1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t; 133 134 if (num_targets > DM_MAX_TARGETS) 135 return -EOVERFLOW; 136 137 t = kzalloc(sizeof(*t), GFP_KERNEL); 138 139 if (!t) 140 return -ENOMEM; 141 142 INIT_LIST_HEAD(&t->devices); 143 init_rwsem(&t->devices_lock); 144 145 if (!num_targets) 146 num_targets = KEYS_PER_NODE; 147 148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 149 150 if (!num_targets) { 151 kfree(t); 152 return -EOVERFLOW; 153 } 154 155 if (alloc_targets(t, num_targets)) { 156 kfree(t); 157 return -ENOMEM; 158 } 159 160 t->type = DM_TYPE_NONE; 161 t->mode = mode; 162 t->md = md; 163 t->flush_bypasses_map = true; 164 *result = t; 165 return 0; 166 } 167 168 static void free_devices(struct list_head *devices, struct mapped_device *md) 169 { 170 struct list_head *tmp, *next; 171 172 list_for_each_safe(tmp, next, devices) { 173 struct dm_dev_internal *dd = 174 list_entry(tmp, struct dm_dev_internal, list); 175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 176 dm_device_name(md), dd->dm_dev->name); 177 dm_put_table_device(md, dd->dm_dev); 178 kfree(dd); 179 } 180 } 181 182 static void dm_table_destroy_crypto_profile(struct dm_table *t); 183 184 void dm_table_destroy(struct dm_table *t) 185 { 186 if (!t) 187 return; 188 189 /* free the indexes */ 190 if (t->depth >= 2) 191 kvfree(t->index[t->depth - 2]); 192 193 /* free the targets */ 194 for (unsigned int i = 0; i < t->num_targets; i++) { 195 struct dm_target *ti = dm_table_get_target(t, i); 196 197 if (ti->type->dtr) 198 ti->type->dtr(ti); 199 200 dm_put_target_type(ti->type); 201 } 202 203 kvfree(t->highs); 204 205 /* free the device list */ 206 free_devices(&t->devices, t->md); 207 208 dm_free_md_mempools(t->mempools); 209 210 dm_table_destroy_crypto_profile(t); 211 212 kfree(t); 213 } 214 215 /* 216 * See if we've already got a device in the list. 217 */ 218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 219 { 220 struct dm_dev_internal *dd; 221 222 list_for_each_entry(dd, l, list) 223 if (dd->dm_dev->bdev->bd_dev == dev) 224 return dd; 225 226 return NULL; 227 } 228 229 /* 230 * If possible, this checks an area of a destination device is invalid. 231 */ 232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 233 sector_t start, sector_t len, void *data) 234 { 235 struct queue_limits *limits = data; 236 struct block_device *bdev = dev->bdev; 237 sector_t dev_size = bdev_nr_sectors(bdev); 238 unsigned short logical_block_size_sectors = 239 limits->logical_block_size >> SECTOR_SHIFT; 240 241 if (!dev_size) 242 return 0; 243 244 if ((start >= dev_size) || (start + len > dev_size)) { 245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 246 dm_device_name(ti->table->md), bdev, 247 (unsigned long long)start, 248 (unsigned long long)len, 249 (unsigned long long)dev_size); 250 return 1; 251 } 252 253 /* 254 * If the target is mapped to zoned block device(s), check 255 * that the zones are not partially mapped. 256 */ 257 if (bdev_is_zoned(bdev)) { 258 unsigned int zone_sectors = bdev_zone_sectors(bdev); 259 260 if (start & (zone_sectors - 1)) { 261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 262 dm_device_name(ti->table->md), 263 (unsigned long long)start, 264 zone_sectors, bdev); 265 return 1; 266 } 267 268 /* 269 * Note: The last zone of a zoned block device may be smaller 270 * than other zones. So for a target mapping the end of a 271 * zoned block device with such a zone, len would not be zone 272 * aligned. We do not allow such last smaller zone to be part 273 * of the mapping here to ensure that mappings with multiple 274 * devices do not end up with a smaller zone in the middle of 275 * the sector range. 276 */ 277 if (len & (zone_sectors - 1)) { 278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 279 dm_device_name(ti->table->md), 280 (unsigned long long)len, 281 zone_sectors, bdev); 282 return 1; 283 } 284 } 285 286 if (logical_block_size_sectors <= 1) 287 return 0; 288 289 if (start & (logical_block_size_sectors - 1)) { 290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 291 dm_device_name(ti->table->md), 292 (unsigned long long)start, 293 limits->logical_block_size, bdev); 294 return 1; 295 } 296 297 if (len & (logical_block_size_sectors - 1)) { 298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 299 dm_device_name(ti->table->md), 300 (unsigned long long)len, 301 limits->logical_block_size, bdev); 302 return 1; 303 } 304 305 return 0; 306 } 307 308 /* 309 * This upgrades the mode on an already open dm_dev, being 310 * careful to leave things as they were if we fail to reopen the 311 * device and not to touch the existing bdev field in case 312 * it is accessed concurrently. 313 */ 314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 315 struct mapped_device *md) 316 { 317 int r; 318 struct dm_dev *old_dev, *new_dev; 319 320 old_dev = dd->dm_dev; 321 322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 323 dd->dm_dev->mode | new_mode, &new_dev); 324 if (r) 325 return r; 326 327 dd->dm_dev = new_dev; 328 dm_put_table_device(md, old_dev); 329 330 return 0; 331 } 332 333 /* 334 * Note: the __ref annotation is because this function can call the __init 335 * marked early_lookup_bdev when called during early boot code from dm-init.c. 336 */ 337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p) 338 { 339 int r; 340 dev_t dev; 341 unsigned int major, minor; 342 char dummy; 343 344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 345 /* Extract the major/minor numbers */ 346 dev = MKDEV(major, minor); 347 if (MAJOR(dev) != major || MINOR(dev) != minor) 348 return -EOVERFLOW; 349 } else { 350 r = lookup_bdev(path, &dev); 351 #ifndef MODULE 352 if (r && system_state < SYSTEM_RUNNING) 353 r = early_lookup_bdev(path, &dev); 354 #endif 355 if (r) 356 return r; 357 } 358 *dev_p = dev; 359 return 0; 360 } 361 EXPORT_SYMBOL(dm_devt_from_path); 362 363 /* 364 * Add a device to the list, or just increment the usage count if 365 * it's already present. 366 */ 367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 368 struct dm_dev **result) 369 { 370 int r; 371 dev_t dev; 372 struct dm_dev_internal *dd; 373 struct dm_table *t = ti->table; 374 375 BUG_ON(!t); 376 377 r = dm_devt_from_path(path, &dev); 378 if (r) 379 return r; 380 381 if (dev == disk_devt(t->md->disk)) 382 return -EINVAL; 383 384 down_write(&t->devices_lock); 385 386 dd = find_device(&t->devices, dev); 387 if (!dd) { 388 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 389 if (!dd) { 390 r = -ENOMEM; 391 goto unlock_ret_r; 392 } 393 394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 395 if (r) { 396 kfree(dd); 397 goto unlock_ret_r; 398 } 399 400 refcount_set(&dd->count, 1); 401 list_add(&dd->list, &t->devices); 402 goto out; 403 404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 405 r = upgrade_mode(dd, mode, t->md); 406 if (r) 407 goto unlock_ret_r; 408 } 409 refcount_inc(&dd->count); 410 out: 411 up_write(&t->devices_lock); 412 *result = dd->dm_dev; 413 return 0; 414 415 unlock_ret_r: 416 up_write(&t->devices_lock); 417 return r; 418 } 419 EXPORT_SYMBOL(dm_get_device); 420 421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 422 sector_t start, sector_t len, void *data) 423 { 424 struct queue_limits *limits = data; 425 struct block_device *bdev = dev->bdev; 426 struct request_queue *q = bdev_get_queue(bdev); 427 428 if (unlikely(!q)) { 429 DMWARN("%s: Cannot set limits for nonexistent device %pg", 430 dm_device_name(ti->table->md), bdev); 431 return 0; 432 } 433 434 if (blk_stack_limits(limits, &q->limits, 435 get_start_sect(bdev) + start) < 0) 436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 437 "physical_block_size=%u, logical_block_size=%u, " 438 "alignment_offset=%u, start=%llu", 439 dm_device_name(ti->table->md), bdev, 440 q->limits.physical_block_size, 441 q->limits.logical_block_size, 442 q->limits.alignment_offset, 443 (unsigned long long) start << SECTOR_SHIFT); 444 445 /* 446 * Only stack the integrity profile if the target doesn't have native 447 * integrity support. 448 */ 449 if (!dm_target_has_integrity(ti->type)) 450 queue_limits_stack_integrity_bdev(limits, bdev); 451 return 0; 452 } 453 454 /* 455 * Decrement a device's use count and remove it if necessary. 456 */ 457 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 458 { 459 int found = 0; 460 struct dm_table *t = ti->table; 461 struct list_head *devices = &t->devices; 462 struct dm_dev_internal *dd; 463 464 down_write(&t->devices_lock); 465 466 list_for_each_entry(dd, devices, list) { 467 if (dd->dm_dev == d) { 468 found = 1; 469 break; 470 } 471 } 472 if (!found) { 473 DMERR("%s: device %s not in table devices list", 474 dm_device_name(t->md), d->name); 475 goto unlock_ret; 476 } 477 if (refcount_dec_and_test(&dd->count)) { 478 dm_put_table_device(t->md, d); 479 list_del(&dd->list); 480 kfree(dd); 481 } 482 483 unlock_ret: 484 up_write(&t->devices_lock); 485 } 486 EXPORT_SYMBOL(dm_put_device); 487 488 /* 489 * Checks to see if the target joins onto the end of the table. 490 */ 491 static int adjoin(struct dm_table *t, struct dm_target *ti) 492 { 493 struct dm_target *prev; 494 495 if (!t->num_targets) 496 return !ti->begin; 497 498 prev = &t->targets[t->num_targets - 1]; 499 return (ti->begin == (prev->begin + prev->len)); 500 } 501 502 /* 503 * Used to dynamically allocate the arg array. 504 * 505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 506 * process messages even if some device is suspended. These messages have a 507 * small fixed number of arguments. 508 * 509 * On the other hand, dm-switch needs to process bulk data using messages and 510 * excessive use of GFP_NOIO could cause trouble. 511 */ 512 static char **realloc_argv(unsigned int *size, char **old_argv) 513 { 514 char **argv; 515 unsigned int new_size; 516 gfp_t gfp; 517 518 if (*size) { 519 new_size = *size * 2; 520 gfp = GFP_KERNEL; 521 } else { 522 new_size = 8; 523 gfp = GFP_NOIO; 524 } 525 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 526 if (argv) { 527 if (old_argv) 528 memcpy(argv, old_argv, *size * sizeof(*argv)); 529 *size = new_size; 530 } 531 532 kfree(old_argv); 533 return argv; 534 } 535 536 /* 537 * Destructively splits up the argument list to pass to ctr. 538 */ 539 int dm_split_args(int *argc, char ***argvp, char *input) 540 { 541 char *start, *end = input, *out, **argv = NULL; 542 unsigned int array_size = 0; 543 544 *argc = 0; 545 546 if (!input) { 547 *argvp = NULL; 548 return 0; 549 } 550 551 argv = realloc_argv(&array_size, argv); 552 if (!argv) 553 return -ENOMEM; 554 555 while (1) { 556 /* Skip whitespace */ 557 start = skip_spaces(end); 558 559 if (!*start) 560 break; /* success, we hit the end */ 561 562 /* 'out' is used to remove any back-quotes */ 563 end = out = start; 564 while (*end) { 565 /* Everything apart from '\0' can be quoted */ 566 if (*end == '\\' && *(end + 1)) { 567 *out++ = *(end + 1); 568 end += 2; 569 continue; 570 } 571 572 if (isspace(*end)) 573 break; /* end of token */ 574 575 *out++ = *end++; 576 } 577 578 /* have we already filled the array ? */ 579 if ((*argc + 1) > array_size) { 580 argv = realloc_argv(&array_size, argv); 581 if (!argv) 582 return -ENOMEM; 583 } 584 585 /* we know this is whitespace */ 586 if (*end) 587 end++; 588 589 /* terminate the string and put it in the array */ 590 *out = '\0'; 591 argv[*argc] = start; 592 (*argc)++; 593 } 594 595 *argvp = argv; 596 return 0; 597 } 598 599 static void dm_set_stacking_limits(struct queue_limits *limits) 600 { 601 blk_set_stacking_limits(limits); 602 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL; 603 } 604 605 /* 606 * Impose necessary and sufficient conditions on a devices's table such 607 * that any incoming bio which respects its logical_block_size can be 608 * processed successfully. If it falls across the boundary between 609 * two or more targets, the size of each piece it gets split into must 610 * be compatible with the logical_block_size of the target processing it. 611 */ 612 static int validate_hardware_logical_block_alignment(struct dm_table *t, 613 struct queue_limits *limits) 614 { 615 /* 616 * This function uses arithmetic modulo the logical_block_size 617 * (in units of 512-byte sectors). 618 */ 619 unsigned short device_logical_block_size_sects = 620 limits->logical_block_size >> SECTOR_SHIFT; 621 622 /* 623 * Offset of the start of the next table entry, mod logical_block_size. 624 */ 625 unsigned short next_target_start = 0; 626 627 /* 628 * Given an aligned bio that extends beyond the end of a 629 * target, how many sectors must the next target handle? 630 */ 631 unsigned short remaining = 0; 632 633 struct dm_target *ti; 634 struct queue_limits ti_limits; 635 unsigned int i; 636 637 /* 638 * Check each entry in the table in turn. 639 */ 640 for (i = 0; i < t->num_targets; i++) { 641 ti = dm_table_get_target(t, i); 642 643 dm_set_stacking_limits(&ti_limits); 644 645 /* combine all target devices' limits */ 646 if (ti->type->iterate_devices) 647 ti->type->iterate_devices(ti, dm_set_device_limits, 648 &ti_limits); 649 650 /* 651 * If the remaining sectors fall entirely within this 652 * table entry are they compatible with its logical_block_size? 653 */ 654 if (remaining < ti->len && 655 remaining & ((ti_limits.logical_block_size >> 656 SECTOR_SHIFT) - 1)) 657 break; /* Error */ 658 659 next_target_start = 660 (unsigned short) ((next_target_start + ti->len) & 661 (device_logical_block_size_sects - 1)); 662 remaining = next_target_start ? 663 device_logical_block_size_sects - next_target_start : 0; 664 } 665 666 if (remaining) { 667 DMERR("%s: table line %u (start sect %llu len %llu) " 668 "not aligned to h/w logical block size %u", 669 dm_device_name(t->md), i, 670 (unsigned long long) ti->begin, 671 (unsigned long long) ti->len, 672 limits->logical_block_size); 673 return -EINVAL; 674 } 675 676 return 0; 677 } 678 679 int dm_table_add_target(struct dm_table *t, const char *type, 680 sector_t start, sector_t len, char *params) 681 { 682 int r = -EINVAL, argc; 683 char **argv; 684 struct dm_target *ti; 685 686 if (t->singleton) { 687 DMERR("%s: target type %s must appear alone in table", 688 dm_device_name(t->md), t->targets->type->name); 689 return -EINVAL; 690 } 691 692 BUG_ON(t->num_targets >= t->num_allocated); 693 694 ti = t->targets + t->num_targets; 695 memset(ti, 0, sizeof(*ti)); 696 697 if (!len) { 698 DMERR("%s: zero-length target", dm_device_name(t->md)); 699 return -EINVAL; 700 } 701 if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) { 702 DMERR("%s: too large device", dm_device_name(t->md)); 703 return -EINVAL; 704 } 705 706 ti->type = dm_get_target_type(type); 707 if (!ti->type) { 708 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 709 return -EINVAL; 710 } 711 712 if (dm_target_needs_singleton(ti->type)) { 713 if (t->num_targets) { 714 ti->error = "singleton target type must appear alone in table"; 715 goto bad; 716 } 717 t->singleton = true; 718 } 719 720 if (dm_target_always_writeable(ti->type) && 721 !(t->mode & BLK_OPEN_WRITE)) { 722 ti->error = "target type may not be included in a read-only table"; 723 goto bad; 724 } 725 726 if (t->immutable_target_type) { 727 if (t->immutable_target_type != ti->type) { 728 ti->error = "immutable target type cannot be mixed with other target types"; 729 goto bad; 730 } 731 } else if (dm_target_is_immutable(ti->type)) { 732 if (t->num_targets) { 733 ti->error = "immutable target type cannot be mixed with other target types"; 734 goto bad; 735 } 736 t->immutable_target_type = ti->type; 737 } 738 739 ti->table = t; 740 ti->begin = start; 741 ti->len = len; 742 ti->error = "Unknown error"; 743 744 /* 745 * Does this target adjoin the previous one ? 746 */ 747 if (!adjoin(t, ti)) { 748 ti->error = "Gap in table"; 749 goto bad; 750 } 751 752 r = dm_split_args(&argc, &argv, params); 753 if (r) { 754 ti->error = "couldn't split parameters"; 755 goto bad; 756 } 757 758 r = ti->type->ctr(ti, argc, argv); 759 kfree(argv); 760 if (r) 761 goto bad; 762 763 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 764 765 if (!ti->num_discard_bios && ti->discards_supported) 766 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 767 dm_device_name(t->md), type); 768 769 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 770 static_branch_enable(&swap_bios_enabled); 771 772 if (!ti->flush_bypasses_map) 773 t->flush_bypasses_map = false; 774 775 return 0; 776 777 bad: 778 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 779 dm_put_target_type(ti->type); 780 return r; 781 } 782 783 /* 784 * Target argument parsing helpers. 785 */ 786 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 787 unsigned int *value, char **error, unsigned int grouped) 788 { 789 const char *arg_str = dm_shift_arg(arg_set); 790 char dummy; 791 792 if (!arg_str || 793 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 794 (*value < arg->min) || 795 (*value > arg->max) || 796 (grouped && arg_set->argc < *value)) { 797 *error = arg->error; 798 return -EINVAL; 799 } 800 801 return 0; 802 } 803 804 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 805 unsigned int *value, char **error) 806 { 807 return validate_next_arg(arg, arg_set, value, error, 0); 808 } 809 EXPORT_SYMBOL(dm_read_arg); 810 811 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 812 unsigned int *value, char **error) 813 { 814 return validate_next_arg(arg, arg_set, value, error, 1); 815 } 816 EXPORT_SYMBOL(dm_read_arg_group); 817 818 const char *dm_shift_arg(struct dm_arg_set *as) 819 { 820 char *r; 821 822 if (as->argc) { 823 as->argc--; 824 r = *as->argv; 825 as->argv++; 826 return r; 827 } 828 829 return NULL; 830 } 831 EXPORT_SYMBOL(dm_shift_arg); 832 833 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 834 { 835 BUG_ON(as->argc < num_args); 836 as->argc -= num_args; 837 as->argv += num_args; 838 } 839 EXPORT_SYMBOL(dm_consume_args); 840 841 static bool __table_type_bio_based(enum dm_queue_mode table_type) 842 { 843 return (table_type == DM_TYPE_BIO_BASED || 844 table_type == DM_TYPE_DAX_BIO_BASED); 845 } 846 847 static bool __table_type_request_based(enum dm_queue_mode table_type) 848 { 849 return table_type == DM_TYPE_REQUEST_BASED; 850 } 851 852 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 853 { 854 t->type = type; 855 } 856 EXPORT_SYMBOL_GPL(dm_table_set_type); 857 858 /* validate the dax capability of the target device span */ 859 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 860 sector_t start, sector_t len, void *data) 861 { 862 if (dev->dax_dev) 863 return false; 864 865 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 866 return true; 867 } 868 869 /* Check devices support synchronous DAX */ 870 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 871 sector_t start, sector_t len, void *data) 872 { 873 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 874 } 875 876 static bool dm_table_supports_dax(struct dm_table *t, 877 iterate_devices_callout_fn iterate_fn) 878 { 879 /* Ensure that all targets support DAX. */ 880 for (unsigned int i = 0; i < t->num_targets; i++) { 881 struct dm_target *ti = dm_table_get_target(t, i); 882 883 if (!ti->type->direct_access) 884 return false; 885 886 if (dm_target_is_wildcard(ti->type) || 887 !ti->type->iterate_devices || 888 ti->type->iterate_devices(ti, iterate_fn, NULL)) 889 return false; 890 } 891 892 return true; 893 } 894 895 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 896 sector_t start, sector_t len, void *data) 897 { 898 struct block_device *bdev = dev->bdev; 899 struct request_queue *q = bdev_get_queue(bdev); 900 901 /* request-based cannot stack on partitions! */ 902 if (bdev_is_partition(bdev)) 903 return false; 904 905 return queue_is_mq(q); 906 } 907 908 static int dm_table_determine_type(struct dm_table *t) 909 { 910 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 911 struct dm_target *ti; 912 struct list_head *devices = dm_table_get_devices(t); 913 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 914 915 if (t->type != DM_TYPE_NONE) { 916 /* target already set the table's type */ 917 if (t->type == DM_TYPE_BIO_BASED) { 918 /* possibly upgrade to a variant of bio-based */ 919 goto verify_bio_based; 920 } 921 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 922 goto verify_rq_based; 923 } 924 925 for (unsigned int i = 0; i < t->num_targets; i++) { 926 ti = dm_table_get_target(t, i); 927 if (dm_target_hybrid(ti)) 928 hybrid = 1; 929 else if (dm_target_request_based(ti)) 930 request_based = 1; 931 else 932 bio_based = 1; 933 934 if (bio_based && request_based) { 935 DMERR("Inconsistent table: different target types can't be mixed up"); 936 return -EINVAL; 937 } 938 } 939 940 if (hybrid && !bio_based && !request_based) { 941 /* 942 * The targets can work either way. 943 * Determine the type from the live device. 944 * Default to bio-based if device is new. 945 */ 946 if (__table_type_request_based(live_md_type)) 947 request_based = 1; 948 else 949 bio_based = 1; 950 } 951 952 if (bio_based) { 953 verify_bio_based: 954 /* We must use this table as bio-based */ 955 t->type = DM_TYPE_BIO_BASED; 956 if (dm_table_supports_dax(t, device_not_dax_capable) || 957 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 958 t->type = DM_TYPE_DAX_BIO_BASED; 959 } 960 return 0; 961 } 962 963 BUG_ON(!request_based); /* No targets in this table */ 964 965 t->type = DM_TYPE_REQUEST_BASED; 966 967 verify_rq_based: 968 /* 969 * Request-based dm supports only tables that have a single target now. 970 * To support multiple targets, request splitting support is needed, 971 * and that needs lots of changes in the block-layer. 972 * (e.g. request completion process for partial completion.) 973 */ 974 if (t->num_targets > 1) { 975 DMERR("request-based DM doesn't support multiple targets"); 976 return -EINVAL; 977 } 978 979 if (list_empty(devices)) { 980 int srcu_idx; 981 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 982 983 /* inherit live table's type */ 984 if (live_table) 985 t->type = live_table->type; 986 dm_put_live_table(t->md, srcu_idx); 987 return 0; 988 } 989 990 ti = dm_table_get_immutable_target(t); 991 if (!ti) { 992 DMERR("table load rejected: immutable target is required"); 993 return -EINVAL; 994 } else if (ti->max_io_len) { 995 DMERR("table load rejected: immutable target that splits IO is not supported"); 996 return -EINVAL; 997 } 998 999 /* Non-request-stackable devices can't be used for request-based dm */ 1000 if (!ti->type->iterate_devices || 1001 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 1002 DMERR("table load rejected: including non-request-stackable devices"); 1003 return -EINVAL; 1004 } 1005 1006 return 0; 1007 } 1008 1009 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1010 { 1011 return t->type; 1012 } 1013 1014 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1015 { 1016 return t->immutable_target_type; 1017 } 1018 1019 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1020 { 1021 /* Immutable target is implicitly a singleton */ 1022 if (t->num_targets > 1 || 1023 !dm_target_is_immutable(t->targets[0].type)) 1024 return NULL; 1025 1026 return t->targets; 1027 } 1028 1029 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1030 { 1031 for (unsigned int i = 0; i < t->num_targets; i++) { 1032 struct dm_target *ti = dm_table_get_target(t, i); 1033 1034 if (dm_target_is_wildcard(ti->type)) 1035 return ti; 1036 } 1037 1038 return NULL; 1039 } 1040 1041 bool dm_table_request_based(struct dm_table *t) 1042 { 1043 return __table_type_request_based(dm_table_get_type(t)); 1044 } 1045 1046 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1047 { 1048 enum dm_queue_mode type = dm_table_get_type(t); 1049 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1050 unsigned int min_pool_size = 0, pool_size; 1051 struct dm_md_mempools *pools; 1052 unsigned int bioset_flags = 0; 1053 1054 if (unlikely(type == DM_TYPE_NONE)) { 1055 DMERR("no table type is set, can't allocate mempools"); 1056 return -EINVAL; 1057 } 1058 1059 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1060 if (!pools) 1061 return -ENOMEM; 1062 1063 if (type == DM_TYPE_REQUEST_BASED) { 1064 pool_size = dm_get_reserved_rq_based_ios(); 1065 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1066 goto init_bs; 1067 } 1068 1069 if (md->queue->limits.features & BLK_FEAT_POLL) 1070 bioset_flags |= BIOSET_PERCPU_CACHE; 1071 1072 for (unsigned int i = 0; i < t->num_targets; i++) { 1073 struct dm_target *ti = dm_table_get_target(t, i); 1074 1075 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1076 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1077 } 1078 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1079 front_pad = roundup(per_io_data_size, 1080 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1081 1082 io_front_pad = roundup(per_io_data_size, 1083 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1084 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags)) 1085 goto out_free_pools; 1086 init_bs: 1087 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1088 goto out_free_pools; 1089 1090 t->mempools = pools; 1091 return 0; 1092 1093 out_free_pools: 1094 dm_free_md_mempools(pools); 1095 return -ENOMEM; 1096 } 1097 1098 static int setup_indexes(struct dm_table *t) 1099 { 1100 int i; 1101 unsigned int total = 0; 1102 sector_t *indexes; 1103 1104 /* allocate the space for *all* the indexes */ 1105 for (i = t->depth - 2; i >= 0; i--) { 1106 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1107 total += t->counts[i]; 1108 } 1109 1110 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1111 if (!indexes) 1112 return -ENOMEM; 1113 1114 /* set up internal nodes, bottom-up */ 1115 for (i = t->depth - 2; i >= 0; i--) { 1116 t->index[i] = indexes; 1117 indexes += (KEYS_PER_NODE * t->counts[i]); 1118 setup_btree_index(i, t); 1119 } 1120 1121 return 0; 1122 } 1123 1124 /* 1125 * Builds the btree to index the map. 1126 */ 1127 static int dm_table_build_index(struct dm_table *t) 1128 { 1129 int r = 0; 1130 unsigned int leaf_nodes; 1131 1132 /* how many indexes will the btree have ? */ 1133 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1134 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1135 1136 /* leaf layer has already been set up */ 1137 t->counts[t->depth - 1] = leaf_nodes; 1138 t->index[t->depth - 1] = t->highs; 1139 1140 if (t->depth >= 2) 1141 r = setup_indexes(t); 1142 1143 return r; 1144 } 1145 1146 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1147 1148 struct dm_crypto_profile { 1149 struct blk_crypto_profile profile; 1150 struct mapped_device *md; 1151 }; 1152 1153 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1154 sector_t start, sector_t len, void *data) 1155 { 1156 const struct blk_crypto_key *key = data; 1157 1158 blk_crypto_evict_key(dev->bdev, key); 1159 return 0; 1160 } 1161 1162 /* 1163 * When an inline encryption key is evicted from a device-mapper device, evict 1164 * it from all the underlying devices. 1165 */ 1166 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1167 const struct blk_crypto_key *key, unsigned int slot) 1168 { 1169 struct mapped_device *md = 1170 container_of(profile, struct dm_crypto_profile, profile)->md; 1171 struct dm_table *t; 1172 int srcu_idx; 1173 1174 t = dm_get_live_table(md, &srcu_idx); 1175 if (!t) 1176 goto put_live_table; 1177 1178 for (unsigned int i = 0; i < t->num_targets; i++) { 1179 struct dm_target *ti = dm_table_get_target(t, i); 1180 1181 if (!ti->type->iterate_devices) 1182 continue; 1183 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1184 (void *)key); 1185 } 1186 1187 put_live_table: 1188 dm_put_live_table(md, srcu_idx); 1189 return 0; 1190 } 1191 1192 static int 1193 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1194 sector_t start, sector_t len, void *data) 1195 { 1196 struct blk_crypto_profile *parent = data; 1197 struct blk_crypto_profile *child = 1198 bdev_get_queue(dev->bdev)->crypto_profile; 1199 1200 blk_crypto_intersect_capabilities(parent, child); 1201 return 0; 1202 } 1203 1204 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1205 { 1206 struct dm_crypto_profile *dmcp = container_of(profile, 1207 struct dm_crypto_profile, 1208 profile); 1209 1210 if (!profile) 1211 return; 1212 1213 blk_crypto_profile_destroy(profile); 1214 kfree(dmcp); 1215 } 1216 1217 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1218 { 1219 dm_destroy_crypto_profile(t->crypto_profile); 1220 t->crypto_profile = NULL; 1221 } 1222 1223 /* 1224 * Constructs and initializes t->crypto_profile with a crypto profile that 1225 * represents the common set of crypto capabilities of the devices described by 1226 * the dm_table. However, if the constructed crypto profile doesn't support all 1227 * crypto capabilities that are supported by the current mapped_device, it 1228 * returns an error instead, since we don't support removing crypto capabilities 1229 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1230 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1231 */ 1232 static int dm_table_construct_crypto_profile(struct dm_table *t) 1233 { 1234 struct dm_crypto_profile *dmcp; 1235 struct blk_crypto_profile *profile; 1236 unsigned int i; 1237 bool empty_profile = true; 1238 1239 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1240 if (!dmcp) 1241 return -ENOMEM; 1242 dmcp->md = t->md; 1243 1244 profile = &dmcp->profile; 1245 blk_crypto_profile_init(profile, 0); 1246 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1247 profile->max_dun_bytes_supported = UINT_MAX; 1248 memset(profile->modes_supported, 0xFF, 1249 sizeof(profile->modes_supported)); 1250 profile->key_types_supported = ~0; 1251 1252 for (i = 0; i < t->num_targets; i++) { 1253 struct dm_target *ti = dm_table_get_target(t, i); 1254 1255 if (!dm_target_passes_crypto(ti->type)) { 1256 blk_crypto_intersect_capabilities(profile, NULL); 1257 break; 1258 } 1259 if (!ti->type->iterate_devices) 1260 continue; 1261 ti->type->iterate_devices(ti, 1262 device_intersect_crypto_capabilities, 1263 profile); 1264 } 1265 1266 if (t->md->queue && 1267 !blk_crypto_has_capabilities(profile, 1268 t->md->queue->crypto_profile)) { 1269 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1270 dm_destroy_crypto_profile(profile); 1271 return -EINVAL; 1272 } 1273 1274 /* 1275 * If the new profile doesn't actually support any crypto capabilities, 1276 * we may as well represent it with a NULL profile. 1277 */ 1278 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1279 if (profile->modes_supported[i]) { 1280 empty_profile = false; 1281 break; 1282 } 1283 } 1284 1285 if (empty_profile) { 1286 dm_destroy_crypto_profile(profile); 1287 profile = NULL; 1288 } 1289 1290 /* 1291 * t->crypto_profile is only set temporarily while the table is being 1292 * set up, and it gets set to NULL after the profile has been 1293 * transferred to the request_queue. 1294 */ 1295 t->crypto_profile = profile; 1296 1297 return 0; 1298 } 1299 1300 static void dm_update_crypto_profile(struct request_queue *q, 1301 struct dm_table *t) 1302 { 1303 if (!t->crypto_profile) 1304 return; 1305 1306 /* Make the crypto profile less restrictive. */ 1307 if (!q->crypto_profile) { 1308 blk_crypto_register(t->crypto_profile, q); 1309 } else { 1310 blk_crypto_update_capabilities(q->crypto_profile, 1311 t->crypto_profile); 1312 dm_destroy_crypto_profile(t->crypto_profile); 1313 } 1314 t->crypto_profile = NULL; 1315 } 1316 1317 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1318 1319 static int dm_table_construct_crypto_profile(struct dm_table *t) 1320 { 1321 return 0; 1322 } 1323 1324 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1325 { 1326 } 1327 1328 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1329 { 1330 } 1331 1332 static void dm_update_crypto_profile(struct request_queue *q, 1333 struct dm_table *t) 1334 { 1335 } 1336 1337 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1338 1339 /* 1340 * Prepares the table for use by building the indices, 1341 * setting the type, and allocating mempools. 1342 */ 1343 int dm_table_complete(struct dm_table *t) 1344 { 1345 int r; 1346 1347 r = dm_table_determine_type(t); 1348 if (r) { 1349 DMERR("unable to determine table type"); 1350 return r; 1351 } 1352 1353 r = dm_table_build_index(t); 1354 if (r) { 1355 DMERR("unable to build btrees"); 1356 return r; 1357 } 1358 1359 r = dm_table_construct_crypto_profile(t); 1360 if (r) { 1361 DMERR("could not construct crypto profile."); 1362 return r; 1363 } 1364 1365 r = dm_table_alloc_md_mempools(t, t->md); 1366 if (r) 1367 DMERR("unable to allocate mempools"); 1368 1369 return r; 1370 } 1371 1372 static DEFINE_MUTEX(_event_lock); 1373 void dm_table_event_callback(struct dm_table *t, 1374 void (*fn)(void *), void *context) 1375 { 1376 mutex_lock(&_event_lock); 1377 t->event_fn = fn; 1378 t->event_context = context; 1379 mutex_unlock(&_event_lock); 1380 } 1381 1382 void dm_table_event(struct dm_table *t) 1383 { 1384 mutex_lock(&_event_lock); 1385 if (t->event_fn) 1386 t->event_fn(t->event_context); 1387 mutex_unlock(&_event_lock); 1388 } 1389 EXPORT_SYMBOL(dm_table_event); 1390 1391 inline sector_t dm_table_get_size(struct dm_table *t) 1392 { 1393 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1394 } 1395 EXPORT_SYMBOL(dm_table_get_size); 1396 1397 /* 1398 * Search the btree for the correct target. 1399 * 1400 * Caller should check returned pointer for NULL 1401 * to trap I/O beyond end of device. 1402 */ 1403 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1404 { 1405 unsigned int l, n = 0, k = 0; 1406 sector_t *node; 1407 1408 if (unlikely(sector >= dm_table_get_size(t))) 1409 return NULL; 1410 1411 for (l = 0; l < t->depth; l++) { 1412 n = get_child(n, k); 1413 node = get_node(t, l, n); 1414 1415 for (k = 0; k < KEYS_PER_NODE; k++) 1416 if (node[k] >= sector) 1417 break; 1418 } 1419 1420 return &t->targets[(KEYS_PER_NODE * n) + k]; 1421 } 1422 1423 /* 1424 * type->iterate_devices() should be called when the sanity check needs to 1425 * iterate and check all underlying data devices. iterate_devices() will 1426 * iterate all underlying data devices until it encounters a non-zero return 1427 * code, returned by whether the input iterate_devices_callout_fn, or 1428 * iterate_devices() itself internally. 1429 * 1430 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1431 * iterate multiple underlying devices internally, in which case a non-zero 1432 * return code returned by iterate_devices_callout_fn will stop the iteration 1433 * in advance. 1434 * 1435 * Cases requiring _any_ underlying device supporting some kind of attribute, 1436 * should use the iteration structure like dm_table_any_dev_attr(), or call 1437 * it directly. @func should handle semantics of positive examples, e.g. 1438 * capable of something. 1439 * 1440 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1441 * should use the iteration structure like dm_table_supports_nowait() or 1442 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1443 * uses an @anti_func that handle semantics of counter examples, e.g. not 1444 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1445 */ 1446 static bool dm_table_any_dev_attr(struct dm_table *t, 1447 iterate_devices_callout_fn func, void *data) 1448 { 1449 for (unsigned int i = 0; i < t->num_targets; i++) { 1450 struct dm_target *ti = dm_table_get_target(t, i); 1451 1452 if (ti->type->iterate_devices && 1453 ti->type->iterate_devices(ti, func, data)) 1454 return true; 1455 } 1456 1457 return false; 1458 } 1459 1460 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1461 sector_t start, sector_t len, void *data) 1462 { 1463 unsigned int *num_devices = data; 1464 1465 (*num_devices)++; 1466 1467 return 0; 1468 } 1469 1470 /* 1471 * Check whether a table has no data devices attached using each 1472 * target's iterate_devices method. 1473 * Returns false if the result is unknown because a target doesn't 1474 * support iterate_devices. 1475 */ 1476 bool dm_table_has_no_data_devices(struct dm_table *t) 1477 { 1478 for (unsigned int i = 0; i < t->num_targets; i++) { 1479 struct dm_target *ti = dm_table_get_target(t, i); 1480 unsigned int num_devices = 0; 1481 1482 if (!ti->type->iterate_devices) 1483 return false; 1484 1485 ti->type->iterate_devices(ti, count_device, &num_devices); 1486 if (num_devices) 1487 return false; 1488 } 1489 1490 return true; 1491 } 1492 1493 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1494 sector_t start, sector_t len, void *data) 1495 { 1496 bool *zoned = data; 1497 1498 return bdev_is_zoned(dev->bdev) != *zoned; 1499 } 1500 1501 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1502 sector_t start, sector_t len, void *data) 1503 { 1504 return bdev_is_zoned(dev->bdev); 1505 } 1506 1507 /* 1508 * Check the device zoned model based on the target feature flag. If the target 1509 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1510 * also accepted but all devices must have the same zoned model. If the target 1511 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1512 * zoned model with all zoned devices having the same zone size. 1513 */ 1514 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1515 { 1516 for (unsigned int i = 0; i < t->num_targets; i++) { 1517 struct dm_target *ti = dm_table_get_target(t, i); 1518 1519 /* 1520 * For the wildcard target (dm-error), if we do not have a 1521 * backing device, we must always return false. If we have a 1522 * backing device, the result must depend on checking zoned 1523 * model, like for any other target. So for this, check directly 1524 * if the target backing device is zoned as we get "false" when 1525 * dm-error was set without a backing device. 1526 */ 1527 if (dm_target_is_wildcard(ti->type) && 1528 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1529 return false; 1530 1531 if (dm_target_supports_zoned_hm(ti->type)) { 1532 if (!ti->type->iterate_devices || 1533 ti->type->iterate_devices(ti, device_not_zoned, 1534 &zoned)) 1535 return false; 1536 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1537 if (zoned) 1538 return false; 1539 } 1540 } 1541 1542 return true; 1543 } 1544 1545 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1546 sector_t start, sector_t len, void *data) 1547 { 1548 unsigned int *zone_sectors = data; 1549 1550 if (!bdev_is_zoned(dev->bdev)) 1551 return 0; 1552 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1553 } 1554 1555 /* 1556 * Check consistency of zoned model and zone sectors across all targets. For 1557 * zone sectors, if the destination device is a zoned block device, it shall 1558 * have the specified zone_sectors. 1559 */ 1560 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1561 unsigned int zone_sectors) 1562 { 1563 if (!zoned) 1564 return 0; 1565 1566 if (!dm_table_supports_zoned(t, zoned)) { 1567 DMERR("%s: zoned model is not consistent across all devices", 1568 dm_device_name(t->md)); 1569 return -EINVAL; 1570 } 1571 1572 /* Check zone size validity and compatibility */ 1573 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1574 return -EINVAL; 1575 1576 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1577 DMERR("%s: zone sectors is not consistent across all zoned devices", 1578 dm_device_name(t->md)); 1579 return -EINVAL; 1580 } 1581 1582 return 0; 1583 } 1584 1585 /* 1586 * Establish the new table's queue_limits and validate them. 1587 */ 1588 int dm_calculate_queue_limits(struct dm_table *t, 1589 struct queue_limits *limits) 1590 { 1591 struct queue_limits ti_limits; 1592 unsigned int zone_sectors = 0; 1593 bool zoned = false; 1594 1595 dm_set_stacking_limits(limits); 1596 1597 t->integrity_supported = true; 1598 for (unsigned int i = 0; i < t->num_targets; i++) { 1599 struct dm_target *ti = dm_table_get_target(t, i); 1600 1601 if (!dm_target_passes_integrity(ti->type)) 1602 t->integrity_supported = false; 1603 } 1604 1605 for (unsigned int i = 0; i < t->num_targets; i++) { 1606 struct dm_target *ti = dm_table_get_target(t, i); 1607 1608 dm_set_stacking_limits(&ti_limits); 1609 1610 if (!ti->type->iterate_devices) { 1611 /* Set I/O hints portion of queue limits */ 1612 if (ti->type->io_hints) 1613 ti->type->io_hints(ti, &ti_limits); 1614 goto combine_limits; 1615 } 1616 1617 /* 1618 * Combine queue limits of all the devices this target uses. 1619 */ 1620 ti->type->iterate_devices(ti, dm_set_device_limits, 1621 &ti_limits); 1622 1623 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) { 1624 /* 1625 * After stacking all limits, validate all devices 1626 * in table support this zoned model and zone sectors. 1627 */ 1628 zoned = (ti_limits.features & BLK_FEAT_ZONED); 1629 zone_sectors = ti_limits.chunk_sectors; 1630 } 1631 1632 /* Set I/O hints portion of queue limits */ 1633 if (ti->type->io_hints) 1634 ti->type->io_hints(ti, &ti_limits); 1635 1636 /* 1637 * Check each device area is consistent with the target's 1638 * overall queue limits. 1639 */ 1640 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1641 &ti_limits)) 1642 return -EINVAL; 1643 1644 combine_limits: 1645 /* 1646 * Merge this target's queue limits into the overall limits 1647 * for the table. 1648 */ 1649 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1650 DMWARN("%s: adding target device (start sect %llu len %llu) " 1651 "caused an alignment inconsistency", 1652 dm_device_name(t->md), 1653 (unsigned long long) ti->begin, 1654 (unsigned long long) ti->len); 1655 1656 if (t->integrity_supported || 1657 dm_target_has_integrity(ti->type)) { 1658 if (!queue_limits_stack_integrity(limits, &ti_limits)) { 1659 DMWARN("%s: adding target device (start sect %llu len %llu) " 1660 "disabled integrity support due to incompatibility", 1661 dm_device_name(t->md), 1662 (unsigned long long) ti->begin, 1663 (unsigned long long) ti->len); 1664 t->integrity_supported = false; 1665 } 1666 } 1667 } 1668 1669 /* 1670 * Verify that the zoned model and zone sectors, as determined before 1671 * any .io_hints override, are the same across all devices in the table. 1672 * - this is especially relevant if .io_hints is emulating a disk-managed 1673 * zoned model on host-managed zoned block devices. 1674 * BUT... 1675 */ 1676 if (limits->features & BLK_FEAT_ZONED) { 1677 /* 1678 * ...IF the above limits stacking determined a zoned model 1679 * validate that all of the table's devices conform to it. 1680 */ 1681 zoned = limits->features & BLK_FEAT_ZONED; 1682 zone_sectors = limits->chunk_sectors; 1683 } 1684 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1685 return -EINVAL; 1686 1687 return validate_hardware_logical_block_alignment(t, limits); 1688 } 1689 1690 /* 1691 * Check if a target requires flush support even if none of the underlying 1692 * devices need it (e.g. to persist target-specific metadata). 1693 */ 1694 static bool dm_table_supports_flush(struct dm_table *t) 1695 { 1696 for (unsigned int i = 0; i < t->num_targets; i++) { 1697 struct dm_target *ti = dm_table_get_target(t, i); 1698 1699 if (ti->num_flush_bios && ti->flush_supported) 1700 return true; 1701 } 1702 1703 return false; 1704 } 1705 1706 static int device_dax_write_cache_enabled(struct dm_target *ti, 1707 struct dm_dev *dev, sector_t start, 1708 sector_t len, void *data) 1709 { 1710 struct dax_device *dax_dev = dev->dax_dev; 1711 1712 if (!dax_dev) 1713 return false; 1714 1715 if (dax_write_cache_enabled(dax_dev)) 1716 return true; 1717 return false; 1718 } 1719 1720 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1721 sector_t start, sector_t len, void *data) 1722 { 1723 struct request_queue *q = bdev_get_queue(dev->bdev); 1724 1725 return !q->limits.max_write_zeroes_sectors; 1726 } 1727 1728 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1729 { 1730 for (unsigned int i = 0; i < t->num_targets; i++) { 1731 struct dm_target *ti = dm_table_get_target(t, i); 1732 1733 if (!ti->num_write_zeroes_bios) 1734 return false; 1735 1736 if (!ti->type->iterate_devices || 1737 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1738 return false; 1739 } 1740 1741 return true; 1742 } 1743 1744 static bool dm_table_supports_nowait(struct dm_table *t) 1745 { 1746 for (unsigned int i = 0; i < t->num_targets; i++) { 1747 struct dm_target *ti = dm_table_get_target(t, i); 1748 1749 if (!dm_target_supports_nowait(ti->type)) 1750 return false; 1751 } 1752 1753 return true; 1754 } 1755 1756 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1757 sector_t start, sector_t len, void *data) 1758 { 1759 return !bdev_max_discard_sectors(dev->bdev); 1760 } 1761 1762 static bool dm_table_supports_discards(struct dm_table *t) 1763 { 1764 for (unsigned int i = 0; i < t->num_targets; i++) { 1765 struct dm_target *ti = dm_table_get_target(t, i); 1766 1767 if (!ti->num_discard_bios) 1768 return false; 1769 1770 /* 1771 * Either the target provides discard support (as implied by setting 1772 * 'discards_supported') or it relies on _all_ data devices having 1773 * discard support. 1774 */ 1775 if (!ti->discards_supported && 1776 (!ti->type->iterate_devices || 1777 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1778 return false; 1779 } 1780 1781 return true; 1782 } 1783 1784 static int device_not_secure_erase_capable(struct dm_target *ti, 1785 struct dm_dev *dev, sector_t start, 1786 sector_t len, void *data) 1787 { 1788 return !bdev_max_secure_erase_sectors(dev->bdev); 1789 } 1790 1791 static bool dm_table_supports_secure_erase(struct dm_table *t) 1792 { 1793 for (unsigned int i = 0; i < t->num_targets; i++) { 1794 struct dm_target *ti = dm_table_get_target(t, i); 1795 1796 if (!ti->num_secure_erase_bios) 1797 return false; 1798 1799 if (!ti->type->iterate_devices || 1800 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1801 return false; 1802 } 1803 1804 return true; 1805 } 1806 1807 static int device_not_atomic_write_capable(struct dm_target *ti, 1808 struct dm_dev *dev, sector_t start, 1809 sector_t len, void *data) 1810 { 1811 return !bdev_can_atomic_write(dev->bdev); 1812 } 1813 1814 static bool dm_table_supports_atomic_writes(struct dm_table *t) 1815 { 1816 for (unsigned int i = 0; i < t->num_targets; i++) { 1817 struct dm_target *ti = dm_table_get_target(t, i); 1818 1819 if (!dm_target_supports_atomic_writes(ti->type)) 1820 return false; 1821 1822 if (!ti->type->iterate_devices) 1823 return false; 1824 1825 if (ti->type->iterate_devices(ti, 1826 device_not_atomic_write_capable, NULL)) { 1827 return false; 1828 } 1829 } 1830 return true; 1831 } 1832 1833 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1834 struct queue_limits *limits) 1835 { 1836 int r; 1837 1838 if (!dm_table_supports_nowait(t)) 1839 limits->features &= ~BLK_FEAT_NOWAIT; 1840 1841 /* 1842 * The current polling impementation does not support request based 1843 * stacking. 1844 */ 1845 if (!__table_type_bio_based(t->type)) 1846 limits->features &= ~BLK_FEAT_POLL; 1847 1848 if (!dm_table_supports_discards(t)) { 1849 limits->max_hw_discard_sectors = 0; 1850 limits->discard_granularity = 0; 1851 limits->discard_alignment = 0; 1852 } 1853 1854 if (!dm_table_supports_write_zeroes(t)) 1855 limits->max_write_zeroes_sectors = 0; 1856 1857 if (!dm_table_supports_secure_erase(t)) 1858 limits->max_secure_erase_sectors = 0; 1859 1860 if (dm_table_supports_flush(t)) 1861 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 1862 1863 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1864 limits->features |= BLK_FEAT_DAX; 1865 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1866 set_dax_synchronous(t->md->dax_dev); 1867 } else 1868 limits->features &= ~BLK_FEAT_DAX; 1869 1870 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1871 dax_write_cache(t->md->dax_dev, true); 1872 1873 /* For a zoned table, setup the zone related queue attributes. */ 1874 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1875 (limits->features & BLK_FEAT_ZONED)) { 1876 r = dm_set_zones_restrictions(t, q, limits); 1877 if (r) 1878 return r; 1879 } 1880 1881 if (dm_table_supports_atomic_writes(t)) 1882 limits->features |= BLK_FEAT_ATOMIC_WRITES; 1883 1884 r = queue_limits_set(q, limits); 1885 if (r) 1886 return r; 1887 1888 /* 1889 * Now that the limits are set, check the zones mapped by the table 1890 * and setup the resources for zone append emulation if necessary. 1891 */ 1892 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1893 (limits->features & BLK_FEAT_ZONED)) { 1894 r = dm_revalidate_zones(t, q); 1895 if (r) 1896 return r; 1897 } 1898 1899 dm_update_crypto_profile(q, t); 1900 return 0; 1901 } 1902 1903 struct list_head *dm_table_get_devices(struct dm_table *t) 1904 { 1905 return &t->devices; 1906 } 1907 1908 blk_mode_t dm_table_get_mode(struct dm_table *t) 1909 { 1910 return t->mode; 1911 } 1912 EXPORT_SYMBOL(dm_table_get_mode); 1913 1914 enum suspend_mode { 1915 PRESUSPEND, 1916 PRESUSPEND_UNDO, 1917 POSTSUSPEND, 1918 }; 1919 1920 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1921 { 1922 lockdep_assert_held(&t->md->suspend_lock); 1923 1924 for (unsigned int i = 0; i < t->num_targets; i++) { 1925 struct dm_target *ti = dm_table_get_target(t, i); 1926 1927 switch (mode) { 1928 case PRESUSPEND: 1929 if (ti->type->presuspend) 1930 ti->type->presuspend(ti); 1931 break; 1932 case PRESUSPEND_UNDO: 1933 if (ti->type->presuspend_undo) 1934 ti->type->presuspend_undo(ti); 1935 break; 1936 case POSTSUSPEND: 1937 if (ti->type->postsuspend) 1938 ti->type->postsuspend(ti); 1939 break; 1940 } 1941 } 1942 } 1943 1944 void dm_table_presuspend_targets(struct dm_table *t) 1945 { 1946 if (!t) 1947 return; 1948 1949 suspend_targets(t, PRESUSPEND); 1950 } 1951 1952 void dm_table_presuspend_undo_targets(struct dm_table *t) 1953 { 1954 if (!t) 1955 return; 1956 1957 suspend_targets(t, PRESUSPEND_UNDO); 1958 } 1959 1960 void dm_table_postsuspend_targets(struct dm_table *t) 1961 { 1962 if (!t) 1963 return; 1964 1965 suspend_targets(t, POSTSUSPEND); 1966 } 1967 1968 int dm_table_resume_targets(struct dm_table *t) 1969 { 1970 unsigned int i; 1971 int r = 0; 1972 1973 lockdep_assert_held(&t->md->suspend_lock); 1974 1975 for (i = 0; i < t->num_targets; i++) { 1976 struct dm_target *ti = dm_table_get_target(t, i); 1977 1978 if (!ti->type->preresume) 1979 continue; 1980 1981 r = ti->type->preresume(ti); 1982 if (r) { 1983 DMERR("%s: %s: preresume failed, error = %d", 1984 dm_device_name(t->md), ti->type->name, r); 1985 return r; 1986 } 1987 } 1988 1989 for (i = 0; i < t->num_targets; i++) { 1990 struct dm_target *ti = dm_table_get_target(t, i); 1991 1992 if (ti->type->resume) 1993 ti->type->resume(ti); 1994 } 1995 1996 return 0; 1997 } 1998 1999 struct mapped_device *dm_table_get_md(struct dm_table *t) 2000 { 2001 return t->md; 2002 } 2003 EXPORT_SYMBOL(dm_table_get_md); 2004 2005 const char *dm_table_device_name(struct dm_table *t) 2006 { 2007 return dm_device_name(t->md); 2008 } 2009 EXPORT_SYMBOL_GPL(dm_table_device_name); 2010 2011 void dm_table_run_md_queue_async(struct dm_table *t) 2012 { 2013 if (!dm_table_request_based(t)) 2014 return; 2015 2016 if (t->md->queue) 2017 blk_mq_run_hw_queues(t->md->queue, true); 2018 } 2019 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2020 2021