
1170 static int dm_table_register_integrity(struct dm_table *t)
1171 {
1172 	struct mapped_device *md = t->md;
1173 	struct gendisk *template_disk = NULL;
1174 
1175 	/* If target handles integrity itself do not register it here. */
1176 	if (t->integrity_added)
1177 		return 0;
1178 
1179 	template_disk = dm_table_get_integrity_disk(t);
1180 	if (!template_disk)
1181 		return 0;
1182 
1183 	if (!integrity_profile_exists(dm_disk(md))) {
1184 		t->integrity_supported = true;
1185 		/*
1186 		 * Register integrity profile during table load; we can do
1187 		 * this because the final profile must match during resume.
1188 		 */
1189 		blk_integrity_register(dm_disk(md),
1190 				       blk_get_integrity(template_disk));
1191 		return 0;
1192 	}
1193 
1194 	/*
1195 	 * If DM device already has an initialized integrity
1196 	 * profile the new profile should not conflict.
1197 	 */
1198 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1199 		DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1200 		      dm_device_name(t->md),
1201 		      template_disk->disk_name);
1202 		return 1;
1203 	}
1204 
1205 	/* Preserve existing integrity profile */
1206 	t->integrity_supported = true;
1207 	return 0;
1208 }
1209 
1210 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1211 
1212 struct dm_crypto_profile {
1213 	struct blk_crypto_profile profile;
1214 	struct mapped_device *md;
1215 };
1216 
1217 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1218 				     sector_t start, sector_t len, void *data)
1219 {
1220 	const struct blk_crypto_key *key = data;
1221 
1222 	blk_crypto_evict_key(dev->bdev, key);
1223 	return 0;
1224 }
1225 
1226 /*
1227  * When an inline encryption key is evicted from a device-mapper device, evict
1228  * it from all the underlying devices.
1229  */
1230 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1231 			    const struct blk_crypto_key *key, unsigned int slot)
1232 {
1233 	struct mapped_device *md =
1234 		container_of(profile, struct dm_crypto_profile, profile)->md;
1235 	struct dm_table *t;
1236 	int srcu_idx;
1237 
1238 	t = dm_get_live_table(md, &srcu_idx);
1239 	if (!t)
1240 		return 0;
1241 
1242 	for (unsigned int i = 0; i < t->num_targets; i++) {
1243 		struct dm_target *ti = dm_table_get_target(t, i);
1244 
1245 		if (!ti->type->iterate_devices)
1246 			continue;
1247 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1248 					  (void *)key);
1249 	}
1250 
1251 	dm_put_live_table(md, srcu_idx);
1252 	return 0;
1253 }
1254 
1255 static int
1256 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1257 				     sector_t start, sector_t len, void *data)
1258 {
1259 	struct blk_crypto_profile *parent = data;
1260 	struct blk_crypto_profile *child =
1261 		bdev_get_queue(dev->bdev)->crypto_profile;
1262 
1263 	blk_crypto_intersect_capabilities(parent, child);
1264 	return 0;
1265 }
1266 
1267 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1268 {
1269 	struct dm_crypto_profile *dmcp = container_of(profile,
1270 						      struct dm_crypto_profile,
1271 						      profile);
1272 
1273 	if (!profile)
1274 		return;
1275 
1276 	blk_crypto_profile_destroy(profile);
1277 	kfree(dmcp);
1278 }
1279 
1280 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1281 {
1282 	dm_destroy_crypto_profile(t->crypto_profile);
1283 	t->crypto_profile = NULL;
1284 }
1285 
1286 /*
1287  * Constructs and initializes t->crypto_profile with a crypto profile that
1288  * represents the common set of crypto capabilities of the devices described by
1289  * the dm_table.  However, if the constructed crypto profile doesn't support all
1290  * crypto capabilities that are supported by the current mapped_device, it
1291  * returns an error instead, since we don't support removing crypto capabilities
1292  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1293  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1294  */
1295 static int dm_table_construct_crypto_profile(struct dm_table *t)
1296 {
1297 	struct dm_crypto_profile *dmcp;
1298 	struct blk_crypto_profile *profile;
1299 	unsigned int i;
1300 	bool empty_profile = true;
1301 
1302 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1303 	if (!dmcp)
1304 		return -ENOMEM;
1305 	dmcp->md = t->md;
1306 
1307 	profile = &dmcp->profile;
1308 	blk_crypto_profile_init(profile, 0);
1309 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1310 	profile->max_dun_bytes_supported = UINT_MAX;
1311 	memset(profile->modes_supported, 0xFF,
1312 	       sizeof(profile->modes_supported));
1313 
1314 	for (i = 0; i < t->num_targets; i++) {
1315 		struct dm_target *ti = dm_table_get_target(t, i);
1316 
1317 		if (!dm_target_passes_crypto(ti->type)) {
1318 			blk_crypto_intersect_capabilities(profile, NULL);
1319 			break;
1320 		}
1321 		if (!ti->type->iterate_devices)
1322 			continue;
1323 		ti->type->iterate_devices(ti,
1324 					  device_intersect_crypto_capabilities,
1325 					  profile);
1326 	}
1327 
1328 	if (t->md->queue &&
1329 	    !blk_crypto_has_capabilities(profile,
1330 					 t->md->queue->crypto_profile)) {
1331 		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1332 		dm_destroy_crypto_profile(profile);
1333 		return -EINVAL;
1334 	}
1335 
1336 	/*
1337 	 * If the new profile doesn't actually support any crypto capabilities,
1338 	 * we may as well represent it with a NULL profile.
1339 	 */
1340 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1341 		if (profile->modes_supported[i]) {
1342 			empty_profile = false;
1343 			break;
1344 		}
1345 	}
1346 
1347 	if (empty_profile) {
1348 		dm_destroy_crypto_profile(profile);
1349 		profile = NULL;
1350 	}
1351 
1352 	/*
1353 	 * t->crypto_profile is only set temporarily while the table is being
1354 	 * set up, and it gets set to NULL after the profile has been
1355 	 * transferred to the request_queue.
1356 	 */
1357 	t->crypto_profile = profile;
1358 
1359 	return 0;
1360 }
1361 
1362 static void dm_update_crypto_profile(struct request_queue *q,
1363 				     struct dm_table *t)
1364 {
1365 	if (!t->crypto_profile)
1366 		return;
1367 
1368 	/* Make the crypto profile less restrictive. */
1369 	if (!q->crypto_profile) {
1370 		blk_crypto_register(t->crypto_profile, q);
1371 	} else {
1372 		blk_crypto_update_capabilities(q->crypto_profile,
1373 					       t->crypto_profile);
1374 		dm_destroy_crypto_profile(t->crypto_profile);
1375 	}
1376 	t->crypto_profile = NULL;
1377 }
1378 
1379 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1380 
1381 static int dm_table_construct_crypto_profile(struct dm_table *t)
1382 {
1383 	return 0;
1384 }
1385 
1386 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1387 {
1388 }
1389 
1390 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1391 {
1392 }
1393 
1394 static void dm_update_crypto_profile(struct request_queue *q,
1395 				     struct dm_table *t)
1396 {
1397 }
1398 
1399 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1400 
1401 /*
1402  * Prepares the table for use by building the indices,
1403  * setting the type, and allocating mempools.
1404  */
1405 int dm_table_complete(struct dm_table *t)
1406 {
1407 	int r;
1408 
1409 	r = dm_table_determine_type(t);
1410 	if (r) {
1411 		DMERR("unable to determine table type");
1412 		return r;
1413 	}
1414 
1415 	r = dm_table_build_index(t);
1416 	if (r) {
1417 		DMERR("unable to build btrees");
1418 		return r;
1419 	}
1420 
1421 	r = dm_table_register_integrity(t);
1422 	if (r) {
1423 		DMERR("could not register integrity profile.");
1424 		return r;
1425 	}
1426 
1427 	r = dm_table_construct_crypto_profile(t);
1428 	if (r) {
1429 		DMERR("could not construct crypto profile.");
1430 		return r;
1431 	}
1432 
1433 	r = dm_table_alloc_md_mempools(t, t->md);
1434 	if (r)
1435 		DMERR("unable to allocate mempools");
1436 
1437 	return r;
1438 }
1439 
1440 static DEFINE_MUTEX(_event_lock);
1441 void dm_table_event_callback(struct dm_table *t,
1442 			     void (*fn)(void *), void *context)
1443 {
1444 	mutex_lock(&_event_lock);
1445 	t->event_fn = fn;
1446 	t->event_context = context;
1447 	mutex_unlock(&_event_lock);
1448 }
1449 
1450 void dm_table_event(struct dm_table *t)
1451 {
1452 	mutex_lock(&_event_lock);
1453 	if (t->event_fn)
1454 		t->event_fn(t->event_context);
1455 	mutex_unlock(&_event_lock);
1456 }
1457 EXPORT_SYMBOL(dm_table_event);
1458 
1459 inline sector_t dm_table_get_size(struct dm_table *t)
1460 {
1461 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1462 }
1463 EXPORT_SYMBOL(dm_table_get_size);
1464 
1465 /*
1466  * Search the btree for the correct target.
1467  *
1468  * Caller should check returned pointer for NULL
1469  * to trap I/O beyond end of device.
1470  */
1471 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1472 {
1473 	unsigned int l, n = 0, k = 0;
1474 	sector_t *node;
1475 
1476 	if (unlikely(sector >= dm_table_get_size(t)))
1477 		return NULL;
1478 
1479 	for (l = 0; l < t->depth; l++) {
1480 		n = get_child(n, k);
1481 		node = get_node(t, l, n);
1482 
1483 		for (k = 0; k < KEYS_PER_NODE; k++)
1484 			if (node[k] >= sector)
1485 				break;
1486 	}
1487 
1488 	return &t->targets[(KEYS_PER_NODE * n) + k];
1489 }
1490 
1491 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1492 				   sector_t start, sector_t len, void *data)
1493 {
1494 	struct request_queue *q = bdev_get_queue(dev->bdev);
1495 
1496 	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1497 }
1498 
1499 /*
1500  * type->iterate_devices() should be called when the sanity check needs to
1501  * iterate and check all underlying data devices. iterate_devices() will
1502  * iterate all underlying data devices until it encounters a non-zero return
1503  * code, returned by whether the input iterate_devices_callout_fn, or
1504  * iterate_devices() itself internally.
1505  *
1506  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1507  * iterate multiple underlying devices internally, in which case a non-zero
1508  * return code returned by iterate_devices_callout_fn will stop the iteration
1509  * in advance.
1510  *
1511  * Cases requiring _any_ underlying device supporting some kind of attribute,
1512  * should use the iteration structure like dm_table_any_dev_attr(), or call
1513  * it directly. @func should handle semantics of positive examples, e.g.
1514  * capable of something.
1515  *
1516  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1517  * should use the iteration structure like dm_table_supports_nowait() or
1518  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1519  * uses an @anti_func that handle semantics of counter examples, e.g. not
1520  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1521  */
1522 static bool dm_table_any_dev_attr(struct dm_table *t,
1523 				  iterate_devices_callout_fn func, void *data)
1524 {
1525 	for (unsigned int i = 0; i < t->num_targets; i++) {
1526 		struct dm_target *ti = dm_table_get_target(t, i);
1527 
1528 		if (ti->type->iterate_devices &&
1529 		    ti->type->iterate_devices(ti, func, data))
1530 			return true;
1531 	}
1532 
1533 	return false;
1534 }
1535 
1536 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1537 			sector_t start, sector_t len, void *data)
1538 {
1539 	unsigned int *num_devices = data;
1540 
1541 	(*num_devices)++;
1542 
1543 	return 0;
1544 }
1545 
1546 static bool dm_table_supports_poll(struct dm_table *t)
1547 {
1548 	for (unsigned int i = 0; i < t->num_targets; i++) {
1549 		struct dm_target *ti = dm_table_get_target(t, i);
1550 
1551 		if (!ti->type->iterate_devices ||
1552 		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1553 			return false;
1554 	}
1555 
1556 	return true;
1557 }
1558 
1559 /*
1560  * Check whether a table has no data devices attached using each
1561  * target's iterate_devices method.
1562  * Returns false if the result is unknown because a target doesn't
1563  * support iterate_devices.
1564  */
1565 bool dm_table_has_no_data_devices(struct dm_table *t)
1566 {
1567 	for (unsigned int i = 0; i < t->num_targets; i++) {
1568 		struct dm_target *ti = dm_table_get_target(t, i);
1569 		unsigned int num_devices = 0;
1570 
1571 		if (!ti->type->iterate_devices)
1572 			return false;
1573 
1574 		ti->type->iterate_devices(ti, count_device, &num_devices);
1575 		if (num_devices)
1576 			return false;
1577 	}
1578 
1579 	return true;
1580 }
1581 
1582 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1583 			    sector_t start, sector_t len, void *data)
1584 {
1585 	bool *zoned = data;
1586 
1587 	return bdev_is_zoned(dev->bdev) != *zoned;
1588 }
1589 
1590 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1591 				 sector_t start, sector_t len, void *data)
1592 {
1593 	return bdev_is_zoned(dev->bdev);
1594 }
1595 
1596 /*
1597  * Check the device zoned model based on the target feature flag. If the target
1598  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1599  * also accepted but all devices must have the same zoned model. If the target
1600  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1601  * zoned model with all zoned devices having the same zone size.
1602  */
1603 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1604 {
1605 	for (unsigned int i = 0; i < t->num_targets; i++) {
1606 		struct dm_target *ti = dm_table_get_target(t, i);
1607 
1608 		/*
1609 		 * For the wildcard target (dm-error), if we do not have a
1610 		 * backing device, we must always return false. If we have a
1611 		 * backing device, the result must depend on checking zoned
1612 		 * model, like for any other target. So for this, check directly
1613 		 * if the target backing device is zoned as we get "false" when
1614 		 * dm-error was set without a backing device.
1615 		 */
1616 		if (dm_target_is_wildcard(ti->type) &&
1617 		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1618 			return false;
1619 
1620 		if (dm_target_supports_zoned_hm(ti->type)) {
1621 			if (!ti->type->iterate_devices ||
1622 			    ti->type->iterate_devices(ti, device_not_zoned,
1623 						      &zoned))
1624 				return false;
1625 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1626 			if (zoned)
1627 				return false;
1628 		}
1629 	}
1630 
1631 	return true;
1632 }
1633 
1634 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1635 					   sector_t start, sector_t len, void *data)
1636 {
1637 	unsigned int *zone_sectors = data;
1638 
1639 	if (!bdev_is_zoned(dev->bdev))
1640 		return 0;
1641 	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1642 }
1643 
1644 /*
1645  * Check consistency of zoned model and zone sectors across all targets. For
1646  * zone sectors, if the destination device is a zoned block device, it shall
1647  * have the specified zone_sectors.
1648  */
1649 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1650 				   unsigned int zone_sectors)
1651 {
1652 	if (!zoned)
1653 		return 0;
1654 
1655 	if (!dm_table_supports_zoned(t, zoned)) {
1656 		DMERR("%s: zoned model is not consistent across all devices",
1657 		      dm_device_name(t->md));
1658 		return -EINVAL;
1659 	}
1660 
1661 	/* Check zone size validity and compatibility */
1662 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1663 		return -EINVAL;
1664 
1665 	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1666 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1667 		      dm_device_name(t->md));
1668 		return -EINVAL;
1669 	}
1670 
1671 	return 0;
1672 }
1673 
1674 /*
1675  * Establish the new table's queue_limits and validate them.
1676  */
1677 int dm_calculate_queue_limits(struct dm_table *t,
1678 			      struct queue_limits *limits)
1679 {
1680 	struct queue_limits ti_limits;
1681 	unsigned int zone_sectors = 0;
1682 	bool zoned = false;
1683 
1684 	blk_set_stacking_limits(limits);
1685 
1686 	for (unsigned int i = 0; i < t->num_targets; i++) {
1687 		struct dm_target *ti = dm_table_get_target(t, i);
1688 
1689 		blk_set_stacking_limits(&ti_limits);
1690 
1691 		if (!ti->type->iterate_devices) {
1692 			/* Set I/O hints portion of queue limits */
1693 			if (ti->type->io_hints)
1694 				ti->type->io_hints(ti, &ti_limits);
1695 			goto combine_limits;
1696 		}
1697 
1698 		/*
1699 		 * Combine queue limits of all the devices this target uses.
1700 		 */
1701 		ti->type->iterate_devices(ti, dm_set_device_limits,
1702 					  &ti_limits);
1703 
1704 		if (!zoned && ti_limits.zoned) {
1705 			/*
1706 			 * After stacking all limits, validate all devices
1707 			 * in table support this zoned model and zone sectors.
1708 			 */
1709 			zoned = ti_limits.zoned;
1710 			zone_sectors = ti_limits.chunk_sectors;
1711 		}
1712 
1713 		/* Set I/O hints portion of queue limits */
1714 		if (ti->type->io_hints)
1715 			ti->type->io_hints(ti, &ti_limits);
1716 
1717 		/*
1718 		 * Check each device area is consistent with the target's
1719 		 * overall queue limits.
1720 		 */
1721 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1722 					      &ti_limits))
1723 			return -EINVAL;
1724 
1725 combine_limits:
1726 		/*
1727 		 * Merge this target's queue limits into the overall limits
1728 		 * for the table.
1729 		 */
1730 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1731 			DMWARN("%s: adding target device (start sect %llu len %llu) "
1732 			       "caused an alignment inconsistency",
1733 			       dm_device_name(t->md),
1734 			       (unsigned long long) ti->begin,
1735 			       (unsigned long long) ti->len);
1736 	}
1737 
1738 	/*
1739 	 * Verify that the zoned model and zone sectors, as determined before
1740 	 * any .io_hints override, are the same across all devices in the table.
1741 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1742 	 *   zoned model on host-managed zoned block devices.
1743 	 * BUT...
1744 	 */
1745 	if (limits->zoned) {
1746 		/*
1747 		 * ...IF the above limits stacking determined a zoned model
1748 		 * validate that all of the table's devices conform to it.
1749 		 */
1750 		zoned = limits->zoned;
1751 		zone_sectors = limits->chunk_sectors;
1752 	}
1753 	if (validate_hardware_zoned(t, zoned, zone_sectors))
1754 		return -EINVAL;
1755 
1756 	return validate_hardware_logical_block_alignment(t, limits);
1757 }
1758 
1759 /*
1760  * Verify that all devices have an integrity profile that matches the
1761  * DM device's registered integrity profile.  If the profiles don't
1762  * match then unregister the DM device's integrity profile.
1763  */
1764 static void dm_table_verify_integrity(struct dm_table *t)
1765 {
1766 	struct gendisk *template_disk = NULL;
1767 
1768 	if (t->integrity_added)
1769 		return;
1770 
1771 	if (t->integrity_supported) {
1772 		/*
1773 		 * Verify that the original integrity profile
1774 		 * matches all the devices in this table.
1775 		 */
1776 		template_disk = dm_table_get_integrity_disk(t);
1777 		if (template_disk &&
1778 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1779 			return;
1780 	}
1781 
1782 	if (integrity_profile_exists(dm_disk(t->md))) {
1783 		DMWARN("%s: unable to establish an integrity profile",
1784 		       dm_device_name(t->md));
1785 		blk_integrity_unregister(dm_disk(t->md));
1786 	}
1787 }
1788 
1789 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1790 				sector_t start, sector_t len, void *data)
1791 {
1792 	unsigned long flush = (unsigned long) data;
1793 	struct request_queue *q = bdev_get_queue(dev->bdev);
1794 
1795 	return (q->queue_flags & flush);
1796 }
1797 
1798 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1799 {
1800 	/*
1801 	 * Require at least one underlying device to support flushes.
1802 	 * t->devices includes internal dm devices such as mirror logs
1803 	 * so we need to use iterate_devices here, which targets
1804 	 * supporting flushes must provide.
1805 	 */
1806 	for (unsigned int i = 0; i < t->num_targets; i++) {
1807 		struct dm_target *ti = dm_table_get_target(t, i);
1808 
1809 		if (!ti->num_flush_bios)
1810 			continue;
1811 
1812 		if (ti->flush_supported)
1813 			return true;
1814 
1815 		if (ti->type->iterate_devices &&
1816 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1817 			return true;
1818 	}
1819 
1820 	return false;
1821 }
1822 
1823 static int device_dax_write_cache_enabled(struct dm_target *ti,
1824 					  struct dm_dev *dev, sector_t start,
1825 					  sector_t len, void *data)
1826 {
1827 	struct dax_device *dax_dev = dev->dax_dev;
1828 
1829 	if (!dax_dev)
1830 		return false;
1831 
1832 	if (dax_write_cache_enabled(dax_dev))
1833 		return true;
1834 	return false;
1835 }
1836 
1837 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1838 				sector_t start, sector_t len, void *data)
1839 {
1840 	return !bdev_nonrot(dev->bdev);
1841 }
1842 
1843 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1844 			     sector_t start, sector_t len, void *data)
1845 {
1846 	struct request_queue *q = bdev_get_queue(dev->bdev);
1847 
1848 	return !blk_queue_add_random(q);
1849 }
1850 
1851 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1852 					   sector_t start, sector_t len, void *data)
1853 {
1854 	struct request_queue *q = bdev_get_queue(dev->bdev);
1855 
1856 	return !q->limits.max_write_zeroes_sectors;
1857 }
1858 
1859 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1860 {
1861 	for (unsigned int i = 0; i < t->num_targets; i++) {
1862 		struct dm_target *ti = dm_table_get_target(t, i);
1863 
1864 		if (!ti->num_write_zeroes_bios)
1865 			return false;
1866 
1867 		if (!ti->type->iterate_devices ||
1868 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1869 			return false;
1870 	}
1871 
1872 	return true;
1873 }
1874 
1875 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1876 				     sector_t start, sector_t len, void *data)
1877 {
1878 	return !bdev_nowait(dev->bdev);
1879 }
1880 
1881 static bool dm_table_supports_nowait(struct dm_table *t)
1882 {
1883 	for (unsigned int i = 0; i < t->num_targets; i++) {
1884 		struct dm_target *ti = dm_table_get_target(t, i);
1885 
1886 		if (!dm_target_supports_nowait(ti->type))
1887 			return false;
1888 
1889 		if (!ti->type->iterate_devices ||
1890 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1891 			return false;
1892 	}
1893 
1894 	return true;
1895 }
1896 
1897 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1898 				      sector_t start, sector_t len, void *data)
1899 {
1900 	return !bdev_max_discard_sectors(dev->bdev);
1901 }
1902 
1903 static bool dm_table_supports_discards(struct dm_table *t)
1904 {
1905 	for (unsigned int i = 0; i < t->num_targets; i++) {
1906 		struct dm_target *ti = dm_table_get_target(t, i);
1907 
1908 		if (!ti->num_discard_bios)
1909 			return false;
1910 
1911 		/*
1912 		 * Either the target provides discard support (as implied by setting
1913 		 * 'discards_supported') or it relies on _all_ data devices having
1914 		 * discard support.
1915 		 */
1916 		if (!ti->discards_supported &&
1917 		    (!ti->type->iterate_devices ||
1918 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1919 			return false;
1920 	}
1921 
1922 	return true;
1923 }
1924 
1925 static int device_not_secure_erase_capable(struct dm_target *ti,
1926 					   struct dm_dev *dev, sector_t start,
1927 					   sector_t len, void *data)
1928 {
1929 	return !bdev_max_secure_erase_sectors(dev->bdev);
1930 }
1931 
1932 static bool dm_table_supports_secure_erase(struct dm_table *t)
1933 {
1934 	for (unsigned int i = 0; i < t->num_targets; i++) {
1935 		struct dm_target *ti = dm_table_get_target(t, i);
1936 
1937 		if (!ti->num_secure_erase_bios)
1938 			return false;
1939 
1940 		if (!ti->type->iterate_devices ||
1941 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1942 			return false;
1943 	}
1944 
1945 	return true;
1946 }
1947 
1948 static int device_requires_stable_pages(struct dm_target *ti,
1949 					struct dm_dev *dev, sector_t start,
1950 					sector_t len, void *data)
1951 {
1952 	return bdev_stable_writes(dev->bdev);
1953 }
1954 
1955 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1956 			      struct queue_limits *limits)
1957 {
1958 	bool wc = false, fua = false;
1959 	int r;
1960 
1961 	/*
1962 	 * Copy table's limits to the DM device's request_queue
1963 	 */
1964 	q->limits = *limits;
1965 
1966 	if (dm_table_supports_nowait(t))
1967 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1968 	else
1969 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1970 
1971 	if (!dm_table_supports_discards(t)) {
1972 		q->limits.max_discard_sectors = 0;
1973 		q->limits.max_hw_discard_sectors = 0;
1974 		q->limits.discard_granularity = 0;
1975 		q->limits.discard_alignment = 0;
1976 		q->limits.discard_misaligned = 0;
1977 	}
1978 
1979 	if (!dm_table_supports_secure_erase(t))
1980 		q->limits.max_secure_erase_sectors = 0;
1981 
1982 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1983 		wc = true;
1984 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1985 			fua = true;
1986 	}
1987 	blk_queue_write_cache(q, wc, fua);
1988 
1989 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1990 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1991 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1992 			set_dax_synchronous(t->md->dax_dev);
1993 	} else
1994 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1995 
1996 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1997 		dax_write_cache(t->md->dax_dev, true);
1998 
1999 	/* Ensure that all underlying devices are non-rotational. */
2000 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2001 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2002 	else
2003 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2004 
2005 	if (!dm_table_supports_write_zeroes(t))
2006 		q->limits.max_write_zeroes_sectors = 0;
2007 
2008 	dm_table_verify_integrity(t);
2009 
2010 	/*
2011 	 * Some devices don't use blk_integrity but still want stable pages
2012 	 * because they do their own checksumming.
2013 	 * If any underlying device requires stable pages, a table must require
2014 	 * them as well.  Only targets that support iterate_devices are considered:
2015 	 * don't want error, zero, etc to require stable pages.
2016 	 */
2017 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2018 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2019 	else
2020 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2021 
2022 	/*
2023 	 * Determine whether or not this queue's I/O timings contribute
2024 	 * to the entropy pool, Only request-based targets use this.
2025 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2026 	 * have it set.
2027 	 */
2028 	if (blk_queue_add_random(q) &&
2029 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2030 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2031 
2032 	/*
2033 	 * For a zoned target, setup the zones related queue attributes
2034 	 * and resources necessary for zone append emulation if necessary.
2035 	 */
2036 	if (blk_queue_is_zoned(q)) {
2037 		r = dm_set_zones_restrictions(t, q);
2038 		if (r)
2039 			return r;
2040 		if (!static_key_enabled(&zoned_enabled.key))
2041 			static_branch_enable(&zoned_enabled);
2042 	}
2043 
2044 	dm_update_crypto_profile(q, t);
2045 	disk_update_readahead(t->md->disk);
2046 
2047 	/*
2048 	 * Check for request-based device is left to
2049 	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2050 	 *
2051 	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2052 	 * underlying devices supporting polling.
2053 	 */
2054 	if (__table_type_bio_based(t->type)) {
2055 		if (dm_table_supports_poll(t))
2056 			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2057 		else
2058 			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 struct list_head *dm_table_get_devices(struct dm_table *t)
2065 {
2066 	return &t->devices;
2067 }
2068 
2069 blk_mode_t dm_table_get_mode(struct dm_table *t)
2070 {
2071 	return t->mode;
2072 }
2073 EXPORT_SYMBOL(dm_table_get_mode);
2074 
2075 enum suspend_mode {
2076 	PRESUSPEND,
2077 	PRESUSPEND_UNDO,
2078 	POSTSUSPEND,
2079 };
2080 
2081 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2082 {
2083 	lockdep_assert_held(&t->md->suspend_lock);
2084 
2085 	for (unsigned int i = 0; i < t->num_targets; i++) {
2086 		struct dm_target *ti = dm_table_get_target(t, i);
2087 
2088 		switch (mode) {
2089 		case PRESUSPEND:
2090 			if (ti->type->presuspend)
2091 				ti->type->presuspend(ti);
2092 			break;
2093 		case PRESUSPEND_UNDO:
2094 			if (ti->type->presuspend_undo)
2095 				ti->type->presuspend_undo(ti);
2096 			break;
2097 		case POSTSUSPEND:
2098 			if (ti->type->postsuspend)
2099 				ti->type->postsuspend(ti);
2100 			break;
2101 		}
2102 	}
2103 }
2104 
2105 void dm_table_presuspend_targets(struct dm_table *t)
2106 {
2107 	if (!t)
2108 		return;
2109 
2110 	suspend_targets(t, PRESUSPEND);
2111 }
2112 
2113 void dm_table_presuspend_undo_targets(struct dm_table *t)
2114 {
2115 	if (!t)
2116 		return;
2117 
2118 	suspend_targets(t, PRESUSPEND_UNDO);
2119 }
2120 
2121 void dm_table_postsuspend_targets(struct dm_table *t)
2122 {
2123 	if (!t)
2124 		return;
2125 
2126 	suspend_targets(t, POSTSUSPEND);
2127 }
2128 
2129 int dm_table_resume_targets(struct dm_table *t)
2130 {
2131 	unsigned int i;
2132 	int r = 0;
2133 
2134 	lockdep_assert_held(&t->md->suspend_lock);
2135 
2136 	for (i = 0; i < t->num_targets; i++) {
2137 		struct dm_target *ti = dm_table_get_target(t, i);
2138 
2139 		if (!ti->type->preresume)
2140 			continue;
2141 
2142 		r = ti->type->preresume(ti);
2143 		if (r) {
2144 			DMERR("%s: %s: preresume failed, error = %d",
2145 			      dm_device_name(t->md), ti->type->name, r);
2146 			return r;
2147 		}
2148 	}
2149 
2150 	for (i = 0; i < t->num_targets; i++) {
2151 		struct dm_target *ti = dm_table_get_target(t, i);
2152 
2153 		if (ti->type->resume)
2154 			ti->type->resume(ti);
2155 	}
2156 
2157 	return 0;
2158 }
2159 
2160 struct mapped_device *dm_table_get_md(struct dm_table *t)
2161 {
2162 	return t->md;
2163 }
2164 EXPORT_SYMBOL(dm_table_get_md);
2165 
2166 const char *dm_table_device_name(struct dm_table *t)
2167 {
2168 	return dm_device_name(t->md);
2169 }
2170 EXPORT_SYMBOL_GPL(dm_table_device_name);
2171 
2172 void dm_table_run_md_queue_async(struct dm_table *t)
2173 {
2174 	if (!dm_table_request_based(t))
2175 		return;
2176 
2177 	if (t->md->queue)
2178 		blk_mq_run_hw_queues(t->md->queue, true);
2179 }
2180 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2181 
2182