xref: /linux/drivers/md/dm-table.c (revision 63307d015b91e626c97bb82e88054af3d0b74643)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 struct dm_table {
33 	struct mapped_device *md;
34 	enum dm_queue_mode type;
35 
36 	/* btree table */
37 	unsigned int depth;
38 	unsigned int counts[MAX_DEPTH];	/* in nodes */
39 	sector_t *index[MAX_DEPTH];
40 
41 	unsigned int num_targets;
42 	unsigned int num_allocated;
43 	sector_t *highs;
44 	struct dm_target *targets;
45 
46 	struct target_type *immutable_target_type;
47 
48 	bool integrity_supported:1;
49 	bool singleton:1;
50 	unsigned integrity_added:1;
51 
52 	/*
53 	 * Indicates the rw permissions for the new logical
54 	 * device.  This should be a combination of FMODE_READ
55 	 * and FMODE_WRITE.
56 	 */
57 	fmode_t mode;
58 
59 	/* a list of devices used by this table */
60 	struct list_head devices;
61 
62 	/* events get handed up using this callback */
63 	void (*event_fn)(void *);
64 	void *event_context;
65 
66 	struct dm_md_mempools *mempools;
67 
68 	struct list_head target_callbacks;
69 };
70 
71 /*
72  * Similar to ceiling(log_size(n))
73  */
74 static unsigned int int_log(unsigned int n, unsigned int base)
75 {
76 	int result = 0;
77 
78 	while (n > 1) {
79 		n = dm_div_up(n, base);
80 		result++;
81 	}
82 
83 	return result;
84 }
85 
86 /*
87  * Calculate the index of the child node of the n'th node k'th key.
88  */
89 static inline unsigned int get_child(unsigned int n, unsigned int k)
90 {
91 	return (n * CHILDREN_PER_NODE) + k;
92 }
93 
94 /*
95  * Return the n'th node of level l from table t.
96  */
97 static inline sector_t *get_node(struct dm_table *t,
98 				 unsigned int l, unsigned int n)
99 {
100 	return t->index[l] + (n * KEYS_PER_NODE);
101 }
102 
103 /*
104  * Return the highest key that you could lookup from the n'th
105  * node on level l of the btree.
106  */
107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108 {
109 	for (; l < t->depth - 1; l++)
110 		n = get_child(n, CHILDREN_PER_NODE - 1);
111 
112 	if (n >= t->counts[l])
113 		return (sector_t) - 1;
114 
115 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
116 }
117 
118 /*
119  * Fills in a level of the btree based on the highs of the level
120  * below it.
121  */
122 static int setup_btree_index(unsigned int l, struct dm_table *t)
123 {
124 	unsigned int n, k;
125 	sector_t *node;
126 
127 	for (n = 0U; n < t->counts[l]; n++) {
128 		node = get_node(t, l, n);
129 
130 		for (k = 0U; k < KEYS_PER_NODE; k++)
131 			node[k] = high(t, l + 1, get_child(n, k));
132 	}
133 
134 	return 0;
135 }
136 
137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138 {
139 	unsigned long size;
140 	void *addr;
141 
142 	/*
143 	 * Check that we're not going to overflow.
144 	 */
145 	if (nmemb > (ULONG_MAX / elem_size))
146 		return NULL;
147 
148 	size = nmemb * elem_size;
149 	addr = vzalloc(size);
150 
151 	return addr;
152 }
153 EXPORT_SYMBOL(dm_vcalloc);
154 
155 /*
156  * highs, and targets are managed as dynamic arrays during a
157  * table load.
158  */
159 static int alloc_targets(struct dm_table *t, unsigned int num)
160 {
161 	sector_t *n_highs;
162 	struct dm_target *n_targets;
163 
164 	/*
165 	 * Allocate both the target array and offset array at once.
166 	 * Append an empty entry to catch sectors beyond the end of
167 	 * the device.
168 	 */
169 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
170 					  sizeof(sector_t));
171 	if (!n_highs)
172 		return -ENOMEM;
173 
174 	n_targets = (struct dm_target *) (n_highs + num);
175 
176 	memset(n_highs, -1, sizeof(*n_highs) * num);
177 	vfree(t->highs);
178 
179 	t->num_allocated = num;
180 	t->highs = n_highs;
181 	t->targets = n_targets;
182 
183 	return 0;
184 }
185 
186 int dm_table_create(struct dm_table **result, fmode_t mode,
187 		    unsigned num_targets, struct mapped_device *md)
188 {
189 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
190 
191 	if (!t)
192 		return -ENOMEM;
193 
194 	INIT_LIST_HEAD(&t->devices);
195 	INIT_LIST_HEAD(&t->target_callbacks);
196 
197 	if (!num_targets)
198 		num_targets = KEYS_PER_NODE;
199 
200 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
201 
202 	if (!num_targets) {
203 		kfree(t);
204 		return -ENOMEM;
205 	}
206 
207 	if (alloc_targets(t, num_targets)) {
208 		kfree(t);
209 		return -ENOMEM;
210 	}
211 
212 	t->type = DM_TYPE_NONE;
213 	t->mode = mode;
214 	t->md = md;
215 	*result = t;
216 	return 0;
217 }
218 
219 static void free_devices(struct list_head *devices, struct mapped_device *md)
220 {
221 	struct list_head *tmp, *next;
222 
223 	list_for_each_safe(tmp, next, devices) {
224 		struct dm_dev_internal *dd =
225 		    list_entry(tmp, struct dm_dev_internal, list);
226 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
227 		       dm_device_name(md), dd->dm_dev->name);
228 		dm_put_table_device(md, dd->dm_dev);
229 		kfree(dd);
230 	}
231 }
232 
233 void dm_table_destroy(struct dm_table *t)
234 {
235 	unsigned int i;
236 
237 	if (!t)
238 		return;
239 
240 	/* free the indexes */
241 	if (t->depth >= 2)
242 		vfree(t->index[t->depth - 2]);
243 
244 	/* free the targets */
245 	for (i = 0; i < t->num_targets; i++) {
246 		struct dm_target *tgt = t->targets + i;
247 
248 		if (tgt->type->dtr)
249 			tgt->type->dtr(tgt);
250 
251 		dm_put_target_type(tgt->type);
252 	}
253 
254 	vfree(t->highs);
255 
256 	/* free the device list */
257 	free_devices(&t->devices, t->md);
258 
259 	dm_free_md_mempools(t->mempools);
260 
261 	kfree(t);
262 }
263 
264 /*
265  * See if we've already got a device in the list.
266  */
267 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
268 {
269 	struct dm_dev_internal *dd;
270 
271 	list_for_each_entry (dd, l, list)
272 		if (dd->dm_dev->bdev->bd_dev == dev)
273 			return dd;
274 
275 	return NULL;
276 }
277 
278 /*
279  * If possible, this checks an area of a destination device is invalid.
280  */
281 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
282 				  sector_t start, sector_t len, void *data)
283 {
284 	struct request_queue *q;
285 	struct queue_limits *limits = data;
286 	struct block_device *bdev = dev->bdev;
287 	sector_t dev_size =
288 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
289 	unsigned short logical_block_size_sectors =
290 		limits->logical_block_size >> SECTOR_SHIFT;
291 	char b[BDEVNAME_SIZE];
292 
293 	/*
294 	 * Some devices exist without request functions,
295 	 * such as loop devices not yet bound to backing files.
296 	 * Forbid the use of such devices.
297 	 */
298 	q = bdev_get_queue(bdev);
299 	if (!q || !q->make_request_fn) {
300 		DMWARN("%s: %s is not yet initialised: "
301 		       "start=%llu, len=%llu, dev_size=%llu",
302 		       dm_device_name(ti->table->md), bdevname(bdev, b),
303 		       (unsigned long long)start,
304 		       (unsigned long long)len,
305 		       (unsigned long long)dev_size);
306 		return 1;
307 	}
308 
309 	if (!dev_size)
310 		return 0;
311 
312 	if ((start >= dev_size) || (start + len > dev_size)) {
313 		DMWARN("%s: %s too small for target: "
314 		       "start=%llu, len=%llu, dev_size=%llu",
315 		       dm_device_name(ti->table->md), bdevname(bdev, b),
316 		       (unsigned long long)start,
317 		       (unsigned long long)len,
318 		       (unsigned long long)dev_size);
319 		return 1;
320 	}
321 
322 	/*
323 	 * If the target is mapped to zoned block device(s), check
324 	 * that the zones are not partially mapped.
325 	 */
326 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
327 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
328 
329 		if (start & (zone_sectors - 1)) {
330 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
331 			       dm_device_name(ti->table->md),
332 			       (unsigned long long)start,
333 			       zone_sectors, bdevname(bdev, b));
334 			return 1;
335 		}
336 
337 		/*
338 		 * Note: The last zone of a zoned block device may be smaller
339 		 * than other zones. So for a target mapping the end of a
340 		 * zoned block device with such a zone, len would not be zone
341 		 * aligned. We do not allow such last smaller zone to be part
342 		 * of the mapping here to ensure that mappings with multiple
343 		 * devices do not end up with a smaller zone in the middle of
344 		 * the sector range.
345 		 */
346 		if (len & (zone_sectors - 1)) {
347 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
348 			       dm_device_name(ti->table->md),
349 			       (unsigned long long)len,
350 			       zone_sectors, bdevname(bdev, b));
351 			return 1;
352 		}
353 	}
354 
355 	if (logical_block_size_sectors <= 1)
356 		return 0;
357 
358 	if (start & (logical_block_size_sectors - 1)) {
359 		DMWARN("%s: start=%llu not aligned to h/w "
360 		       "logical block size %u of %s",
361 		       dm_device_name(ti->table->md),
362 		       (unsigned long long)start,
363 		       limits->logical_block_size, bdevname(bdev, b));
364 		return 1;
365 	}
366 
367 	if (len & (logical_block_size_sectors - 1)) {
368 		DMWARN("%s: len=%llu not aligned to h/w "
369 		       "logical block size %u of %s",
370 		       dm_device_name(ti->table->md),
371 		       (unsigned long long)len,
372 		       limits->logical_block_size, bdevname(bdev, b));
373 		return 1;
374 	}
375 
376 	return 0;
377 }
378 
379 /*
380  * This upgrades the mode on an already open dm_dev, being
381  * careful to leave things as they were if we fail to reopen the
382  * device and not to touch the existing bdev field in case
383  * it is accessed concurrently inside dm_table_any_congested().
384  */
385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
386 			struct mapped_device *md)
387 {
388 	int r;
389 	struct dm_dev *old_dev, *new_dev;
390 
391 	old_dev = dd->dm_dev;
392 
393 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
394 				dd->dm_dev->mode | new_mode, &new_dev);
395 	if (r)
396 		return r;
397 
398 	dd->dm_dev = new_dev;
399 	dm_put_table_device(md, old_dev);
400 
401 	return 0;
402 }
403 
404 /*
405  * Convert the path to a device
406  */
407 dev_t dm_get_dev_t(const char *path)
408 {
409 	dev_t dev;
410 	struct block_device *bdev;
411 
412 	bdev = lookup_bdev(path);
413 	if (IS_ERR(bdev))
414 		dev = name_to_dev_t(path);
415 	else {
416 		dev = bdev->bd_dev;
417 		bdput(bdev);
418 	}
419 
420 	return dev;
421 }
422 EXPORT_SYMBOL_GPL(dm_get_dev_t);
423 
424 /*
425  * Add a device to the list, or just increment the usage count if
426  * it's already present.
427  */
428 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
429 		  struct dm_dev **result)
430 {
431 	int r;
432 	dev_t dev;
433 	struct dm_dev_internal *dd;
434 	struct dm_table *t = ti->table;
435 
436 	BUG_ON(!t);
437 
438 	dev = dm_get_dev_t(path);
439 	if (!dev)
440 		return -ENODEV;
441 
442 	dd = find_device(&t->devices, dev);
443 	if (!dd) {
444 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
445 		if (!dd)
446 			return -ENOMEM;
447 
448 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
449 			kfree(dd);
450 			return r;
451 		}
452 
453 		refcount_set(&dd->count, 1);
454 		list_add(&dd->list, &t->devices);
455 		goto out;
456 
457 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
458 		r = upgrade_mode(dd, mode, t->md);
459 		if (r)
460 			return r;
461 	}
462 	refcount_inc(&dd->count);
463 out:
464 	*result = dd->dm_dev;
465 	return 0;
466 }
467 EXPORT_SYMBOL(dm_get_device);
468 
469 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
470 				sector_t start, sector_t len, void *data)
471 {
472 	struct queue_limits *limits = data;
473 	struct block_device *bdev = dev->bdev;
474 	struct request_queue *q = bdev_get_queue(bdev);
475 	char b[BDEVNAME_SIZE];
476 
477 	if (unlikely(!q)) {
478 		DMWARN("%s: Cannot set limits for nonexistent device %s",
479 		       dm_device_name(ti->table->md), bdevname(bdev, b));
480 		return 0;
481 	}
482 
483 	if (bdev_stack_limits(limits, bdev, start) < 0)
484 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
485 		       "physical_block_size=%u, logical_block_size=%u, "
486 		       "alignment_offset=%u, start=%llu",
487 		       dm_device_name(ti->table->md), bdevname(bdev, b),
488 		       q->limits.physical_block_size,
489 		       q->limits.logical_block_size,
490 		       q->limits.alignment_offset,
491 		       (unsigned long long) start << SECTOR_SHIFT);
492 
493 	limits->zoned = blk_queue_zoned_model(q);
494 
495 	return 0;
496 }
497 
498 /*
499  * Decrement a device's use count and remove it if necessary.
500  */
501 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
502 {
503 	int found = 0;
504 	struct list_head *devices = &ti->table->devices;
505 	struct dm_dev_internal *dd;
506 
507 	list_for_each_entry(dd, devices, list) {
508 		if (dd->dm_dev == d) {
509 			found = 1;
510 			break;
511 		}
512 	}
513 	if (!found) {
514 		DMWARN("%s: device %s not in table devices list",
515 		       dm_device_name(ti->table->md), d->name);
516 		return;
517 	}
518 	if (refcount_dec_and_test(&dd->count)) {
519 		dm_put_table_device(ti->table->md, d);
520 		list_del(&dd->list);
521 		kfree(dd);
522 	}
523 }
524 EXPORT_SYMBOL(dm_put_device);
525 
526 /*
527  * Checks to see if the target joins onto the end of the table.
528  */
529 static int adjoin(struct dm_table *table, struct dm_target *ti)
530 {
531 	struct dm_target *prev;
532 
533 	if (!table->num_targets)
534 		return !ti->begin;
535 
536 	prev = &table->targets[table->num_targets - 1];
537 	return (ti->begin == (prev->begin + prev->len));
538 }
539 
540 /*
541  * Used to dynamically allocate the arg array.
542  *
543  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
544  * process messages even if some device is suspended. These messages have a
545  * small fixed number of arguments.
546  *
547  * On the other hand, dm-switch needs to process bulk data using messages and
548  * excessive use of GFP_NOIO could cause trouble.
549  */
550 static char **realloc_argv(unsigned *size, char **old_argv)
551 {
552 	char **argv;
553 	unsigned new_size;
554 	gfp_t gfp;
555 
556 	if (*size) {
557 		new_size = *size * 2;
558 		gfp = GFP_KERNEL;
559 	} else {
560 		new_size = 8;
561 		gfp = GFP_NOIO;
562 	}
563 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
564 	if (argv) {
565 		memcpy(argv, old_argv, *size * sizeof(*argv));
566 		*size = new_size;
567 	}
568 
569 	kfree(old_argv);
570 	return argv;
571 }
572 
573 /*
574  * Destructively splits up the argument list to pass to ctr.
575  */
576 int dm_split_args(int *argc, char ***argvp, char *input)
577 {
578 	char *start, *end = input, *out, **argv = NULL;
579 	unsigned array_size = 0;
580 
581 	*argc = 0;
582 
583 	if (!input) {
584 		*argvp = NULL;
585 		return 0;
586 	}
587 
588 	argv = realloc_argv(&array_size, argv);
589 	if (!argv)
590 		return -ENOMEM;
591 
592 	while (1) {
593 		/* Skip whitespace */
594 		start = skip_spaces(end);
595 
596 		if (!*start)
597 			break;	/* success, we hit the end */
598 
599 		/* 'out' is used to remove any back-quotes */
600 		end = out = start;
601 		while (*end) {
602 			/* Everything apart from '\0' can be quoted */
603 			if (*end == '\\' && *(end + 1)) {
604 				*out++ = *(end + 1);
605 				end += 2;
606 				continue;
607 			}
608 
609 			if (isspace(*end))
610 				break;	/* end of token */
611 
612 			*out++ = *end++;
613 		}
614 
615 		/* have we already filled the array ? */
616 		if ((*argc + 1) > array_size) {
617 			argv = realloc_argv(&array_size, argv);
618 			if (!argv)
619 				return -ENOMEM;
620 		}
621 
622 		/* we know this is whitespace */
623 		if (*end)
624 			end++;
625 
626 		/* terminate the string and put it in the array */
627 		*out = '\0';
628 		argv[*argc] = start;
629 		(*argc)++;
630 	}
631 
632 	*argvp = argv;
633 	return 0;
634 }
635 
636 /*
637  * Impose necessary and sufficient conditions on a devices's table such
638  * that any incoming bio which respects its logical_block_size can be
639  * processed successfully.  If it falls across the boundary between
640  * two or more targets, the size of each piece it gets split into must
641  * be compatible with the logical_block_size of the target processing it.
642  */
643 static int validate_hardware_logical_block_alignment(struct dm_table *table,
644 						 struct queue_limits *limits)
645 {
646 	/*
647 	 * This function uses arithmetic modulo the logical_block_size
648 	 * (in units of 512-byte sectors).
649 	 */
650 	unsigned short device_logical_block_size_sects =
651 		limits->logical_block_size >> SECTOR_SHIFT;
652 
653 	/*
654 	 * Offset of the start of the next table entry, mod logical_block_size.
655 	 */
656 	unsigned short next_target_start = 0;
657 
658 	/*
659 	 * Given an aligned bio that extends beyond the end of a
660 	 * target, how many sectors must the next target handle?
661 	 */
662 	unsigned short remaining = 0;
663 
664 	struct dm_target *uninitialized_var(ti);
665 	struct queue_limits ti_limits;
666 	unsigned i;
667 
668 	/*
669 	 * Check each entry in the table in turn.
670 	 */
671 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
672 		ti = dm_table_get_target(table, i);
673 
674 		blk_set_stacking_limits(&ti_limits);
675 
676 		/* combine all target devices' limits */
677 		if (ti->type->iterate_devices)
678 			ti->type->iterate_devices(ti, dm_set_device_limits,
679 						  &ti_limits);
680 
681 		/*
682 		 * If the remaining sectors fall entirely within this
683 		 * table entry are they compatible with its logical_block_size?
684 		 */
685 		if (remaining < ti->len &&
686 		    remaining & ((ti_limits.logical_block_size >>
687 				  SECTOR_SHIFT) - 1))
688 			break;	/* Error */
689 
690 		next_target_start =
691 		    (unsigned short) ((next_target_start + ti->len) &
692 				      (device_logical_block_size_sects - 1));
693 		remaining = next_target_start ?
694 		    device_logical_block_size_sects - next_target_start : 0;
695 	}
696 
697 	if (remaining) {
698 		DMWARN("%s: table line %u (start sect %llu len %llu) "
699 		       "not aligned to h/w logical block size %u",
700 		       dm_device_name(table->md), i,
701 		       (unsigned long long) ti->begin,
702 		       (unsigned long long) ti->len,
703 		       limits->logical_block_size);
704 		return -EINVAL;
705 	}
706 
707 	return 0;
708 }
709 
710 int dm_table_add_target(struct dm_table *t, const char *type,
711 			sector_t start, sector_t len, char *params)
712 {
713 	int r = -EINVAL, argc;
714 	char **argv;
715 	struct dm_target *tgt;
716 
717 	if (t->singleton) {
718 		DMERR("%s: target type %s must appear alone in table",
719 		      dm_device_name(t->md), t->targets->type->name);
720 		return -EINVAL;
721 	}
722 
723 	BUG_ON(t->num_targets >= t->num_allocated);
724 
725 	tgt = t->targets + t->num_targets;
726 	memset(tgt, 0, sizeof(*tgt));
727 
728 	if (!len) {
729 		DMERR("%s: zero-length target", dm_device_name(t->md));
730 		return -EINVAL;
731 	}
732 
733 	tgt->type = dm_get_target_type(type);
734 	if (!tgt->type) {
735 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
736 		return -EINVAL;
737 	}
738 
739 	if (dm_target_needs_singleton(tgt->type)) {
740 		if (t->num_targets) {
741 			tgt->error = "singleton target type must appear alone in table";
742 			goto bad;
743 		}
744 		t->singleton = true;
745 	}
746 
747 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
748 		tgt->error = "target type may not be included in a read-only table";
749 		goto bad;
750 	}
751 
752 	if (t->immutable_target_type) {
753 		if (t->immutable_target_type != tgt->type) {
754 			tgt->error = "immutable target type cannot be mixed with other target types";
755 			goto bad;
756 		}
757 	} else if (dm_target_is_immutable(tgt->type)) {
758 		if (t->num_targets) {
759 			tgt->error = "immutable target type cannot be mixed with other target types";
760 			goto bad;
761 		}
762 		t->immutable_target_type = tgt->type;
763 	}
764 
765 	if (dm_target_has_integrity(tgt->type))
766 		t->integrity_added = 1;
767 
768 	tgt->table = t;
769 	tgt->begin = start;
770 	tgt->len = len;
771 	tgt->error = "Unknown error";
772 
773 	/*
774 	 * Does this target adjoin the previous one ?
775 	 */
776 	if (!adjoin(t, tgt)) {
777 		tgt->error = "Gap in table";
778 		goto bad;
779 	}
780 
781 	r = dm_split_args(&argc, &argv, params);
782 	if (r) {
783 		tgt->error = "couldn't split parameters (insufficient memory)";
784 		goto bad;
785 	}
786 
787 	r = tgt->type->ctr(tgt, argc, argv);
788 	kfree(argv);
789 	if (r)
790 		goto bad;
791 
792 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793 
794 	if (!tgt->num_discard_bios && tgt->discards_supported)
795 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
796 		       dm_device_name(t->md), type);
797 
798 	return 0;
799 
800  bad:
801 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
802 	dm_put_target_type(tgt->type);
803 	return r;
804 }
805 
806 /*
807  * Target argument parsing helpers.
808  */
809 static int validate_next_arg(const struct dm_arg *arg,
810 			     struct dm_arg_set *arg_set,
811 			     unsigned *value, char **error, unsigned grouped)
812 {
813 	const char *arg_str = dm_shift_arg(arg_set);
814 	char dummy;
815 
816 	if (!arg_str ||
817 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
818 	    (*value < arg->min) ||
819 	    (*value > arg->max) ||
820 	    (grouped && arg_set->argc < *value)) {
821 		*error = arg->error;
822 		return -EINVAL;
823 	}
824 
825 	return 0;
826 }
827 
828 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
829 		unsigned *value, char **error)
830 {
831 	return validate_next_arg(arg, arg_set, value, error, 0);
832 }
833 EXPORT_SYMBOL(dm_read_arg);
834 
835 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
836 		      unsigned *value, char **error)
837 {
838 	return validate_next_arg(arg, arg_set, value, error, 1);
839 }
840 EXPORT_SYMBOL(dm_read_arg_group);
841 
842 const char *dm_shift_arg(struct dm_arg_set *as)
843 {
844 	char *r;
845 
846 	if (as->argc) {
847 		as->argc--;
848 		r = *as->argv;
849 		as->argv++;
850 		return r;
851 	}
852 
853 	return NULL;
854 }
855 EXPORT_SYMBOL(dm_shift_arg);
856 
857 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
858 {
859 	BUG_ON(as->argc < num_args);
860 	as->argc -= num_args;
861 	as->argv += num_args;
862 }
863 EXPORT_SYMBOL(dm_consume_args);
864 
865 static bool __table_type_bio_based(enum dm_queue_mode table_type)
866 {
867 	return (table_type == DM_TYPE_BIO_BASED ||
868 		table_type == DM_TYPE_DAX_BIO_BASED ||
869 		table_type == DM_TYPE_NVME_BIO_BASED);
870 }
871 
872 static bool __table_type_request_based(enum dm_queue_mode table_type)
873 {
874 	return table_type == DM_TYPE_REQUEST_BASED;
875 }
876 
877 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
878 {
879 	t->type = type;
880 }
881 EXPORT_SYMBOL_GPL(dm_table_set_type);
882 
883 /* validate the dax capability of the target device span */
884 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
885 				       sector_t start, sector_t len, void *data)
886 {
887 	int blocksize = *(int *) data;
888 
889 	return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
890 			start, len);
891 }
892 
893 bool dm_table_supports_dax(struct dm_table *t, int blocksize)
894 {
895 	struct dm_target *ti;
896 	unsigned i;
897 
898 	/* Ensure that all targets support DAX. */
899 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
900 		ti = dm_table_get_target(t, i);
901 
902 		if (!ti->type->direct_access)
903 			return false;
904 
905 		if (!ti->type->iterate_devices ||
906 		    !ti->type->iterate_devices(ti, device_supports_dax,
907 			    &blocksize))
908 			return false;
909 	}
910 
911 	return true;
912 }
913 
914 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
915 
916 struct verify_rq_based_data {
917 	unsigned sq_count;
918 	unsigned mq_count;
919 };
920 
921 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
922 			      sector_t start, sector_t len, void *data)
923 {
924 	struct request_queue *q = bdev_get_queue(dev->bdev);
925 	struct verify_rq_based_data *v = data;
926 
927 	if (queue_is_mq(q))
928 		v->mq_count++;
929 	else
930 		v->sq_count++;
931 
932 	return queue_is_mq(q);
933 }
934 
935 static int dm_table_determine_type(struct dm_table *t)
936 {
937 	unsigned i;
938 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
939 	struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
940 	struct dm_target *tgt;
941 	struct list_head *devices = dm_table_get_devices(t);
942 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
943 
944 	if (t->type != DM_TYPE_NONE) {
945 		/* target already set the table's type */
946 		if (t->type == DM_TYPE_BIO_BASED) {
947 			/* possibly upgrade to a variant of bio-based */
948 			goto verify_bio_based;
949 		}
950 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
951 		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
952 		goto verify_rq_based;
953 	}
954 
955 	for (i = 0; i < t->num_targets; i++) {
956 		tgt = t->targets + i;
957 		if (dm_target_hybrid(tgt))
958 			hybrid = 1;
959 		else if (dm_target_request_based(tgt))
960 			request_based = 1;
961 		else
962 			bio_based = 1;
963 
964 		if (bio_based && request_based) {
965 			DMERR("Inconsistent table: different target types"
966 			      " can't be mixed up");
967 			return -EINVAL;
968 		}
969 	}
970 
971 	if (hybrid && !bio_based && !request_based) {
972 		/*
973 		 * The targets can work either way.
974 		 * Determine the type from the live device.
975 		 * Default to bio-based if device is new.
976 		 */
977 		if (__table_type_request_based(live_md_type))
978 			request_based = 1;
979 		else
980 			bio_based = 1;
981 	}
982 
983 	if (bio_based) {
984 verify_bio_based:
985 		/* We must use this table as bio-based */
986 		t->type = DM_TYPE_BIO_BASED;
987 		if (dm_table_supports_dax(t, PAGE_SIZE) ||
988 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
989 			t->type = DM_TYPE_DAX_BIO_BASED;
990 		} else {
991 			/* Check if upgrading to NVMe bio-based is valid or required */
992 			tgt = dm_table_get_immutable_target(t);
993 			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
994 				t->type = DM_TYPE_NVME_BIO_BASED;
995 				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
996 			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
997 				t->type = DM_TYPE_NVME_BIO_BASED;
998 			}
999 		}
1000 		return 0;
1001 	}
1002 
1003 	BUG_ON(!request_based); /* No targets in this table */
1004 
1005 	t->type = DM_TYPE_REQUEST_BASED;
1006 
1007 verify_rq_based:
1008 	/*
1009 	 * Request-based dm supports only tables that have a single target now.
1010 	 * To support multiple targets, request splitting support is needed,
1011 	 * and that needs lots of changes in the block-layer.
1012 	 * (e.g. request completion process for partial completion.)
1013 	 */
1014 	if (t->num_targets > 1) {
1015 		DMERR("%s DM doesn't support multiple targets",
1016 		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1017 		return -EINVAL;
1018 	}
1019 
1020 	if (list_empty(devices)) {
1021 		int srcu_idx;
1022 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1023 
1024 		/* inherit live table's type */
1025 		if (live_table)
1026 			t->type = live_table->type;
1027 		dm_put_live_table(t->md, srcu_idx);
1028 		return 0;
1029 	}
1030 
1031 	tgt = dm_table_get_immutable_target(t);
1032 	if (!tgt) {
1033 		DMERR("table load rejected: immutable target is required");
1034 		return -EINVAL;
1035 	} else if (tgt->max_io_len) {
1036 		DMERR("table load rejected: immutable target that splits IO is not supported");
1037 		return -EINVAL;
1038 	}
1039 
1040 	/* Non-request-stackable devices can't be used for request-based dm */
1041 	if (!tgt->type->iterate_devices ||
1042 	    !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1043 		DMERR("table load rejected: including non-request-stackable devices");
1044 		return -EINVAL;
1045 	}
1046 	if (v.sq_count > 0) {
1047 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1048 		return -EINVAL;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1055 {
1056 	return t->type;
1057 }
1058 
1059 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1060 {
1061 	return t->immutable_target_type;
1062 }
1063 
1064 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1065 {
1066 	/* Immutable target is implicitly a singleton */
1067 	if (t->num_targets > 1 ||
1068 	    !dm_target_is_immutable(t->targets[0].type))
1069 		return NULL;
1070 
1071 	return t->targets;
1072 }
1073 
1074 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1075 {
1076 	struct dm_target *ti;
1077 	unsigned i;
1078 
1079 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1080 		ti = dm_table_get_target(t, i);
1081 		if (dm_target_is_wildcard(ti->type))
1082 			return ti;
1083 	}
1084 
1085 	return NULL;
1086 }
1087 
1088 bool dm_table_bio_based(struct dm_table *t)
1089 {
1090 	return __table_type_bio_based(dm_table_get_type(t));
1091 }
1092 
1093 bool dm_table_request_based(struct dm_table *t)
1094 {
1095 	return __table_type_request_based(dm_table_get_type(t));
1096 }
1097 
1098 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1099 {
1100 	enum dm_queue_mode type = dm_table_get_type(t);
1101 	unsigned per_io_data_size = 0;
1102 	unsigned min_pool_size = 0;
1103 	struct dm_target *ti;
1104 	unsigned i;
1105 
1106 	if (unlikely(type == DM_TYPE_NONE)) {
1107 		DMWARN("no table type is set, can't allocate mempools");
1108 		return -EINVAL;
1109 	}
1110 
1111 	if (__table_type_bio_based(type))
1112 		for (i = 0; i < t->num_targets; i++) {
1113 			ti = t->targets + i;
1114 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1115 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1116 		}
1117 
1118 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1119 					   per_io_data_size, min_pool_size);
1120 	if (!t->mempools)
1121 		return -ENOMEM;
1122 
1123 	return 0;
1124 }
1125 
1126 void dm_table_free_md_mempools(struct dm_table *t)
1127 {
1128 	dm_free_md_mempools(t->mempools);
1129 	t->mempools = NULL;
1130 }
1131 
1132 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1133 {
1134 	return t->mempools;
1135 }
1136 
1137 static int setup_indexes(struct dm_table *t)
1138 {
1139 	int i;
1140 	unsigned int total = 0;
1141 	sector_t *indexes;
1142 
1143 	/* allocate the space for *all* the indexes */
1144 	for (i = t->depth - 2; i >= 0; i--) {
1145 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1146 		total += t->counts[i];
1147 	}
1148 
1149 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1150 	if (!indexes)
1151 		return -ENOMEM;
1152 
1153 	/* set up internal nodes, bottom-up */
1154 	for (i = t->depth - 2; i >= 0; i--) {
1155 		t->index[i] = indexes;
1156 		indexes += (KEYS_PER_NODE * t->counts[i]);
1157 		setup_btree_index(i, t);
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Builds the btree to index the map.
1165  */
1166 static int dm_table_build_index(struct dm_table *t)
1167 {
1168 	int r = 0;
1169 	unsigned int leaf_nodes;
1170 
1171 	/* how many indexes will the btree have ? */
1172 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1173 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1174 
1175 	/* leaf layer has already been set up */
1176 	t->counts[t->depth - 1] = leaf_nodes;
1177 	t->index[t->depth - 1] = t->highs;
1178 
1179 	if (t->depth >= 2)
1180 		r = setup_indexes(t);
1181 
1182 	return r;
1183 }
1184 
1185 static bool integrity_profile_exists(struct gendisk *disk)
1186 {
1187 	return !!blk_get_integrity(disk);
1188 }
1189 
1190 /*
1191  * Get a disk whose integrity profile reflects the table's profile.
1192  * Returns NULL if integrity support was inconsistent or unavailable.
1193  */
1194 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1195 {
1196 	struct list_head *devices = dm_table_get_devices(t);
1197 	struct dm_dev_internal *dd = NULL;
1198 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1199 	unsigned i;
1200 
1201 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1202 		struct dm_target *ti = dm_table_get_target(t, i);
1203 		if (!dm_target_passes_integrity(ti->type))
1204 			goto no_integrity;
1205 	}
1206 
1207 	list_for_each_entry(dd, devices, list) {
1208 		template_disk = dd->dm_dev->bdev->bd_disk;
1209 		if (!integrity_profile_exists(template_disk))
1210 			goto no_integrity;
1211 		else if (prev_disk &&
1212 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1213 			goto no_integrity;
1214 		prev_disk = template_disk;
1215 	}
1216 
1217 	return template_disk;
1218 
1219 no_integrity:
1220 	if (prev_disk)
1221 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1222 		       dm_device_name(t->md),
1223 		       prev_disk->disk_name,
1224 		       template_disk->disk_name);
1225 	return NULL;
1226 }
1227 
1228 /*
1229  * Register the mapped device for blk_integrity support if the
1230  * underlying devices have an integrity profile.  But all devices may
1231  * not have matching profiles (checking all devices isn't reliable
1232  * during table load because this table may use other DM device(s) which
1233  * must be resumed before they will have an initialized integity
1234  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1235  * profile validation: First pass during table load, final pass during
1236  * resume.
1237  */
1238 static int dm_table_register_integrity(struct dm_table *t)
1239 {
1240 	struct mapped_device *md = t->md;
1241 	struct gendisk *template_disk = NULL;
1242 
1243 	/* If target handles integrity itself do not register it here. */
1244 	if (t->integrity_added)
1245 		return 0;
1246 
1247 	template_disk = dm_table_get_integrity_disk(t);
1248 	if (!template_disk)
1249 		return 0;
1250 
1251 	if (!integrity_profile_exists(dm_disk(md))) {
1252 		t->integrity_supported = true;
1253 		/*
1254 		 * Register integrity profile during table load; we can do
1255 		 * this because the final profile must match during resume.
1256 		 */
1257 		blk_integrity_register(dm_disk(md),
1258 				       blk_get_integrity(template_disk));
1259 		return 0;
1260 	}
1261 
1262 	/*
1263 	 * If DM device already has an initialized integrity
1264 	 * profile the new profile should not conflict.
1265 	 */
1266 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1267 		DMWARN("%s: conflict with existing integrity profile: "
1268 		       "%s profile mismatch",
1269 		       dm_device_name(t->md),
1270 		       template_disk->disk_name);
1271 		return 1;
1272 	}
1273 
1274 	/* Preserve existing integrity profile */
1275 	t->integrity_supported = true;
1276 	return 0;
1277 }
1278 
1279 /*
1280  * Prepares the table for use by building the indices,
1281  * setting the type, and allocating mempools.
1282  */
1283 int dm_table_complete(struct dm_table *t)
1284 {
1285 	int r;
1286 
1287 	r = dm_table_determine_type(t);
1288 	if (r) {
1289 		DMERR("unable to determine table type");
1290 		return r;
1291 	}
1292 
1293 	r = dm_table_build_index(t);
1294 	if (r) {
1295 		DMERR("unable to build btrees");
1296 		return r;
1297 	}
1298 
1299 	r = dm_table_register_integrity(t);
1300 	if (r) {
1301 		DMERR("could not register integrity profile.");
1302 		return r;
1303 	}
1304 
1305 	r = dm_table_alloc_md_mempools(t, t->md);
1306 	if (r)
1307 		DMERR("unable to allocate mempools");
1308 
1309 	return r;
1310 }
1311 
1312 static DEFINE_MUTEX(_event_lock);
1313 void dm_table_event_callback(struct dm_table *t,
1314 			     void (*fn)(void *), void *context)
1315 {
1316 	mutex_lock(&_event_lock);
1317 	t->event_fn = fn;
1318 	t->event_context = context;
1319 	mutex_unlock(&_event_lock);
1320 }
1321 
1322 void dm_table_event(struct dm_table *t)
1323 {
1324 	/*
1325 	 * You can no longer call dm_table_event() from interrupt
1326 	 * context, use a bottom half instead.
1327 	 */
1328 	BUG_ON(in_interrupt());
1329 
1330 	mutex_lock(&_event_lock);
1331 	if (t->event_fn)
1332 		t->event_fn(t->event_context);
1333 	mutex_unlock(&_event_lock);
1334 }
1335 EXPORT_SYMBOL(dm_table_event);
1336 
1337 sector_t dm_table_get_size(struct dm_table *t)
1338 {
1339 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1340 }
1341 EXPORT_SYMBOL(dm_table_get_size);
1342 
1343 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1344 {
1345 	if (index >= t->num_targets)
1346 		return NULL;
1347 
1348 	return t->targets + index;
1349 }
1350 
1351 /*
1352  * Search the btree for the correct target.
1353  *
1354  * Caller should check returned pointer with dm_target_is_valid()
1355  * to trap I/O beyond end of device.
1356  */
1357 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1358 {
1359 	unsigned int l, n = 0, k = 0;
1360 	sector_t *node;
1361 
1362 	for (l = 0; l < t->depth; l++) {
1363 		n = get_child(n, k);
1364 		node = get_node(t, l, n);
1365 
1366 		for (k = 0; k < KEYS_PER_NODE; k++)
1367 			if (node[k] >= sector)
1368 				break;
1369 	}
1370 
1371 	return &t->targets[(KEYS_PER_NODE * n) + k];
1372 }
1373 
1374 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1375 			sector_t start, sector_t len, void *data)
1376 {
1377 	unsigned *num_devices = data;
1378 
1379 	(*num_devices)++;
1380 
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Check whether a table has no data devices attached using each
1386  * target's iterate_devices method.
1387  * Returns false if the result is unknown because a target doesn't
1388  * support iterate_devices.
1389  */
1390 bool dm_table_has_no_data_devices(struct dm_table *table)
1391 {
1392 	struct dm_target *ti;
1393 	unsigned i, num_devices;
1394 
1395 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1396 		ti = dm_table_get_target(table, i);
1397 
1398 		if (!ti->type->iterate_devices)
1399 			return false;
1400 
1401 		num_devices = 0;
1402 		ti->type->iterate_devices(ti, count_device, &num_devices);
1403 		if (num_devices)
1404 			return false;
1405 	}
1406 
1407 	return true;
1408 }
1409 
1410 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1411 				 sector_t start, sector_t len, void *data)
1412 {
1413 	struct request_queue *q = bdev_get_queue(dev->bdev);
1414 	enum blk_zoned_model *zoned_model = data;
1415 
1416 	return q && blk_queue_zoned_model(q) == *zoned_model;
1417 }
1418 
1419 static bool dm_table_supports_zoned_model(struct dm_table *t,
1420 					  enum blk_zoned_model zoned_model)
1421 {
1422 	struct dm_target *ti;
1423 	unsigned i;
1424 
1425 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1426 		ti = dm_table_get_target(t, i);
1427 
1428 		if (zoned_model == BLK_ZONED_HM &&
1429 		    !dm_target_supports_zoned_hm(ti->type))
1430 			return false;
1431 
1432 		if (!ti->type->iterate_devices ||
1433 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1434 			return false;
1435 	}
1436 
1437 	return true;
1438 }
1439 
1440 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1441 				       sector_t start, sector_t len, void *data)
1442 {
1443 	struct request_queue *q = bdev_get_queue(dev->bdev);
1444 	unsigned int *zone_sectors = data;
1445 
1446 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1447 }
1448 
1449 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1450 					  unsigned int zone_sectors)
1451 {
1452 	struct dm_target *ti;
1453 	unsigned i;
1454 
1455 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1456 		ti = dm_table_get_target(t, i);
1457 
1458 		if (!ti->type->iterate_devices ||
1459 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1460 			return false;
1461 	}
1462 
1463 	return true;
1464 }
1465 
1466 static int validate_hardware_zoned_model(struct dm_table *table,
1467 					 enum blk_zoned_model zoned_model,
1468 					 unsigned int zone_sectors)
1469 {
1470 	if (zoned_model == BLK_ZONED_NONE)
1471 		return 0;
1472 
1473 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1474 		DMERR("%s: zoned model is not consistent across all devices",
1475 		      dm_device_name(table->md));
1476 		return -EINVAL;
1477 	}
1478 
1479 	/* Check zone size validity and compatibility */
1480 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1481 		return -EINVAL;
1482 
1483 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1484 		DMERR("%s: zone sectors is not consistent across all devices",
1485 		      dm_device_name(table->md));
1486 		return -EINVAL;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 /*
1493  * Establish the new table's queue_limits and validate them.
1494  */
1495 int dm_calculate_queue_limits(struct dm_table *table,
1496 			      struct queue_limits *limits)
1497 {
1498 	struct dm_target *ti;
1499 	struct queue_limits ti_limits;
1500 	unsigned i;
1501 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1502 	unsigned int zone_sectors = 0;
1503 
1504 	blk_set_stacking_limits(limits);
1505 
1506 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1507 		blk_set_stacking_limits(&ti_limits);
1508 
1509 		ti = dm_table_get_target(table, i);
1510 
1511 		if (!ti->type->iterate_devices)
1512 			goto combine_limits;
1513 
1514 		/*
1515 		 * Combine queue limits of all the devices this target uses.
1516 		 */
1517 		ti->type->iterate_devices(ti, dm_set_device_limits,
1518 					  &ti_limits);
1519 
1520 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1521 			/*
1522 			 * After stacking all limits, validate all devices
1523 			 * in table support this zoned model and zone sectors.
1524 			 */
1525 			zoned_model = ti_limits.zoned;
1526 			zone_sectors = ti_limits.chunk_sectors;
1527 		}
1528 
1529 		/* Set I/O hints portion of queue limits */
1530 		if (ti->type->io_hints)
1531 			ti->type->io_hints(ti, &ti_limits);
1532 
1533 		/*
1534 		 * Check each device area is consistent with the target's
1535 		 * overall queue limits.
1536 		 */
1537 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1538 					      &ti_limits))
1539 			return -EINVAL;
1540 
1541 combine_limits:
1542 		/*
1543 		 * Merge this target's queue limits into the overall limits
1544 		 * for the table.
1545 		 */
1546 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1547 			DMWARN("%s: adding target device "
1548 			       "(start sect %llu len %llu) "
1549 			       "caused an alignment inconsistency",
1550 			       dm_device_name(table->md),
1551 			       (unsigned long long) ti->begin,
1552 			       (unsigned long long) ti->len);
1553 
1554 		/*
1555 		 * FIXME: this should likely be moved to blk_stack_limits(), would
1556 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1557 		 */
1558 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1559 			/*
1560 			 * By default, the stacked limits zoned model is set to
1561 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1562 			 * this model using the first target model reported
1563 			 * that is not BLK_ZONED_NONE. This will be either the
1564 			 * first target device zoned model or the model reported
1565 			 * by the target .io_hints.
1566 			 */
1567 			limits->zoned = ti_limits.zoned;
1568 		}
1569 	}
1570 
1571 	/*
1572 	 * Verify that the zoned model and zone sectors, as determined before
1573 	 * any .io_hints override, are the same across all devices in the table.
1574 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1575 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1576 	 * BUT...
1577 	 */
1578 	if (limits->zoned != BLK_ZONED_NONE) {
1579 		/*
1580 		 * ...IF the above limits stacking determined a zoned model
1581 		 * validate that all of the table's devices conform to it.
1582 		 */
1583 		zoned_model = limits->zoned;
1584 		zone_sectors = limits->chunk_sectors;
1585 	}
1586 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1587 		return -EINVAL;
1588 
1589 	return validate_hardware_logical_block_alignment(table, limits);
1590 }
1591 
1592 /*
1593  * Verify that all devices have an integrity profile that matches the
1594  * DM device's registered integrity profile.  If the profiles don't
1595  * match then unregister the DM device's integrity profile.
1596  */
1597 static void dm_table_verify_integrity(struct dm_table *t)
1598 {
1599 	struct gendisk *template_disk = NULL;
1600 
1601 	if (t->integrity_added)
1602 		return;
1603 
1604 	if (t->integrity_supported) {
1605 		/*
1606 		 * Verify that the original integrity profile
1607 		 * matches all the devices in this table.
1608 		 */
1609 		template_disk = dm_table_get_integrity_disk(t);
1610 		if (template_disk &&
1611 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1612 			return;
1613 	}
1614 
1615 	if (integrity_profile_exists(dm_disk(t->md))) {
1616 		DMWARN("%s: unable to establish an integrity profile",
1617 		       dm_device_name(t->md));
1618 		blk_integrity_unregister(dm_disk(t->md));
1619 	}
1620 }
1621 
1622 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1623 				sector_t start, sector_t len, void *data)
1624 {
1625 	unsigned long flush = (unsigned long) data;
1626 	struct request_queue *q = bdev_get_queue(dev->bdev);
1627 
1628 	return q && (q->queue_flags & flush);
1629 }
1630 
1631 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1632 {
1633 	struct dm_target *ti;
1634 	unsigned i;
1635 
1636 	/*
1637 	 * Require at least one underlying device to support flushes.
1638 	 * t->devices includes internal dm devices such as mirror logs
1639 	 * so we need to use iterate_devices here, which targets
1640 	 * supporting flushes must provide.
1641 	 */
1642 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1643 		ti = dm_table_get_target(t, i);
1644 
1645 		if (!ti->num_flush_bios)
1646 			continue;
1647 
1648 		if (ti->flush_supported)
1649 			return true;
1650 
1651 		if (ti->type->iterate_devices &&
1652 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1653 			return true;
1654 	}
1655 
1656 	return false;
1657 }
1658 
1659 static int device_dax_write_cache_enabled(struct dm_target *ti,
1660 					  struct dm_dev *dev, sector_t start,
1661 					  sector_t len, void *data)
1662 {
1663 	struct dax_device *dax_dev = dev->dax_dev;
1664 
1665 	if (!dax_dev)
1666 		return false;
1667 
1668 	if (dax_write_cache_enabled(dax_dev))
1669 		return true;
1670 	return false;
1671 }
1672 
1673 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1674 {
1675 	struct dm_target *ti;
1676 	unsigned i;
1677 
1678 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1679 		ti = dm_table_get_target(t, i);
1680 
1681 		if (ti->type->iterate_devices &&
1682 		    ti->type->iterate_devices(ti,
1683 				device_dax_write_cache_enabled, NULL))
1684 			return true;
1685 	}
1686 
1687 	return false;
1688 }
1689 
1690 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1691 			    sector_t start, sector_t len, void *data)
1692 {
1693 	struct request_queue *q = bdev_get_queue(dev->bdev);
1694 
1695 	return q && blk_queue_nonrot(q);
1696 }
1697 
1698 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1699 			     sector_t start, sector_t len, void *data)
1700 {
1701 	struct request_queue *q = bdev_get_queue(dev->bdev);
1702 
1703 	return q && !blk_queue_add_random(q);
1704 }
1705 
1706 static bool dm_table_all_devices_attribute(struct dm_table *t,
1707 					   iterate_devices_callout_fn func)
1708 {
1709 	struct dm_target *ti;
1710 	unsigned i;
1711 
1712 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1713 		ti = dm_table_get_target(t, i);
1714 
1715 		if (!ti->type->iterate_devices ||
1716 		    !ti->type->iterate_devices(ti, func, NULL))
1717 			return false;
1718 	}
1719 
1720 	return true;
1721 }
1722 
1723 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1724 					sector_t start, sector_t len, void *data)
1725 {
1726 	char b[BDEVNAME_SIZE];
1727 
1728 	/* For now, NVMe devices are the only devices of this class */
1729 	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1730 }
1731 
1732 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1733 {
1734 	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1735 }
1736 
1737 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1738 					 sector_t start, sector_t len, void *data)
1739 {
1740 	struct request_queue *q = bdev_get_queue(dev->bdev);
1741 
1742 	return q && !q->limits.max_write_same_sectors;
1743 }
1744 
1745 static bool dm_table_supports_write_same(struct dm_table *t)
1746 {
1747 	struct dm_target *ti;
1748 	unsigned i;
1749 
1750 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1751 		ti = dm_table_get_target(t, i);
1752 
1753 		if (!ti->num_write_same_bios)
1754 			return false;
1755 
1756 		if (!ti->type->iterate_devices ||
1757 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1758 			return false;
1759 	}
1760 
1761 	return true;
1762 }
1763 
1764 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1765 					   sector_t start, sector_t len, void *data)
1766 {
1767 	struct request_queue *q = bdev_get_queue(dev->bdev);
1768 
1769 	return q && !q->limits.max_write_zeroes_sectors;
1770 }
1771 
1772 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1773 {
1774 	struct dm_target *ti;
1775 	unsigned i = 0;
1776 
1777 	while (i < dm_table_get_num_targets(t)) {
1778 		ti = dm_table_get_target(t, i++);
1779 
1780 		if (!ti->num_write_zeroes_bios)
1781 			return false;
1782 
1783 		if (!ti->type->iterate_devices ||
1784 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1785 			return false;
1786 	}
1787 
1788 	return true;
1789 }
1790 
1791 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1792 				      sector_t start, sector_t len, void *data)
1793 {
1794 	struct request_queue *q = bdev_get_queue(dev->bdev);
1795 
1796 	return q && !blk_queue_discard(q);
1797 }
1798 
1799 static bool dm_table_supports_discards(struct dm_table *t)
1800 {
1801 	struct dm_target *ti;
1802 	unsigned i;
1803 
1804 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1805 		ti = dm_table_get_target(t, i);
1806 
1807 		if (!ti->num_discard_bios)
1808 			return false;
1809 
1810 		/*
1811 		 * Either the target provides discard support (as implied by setting
1812 		 * 'discards_supported') or it relies on _all_ data devices having
1813 		 * discard support.
1814 		 */
1815 		if (!ti->discards_supported &&
1816 		    (!ti->type->iterate_devices ||
1817 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1818 			return false;
1819 	}
1820 
1821 	return true;
1822 }
1823 
1824 static int device_not_secure_erase_capable(struct dm_target *ti,
1825 					   struct dm_dev *dev, sector_t start,
1826 					   sector_t len, void *data)
1827 {
1828 	struct request_queue *q = bdev_get_queue(dev->bdev);
1829 
1830 	return q && !blk_queue_secure_erase(q);
1831 }
1832 
1833 static bool dm_table_supports_secure_erase(struct dm_table *t)
1834 {
1835 	struct dm_target *ti;
1836 	unsigned int i;
1837 
1838 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1839 		ti = dm_table_get_target(t, i);
1840 
1841 		if (!ti->num_secure_erase_bios)
1842 			return false;
1843 
1844 		if (!ti->type->iterate_devices ||
1845 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1846 			return false;
1847 	}
1848 
1849 	return true;
1850 }
1851 
1852 static int device_requires_stable_pages(struct dm_target *ti,
1853 					struct dm_dev *dev, sector_t start,
1854 					sector_t len, void *data)
1855 {
1856 	struct request_queue *q = bdev_get_queue(dev->bdev);
1857 
1858 	return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1859 }
1860 
1861 /*
1862  * If any underlying device requires stable pages, a table must require
1863  * them as well.  Only targets that support iterate_devices are considered:
1864  * don't want error, zero, etc to require stable pages.
1865  */
1866 static bool dm_table_requires_stable_pages(struct dm_table *t)
1867 {
1868 	struct dm_target *ti;
1869 	unsigned i;
1870 
1871 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1872 		ti = dm_table_get_target(t, i);
1873 
1874 		if (ti->type->iterate_devices &&
1875 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1876 			return true;
1877 	}
1878 
1879 	return false;
1880 }
1881 
1882 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1883 			       struct queue_limits *limits)
1884 {
1885 	bool wc = false, fua = false;
1886 
1887 	/*
1888 	 * Copy table's limits to the DM device's request_queue
1889 	 */
1890 	q->limits = *limits;
1891 
1892 	if (!dm_table_supports_discards(t)) {
1893 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1894 		/* Must also clear discard limits... */
1895 		q->limits.max_discard_sectors = 0;
1896 		q->limits.max_hw_discard_sectors = 0;
1897 		q->limits.discard_granularity = 0;
1898 		q->limits.discard_alignment = 0;
1899 		q->limits.discard_misaligned = 0;
1900 	} else
1901 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1902 
1903 	if (dm_table_supports_secure_erase(t))
1904 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1905 
1906 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1907 		wc = true;
1908 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1909 			fua = true;
1910 	}
1911 	blk_queue_write_cache(q, wc, fua);
1912 
1913 	if (dm_table_supports_dax(t, PAGE_SIZE))
1914 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1915 	else
1916 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1917 
1918 	if (dm_table_supports_dax_write_cache(t))
1919 		dax_write_cache(t->md->dax_dev, true);
1920 
1921 	/* Ensure that all underlying devices are non-rotational. */
1922 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1923 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1924 	else
1925 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1926 
1927 	if (!dm_table_supports_write_same(t))
1928 		q->limits.max_write_same_sectors = 0;
1929 	if (!dm_table_supports_write_zeroes(t))
1930 		q->limits.max_write_zeroes_sectors = 0;
1931 
1932 	dm_table_verify_integrity(t);
1933 
1934 	/*
1935 	 * Some devices don't use blk_integrity but still want stable pages
1936 	 * because they do their own checksumming.
1937 	 */
1938 	if (dm_table_requires_stable_pages(t))
1939 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1940 	else
1941 		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1942 
1943 	/*
1944 	 * Determine whether or not this queue's I/O timings contribute
1945 	 * to the entropy pool, Only request-based targets use this.
1946 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1947 	 * have it set.
1948 	 */
1949 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1950 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1951 
1952 	/*
1953 	 * For a zoned target, the number of zones should be updated for the
1954 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1955 	 * target, this is all that is needed. For a request based target, the
1956 	 * queue zone bitmaps must also be updated.
1957 	 * Use blk_revalidate_disk_zones() to handle this.
1958 	 */
1959 	if (blk_queue_is_zoned(q))
1960 		blk_revalidate_disk_zones(t->md->disk);
1961 
1962 	/* Allow reads to exceed readahead limits */
1963 	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1964 }
1965 
1966 unsigned int dm_table_get_num_targets(struct dm_table *t)
1967 {
1968 	return t->num_targets;
1969 }
1970 
1971 struct list_head *dm_table_get_devices(struct dm_table *t)
1972 {
1973 	return &t->devices;
1974 }
1975 
1976 fmode_t dm_table_get_mode(struct dm_table *t)
1977 {
1978 	return t->mode;
1979 }
1980 EXPORT_SYMBOL(dm_table_get_mode);
1981 
1982 enum suspend_mode {
1983 	PRESUSPEND,
1984 	PRESUSPEND_UNDO,
1985 	POSTSUSPEND,
1986 };
1987 
1988 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1989 {
1990 	int i = t->num_targets;
1991 	struct dm_target *ti = t->targets;
1992 
1993 	lockdep_assert_held(&t->md->suspend_lock);
1994 
1995 	while (i--) {
1996 		switch (mode) {
1997 		case PRESUSPEND:
1998 			if (ti->type->presuspend)
1999 				ti->type->presuspend(ti);
2000 			break;
2001 		case PRESUSPEND_UNDO:
2002 			if (ti->type->presuspend_undo)
2003 				ti->type->presuspend_undo(ti);
2004 			break;
2005 		case POSTSUSPEND:
2006 			if (ti->type->postsuspend)
2007 				ti->type->postsuspend(ti);
2008 			break;
2009 		}
2010 		ti++;
2011 	}
2012 }
2013 
2014 void dm_table_presuspend_targets(struct dm_table *t)
2015 {
2016 	if (!t)
2017 		return;
2018 
2019 	suspend_targets(t, PRESUSPEND);
2020 }
2021 
2022 void dm_table_presuspend_undo_targets(struct dm_table *t)
2023 {
2024 	if (!t)
2025 		return;
2026 
2027 	suspend_targets(t, PRESUSPEND_UNDO);
2028 }
2029 
2030 void dm_table_postsuspend_targets(struct dm_table *t)
2031 {
2032 	if (!t)
2033 		return;
2034 
2035 	suspend_targets(t, POSTSUSPEND);
2036 }
2037 
2038 int dm_table_resume_targets(struct dm_table *t)
2039 {
2040 	int i, r = 0;
2041 
2042 	lockdep_assert_held(&t->md->suspend_lock);
2043 
2044 	for (i = 0; i < t->num_targets; i++) {
2045 		struct dm_target *ti = t->targets + i;
2046 
2047 		if (!ti->type->preresume)
2048 			continue;
2049 
2050 		r = ti->type->preresume(ti);
2051 		if (r) {
2052 			DMERR("%s: %s: preresume failed, error = %d",
2053 			      dm_device_name(t->md), ti->type->name, r);
2054 			return r;
2055 		}
2056 	}
2057 
2058 	for (i = 0; i < t->num_targets; i++) {
2059 		struct dm_target *ti = t->targets + i;
2060 
2061 		if (ti->type->resume)
2062 			ti->type->resume(ti);
2063 	}
2064 
2065 	return 0;
2066 }
2067 
2068 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2069 {
2070 	list_add(&cb->list, &t->target_callbacks);
2071 }
2072 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2073 
2074 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2075 {
2076 	struct dm_dev_internal *dd;
2077 	struct list_head *devices = dm_table_get_devices(t);
2078 	struct dm_target_callbacks *cb;
2079 	int r = 0;
2080 
2081 	list_for_each_entry(dd, devices, list) {
2082 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2083 		char b[BDEVNAME_SIZE];
2084 
2085 		if (likely(q))
2086 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
2087 		else
2088 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2089 				     dm_device_name(t->md),
2090 				     bdevname(dd->dm_dev->bdev, b));
2091 	}
2092 
2093 	list_for_each_entry(cb, &t->target_callbacks, list)
2094 		if (cb->congested_fn)
2095 			r |= cb->congested_fn(cb, bdi_bits);
2096 
2097 	return r;
2098 }
2099 
2100 struct mapped_device *dm_table_get_md(struct dm_table *t)
2101 {
2102 	return t->md;
2103 }
2104 EXPORT_SYMBOL(dm_table_get_md);
2105 
2106 const char *dm_table_device_name(struct dm_table *t)
2107 {
2108 	return dm_device_name(t->md);
2109 }
2110 EXPORT_SYMBOL_GPL(dm_table_device_name);
2111 
2112 void dm_table_run_md_queue_async(struct dm_table *t)
2113 {
2114 	struct mapped_device *md;
2115 	struct request_queue *queue;
2116 
2117 	if (!dm_table_request_based(t))
2118 		return;
2119 
2120 	md = dm_table_get_md(t);
2121 	queue = dm_get_md_queue(md);
2122 	if (queue)
2123 		blk_mq_run_hw_queues(queue, true);
2124 }
2125 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2126 
2127