1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <linux/delay.h> 19 #include <asm/atomic.h> 20 21 #define DM_MSG_PREFIX "table" 22 23 #define MAX_DEPTH 16 24 #define NODE_SIZE L1_CACHE_BYTES 25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 27 28 /* 29 * The table has always exactly one reference from either mapped_device->map 30 * or hash_cell->new_map. This reference is not counted in table->holders. 31 * A pair of dm_create_table/dm_destroy_table functions is used for table 32 * creation/destruction. 33 * 34 * Temporary references from the other code increase table->holders. A pair 35 * of dm_table_get/dm_table_put functions is used to manipulate it. 36 * 37 * When the table is about to be destroyed, we wait for table->holders to 38 * drop to zero. 39 */ 40 41 struct dm_table { 42 struct mapped_device *md; 43 atomic_t holders; 44 unsigned type; 45 46 /* btree table */ 47 unsigned int depth; 48 unsigned int counts[MAX_DEPTH]; /* in nodes */ 49 sector_t *index[MAX_DEPTH]; 50 51 unsigned int num_targets; 52 unsigned int num_allocated; 53 sector_t *highs; 54 struct dm_target *targets; 55 56 /* 57 * Indicates the rw permissions for the new logical 58 * device. This should be a combination of FMODE_READ 59 * and FMODE_WRITE. 60 */ 61 fmode_t mode; 62 63 /* a list of devices used by this table */ 64 struct list_head devices; 65 66 /* events get handed up using this callback */ 67 void (*event_fn)(void *); 68 void *event_context; 69 70 struct dm_md_mempools *mempools; 71 }; 72 73 /* 74 * Similar to ceiling(log_size(n)) 75 */ 76 static unsigned int int_log(unsigned int n, unsigned int base) 77 { 78 int result = 0; 79 80 while (n > 1) { 81 n = dm_div_up(n, base); 82 result++; 83 } 84 85 return result; 86 } 87 88 /* 89 * Calculate the index of the child node of the n'th node k'th key. 90 */ 91 static inline unsigned int get_child(unsigned int n, unsigned int k) 92 { 93 return (n * CHILDREN_PER_NODE) + k; 94 } 95 96 /* 97 * Return the n'th node of level l from table t. 98 */ 99 static inline sector_t *get_node(struct dm_table *t, 100 unsigned int l, unsigned int n) 101 { 102 return t->index[l] + (n * KEYS_PER_NODE); 103 } 104 105 /* 106 * Return the highest key that you could lookup from the n'th 107 * node on level l of the btree. 108 */ 109 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 110 { 111 for (; l < t->depth - 1; l++) 112 n = get_child(n, CHILDREN_PER_NODE - 1); 113 114 if (n >= t->counts[l]) 115 return (sector_t) - 1; 116 117 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 118 } 119 120 /* 121 * Fills in a level of the btree based on the highs of the level 122 * below it. 123 */ 124 static int setup_btree_index(unsigned int l, struct dm_table *t) 125 { 126 unsigned int n, k; 127 sector_t *node; 128 129 for (n = 0U; n < t->counts[l]; n++) { 130 node = get_node(t, l, n); 131 132 for (k = 0U; k < KEYS_PER_NODE; k++) 133 node[k] = high(t, l + 1, get_child(n, k)); 134 } 135 136 return 0; 137 } 138 139 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 140 { 141 unsigned long size; 142 void *addr; 143 144 /* 145 * Check that we're not going to overflow. 146 */ 147 if (nmemb > (ULONG_MAX / elem_size)) 148 return NULL; 149 150 size = nmemb * elem_size; 151 addr = vmalloc(size); 152 if (addr) 153 memset(addr, 0, size); 154 155 return addr; 156 } 157 158 /* 159 * highs, and targets are managed as dynamic arrays during a 160 * table load. 161 */ 162 static int alloc_targets(struct dm_table *t, unsigned int num) 163 { 164 sector_t *n_highs; 165 struct dm_target *n_targets; 166 int n = t->num_targets; 167 168 /* 169 * Allocate both the target array and offset array at once. 170 * Append an empty entry to catch sectors beyond the end of 171 * the device. 172 */ 173 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 174 sizeof(sector_t)); 175 if (!n_highs) 176 return -ENOMEM; 177 178 n_targets = (struct dm_target *) (n_highs + num); 179 180 if (n) { 181 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 182 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 183 } 184 185 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 186 vfree(t->highs); 187 188 t->num_allocated = num; 189 t->highs = n_highs; 190 t->targets = n_targets; 191 192 return 0; 193 } 194 195 int dm_table_create(struct dm_table **result, fmode_t mode, 196 unsigned num_targets, struct mapped_device *md) 197 { 198 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 199 200 if (!t) 201 return -ENOMEM; 202 203 INIT_LIST_HEAD(&t->devices); 204 atomic_set(&t->holders, 0); 205 206 if (!num_targets) 207 num_targets = KEYS_PER_NODE; 208 209 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 210 211 if (alloc_targets(t, num_targets)) { 212 kfree(t); 213 t = NULL; 214 return -ENOMEM; 215 } 216 217 t->mode = mode; 218 t->md = md; 219 *result = t; 220 return 0; 221 } 222 223 static void free_devices(struct list_head *devices) 224 { 225 struct list_head *tmp, *next; 226 227 list_for_each_safe(tmp, next, devices) { 228 struct dm_dev_internal *dd = 229 list_entry(tmp, struct dm_dev_internal, list); 230 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 231 dd->dm_dev.name); 232 kfree(dd); 233 } 234 } 235 236 void dm_table_destroy(struct dm_table *t) 237 { 238 unsigned int i; 239 240 while (atomic_read(&t->holders)) 241 msleep(1); 242 smp_mb(); 243 244 /* free the indexes (see dm_table_complete) */ 245 if (t->depth >= 2) 246 vfree(t->index[t->depth - 2]); 247 248 /* free the targets */ 249 for (i = 0; i < t->num_targets; i++) { 250 struct dm_target *tgt = t->targets + i; 251 252 if (tgt->type->dtr) 253 tgt->type->dtr(tgt); 254 255 dm_put_target_type(tgt->type); 256 } 257 258 vfree(t->highs); 259 260 /* free the device list */ 261 if (t->devices.next != &t->devices) 262 free_devices(&t->devices); 263 264 dm_free_md_mempools(t->mempools); 265 266 kfree(t); 267 } 268 269 void dm_table_get(struct dm_table *t) 270 { 271 atomic_inc(&t->holders); 272 } 273 274 void dm_table_put(struct dm_table *t) 275 { 276 if (!t) 277 return; 278 279 smp_mb__before_atomic_dec(); 280 atomic_dec(&t->holders); 281 } 282 283 /* 284 * Checks to see if we need to extend highs or targets. 285 */ 286 static inline int check_space(struct dm_table *t) 287 { 288 if (t->num_targets >= t->num_allocated) 289 return alloc_targets(t, t->num_allocated * 2); 290 291 return 0; 292 } 293 294 /* 295 * See if we've already got a device in the list. 296 */ 297 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 298 { 299 struct dm_dev_internal *dd; 300 301 list_for_each_entry (dd, l, list) 302 if (dd->dm_dev.bdev->bd_dev == dev) 303 return dd; 304 305 return NULL; 306 } 307 308 /* 309 * Open a device so we can use it as a map destination. 310 */ 311 static int open_dev(struct dm_dev_internal *d, dev_t dev, 312 struct mapped_device *md) 313 { 314 static char *_claim_ptr = "I belong to device-mapper"; 315 struct block_device *bdev; 316 317 int r; 318 319 BUG_ON(d->dm_dev.bdev); 320 321 bdev = open_by_devnum(dev, d->dm_dev.mode); 322 if (IS_ERR(bdev)) 323 return PTR_ERR(bdev); 324 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 325 if (r) 326 blkdev_put(bdev, d->dm_dev.mode); 327 else 328 d->dm_dev.bdev = bdev; 329 return r; 330 } 331 332 /* 333 * Close a device that we've been using. 334 */ 335 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 336 { 337 if (!d->dm_dev.bdev) 338 return; 339 340 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 341 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); 342 d->dm_dev.bdev = NULL; 343 } 344 345 /* 346 * If possible, this checks an area of a destination device is valid. 347 */ 348 static int device_area_is_valid(struct dm_target *ti, struct dm_dev *dev, 349 sector_t start, void *data) 350 { 351 struct queue_limits *limits = data; 352 struct block_device *bdev = dev->bdev; 353 sector_t dev_size = 354 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 355 unsigned short logical_block_size_sectors = 356 limits->logical_block_size >> SECTOR_SHIFT; 357 char b[BDEVNAME_SIZE]; 358 359 if (!dev_size) 360 return 1; 361 362 if ((start >= dev_size) || (start + ti->len > dev_size)) { 363 DMWARN("%s: %s too small for target", 364 dm_device_name(ti->table->md), bdevname(bdev, b)); 365 return 0; 366 } 367 368 if (logical_block_size_sectors <= 1) 369 return 1; 370 371 if (start & (logical_block_size_sectors - 1)) { 372 DMWARN("%s: start=%llu not aligned to h/w " 373 "logical block size %hu of %s", 374 dm_device_name(ti->table->md), 375 (unsigned long long)start, 376 limits->logical_block_size, bdevname(bdev, b)); 377 return 0; 378 } 379 380 if (ti->len & (logical_block_size_sectors - 1)) { 381 DMWARN("%s: len=%llu not aligned to h/w " 382 "logical block size %hu of %s", 383 dm_device_name(ti->table->md), 384 (unsigned long long)ti->len, 385 limits->logical_block_size, bdevname(bdev, b)); 386 return 0; 387 } 388 389 return 1; 390 } 391 392 /* 393 * This upgrades the mode on an already open dm_dev, being 394 * careful to leave things as they were if we fail to reopen the 395 * device and not to touch the existing bdev field in case 396 * it is accessed concurrently inside dm_table_any_congested(). 397 */ 398 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 399 struct mapped_device *md) 400 { 401 int r; 402 struct dm_dev_internal dd_new, dd_old; 403 404 dd_new = dd_old = *dd; 405 406 dd_new.dm_dev.mode |= new_mode; 407 dd_new.dm_dev.bdev = NULL; 408 409 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 410 if (r) 411 return r; 412 413 dd->dm_dev.mode |= new_mode; 414 close_dev(&dd_old, md); 415 416 return 0; 417 } 418 419 /* 420 * Add a device to the list, or just increment the usage count if 421 * it's already present. 422 */ 423 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 424 const char *path, sector_t start, sector_t len, 425 fmode_t mode, struct dm_dev **result) 426 { 427 int r; 428 dev_t uninitialized_var(dev); 429 struct dm_dev_internal *dd; 430 unsigned int major, minor; 431 432 BUG_ON(!t); 433 434 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 435 /* Extract the major/minor numbers */ 436 dev = MKDEV(major, minor); 437 if (MAJOR(dev) != major || MINOR(dev) != minor) 438 return -EOVERFLOW; 439 } else { 440 /* convert the path to a device */ 441 struct block_device *bdev = lookup_bdev(path); 442 443 if (IS_ERR(bdev)) 444 return PTR_ERR(bdev); 445 dev = bdev->bd_dev; 446 bdput(bdev); 447 } 448 449 dd = find_device(&t->devices, dev); 450 if (!dd) { 451 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 452 if (!dd) 453 return -ENOMEM; 454 455 dd->dm_dev.mode = mode; 456 dd->dm_dev.bdev = NULL; 457 458 if ((r = open_dev(dd, dev, t->md))) { 459 kfree(dd); 460 return r; 461 } 462 463 format_dev_t(dd->dm_dev.name, dev); 464 465 atomic_set(&dd->count, 0); 466 list_add(&dd->list, &t->devices); 467 468 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 469 r = upgrade_mode(dd, mode, t->md); 470 if (r) 471 return r; 472 } 473 atomic_inc(&dd->count); 474 475 *result = &dd->dm_dev; 476 return 0; 477 } 478 479 /* 480 * Returns the minimum that is _not_ zero, unless both are zero. 481 */ 482 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 483 484 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 485 sector_t start, void *data) 486 { 487 struct queue_limits *limits = data; 488 struct block_device *bdev = dev->bdev; 489 struct request_queue *q = bdev_get_queue(bdev); 490 char b[BDEVNAME_SIZE]; 491 492 if (unlikely(!q)) { 493 DMWARN("%s: Cannot set limits for nonexistent device %s", 494 dm_device_name(ti->table->md), bdevname(bdev, b)); 495 return 0; 496 } 497 498 if (blk_stack_limits(limits, &q->limits, start << 9) < 0) 499 DMWARN("%s: target device %s is misaligned", 500 dm_device_name(ti->table->md), bdevname(bdev, b)); 501 502 /* 503 * Check if merge fn is supported. 504 * If not we'll force DM to use PAGE_SIZE or 505 * smaller I/O, just to be safe. 506 */ 507 508 if (q->merge_bvec_fn && !ti->type->merge) 509 limits->max_sectors = 510 min_not_zero(limits->max_sectors, 511 (unsigned int) (PAGE_SIZE >> 9)); 512 return 0; 513 } 514 EXPORT_SYMBOL_GPL(dm_set_device_limits); 515 516 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 517 sector_t len, fmode_t mode, struct dm_dev **result) 518 { 519 return __table_get_device(ti->table, ti, path, 520 start, len, mode, result); 521 } 522 523 524 /* 525 * Decrement a devices use count and remove it if necessary. 526 */ 527 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 528 { 529 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 530 dm_dev); 531 532 if (atomic_dec_and_test(&dd->count)) { 533 close_dev(dd, ti->table->md); 534 list_del(&dd->list); 535 kfree(dd); 536 } 537 } 538 539 /* 540 * Checks to see if the target joins onto the end of the table. 541 */ 542 static int adjoin(struct dm_table *table, struct dm_target *ti) 543 { 544 struct dm_target *prev; 545 546 if (!table->num_targets) 547 return !ti->begin; 548 549 prev = &table->targets[table->num_targets - 1]; 550 return (ti->begin == (prev->begin + prev->len)); 551 } 552 553 /* 554 * Used to dynamically allocate the arg array. 555 */ 556 static char **realloc_argv(unsigned *array_size, char **old_argv) 557 { 558 char **argv; 559 unsigned new_size; 560 561 new_size = *array_size ? *array_size * 2 : 64; 562 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 563 if (argv) { 564 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 565 *array_size = new_size; 566 } 567 568 kfree(old_argv); 569 return argv; 570 } 571 572 /* 573 * Destructively splits up the argument list to pass to ctr. 574 */ 575 int dm_split_args(int *argc, char ***argvp, char *input) 576 { 577 char *start, *end = input, *out, **argv = NULL; 578 unsigned array_size = 0; 579 580 *argc = 0; 581 582 if (!input) { 583 *argvp = NULL; 584 return 0; 585 } 586 587 argv = realloc_argv(&array_size, argv); 588 if (!argv) 589 return -ENOMEM; 590 591 while (1) { 592 start = end; 593 594 /* Skip whitespace */ 595 while (*start && isspace(*start)) 596 start++; 597 598 if (!*start) 599 break; /* success, we hit the end */ 600 601 /* 'out' is used to remove any back-quotes */ 602 end = out = start; 603 while (*end) { 604 /* Everything apart from '\0' can be quoted */ 605 if (*end == '\\' && *(end + 1)) { 606 *out++ = *(end + 1); 607 end += 2; 608 continue; 609 } 610 611 if (isspace(*end)) 612 break; /* end of token */ 613 614 *out++ = *end++; 615 } 616 617 /* have we already filled the array ? */ 618 if ((*argc + 1) > array_size) { 619 argv = realloc_argv(&array_size, argv); 620 if (!argv) 621 return -ENOMEM; 622 } 623 624 /* we know this is whitespace */ 625 if (*end) 626 end++; 627 628 /* terminate the string and put it in the array */ 629 *out = '\0'; 630 argv[*argc] = start; 631 (*argc)++; 632 } 633 634 *argvp = argv; 635 return 0; 636 } 637 638 /* 639 * Impose necessary and sufficient conditions on a devices's table such 640 * that any incoming bio which respects its logical_block_size can be 641 * processed successfully. If it falls across the boundary between 642 * two or more targets, the size of each piece it gets split into must 643 * be compatible with the logical_block_size of the target processing it. 644 */ 645 static int validate_hardware_logical_block_alignment(struct dm_table *table, 646 struct queue_limits *limits) 647 { 648 /* 649 * This function uses arithmetic modulo the logical_block_size 650 * (in units of 512-byte sectors). 651 */ 652 unsigned short device_logical_block_size_sects = 653 limits->logical_block_size >> SECTOR_SHIFT; 654 655 /* 656 * Offset of the start of the next table entry, mod logical_block_size. 657 */ 658 unsigned short next_target_start = 0; 659 660 /* 661 * Given an aligned bio that extends beyond the end of a 662 * target, how many sectors must the next target handle? 663 */ 664 unsigned short remaining = 0; 665 666 struct dm_target *uninitialized_var(ti); 667 struct queue_limits ti_limits; 668 unsigned i = 0; 669 670 /* 671 * Check each entry in the table in turn. 672 */ 673 while (i < dm_table_get_num_targets(table)) { 674 ti = dm_table_get_target(table, i++); 675 676 blk_set_default_limits(&ti_limits); 677 678 /* combine all target devices' limits */ 679 if (ti->type->iterate_devices) 680 ti->type->iterate_devices(ti, dm_set_device_limits, 681 &ti_limits); 682 683 /* 684 * If the remaining sectors fall entirely within this 685 * table entry are they compatible with its logical_block_size? 686 */ 687 if (remaining < ti->len && 688 remaining & ((ti_limits.logical_block_size >> 689 SECTOR_SHIFT) - 1)) 690 break; /* Error */ 691 692 next_target_start = 693 (unsigned short) ((next_target_start + ti->len) & 694 (device_logical_block_size_sects - 1)); 695 remaining = next_target_start ? 696 device_logical_block_size_sects - next_target_start : 0; 697 } 698 699 if (remaining) { 700 DMWARN("%s: table line %u (start sect %llu len %llu) " 701 "not aligned to h/w logical block size %hu", 702 dm_device_name(table->md), i, 703 (unsigned long long) ti->begin, 704 (unsigned long long) ti->len, 705 limits->logical_block_size); 706 return -EINVAL; 707 } 708 709 return 0; 710 } 711 712 int dm_table_add_target(struct dm_table *t, const char *type, 713 sector_t start, sector_t len, char *params) 714 { 715 int r = -EINVAL, argc; 716 char **argv; 717 struct dm_target *tgt; 718 719 if ((r = check_space(t))) 720 return r; 721 722 tgt = t->targets + t->num_targets; 723 memset(tgt, 0, sizeof(*tgt)); 724 725 if (!len) { 726 DMERR("%s: zero-length target", dm_device_name(t->md)); 727 return -EINVAL; 728 } 729 730 tgt->type = dm_get_target_type(type); 731 if (!tgt->type) { 732 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 733 type); 734 return -EINVAL; 735 } 736 737 tgt->table = t; 738 tgt->begin = start; 739 tgt->len = len; 740 tgt->error = "Unknown error"; 741 742 /* 743 * Does this target adjoin the previous one ? 744 */ 745 if (!adjoin(t, tgt)) { 746 tgt->error = "Gap in table"; 747 r = -EINVAL; 748 goto bad; 749 } 750 751 r = dm_split_args(&argc, &argv, params); 752 if (r) { 753 tgt->error = "couldn't split parameters (insufficient memory)"; 754 goto bad; 755 } 756 757 r = tgt->type->ctr(tgt, argc, argv); 758 kfree(argv); 759 if (r) 760 goto bad; 761 762 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 763 764 return 0; 765 766 bad: 767 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 768 dm_put_target_type(tgt->type); 769 return r; 770 } 771 772 int dm_table_set_type(struct dm_table *t) 773 { 774 unsigned i; 775 unsigned bio_based = 0, request_based = 0; 776 struct dm_target *tgt; 777 struct dm_dev_internal *dd; 778 struct list_head *devices; 779 780 for (i = 0; i < t->num_targets; i++) { 781 tgt = t->targets + i; 782 if (dm_target_request_based(tgt)) 783 request_based = 1; 784 else 785 bio_based = 1; 786 787 if (bio_based && request_based) { 788 DMWARN("Inconsistent table: different target types" 789 " can't be mixed up"); 790 return -EINVAL; 791 } 792 } 793 794 if (bio_based) { 795 /* We must use this table as bio-based */ 796 t->type = DM_TYPE_BIO_BASED; 797 return 0; 798 } 799 800 BUG_ON(!request_based); /* No targets in this table */ 801 802 /* Non-request-stackable devices can't be used for request-based dm */ 803 devices = dm_table_get_devices(t); 804 list_for_each_entry(dd, devices, list) { 805 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 806 DMWARN("table load rejected: including" 807 " non-request-stackable devices"); 808 return -EINVAL; 809 } 810 } 811 812 /* 813 * Request-based dm supports only tables that have a single target now. 814 * To support multiple targets, request splitting support is needed, 815 * and that needs lots of changes in the block-layer. 816 * (e.g. request completion process for partial completion.) 817 */ 818 if (t->num_targets > 1) { 819 DMWARN("Request-based dm doesn't support multiple targets yet"); 820 return -EINVAL; 821 } 822 823 t->type = DM_TYPE_REQUEST_BASED; 824 825 return 0; 826 } 827 828 unsigned dm_table_get_type(struct dm_table *t) 829 { 830 return t->type; 831 } 832 833 bool dm_table_bio_based(struct dm_table *t) 834 { 835 return dm_table_get_type(t) == DM_TYPE_BIO_BASED; 836 } 837 838 bool dm_table_request_based(struct dm_table *t) 839 { 840 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 841 } 842 843 int dm_table_alloc_md_mempools(struct dm_table *t) 844 { 845 unsigned type = dm_table_get_type(t); 846 847 if (unlikely(type == DM_TYPE_NONE)) { 848 DMWARN("no table type is set, can't allocate mempools"); 849 return -EINVAL; 850 } 851 852 t->mempools = dm_alloc_md_mempools(type); 853 if (!t->mempools) 854 return -ENOMEM; 855 856 return 0; 857 } 858 859 void dm_table_free_md_mempools(struct dm_table *t) 860 { 861 dm_free_md_mempools(t->mempools); 862 t->mempools = NULL; 863 } 864 865 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 866 { 867 return t->mempools; 868 } 869 870 static int setup_indexes(struct dm_table *t) 871 { 872 int i; 873 unsigned int total = 0; 874 sector_t *indexes; 875 876 /* allocate the space for *all* the indexes */ 877 for (i = t->depth - 2; i >= 0; i--) { 878 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 879 total += t->counts[i]; 880 } 881 882 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 883 if (!indexes) 884 return -ENOMEM; 885 886 /* set up internal nodes, bottom-up */ 887 for (i = t->depth - 2; i >= 0; i--) { 888 t->index[i] = indexes; 889 indexes += (KEYS_PER_NODE * t->counts[i]); 890 setup_btree_index(i, t); 891 } 892 893 return 0; 894 } 895 896 /* 897 * Builds the btree to index the map. 898 */ 899 int dm_table_complete(struct dm_table *t) 900 { 901 int r = 0; 902 unsigned int leaf_nodes; 903 904 /* how many indexes will the btree have ? */ 905 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 906 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 907 908 /* leaf layer has already been set up */ 909 t->counts[t->depth - 1] = leaf_nodes; 910 t->index[t->depth - 1] = t->highs; 911 912 if (t->depth >= 2) 913 r = setup_indexes(t); 914 915 return r; 916 } 917 918 static DEFINE_MUTEX(_event_lock); 919 void dm_table_event_callback(struct dm_table *t, 920 void (*fn)(void *), void *context) 921 { 922 mutex_lock(&_event_lock); 923 t->event_fn = fn; 924 t->event_context = context; 925 mutex_unlock(&_event_lock); 926 } 927 928 void dm_table_event(struct dm_table *t) 929 { 930 /* 931 * You can no longer call dm_table_event() from interrupt 932 * context, use a bottom half instead. 933 */ 934 BUG_ON(in_interrupt()); 935 936 mutex_lock(&_event_lock); 937 if (t->event_fn) 938 t->event_fn(t->event_context); 939 mutex_unlock(&_event_lock); 940 } 941 942 sector_t dm_table_get_size(struct dm_table *t) 943 { 944 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 945 } 946 947 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 948 { 949 if (index >= t->num_targets) 950 return NULL; 951 952 return t->targets + index; 953 } 954 955 /* 956 * Search the btree for the correct target. 957 * 958 * Caller should check returned pointer with dm_target_is_valid() 959 * to trap I/O beyond end of device. 960 */ 961 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 962 { 963 unsigned int l, n = 0, k = 0; 964 sector_t *node; 965 966 for (l = 0; l < t->depth; l++) { 967 n = get_child(n, k); 968 node = get_node(t, l, n); 969 970 for (k = 0; k < KEYS_PER_NODE; k++) 971 if (node[k] >= sector) 972 break; 973 } 974 975 return &t->targets[(KEYS_PER_NODE * n) + k]; 976 } 977 978 /* 979 * Establish the new table's queue_limits and validate them. 980 */ 981 int dm_calculate_queue_limits(struct dm_table *table, 982 struct queue_limits *limits) 983 { 984 struct dm_target *uninitialized_var(ti); 985 struct queue_limits ti_limits; 986 unsigned i = 0; 987 988 blk_set_default_limits(limits); 989 990 while (i < dm_table_get_num_targets(table)) { 991 blk_set_default_limits(&ti_limits); 992 993 ti = dm_table_get_target(table, i++); 994 995 if (!ti->type->iterate_devices) 996 goto combine_limits; 997 998 /* 999 * Combine queue limits of all the devices this target uses. 1000 */ 1001 ti->type->iterate_devices(ti, dm_set_device_limits, 1002 &ti_limits); 1003 1004 /* 1005 * Check each device area is consistent with the target's 1006 * overall queue limits. 1007 */ 1008 if (!ti->type->iterate_devices(ti, device_area_is_valid, 1009 &ti_limits)) 1010 return -EINVAL; 1011 1012 combine_limits: 1013 /* 1014 * Merge this target's queue limits into the overall limits 1015 * for the table. 1016 */ 1017 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1018 DMWARN("%s: target device " 1019 "(start sect %llu len %llu) " 1020 "is misaligned", 1021 dm_device_name(table->md), 1022 (unsigned long long) ti->begin, 1023 (unsigned long long) ti->len); 1024 } 1025 1026 return validate_hardware_logical_block_alignment(table, limits); 1027 } 1028 1029 /* 1030 * Set the integrity profile for this device if all devices used have 1031 * matching profiles. 1032 */ 1033 static void dm_table_set_integrity(struct dm_table *t) 1034 { 1035 struct list_head *devices = dm_table_get_devices(t); 1036 struct dm_dev_internal *prev = NULL, *dd = NULL; 1037 1038 if (!blk_get_integrity(dm_disk(t->md))) 1039 return; 1040 1041 list_for_each_entry(dd, devices, list) { 1042 if (prev && 1043 blk_integrity_compare(prev->dm_dev.bdev->bd_disk, 1044 dd->dm_dev.bdev->bd_disk) < 0) { 1045 DMWARN("%s: integrity not set: %s and %s mismatch", 1046 dm_device_name(t->md), 1047 prev->dm_dev.bdev->bd_disk->disk_name, 1048 dd->dm_dev.bdev->bd_disk->disk_name); 1049 goto no_integrity; 1050 } 1051 prev = dd; 1052 } 1053 1054 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev)) 1055 goto no_integrity; 1056 1057 blk_integrity_register(dm_disk(t->md), 1058 bdev_get_integrity(prev->dm_dev.bdev)); 1059 1060 return; 1061 1062 no_integrity: 1063 blk_integrity_register(dm_disk(t->md), NULL); 1064 1065 return; 1066 } 1067 1068 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1069 struct queue_limits *limits) 1070 { 1071 /* 1072 * Each target device in the table has a data area that should normally 1073 * be aligned such that the DM device's alignment_offset is 0. 1074 * FIXME: Propagate alignment_offsets up the stack and warn of 1075 * sub-optimal or inconsistent settings. 1076 */ 1077 limits->alignment_offset = 0; 1078 limits->misaligned = 0; 1079 1080 /* 1081 * Copy table's limits to the DM device's request_queue 1082 */ 1083 q->limits = *limits; 1084 1085 if (limits->no_cluster) 1086 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1087 else 1088 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 1089 1090 dm_table_set_integrity(t); 1091 1092 /* 1093 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1094 * visible to other CPUs because, once the flag is set, incoming bios 1095 * are processed by request-based dm, which refers to the queue 1096 * settings. 1097 * Until the flag set, bios are passed to bio-based dm and queued to 1098 * md->deferred where queue settings are not needed yet. 1099 * Those bios are passed to request-based dm at the resume time. 1100 */ 1101 smp_mb(); 1102 if (dm_table_request_based(t)) 1103 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1104 } 1105 1106 unsigned int dm_table_get_num_targets(struct dm_table *t) 1107 { 1108 return t->num_targets; 1109 } 1110 1111 struct list_head *dm_table_get_devices(struct dm_table *t) 1112 { 1113 return &t->devices; 1114 } 1115 1116 fmode_t dm_table_get_mode(struct dm_table *t) 1117 { 1118 return t->mode; 1119 } 1120 1121 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1122 { 1123 int i = t->num_targets; 1124 struct dm_target *ti = t->targets; 1125 1126 while (i--) { 1127 if (postsuspend) { 1128 if (ti->type->postsuspend) 1129 ti->type->postsuspend(ti); 1130 } else if (ti->type->presuspend) 1131 ti->type->presuspend(ti); 1132 1133 ti++; 1134 } 1135 } 1136 1137 void dm_table_presuspend_targets(struct dm_table *t) 1138 { 1139 if (!t) 1140 return; 1141 1142 suspend_targets(t, 0); 1143 } 1144 1145 void dm_table_postsuspend_targets(struct dm_table *t) 1146 { 1147 if (!t) 1148 return; 1149 1150 suspend_targets(t, 1); 1151 } 1152 1153 int dm_table_resume_targets(struct dm_table *t) 1154 { 1155 int i, r = 0; 1156 1157 for (i = 0; i < t->num_targets; i++) { 1158 struct dm_target *ti = t->targets + i; 1159 1160 if (!ti->type->preresume) 1161 continue; 1162 1163 r = ti->type->preresume(ti); 1164 if (r) 1165 return r; 1166 } 1167 1168 for (i = 0; i < t->num_targets; i++) { 1169 struct dm_target *ti = t->targets + i; 1170 1171 if (ti->type->resume) 1172 ti->type->resume(ti); 1173 } 1174 1175 return 0; 1176 } 1177 1178 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1179 { 1180 struct dm_dev_internal *dd; 1181 struct list_head *devices = dm_table_get_devices(t); 1182 int r = 0; 1183 1184 list_for_each_entry(dd, devices, list) { 1185 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1186 char b[BDEVNAME_SIZE]; 1187 1188 if (likely(q)) 1189 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1190 else 1191 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1192 dm_device_name(t->md), 1193 bdevname(dd->dm_dev.bdev, b)); 1194 } 1195 1196 return r; 1197 } 1198 1199 int dm_table_any_busy_target(struct dm_table *t) 1200 { 1201 unsigned i; 1202 struct dm_target *ti; 1203 1204 for (i = 0; i < t->num_targets; i++) { 1205 ti = t->targets + i; 1206 if (ti->type->busy && ti->type->busy(ti)) 1207 return 1; 1208 } 1209 1210 return 0; 1211 } 1212 1213 void dm_table_unplug_all(struct dm_table *t) 1214 { 1215 struct dm_dev_internal *dd; 1216 struct list_head *devices = dm_table_get_devices(t); 1217 1218 list_for_each_entry(dd, devices, list) { 1219 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1220 char b[BDEVNAME_SIZE]; 1221 1222 if (likely(q)) 1223 blk_unplug(q); 1224 else 1225 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 1226 dm_device_name(t->md), 1227 bdevname(dd->dm_dev.bdev, b)); 1228 } 1229 } 1230 1231 struct mapped_device *dm_table_get_md(struct dm_table *t) 1232 { 1233 dm_get(t->md); 1234 1235 return t->md; 1236 } 1237 1238 EXPORT_SYMBOL(dm_vcalloc); 1239 EXPORT_SYMBOL(dm_get_device); 1240 EXPORT_SYMBOL(dm_put_device); 1241 EXPORT_SYMBOL(dm_table_event); 1242 EXPORT_SYMBOL(dm_table_get_size); 1243 EXPORT_SYMBOL(dm_table_get_mode); 1244 EXPORT_SYMBOL(dm_table_get_md); 1245 EXPORT_SYMBOL(dm_table_put); 1246 EXPORT_SYMBOL(dm_table_get); 1247 EXPORT_SYMBOL(dm_table_unplug_all); 1248