1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t; 133 134 if (num_targets > DM_MAX_TARGETS) 135 return -EOVERFLOW; 136 137 t = kzalloc(sizeof(*t), GFP_KERNEL); 138 139 if (!t) 140 return -ENOMEM; 141 142 INIT_LIST_HEAD(&t->devices); 143 init_rwsem(&t->devices_lock); 144 145 if (!num_targets) 146 num_targets = KEYS_PER_NODE; 147 148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 149 150 if (!num_targets) { 151 kfree(t); 152 return -EOVERFLOW; 153 } 154 155 if (alloc_targets(t, num_targets)) { 156 kfree(t); 157 return -ENOMEM; 158 } 159 160 t->type = DM_TYPE_NONE; 161 t->mode = mode; 162 t->md = md; 163 *result = t; 164 return 0; 165 } 166 167 static void free_devices(struct list_head *devices, struct mapped_device *md) 168 { 169 struct list_head *tmp, *next; 170 171 list_for_each_safe(tmp, next, devices) { 172 struct dm_dev_internal *dd = 173 list_entry(tmp, struct dm_dev_internal, list); 174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 175 dm_device_name(md), dd->dm_dev->name); 176 dm_put_table_device(md, dd->dm_dev); 177 kfree(dd); 178 } 179 } 180 181 static void dm_table_destroy_crypto_profile(struct dm_table *t); 182 183 void dm_table_destroy(struct dm_table *t) 184 { 185 if (!t) 186 return; 187 188 /* free the indexes */ 189 if (t->depth >= 2) 190 kvfree(t->index[t->depth - 2]); 191 192 /* free the targets */ 193 for (unsigned int i = 0; i < t->num_targets; i++) { 194 struct dm_target *ti = dm_table_get_target(t, i); 195 196 if (ti->type->dtr) 197 ti->type->dtr(ti); 198 199 dm_put_target_type(ti->type); 200 } 201 202 kvfree(t->highs); 203 204 /* free the device list */ 205 free_devices(&t->devices, t->md); 206 207 dm_free_md_mempools(t->mempools); 208 209 dm_table_destroy_crypto_profile(t); 210 211 kfree(t); 212 } 213 214 /* 215 * See if we've already got a device in the list. 216 */ 217 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 218 { 219 struct dm_dev_internal *dd; 220 221 list_for_each_entry(dd, l, list) 222 if (dd->dm_dev->bdev->bd_dev == dev) 223 return dd; 224 225 return NULL; 226 } 227 228 /* 229 * If possible, this checks an area of a destination device is invalid. 230 */ 231 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 232 sector_t start, sector_t len, void *data) 233 { 234 struct queue_limits *limits = data; 235 struct block_device *bdev = dev->bdev; 236 sector_t dev_size = bdev_nr_sectors(bdev); 237 unsigned short logical_block_size_sectors = 238 limits->logical_block_size >> SECTOR_SHIFT; 239 240 if (!dev_size) 241 return 0; 242 243 if ((start >= dev_size) || (start + len > dev_size)) { 244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 245 dm_device_name(ti->table->md), bdev, 246 (unsigned long long)start, 247 (unsigned long long)len, 248 (unsigned long long)dev_size); 249 return 1; 250 } 251 252 /* 253 * If the target is mapped to zoned block device(s), check 254 * that the zones are not partially mapped. 255 */ 256 if (bdev_is_zoned(bdev)) { 257 unsigned int zone_sectors = bdev_zone_sectors(bdev); 258 259 if (start & (zone_sectors - 1)) { 260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 261 dm_device_name(ti->table->md), 262 (unsigned long long)start, 263 zone_sectors, bdev); 264 return 1; 265 } 266 267 /* 268 * Note: The last zone of a zoned block device may be smaller 269 * than other zones. So for a target mapping the end of a 270 * zoned block device with such a zone, len would not be zone 271 * aligned. We do not allow such last smaller zone to be part 272 * of the mapping here to ensure that mappings with multiple 273 * devices do not end up with a smaller zone in the middle of 274 * the sector range. 275 */ 276 if (len & (zone_sectors - 1)) { 277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 278 dm_device_name(ti->table->md), 279 (unsigned long long)len, 280 zone_sectors, bdev); 281 return 1; 282 } 283 } 284 285 if (logical_block_size_sectors <= 1) 286 return 0; 287 288 if (start & (logical_block_size_sectors - 1)) { 289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 290 dm_device_name(ti->table->md), 291 (unsigned long long)start, 292 limits->logical_block_size, bdev); 293 return 1; 294 } 295 296 if (len & (logical_block_size_sectors - 1)) { 297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 298 dm_device_name(ti->table->md), 299 (unsigned long long)len, 300 limits->logical_block_size, bdev); 301 return 1; 302 } 303 304 return 0; 305 } 306 307 /* 308 * This upgrades the mode on an already open dm_dev, being 309 * careful to leave things as they were if we fail to reopen the 310 * device and not to touch the existing bdev field in case 311 * it is accessed concurrently. 312 */ 313 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 314 struct mapped_device *md) 315 { 316 int r; 317 struct dm_dev *old_dev, *new_dev; 318 319 old_dev = dd->dm_dev; 320 321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 322 dd->dm_dev->mode | new_mode, &new_dev); 323 if (r) 324 return r; 325 326 dd->dm_dev = new_dev; 327 dm_put_table_device(md, old_dev); 328 329 return 0; 330 } 331 332 /* 333 * Add a device to the list, or just increment the usage count if 334 * it's already present. 335 * 336 * Note: the __ref annotation is because this function can call the __init 337 * marked early_lookup_bdev when called during early boot code from dm-init.c. 338 */ 339 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 340 struct dm_dev **result) 341 { 342 int r; 343 dev_t dev; 344 unsigned int major, minor; 345 char dummy; 346 struct dm_dev_internal *dd; 347 struct dm_table *t = ti->table; 348 349 BUG_ON(!t); 350 351 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 352 /* Extract the major/minor numbers */ 353 dev = MKDEV(major, minor); 354 if (MAJOR(dev) != major || MINOR(dev) != minor) 355 return -EOVERFLOW; 356 } else { 357 r = lookup_bdev(path, &dev); 358 #ifndef MODULE 359 if (r && system_state < SYSTEM_RUNNING) 360 r = early_lookup_bdev(path, &dev); 361 #endif 362 if (r) 363 return r; 364 } 365 if (dev == disk_devt(t->md->disk)) 366 return -EINVAL; 367 368 down_write(&t->devices_lock); 369 370 dd = find_device(&t->devices, dev); 371 if (!dd) { 372 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 373 if (!dd) { 374 r = -ENOMEM; 375 goto unlock_ret_r; 376 } 377 378 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 379 if (r) { 380 kfree(dd); 381 goto unlock_ret_r; 382 } 383 384 refcount_set(&dd->count, 1); 385 list_add(&dd->list, &t->devices); 386 goto out; 387 388 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 389 r = upgrade_mode(dd, mode, t->md); 390 if (r) 391 goto unlock_ret_r; 392 } 393 refcount_inc(&dd->count); 394 out: 395 up_write(&t->devices_lock); 396 *result = dd->dm_dev; 397 return 0; 398 399 unlock_ret_r: 400 up_write(&t->devices_lock); 401 return r; 402 } 403 EXPORT_SYMBOL(dm_get_device); 404 405 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 406 sector_t start, sector_t len, void *data) 407 { 408 struct queue_limits *limits = data; 409 struct block_device *bdev = dev->bdev; 410 struct request_queue *q = bdev_get_queue(bdev); 411 412 if (unlikely(!q)) { 413 DMWARN("%s: Cannot set limits for nonexistent device %pg", 414 dm_device_name(ti->table->md), bdev); 415 return 0; 416 } 417 418 if (blk_stack_limits(limits, &q->limits, 419 get_start_sect(bdev) + start) < 0) 420 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 421 "physical_block_size=%u, logical_block_size=%u, " 422 "alignment_offset=%u, start=%llu", 423 dm_device_name(ti->table->md), bdev, 424 q->limits.physical_block_size, 425 q->limits.logical_block_size, 426 q->limits.alignment_offset, 427 (unsigned long long) start << SECTOR_SHIFT); 428 429 /* 430 * Only stack the integrity profile if the target doesn't have native 431 * integrity support. 432 */ 433 if (!dm_target_has_integrity(ti->type)) 434 queue_limits_stack_integrity_bdev(limits, bdev); 435 return 0; 436 } 437 438 /* 439 * Decrement a device's use count and remove it if necessary. 440 */ 441 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 442 { 443 int found = 0; 444 struct dm_table *t = ti->table; 445 struct list_head *devices = &t->devices; 446 struct dm_dev_internal *dd; 447 448 down_write(&t->devices_lock); 449 450 list_for_each_entry(dd, devices, list) { 451 if (dd->dm_dev == d) { 452 found = 1; 453 break; 454 } 455 } 456 if (!found) { 457 DMERR("%s: device %s not in table devices list", 458 dm_device_name(t->md), d->name); 459 goto unlock_ret; 460 } 461 if (refcount_dec_and_test(&dd->count)) { 462 dm_put_table_device(t->md, d); 463 list_del(&dd->list); 464 kfree(dd); 465 } 466 467 unlock_ret: 468 up_write(&t->devices_lock); 469 } 470 EXPORT_SYMBOL(dm_put_device); 471 472 /* 473 * Checks to see if the target joins onto the end of the table. 474 */ 475 static int adjoin(struct dm_table *t, struct dm_target *ti) 476 { 477 struct dm_target *prev; 478 479 if (!t->num_targets) 480 return !ti->begin; 481 482 prev = &t->targets[t->num_targets - 1]; 483 return (ti->begin == (prev->begin + prev->len)); 484 } 485 486 /* 487 * Used to dynamically allocate the arg array. 488 * 489 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 490 * process messages even if some device is suspended. These messages have a 491 * small fixed number of arguments. 492 * 493 * On the other hand, dm-switch needs to process bulk data using messages and 494 * excessive use of GFP_NOIO could cause trouble. 495 */ 496 static char **realloc_argv(unsigned int *size, char **old_argv) 497 { 498 char **argv; 499 unsigned int new_size; 500 gfp_t gfp; 501 502 if (*size) { 503 new_size = *size * 2; 504 gfp = GFP_KERNEL; 505 } else { 506 new_size = 8; 507 gfp = GFP_NOIO; 508 } 509 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 510 if (argv && old_argv) { 511 memcpy(argv, old_argv, *size * sizeof(*argv)); 512 *size = new_size; 513 } 514 515 kfree(old_argv); 516 return argv; 517 } 518 519 /* 520 * Destructively splits up the argument list to pass to ctr. 521 */ 522 int dm_split_args(int *argc, char ***argvp, char *input) 523 { 524 char *start, *end = input, *out, **argv = NULL; 525 unsigned int array_size = 0; 526 527 *argc = 0; 528 529 if (!input) { 530 *argvp = NULL; 531 return 0; 532 } 533 534 argv = realloc_argv(&array_size, argv); 535 if (!argv) 536 return -ENOMEM; 537 538 while (1) { 539 /* Skip whitespace */ 540 start = skip_spaces(end); 541 542 if (!*start) 543 break; /* success, we hit the end */ 544 545 /* 'out' is used to remove any back-quotes */ 546 end = out = start; 547 while (*end) { 548 /* Everything apart from '\0' can be quoted */ 549 if (*end == '\\' && *(end + 1)) { 550 *out++ = *(end + 1); 551 end += 2; 552 continue; 553 } 554 555 if (isspace(*end)) 556 break; /* end of token */ 557 558 *out++ = *end++; 559 } 560 561 /* have we already filled the array ? */ 562 if ((*argc + 1) > array_size) { 563 argv = realloc_argv(&array_size, argv); 564 if (!argv) 565 return -ENOMEM; 566 } 567 568 /* we know this is whitespace */ 569 if (*end) 570 end++; 571 572 /* terminate the string and put it in the array */ 573 *out = '\0'; 574 argv[*argc] = start; 575 (*argc)++; 576 } 577 578 *argvp = argv; 579 return 0; 580 } 581 582 /* 583 * Impose necessary and sufficient conditions on a devices's table such 584 * that any incoming bio which respects its logical_block_size can be 585 * processed successfully. If it falls across the boundary between 586 * two or more targets, the size of each piece it gets split into must 587 * be compatible with the logical_block_size of the target processing it. 588 */ 589 static int validate_hardware_logical_block_alignment(struct dm_table *t, 590 struct queue_limits *limits) 591 { 592 /* 593 * This function uses arithmetic modulo the logical_block_size 594 * (in units of 512-byte sectors). 595 */ 596 unsigned short device_logical_block_size_sects = 597 limits->logical_block_size >> SECTOR_SHIFT; 598 599 /* 600 * Offset of the start of the next table entry, mod logical_block_size. 601 */ 602 unsigned short next_target_start = 0; 603 604 /* 605 * Given an aligned bio that extends beyond the end of a 606 * target, how many sectors must the next target handle? 607 */ 608 unsigned short remaining = 0; 609 610 struct dm_target *ti; 611 struct queue_limits ti_limits; 612 unsigned int i; 613 614 /* 615 * Check each entry in the table in turn. 616 */ 617 for (i = 0; i < t->num_targets; i++) { 618 ti = dm_table_get_target(t, i); 619 620 blk_set_stacking_limits(&ti_limits); 621 622 /* combine all target devices' limits */ 623 if (ti->type->iterate_devices) 624 ti->type->iterate_devices(ti, dm_set_device_limits, 625 &ti_limits); 626 627 /* 628 * If the remaining sectors fall entirely within this 629 * table entry are they compatible with its logical_block_size? 630 */ 631 if (remaining < ti->len && 632 remaining & ((ti_limits.logical_block_size >> 633 SECTOR_SHIFT) - 1)) 634 break; /* Error */ 635 636 next_target_start = 637 (unsigned short) ((next_target_start + ti->len) & 638 (device_logical_block_size_sects - 1)); 639 remaining = next_target_start ? 640 device_logical_block_size_sects - next_target_start : 0; 641 } 642 643 if (remaining) { 644 DMERR("%s: table line %u (start sect %llu len %llu) " 645 "not aligned to h/w logical block size %u", 646 dm_device_name(t->md), i, 647 (unsigned long long) ti->begin, 648 (unsigned long long) ti->len, 649 limits->logical_block_size); 650 return -EINVAL; 651 } 652 653 return 0; 654 } 655 656 int dm_table_add_target(struct dm_table *t, const char *type, 657 sector_t start, sector_t len, char *params) 658 { 659 int r = -EINVAL, argc; 660 char **argv; 661 struct dm_target *ti; 662 663 if (t->singleton) { 664 DMERR("%s: target type %s must appear alone in table", 665 dm_device_name(t->md), t->targets->type->name); 666 return -EINVAL; 667 } 668 669 BUG_ON(t->num_targets >= t->num_allocated); 670 671 ti = t->targets + t->num_targets; 672 memset(ti, 0, sizeof(*ti)); 673 674 if (!len) { 675 DMERR("%s: zero-length target", dm_device_name(t->md)); 676 return -EINVAL; 677 } 678 679 ti->type = dm_get_target_type(type); 680 if (!ti->type) { 681 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 682 return -EINVAL; 683 } 684 685 if (dm_target_needs_singleton(ti->type)) { 686 if (t->num_targets) { 687 ti->error = "singleton target type must appear alone in table"; 688 goto bad; 689 } 690 t->singleton = true; 691 } 692 693 if (dm_target_always_writeable(ti->type) && 694 !(t->mode & BLK_OPEN_WRITE)) { 695 ti->error = "target type may not be included in a read-only table"; 696 goto bad; 697 } 698 699 if (t->immutable_target_type) { 700 if (t->immutable_target_type != ti->type) { 701 ti->error = "immutable target type cannot be mixed with other target types"; 702 goto bad; 703 } 704 } else if (dm_target_is_immutable(ti->type)) { 705 if (t->num_targets) { 706 ti->error = "immutable target type cannot be mixed with other target types"; 707 goto bad; 708 } 709 t->immutable_target_type = ti->type; 710 } 711 712 ti->table = t; 713 ti->begin = start; 714 ti->len = len; 715 ti->error = "Unknown error"; 716 717 /* 718 * Does this target adjoin the previous one ? 719 */ 720 if (!adjoin(t, ti)) { 721 ti->error = "Gap in table"; 722 goto bad; 723 } 724 725 r = dm_split_args(&argc, &argv, params); 726 if (r) { 727 ti->error = "couldn't split parameters"; 728 goto bad; 729 } 730 731 r = ti->type->ctr(ti, argc, argv); 732 kfree(argv); 733 if (r) 734 goto bad; 735 736 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 737 738 if (!ti->num_discard_bios && ti->discards_supported) 739 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 740 dm_device_name(t->md), type); 741 742 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 743 static_branch_enable(&swap_bios_enabled); 744 745 return 0; 746 747 bad: 748 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 749 dm_put_target_type(ti->type); 750 return r; 751 } 752 753 /* 754 * Target argument parsing helpers. 755 */ 756 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 757 unsigned int *value, char **error, unsigned int grouped) 758 { 759 const char *arg_str = dm_shift_arg(arg_set); 760 char dummy; 761 762 if (!arg_str || 763 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 764 (*value < arg->min) || 765 (*value > arg->max) || 766 (grouped && arg_set->argc < *value)) { 767 *error = arg->error; 768 return -EINVAL; 769 } 770 771 return 0; 772 } 773 774 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 775 unsigned int *value, char **error) 776 { 777 return validate_next_arg(arg, arg_set, value, error, 0); 778 } 779 EXPORT_SYMBOL(dm_read_arg); 780 781 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 782 unsigned int *value, char **error) 783 { 784 return validate_next_arg(arg, arg_set, value, error, 1); 785 } 786 EXPORT_SYMBOL(dm_read_arg_group); 787 788 const char *dm_shift_arg(struct dm_arg_set *as) 789 { 790 char *r; 791 792 if (as->argc) { 793 as->argc--; 794 r = *as->argv; 795 as->argv++; 796 return r; 797 } 798 799 return NULL; 800 } 801 EXPORT_SYMBOL(dm_shift_arg); 802 803 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 804 { 805 BUG_ON(as->argc < num_args); 806 as->argc -= num_args; 807 as->argv += num_args; 808 } 809 EXPORT_SYMBOL(dm_consume_args); 810 811 static bool __table_type_bio_based(enum dm_queue_mode table_type) 812 { 813 return (table_type == DM_TYPE_BIO_BASED || 814 table_type == DM_TYPE_DAX_BIO_BASED); 815 } 816 817 static bool __table_type_request_based(enum dm_queue_mode table_type) 818 { 819 return table_type == DM_TYPE_REQUEST_BASED; 820 } 821 822 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 823 { 824 t->type = type; 825 } 826 EXPORT_SYMBOL_GPL(dm_table_set_type); 827 828 /* validate the dax capability of the target device span */ 829 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 830 sector_t start, sector_t len, void *data) 831 { 832 if (dev->dax_dev) 833 return false; 834 835 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 836 return true; 837 } 838 839 /* Check devices support synchronous DAX */ 840 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 841 sector_t start, sector_t len, void *data) 842 { 843 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 844 } 845 846 static bool dm_table_supports_dax(struct dm_table *t, 847 iterate_devices_callout_fn iterate_fn) 848 { 849 /* Ensure that all targets support DAX. */ 850 for (unsigned int i = 0; i < t->num_targets; i++) { 851 struct dm_target *ti = dm_table_get_target(t, i); 852 853 if (!ti->type->direct_access) 854 return false; 855 856 if (dm_target_is_wildcard(ti->type) || 857 !ti->type->iterate_devices || 858 ti->type->iterate_devices(ti, iterate_fn, NULL)) 859 return false; 860 } 861 862 return true; 863 } 864 865 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 866 sector_t start, sector_t len, void *data) 867 { 868 struct block_device *bdev = dev->bdev; 869 struct request_queue *q = bdev_get_queue(bdev); 870 871 /* request-based cannot stack on partitions! */ 872 if (bdev_is_partition(bdev)) 873 return false; 874 875 return queue_is_mq(q); 876 } 877 878 static int dm_table_determine_type(struct dm_table *t) 879 { 880 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 881 struct dm_target *ti; 882 struct list_head *devices = dm_table_get_devices(t); 883 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 884 885 if (t->type != DM_TYPE_NONE) { 886 /* target already set the table's type */ 887 if (t->type == DM_TYPE_BIO_BASED) { 888 /* possibly upgrade to a variant of bio-based */ 889 goto verify_bio_based; 890 } 891 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 892 goto verify_rq_based; 893 } 894 895 for (unsigned int i = 0; i < t->num_targets; i++) { 896 ti = dm_table_get_target(t, i); 897 if (dm_target_hybrid(ti)) 898 hybrid = 1; 899 else if (dm_target_request_based(ti)) 900 request_based = 1; 901 else 902 bio_based = 1; 903 904 if (bio_based && request_based) { 905 DMERR("Inconsistent table: different target types can't be mixed up"); 906 return -EINVAL; 907 } 908 } 909 910 if (hybrid && !bio_based && !request_based) { 911 /* 912 * The targets can work either way. 913 * Determine the type from the live device. 914 * Default to bio-based if device is new. 915 */ 916 if (__table_type_request_based(live_md_type)) 917 request_based = 1; 918 else 919 bio_based = 1; 920 } 921 922 if (bio_based) { 923 verify_bio_based: 924 /* We must use this table as bio-based */ 925 t->type = DM_TYPE_BIO_BASED; 926 if (dm_table_supports_dax(t, device_not_dax_capable) || 927 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 928 t->type = DM_TYPE_DAX_BIO_BASED; 929 } 930 return 0; 931 } 932 933 BUG_ON(!request_based); /* No targets in this table */ 934 935 t->type = DM_TYPE_REQUEST_BASED; 936 937 verify_rq_based: 938 /* 939 * Request-based dm supports only tables that have a single target now. 940 * To support multiple targets, request splitting support is needed, 941 * and that needs lots of changes in the block-layer. 942 * (e.g. request completion process for partial completion.) 943 */ 944 if (t->num_targets > 1) { 945 DMERR("request-based DM doesn't support multiple targets"); 946 return -EINVAL; 947 } 948 949 if (list_empty(devices)) { 950 int srcu_idx; 951 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 952 953 /* inherit live table's type */ 954 if (live_table) 955 t->type = live_table->type; 956 dm_put_live_table(t->md, srcu_idx); 957 return 0; 958 } 959 960 ti = dm_table_get_immutable_target(t); 961 if (!ti) { 962 DMERR("table load rejected: immutable target is required"); 963 return -EINVAL; 964 } else if (ti->max_io_len) { 965 DMERR("table load rejected: immutable target that splits IO is not supported"); 966 return -EINVAL; 967 } 968 969 /* Non-request-stackable devices can't be used for request-based dm */ 970 if (!ti->type->iterate_devices || 971 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 972 DMERR("table load rejected: including non-request-stackable devices"); 973 return -EINVAL; 974 } 975 976 return 0; 977 } 978 979 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 980 { 981 return t->type; 982 } 983 984 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 985 { 986 return t->immutable_target_type; 987 } 988 989 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 990 { 991 /* Immutable target is implicitly a singleton */ 992 if (t->num_targets > 1 || 993 !dm_target_is_immutable(t->targets[0].type)) 994 return NULL; 995 996 return t->targets; 997 } 998 999 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1000 { 1001 for (unsigned int i = 0; i < t->num_targets; i++) { 1002 struct dm_target *ti = dm_table_get_target(t, i); 1003 1004 if (dm_target_is_wildcard(ti->type)) 1005 return ti; 1006 } 1007 1008 return NULL; 1009 } 1010 1011 bool dm_table_bio_based(struct dm_table *t) 1012 { 1013 return __table_type_bio_based(dm_table_get_type(t)); 1014 } 1015 1016 bool dm_table_request_based(struct dm_table *t) 1017 { 1018 return __table_type_request_based(dm_table_get_type(t)); 1019 } 1020 1021 static bool dm_table_supports_poll(struct dm_table *t); 1022 1023 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1024 { 1025 enum dm_queue_mode type = dm_table_get_type(t); 1026 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1027 unsigned int min_pool_size = 0, pool_size; 1028 struct dm_md_mempools *pools; 1029 1030 if (unlikely(type == DM_TYPE_NONE)) { 1031 DMERR("no table type is set, can't allocate mempools"); 1032 return -EINVAL; 1033 } 1034 1035 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1036 if (!pools) 1037 return -ENOMEM; 1038 1039 if (type == DM_TYPE_REQUEST_BASED) { 1040 pool_size = dm_get_reserved_rq_based_ios(); 1041 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1042 goto init_bs; 1043 } 1044 1045 for (unsigned int i = 0; i < t->num_targets; i++) { 1046 struct dm_target *ti = dm_table_get_target(t, i); 1047 1048 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1049 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1050 } 1051 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1052 front_pad = roundup(per_io_data_size, 1053 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1054 1055 io_front_pad = roundup(per_io_data_size, 1056 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1057 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, 1058 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0)) 1059 goto out_free_pools; 1060 if (t->integrity_supported && 1061 bioset_integrity_create(&pools->io_bs, pool_size)) 1062 goto out_free_pools; 1063 init_bs: 1064 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1065 goto out_free_pools; 1066 if (t->integrity_supported && 1067 bioset_integrity_create(&pools->bs, pool_size)) 1068 goto out_free_pools; 1069 1070 t->mempools = pools; 1071 return 0; 1072 1073 out_free_pools: 1074 dm_free_md_mempools(pools); 1075 return -ENOMEM; 1076 } 1077 1078 static int setup_indexes(struct dm_table *t) 1079 { 1080 int i; 1081 unsigned int total = 0; 1082 sector_t *indexes; 1083 1084 /* allocate the space for *all* the indexes */ 1085 for (i = t->depth - 2; i >= 0; i--) { 1086 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1087 total += t->counts[i]; 1088 } 1089 1090 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1091 if (!indexes) 1092 return -ENOMEM; 1093 1094 /* set up internal nodes, bottom-up */ 1095 for (i = t->depth - 2; i >= 0; i--) { 1096 t->index[i] = indexes; 1097 indexes += (KEYS_PER_NODE * t->counts[i]); 1098 setup_btree_index(i, t); 1099 } 1100 1101 return 0; 1102 } 1103 1104 /* 1105 * Builds the btree to index the map. 1106 */ 1107 static int dm_table_build_index(struct dm_table *t) 1108 { 1109 int r = 0; 1110 unsigned int leaf_nodes; 1111 1112 /* how many indexes will the btree have ? */ 1113 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1114 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1115 1116 /* leaf layer has already been set up */ 1117 t->counts[t->depth - 1] = leaf_nodes; 1118 t->index[t->depth - 1] = t->highs; 1119 1120 if (t->depth >= 2) 1121 r = setup_indexes(t); 1122 1123 return r; 1124 } 1125 1126 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1127 1128 struct dm_crypto_profile { 1129 struct blk_crypto_profile profile; 1130 struct mapped_device *md; 1131 }; 1132 1133 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1134 sector_t start, sector_t len, void *data) 1135 { 1136 const struct blk_crypto_key *key = data; 1137 1138 blk_crypto_evict_key(dev->bdev, key); 1139 return 0; 1140 } 1141 1142 /* 1143 * When an inline encryption key is evicted from a device-mapper device, evict 1144 * it from all the underlying devices. 1145 */ 1146 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1147 const struct blk_crypto_key *key, unsigned int slot) 1148 { 1149 struct mapped_device *md = 1150 container_of(profile, struct dm_crypto_profile, profile)->md; 1151 struct dm_table *t; 1152 int srcu_idx; 1153 1154 t = dm_get_live_table(md, &srcu_idx); 1155 if (!t) 1156 return 0; 1157 1158 for (unsigned int i = 0; i < t->num_targets; i++) { 1159 struct dm_target *ti = dm_table_get_target(t, i); 1160 1161 if (!ti->type->iterate_devices) 1162 continue; 1163 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1164 (void *)key); 1165 } 1166 1167 dm_put_live_table(md, srcu_idx); 1168 return 0; 1169 } 1170 1171 static int 1172 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1173 sector_t start, sector_t len, void *data) 1174 { 1175 struct blk_crypto_profile *parent = data; 1176 struct blk_crypto_profile *child = 1177 bdev_get_queue(dev->bdev)->crypto_profile; 1178 1179 blk_crypto_intersect_capabilities(parent, child); 1180 return 0; 1181 } 1182 1183 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1184 { 1185 struct dm_crypto_profile *dmcp = container_of(profile, 1186 struct dm_crypto_profile, 1187 profile); 1188 1189 if (!profile) 1190 return; 1191 1192 blk_crypto_profile_destroy(profile); 1193 kfree(dmcp); 1194 } 1195 1196 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1197 { 1198 dm_destroy_crypto_profile(t->crypto_profile); 1199 t->crypto_profile = NULL; 1200 } 1201 1202 /* 1203 * Constructs and initializes t->crypto_profile with a crypto profile that 1204 * represents the common set of crypto capabilities of the devices described by 1205 * the dm_table. However, if the constructed crypto profile doesn't support all 1206 * crypto capabilities that are supported by the current mapped_device, it 1207 * returns an error instead, since we don't support removing crypto capabilities 1208 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1209 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1210 */ 1211 static int dm_table_construct_crypto_profile(struct dm_table *t) 1212 { 1213 struct dm_crypto_profile *dmcp; 1214 struct blk_crypto_profile *profile; 1215 unsigned int i; 1216 bool empty_profile = true; 1217 1218 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1219 if (!dmcp) 1220 return -ENOMEM; 1221 dmcp->md = t->md; 1222 1223 profile = &dmcp->profile; 1224 blk_crypto_profile_init(profile, 0); 1225 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1226 profile->max_dun_bytes_supported = UINT_MAX; 1227 memset(profile->modes_supported, 0xFF, 1228 sizeof(profile->modes_supported)); 1229 1230 for (i = 0; i < t->num_targets; i++) { 1231 struct dm_target *ti = dm_table_get_target(t, i); 1232 1233 if (!dm_target_passes_crypto(ti->type)) { 1234 blk_crypto_intersect_capabilities(profile, NULL); 1235 break; 1236 } 1237 if (!ti->type->iterate_devices) 1238 continue; 1239 ti->type->iterate_devices(ti, 1240 device_intersect_crypto_capabilities, 1241 profile); 1242 } 1243 1244 if (t->md->queue && 1245 !blk_crypto_has_capabilities(profile, 1246 t->md->queue->crypto_profile)) { 1247 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1248 dm_destroy_crypto_profile(profile); 1249 return -EINVAL; 1250 } 1251 1252 /* 1253 * If the new profile doesn't actually support any crypto capabilities, 1254 * we may as well represent it with a NULL profile. 1255 */ 1256 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1257 if (profile->modes_supported[i]) { 1258 empty_profile = false; 1259 break; 1260 } 1261 } 1262 1263 if (empty_profile) { 1264 dm_destroy_crypto_profile(profile); 1265 profile = NULL; 1266 } 1267 1268 /* 1269 * t->crypto_profile is only set temporarily while the table is being 1270 * set up, and it gets set to NULL after the profile has been 1271 * transferred to the request_queue. 1272 */ 1273 t->crypto_profile = profile; 1274 1275 return 0; 1276 } 1277 1278 static void dm_update_crypto_profile(struct request_queue *q, 1279 struct dm_table *t) 1280 { 1281 if (!t->crypto_profile) 1282 return; 1283 1284 /* Make the crypto profile less restrictive. */ 1285 if (!q->crypto_profile) { 1286 blk_crypto_register(t->crypto_profile, q); 1287 } else { 1288 blk_crypto_update_capabilities(q->crypto_profile, 1289 t->crypto_profile); 1290 dm_destroy_crypto_profile(t->crypto_profile); 1291 } 1292 t->crypto_profile = NULL; 1293 } 1294 1295 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1296 1297 static int dm_table_construct_crypto_profile(struct dm_table *t) 1298 { 1299 return 0; 1300 } 1301 1302 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1303 { 1304 } 1305 1306 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1307 { 1308 } 1309 1310 static void dm_update_crypto_profile(struct request_queue *q, 1311 struct dm_table *t) 1312 { 1313 } 1314 1315 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1316 1317 /* 1318 * Prepares the table for use by building the indices, 1319 * setting the type, and allocating mempools. 1320 */ 1321 int dm_table_complete(struct dm_table *t) 1322 { 1323 int r; 1324 1325 r = dm_table_determine_type(t); 1326 if (r) { 1327 DMERR("unable to determine table type"); 1328 return r; 1329 } 1330 1331 r = dm_table_build_index(t); 1332 if (r) { 1333 DMERR("unable to build btrees"); 1334 return r; 1335 } 1336 1337 r = dm_table_construct_crypto_profile(t); 1338 if (r) { 1339 DMERR("could not construct crypto profile."); 1340 return r; 1341 } 1342 1343 r = dm_table_alloc_md_mempools(t, t->md); 1344 if (r) 1345 DMERR("unable to allocate mempools"); 1346 1347 return r; 1348 } 1349 1350 static DEFINE_MUTEX(_event_lock); 1351 void dm_table_event_callback(struct dm_table *t, 1352 void (*fn)(void *), void *context) 1353 { 1354 mutex_lock(&_event_lock); 1355 t->event_fn = fn; 1356 t->event_context = context; 1357 mutex_unlock(&_event_lock); 1358 } 1359 1360 void dm_table_event(struct dm_table *t) 1361 { 1362 mutex_lock(&_event_lock); 1363 if (t->event_fn) 1364 t->event_fn(t->event_context); 1365 mutex_unlock(&_event_lock); 1366 } 1367 EXPORT_SYMBOL(dm_table_event); 1368 1369 inline sector_t dm_table_get_size(struct dm_table *t) 1370 { 1371 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1372 } 1373 EXPORT_SYMBOL(dm_table_get_size); 1374 1375 /* 1376 * Search the btree for the correct target. 1377 * 1378 * Caller should check returned pointer for NULL 1379 * to trap I/O beyond end of device. 1380 */ 1381 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1382 { 1383 unsigned int l, n = 0, k = 0; 1384 sector_t *node; 1385 1386 if (unlikely(sector >= dm_table_get_size(t))) 1387 return NULL; 1388 1389 for (l = 0; l < t->depth; l++) { 1390 n = get_child(n, k); 1391 node = get_node(t, l, n); 1392 1393 for (k = 0; k < KEYS_PER_NODE; k++) 1394 if (node[k] >= sector) 1395 break; 1396 } 1397 1398 return &t->targets[(KEYS_PER_NODE * n) + k]; 1399 } 1400 1401 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev, 1402 sector_t start, sector_t len, void *data) 1403 { 1404 struct request_queue *q = bdev_get_queue(dev->bdev); 1405 1406 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags); 1407 } 1408 1409 /* 1410 * type->iterate_devices() should be called when the sanity check needs to 1411 * iterate and check all underlying data devices. iterate_devices() will 1412 * iterate all underlying data devices until it encounters a non-zero return 1413 * code, returned by whether the input iterate_devices_callout_fn, or 1414 * iterate_devices() itself internally. 1415 * 1416 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1417 * iterate multiple underlying devices internally, in which case a non-zero 1418 * return code returned by iterate_devices_callout_fn will stop the iteration 1419 * in advance. 1420 * 1421 * Cases requiring _any_ underlying device supporting some kind of attribute, 1422 * should use the iteration structure like dm_table_any_dev_attr(), or call 1423 * it directly. @func should handle semantics of positive examples, e.g. 1424 * capable of something. 1425 * 1426 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1427 * should use the iteration structure like dm_table_supports_nowait() or 1428 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1429 * uses an @anti_func that handle semantics of counter examples, e.g. not 1430 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1431 */ 1432 static bool dm_table_any_dev_attr(struct dm_table *t, 1433 iterate_devices_callout_fn func, void *data) 1434 { 1435 for (unsigned int i = 0; i < t->num_targets; i++) { 1436 struct dm_target *ti = dm_table_get_target(t, i); 1437 1438 if (ti->type->iterate_devices && 1439 ti->type->iterate_devices(ti, func, data)) 1440 return true; 1441 } 1442 1443 return false; 1444 } 1445 1446 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1447 sector_t start, sector_t len, void *data) 1448 { 1449 unsigned int *num_devices = data; 1450 1451 (*num_devices)++; 1452 1453 return 0; 1454 } 1455 1456 static bool dm_table_supports_poll(struct dm_table *t) 1457 { 1458 for (unsigned int i = 0; i < t->num_targets; i++) { 1459 struct dm_target *ti = dm_table_get_target(t, i); 1460 1461 if (!ti->type->iterate_devices || 1462 ti->type->iterate_devices(ti, device_not_poll_capable, NULL)) 1463 return false; 1464 } 1465 1466 return true; 1467 } 1468 1469 /* 1470 * Check whether a table has no data devices attached using each 1471 * target's iterate_devices method. 1472 * Returns false if the result is unknown because a target doesn't 1473 * support iterate_devices. 1474 */ 1475 bool dm_table_has_no_data_devices(struct dm_table *t) 1476 { 1477 for (unsigned int i = 0; i < t->num_targets; i++) { 1478 struct dm_target *ti = dm_table_get_target(t, i); 1479 unsigned int num_devices = 0; 1480 1481 if (!ti->type->iterate_devices) 1482 return false; 1483 1484 ti->type->iterate_devices(ti, count_device, &num_devices); 1485 if (num_devices) 1486 return false; 1487 } 1488 1489 return true; 1490 } 1491 1492 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1493 sector_t start, sector_t len, void *data) 1494 { 1495 bool *zoned = data; 1496 1497 return bdev_is_zoned(dev->bdev) != *zoned; 1498 } 1499 1500 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1501 sector_t start, sector_t len, void *data) 1502 { 1503 return bdev_is_zoned(dev->bdev); 1504 } 1505 1506 /* 1507 * Check the device zoned model based on the target feature flag. If the target 1508 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1509 * also accepted but all devices must have the same zoned model. If the target 1510 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1511 * zoned model with all zoned devices having the same zone size. 1512 */ 1513 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1514 { 1515 for (unsigned int i = 0; i < t->num_targets; i++) { 1516 struct dm_target *ti = dm_table_get_target(t, i); 1517 1518 /* 1519 * For the wildcard target (dm-error), if we do not have a 1520 * backing device, we must always return false. If we have a 1521 * backing device, the result must depend on checking zoned 1522 * model, like for any other target. So for this, check directly 1523 * if the target backing device is zoned as we get "false" when 1524 * dm-error was set without a backing device. 1525 */ 1526 if (dm_target_is_wildcard(ti->type) && 1527 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1528 return false; 1529 1530 if (dm_target_supports_zoned_hm(ti->type)) { 1531 if (!ti->type->iterate_devices || 1532 ti->type->iterate_devices(ti, device_not_zoned, 1533 &zoned)) 1534 return false; 1535 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1536 if (zoned) 1537 return false; 1538 } 1539 } 1540 1541 return true; 1542 } 1543 1544 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1545 sector_t start, sector_t len, void *data) 1546 { 1547 unsigned int *zone_sectors = data; 1548 1549 if (!bdev_is_zoned(dev->bdev)) 1550 return 0; 1551 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1552 } 1553 1554 /* 1555 * Check consistency of zoned model and zone sectors across all targets. For 1556 * zone sectors, if the destination device is a zoned block device, it shall 1557 * have the specified zone_sectors. 1558 */ 1559 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1560 unsigned int zone_sectors) 1561 { 1562 if (!zoned) 1563 return 0; 1564 1565 if (!dm_table_supports_zoned(t, zoned)) { 1566 DMERR("%s: zoned model is not consistent across all devices", 1567 dm_device_name(t->md)); 1568 return -EINVAL; 1569 } 1570 1571 /* Check zone size validity and compatibility */ 1572 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1573 return -EINVAL; 1574 1575 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1576 DMERR("%s: zone sectors is not consistent across all zoned devices", 1577 dm_device_name(t->md)); 1578 return -EINVAL; 1579 } 1580 1581 return 0; 1582 } 1583 1584 /* 1585 * Establish the new table's queue_limits and validate them. 1586 */ 1587 int dm_calculate_queue_limits(struct dm_table *t, 1588 struct queue_limits *limits) 1589 { 1590 struct queue_limits ti_limits; 1591 unsigned int zone_sectors = 0; 1592 bool zoned = false; 1593 1594 blk_set_stacking_limits(limits); 1595 1596 t->integrity_supported = true; 1597 for (unsigned int i = 0; i < t->num_targets; i++) { 1598 struct dm_target *ti = dm_table_get_target(t, i); 1599 1600 if (!dm_target_passes_integrity(ti->type)) 1601 t->integrity_supported = false; 1602 } 1603 1604 for (unsigned int i = 0; i < t->num_targets; i++) { 1605 struct dm_target *ti = dm_table_get_target(t, i); 1606 1607 blk_set_stacking_limits(&ti_limits); 1608 1609 if (!ti->type->iterate_devices) { 1610 /* Set I/O hints portion of queue limits */ 1611 if (ti->type->io_hints) 1612 ti->type->io_hints(ti, &ti_limits); 1613 goto combine_limits; 1614 } 1615 1616 /* 1617 * Combine queue limits of all the devices this target uses. 1618 */ 1619 ti->type->iterate_devices(ti, dm_set_device_limits, 1620 &ti_limits); 1621 1622 if (!zoned && ti_limits.zoned) { 1623 /* 1624 * After stacking all limits, validate all devices 1625 * in table support this zoned model and zone sectors. 1626 */ 1627 zoned = ti_limits.zoned; 1628 zone_sectors = ti_limits.chunk_sectors; 1629 } 1630 1631 /* Set I/O hints portion of queue limits */ 1632 if (ti->type->io_hints) 1633 ti->type->io_hints(ti, &ti_limits); 1634 1635 /* 1636 * Check each device area is consistent with the target's 1637 * overall queue limits. 1638 */ 1639 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1640 &ti_limits)) 1641 return -EINVAL; 1642 1643 combine_limits: 1644 /* 1645 * Merge this target's queue limits into the overall limits 1646 * for the table. 1647 */ 1648 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1649 DMWARN("%s: adding target device (start sect %llu len %llu) " 1650 "caused an alignment inconsistency", 1651 dm_device_name(t->md), 1652 (unsigned long long) ti->begin, 1653 (unsigned long long) ti->len); 1654 1655 if (t->integrity_supported || 1656 dm_target_has_integrity(ti->type)) { 1657 if (!queue_limits_stack_integrity(limits, &ti_limits)) { 1658 DMWARN("%s: adding target device (start sect %llu len %llu) " 1659 "disabled integrity support due to incompatibility", 1660 dm_device_name(t->md), 1661 (unsigned long long) ti->begin, 1662 (unsigned long long) ti->len); 1663 t->integrity_supported = false; 1664 } 1665 } 1666 } 1667 1668 /* 1669 * Verify that the zoned model and zone sectors, as determined before 1670 * any .io_hints override, are the same across all devices in the table. 1671 * - this is especially relevant if .io_hints is emulating a disk-managed 1672 * zoned model on host-managed zoned block devices. 1673 * BUT... 1674 */ 1675 if (limits->zoned) { 1676 /* 1677 * ...IF the above limits stacking determined a zoned model 1678 * validate that all of the table's devices conform to it. 1679 */ 1680 zoned = limits->zoned; 1681 zone_sectors = limits->chunk_sectors; 1682 } 1683 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1684 return -EINVAL; 1685 1686 return validate_hardware_logical_block_alignment(t, limits); 1687 } 1688 1689 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1690 sector_t start, sector_t len, void *data) 1691 { 1692 unsigned long flush = (unsigned long) data; 1693 struct request_queue *q = bdev_get_queue(dev->bdev); 1694 1695 return (q->queue_flags & flush); 1696 } 1697 1698 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1699 { 1700 /* 1701 * Require at least one underlying device to support flushes. 1702 * t->devices includes internal dm devices such as mirror logs 1703 * so we need to use iterate_devices here, which targets 1704 * supporting flushes must provide. 1705 */ 1706 for (unsigned int i = 0; i < t->num_targets; i++) { 1707 struct dm_target *ti = dm_table_get_target(t, i); 1708 1709 if (!ti->num_flush_bios) 1710 continue; 1711 1712 if (ti->flush_supported) 1713 return true; 1714 1715 if (ti->type->iterate_devices && 1716 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1717 return true; 1718 } 1719 1720 return false; 1721 } 1722 1723 static int device_dax_write_cache_enabled(struct dm_target *ti, 1724 struct dm_dev *dev, sector_t start, 1725 sector_t len, void *data) 1726 { 1727 struct dax_device *dax_dev = dev->dax_dev; 1728 1729 if (!dax_dev) 1730 return false; 1731 1732 if (dax_write_cache_enabled(dax_dev)) 1733 return true; 1734 return false; 1735 } 1736 1737 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1738 sector_t start, sector_t len, void *data) 1739 { 1740 return !bdev_nonrot(dev->bdev); 1741 } 1742 1743 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1744 sector_t start, sector_t len, void *data) 1745 { 1746 struct request_queue *q = bdev_get_queue(dev->bdev); 1747 1748 return !blk_queue_add_random(q); 1749 } 1750 1751 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1752 sector_t start, sector_t len, void *data) 1753 { 1754 struct request_queue *q = bdev_get_queue(dev->bdev); 1755 1756 return !q->limits.max_write_zeroes_sectors; 1757 } 1758 1759 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1760 { 1761 for (unsigned int i = 0; i < t->num_targets; i++) { 1762 struct dm_target *ti = dm_table_get_target(t, i); 1763 1764 if (!ti->num_write_zeroes_bios) 1765 return false; 1766 1767 if (!ti->type->iterate_devices || 1768 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1769 return false; 1770 } 1771 1772 return true; 1773 } 1774 1775 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1776 sector_t start, sector_t len, void *data) 1777 { 1778 return !bdev_nowait(dev->bdev); 1779 } 1780 1781 static bool dm_table_supports_nowait(struct dm_table *t) 1782 { 1783 for (unsigned int i = 0; i < t->num_targets; i++) { 1784 struct dm_target *ti = dm_table_get_target(t, i); 1785 1786 if (!dm_target_supports_nowait(ti->type)) 1787 return false; 1788 1789 if (!ti->type->iterate_devices || 1790 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1791 return false; 1792 } 1793 1794 return true; 1795 } 1796 1797 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1798 sector_t start, sector_t len, void *data) 1799 { 1800 return !bdev_max_discard_sectors(dev->bdev); 1801 } 1802 1803 static bool dm_table_supports_discards(struct dm_table *t) 1804 { 1805 for (unsigned int i = 0; i < t->num_targets; i++) { 1806 struct dm_target *ti = dm_table_get_target(t, i); 1807 1808 if (!ti->num_discard_bios) 1809 return false; 1810 1811 /* 1812 * Either the target provides discard support (as implied by setting 1813 * 'discards_supported') or it relies on _all_ data devices having 1814 * discard support. 1815 */ 1816 if (!ti->discards_supported && 1817 (!ti->type->iterate_devices || 1818 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1819 return false; 1820 } 1821 1822 return true; 1823 } 1824 1825 static int device_not_secure_erase_capable(struct dm_target *ti, 1826 struct dm_dev *dev, sector_t start, 1827 sector_t len, void *data) 1828 { 1829 return !bdev_max_secure_erase_sectors(dev->bdev); 1830 } 1831 1832 static bool dm_table_supports_secure_erase(struct dm_table *t) 1833 { 1834 for (unsigned int i = 0; i < t->num_targets; i++) { 1835 struct dm_target *ti = dm_table_get_target(t, i); 1836 1837 if (!ti->num_secure_erase_bios) 1838 return false; 1839 1840 if (!ti->type->iterate_devices || 1841 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1842 return false; 1843 } 1844 1845 return true; 1846 } 1847 1848 static int device_requires_stable_pages(struct dm_target *ti, 1849 struct dm_dev *dev, sector_t start, 1850 sector_t len, void *data) 1851 { 1852 return bdev_stable_writes(dev->bdev); 1853 } 1854 1855 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1856 struct queue_limits *limits) 1857 { 1858 bool wc = false, fua = false; 1859 int r; 1860 1861 if (dm_table_supports_nowait(t)) 1862 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1863 else 1864 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1865 1866 if (!dm_table_supports_discards(t)) { 1867 limits->max_hw_discard_sectors = 0; 1868 limits->discard_granularity = 0; 1869 limits->discard_alignment = 0; 1870 limits->discard_misaligned = 0; 1871 } 1872 1873 if (!dm_table_supports_write_zeroes(t)) 1874 limits->max_write_zeroes_sectors = 0; 1875 1876 if (!dm_table_supports_secure_erase(t)) 1877 limits->max_secure_erase_sectors = 0; 1878 1879 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1880 wc = true; 1881 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1882 fua = true; 1883 } 1884 blk_queue_write_cache(q, wc, fua); 1885 1886 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1887 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1888 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1889 set_dax_synchronous(t->md->dax_dev); 1890 } else 1891 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1892 1893 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1894 dax_write_cache(t->md->dax_dev, true); 1895 1896 /* Ensure that all underlying devices are non-rotational. */ 1897 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 1898 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1899 else 1900 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1901 1902 /* 1903 * Some devices don't use blk_integrity but still want stable pages 1904 * because they do their own checksumming. 1905 * If any underlying device requires stable pages, a table must require 1906 * them as well. Only targets that support iterate_devices are considered: 1907 * don't want error, zero, etc to require stable pages. 1908 */ 1909 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 1910 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 1911 else 1912 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 1913 1914 /* 1915 * Determine whether or not this queue's I/O timings contribute 1916 * to the entropy pool, Only request-based targets use this. 1917 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1918 * have it set. 1919 */ 1920 if (blk_queue_add_random(q) && 1921 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 1922 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1923 1924 /* 1925 * For a zoned target, setup the zones related queue attributes 1926 * and resources necessary for zone append emulation if necessary. 1927 */ 1928 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && limits->zoned) { 1929 r = dm_set_zones_restrictions(t, q, limits); 1930 if (r) 1931 return r; 1932 } 1933 1934 r = queue_limits_set(q, limits); 1935 if (r) 1936 return r; 1937 1938 dm_update_crypto_profile(q, t); 1939 1940 /* 1941 * Check for request-based device is left to 1942 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue(). 1943 * 1944 * For bio-based device, only set QUEUE_FLAG_POLL when all 1945 * underlying devices supporting polling. 1946 */ 1947 if (__table_type_bio_based(t->type)) { 1948 if (dm_table_supports_poll(t)) 1949 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 1950 else 1951 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 1952 } 1953 1954 return 0; 1955 } 1956 1957 struct list_head *dm_table_get_devices(struct dm_table *t) 1958 { 1959 return &t->devices; 1960 } 1961 1962 blk_mode_t dm_table_get_mode(struct dm_table *t) 1963 { 1964 return t->mode; 1965 } 1966 EXPORT_SYMBOL(dm_table_get_mode); 1967 1968 enum suspend_mode { 1969 PRESUSPEND, 1970 PRESUSPEND_UNDO, 1971 POSTSUSPEND, 1972 }; 1973 1974 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1975 { 1976 lockdep_assert_held(&t->md->suspend_lock); 1977 1978 for (unsigned int i = 0; i < t->num_targets; i++) { 1979 struct dm_target *ti = dm_table_get_target(t, i); 1980 1981 switch (mode) { 1982 case PRESUSPEND: 1983 if (ti->type->presuspend) 1984 ti->type->presuspend(ti); 1985 break; 1986 case PRESUSPEND_UNDO: 1987 if (ti->type->presuspend_undo) 1988 ti->type->presuspend_undo(ti); 1989 break; 1990 case POSTSUSPEND: 1991 if (ti->type->postsuspend) 1992 ti->type->postsuspend(ti); 1993 break; 1994 } 1995 } 1996 } 1997 1998 void dm_table_presuspend_targets(struct dm_table *t) 1999 { 2000 if (!t) 2001 return; 2002 2003 suspend_targets(t, PRESUSPEND); 2004 } 2005 2006 void dm_table_presuspend_undo_targets(struct dm_table *t) 2007 { 2008 if (!t) 2009 return; 2010 2011 suspend_targets(t, PRESUSPEND_UNDO); 2012 } 2013 2014 void dm_table_postsuspend_targets(struct dm_table *t) 2015 { 2016 if (!t) 2017 return; 2018 2019 suspend_targets(t, POSTSUSPEND); 2020 } 2021 2022 int dm_table_resume_targets(struct dm_table *t) 2023 { 2024 unsigned int i; 2025 int r = 0; 2026 2027 lockdep_assert_held(&t->md->suspend_lock); 2028 2029 for (i = 0; i < t->num_targets; i++) { 2030 struct dm_target *ti = dm_table_get_target(t, i); 2031 2032 if (!ti->type->preresume) 2033 continue; 2034 2035 r = ti->type->preresume(ti); 2036 if (r) { 2037 DMERR("%s: %s: preresume failed, error = %d", 2038 dm_device_name(t->md), ti->type->name, r); 2039 return r; 2040 } 2041 } 2042 2043 for (i = 0; i < t->num_targets; i++) { 2044 struct dm_target *ti = dm_table_get_target(t, i); 2045 2046 if (ti->type->resume) 2047 ti->type->resume(ti); 2048 } 2049 2050 return 0; 2051 } 2052 2053 struct mapped_device *dm_table_get_md(struct dm_table *t) 2054 { 2055 return t->md; 2056 } 2057 EXPORT_SYMBOL(dm_table_get_md); 2058 2059 const char *dm_table_device_name(struct dm_table *t) 2060 { 2061 return dm_device_name(t->md); 2062 } 2063 EXPORT_SYMBOL_GPL(dm_table_device_name); 2064 2065 void dm_table_run_md_queue_async(struct dm_table *t) 2066 { 2067 if (!dm_table_request_based(t)) 2068 return; 2069 2070 if (t->md->queue) 2071 blk_mq_run_hw_queues(t->md->queue, true); 2072 } 2073 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2074 2075