1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define MAX_DEPTH 16 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 struct dm_table { 33 struct mapped_device *md; 34 enum dm_queue_mode type; 35 36 /* btree table */ 37 unsigned int depth; 38 unsigned int counts[MAX_DEPTH]; /* in nodes */ 39 sector_t *index[MAX_DEPTH]; 40 41 unsigned int num_targets; 42 unsigned int num_allocated; 43 sector_t *highs; 44 struct dm_target *targets; 45 46 struct target_type *immutable_target_type; 47 48 bool integrity_supported:1; 49 bool singleton:1; 50 bool all_blk_mq:1; 51 unsigned integrity_added:1; 52 53 /* 54 * Indicates the rw permissions for the new logical 55 * device. This should be a combination of FMODE_READ 56 * and FMODE_WRITE. 57 */ 58 fmode_t mode; 59 60 /* a list of devices used by this table */ 61 struct list_head devices; 62 63 /* events get handed up using this callback */ 64 void (*event_fn)(void *); 65 void *event_context; 66 67 struct dm_md_mempools *mempools; 68 69 struct list_head target_callbacks; 70 }; 71 72 /* 73 * Similar to ceiling(log_size(n)) 74 */ 75 static unsigned int int_log(unsigned int n, unsigned int base) 76 { 77 int result = 0; 78 79 while (n > 1) { 80 n = dm_div_up(n, base); 81 result++; 82 } 83 84 return result; 85 } 86 87 /* 88 * Calculate the index of the child node of the n'th node k'th key. 89 */ 90 static inline unsigned int get_child(unsigned int n, unsigned int k) 91 { 92 return (n * CHILDREN_PER_NODE) + k; 93 } 94 95 /* 96 * Return the n'th node of level l from table t. 97 */ 98 static inline sector_t *get_node(struct dm_table *t, 99 unsigned int l, unsigned int n) 100 { 101 return t->index[l] + (n * KEYS_PER_NODE); 102 } 103 104 /* 105 * Return the highest key that you could lookup from the n'th 106 * node on level l of the btree. 107 */ 108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 109 { 110 for (; l < t->depth - 1; l++) 111 n = get_child(n, CHILDREN_PER_NODE - 1); 112 113 if (n >= t->counts[l]) 114 return (sector_t) - 1; 115 116 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 117 } 118 119 /* 120 * Fills in a level of the btree based on the highs of the level 121 * below it. 122 */ 123 static int setup_btree_index(unsigned int l, struct dm_table *t) 124 { 125 unsigned int n, k; 126 sector_t *node; 127 128 for (n = 0U; n < t->counts[l]; n++) { 129 node = get_node(t, l, n); 130 131 for (k = 0U; k < KEYS_PER_NODE; k++) 132 node[k] = high(t, l + 1, get_child(n, k)); 133 } 134 135 return 0; 136 } 137 138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 139 { 140 unsigned long size; 141 void *addr; 142 143 /* 144 * Check that we're not going to overflow. 145 */ 146 if (nmemb > (ULONG_MAX / elem_size)) 147 return NULL; 148 149 size = nmemb * elem_size; 150 addr = vzalloc(size); 151 152 return addr; 153 } 154 EXPORT_SYMBOL(dm_vcalloc); 155 156 /* 157 * highs, and targets are managed as dynamic arrays during a 158 * table load. 159 */ 160 static int alloc_targets(struct dm_table *t, unsigned int num) 161 { 162 sector_t *n_highs; 163 struct dm_target *n_targets; 164 165 /* 166 * Allocate both the target array and offset array at once. 167 * Append an empty entry to catch sectors beyond the end of 168 * the device. 169 */ 170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 171 sizeof(sector_t)); 172 if (!n_highs) 173 return -ENOMEM; 174 175 n_targets = (struct dm_target *) (n_highs + num); 176 177 memset(n_highs, -1, sizeof(*n_highs) * num); 178 vfree(t->highs); 179 180 t->num_allocated = num; 181 t->highs = n_highs; 182 t->targets = n_targets; 183 184 return 0; 185 } 186 187 int dm_table_create(struct dm_table **result, fmode_t mode, 188 unsigned num_targets, struct mapped_device *md) 189 { 190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 191 192 if (!t) 193 return -ENOMEM; 194 195 INIT_LIST_HEAD(&t->devices); 196 INIT_LIST_HEAD(&t->target_callbacks); 197 198 if (!num_targets) 199 num_targets = KEYS_PER_NODE; 200 201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 202 203 if (!num_targets) { 204 kfree(t); 205 return -ENOMEM; 206 } 207 208 if (alloc_targets(t, num_targets)) { 209 kfree(t); 210 return -ENOMEM; 211 } 212 213 t->type = DM_TYPE_NONE; 214 t->mode = mode; 215 t->md = md; 216 *result = t; 217 return 0; 218 } 219 220 static void free_devices(struct list_head *devices, struct mapped_device *md) 221 { 222 struct list_head *tmp, *next; 223 224 list_for_each_safe(tmp, next, devices) { 225 struct dm_dev_internal *dd = 226 list_entry(tmp, struct dm_dev_internal, list); 227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 228 dm_device_name(md), dd->dm_dev->name); 229 dm_put_table_device(md, dd->dm_dev); 230 kfree(dd); 231 } 232 } 233 234 void dm_table_destroy(struct dm_table *t) 235 { 236 unsigned int i; 237 238 if (!t) 239 return; 240 241 /* free the indexes */ 242 if (t->depth >= 2) 243 vfree(t->index[t->depth - 2]); 244 245 /* free the targets */ 246 for (i = 0; i < t->num_targets; i++) { 247 struct dm_target *tgt = t->targets + i; 248 249 if (tgt->type->dtr) 250 tgt->type->dtr(tgt); 251 252 dm_put_target_type(tgt->type); 253 } 254 255 vfree(t->highs); 256 257 /* free the device list */ 258 free_devices(&t->devices, t->md); 259 260 dm_free_md_mempools(t->mempools); 261 262 kfree(t); 263 } 264 265 /* 266 * See if we've already got a device in the list. 267 */ 268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 269 { 270 struct dm_dev_internal *dd; 271 272 list_for_each_entry (dd, l, list) 273 if (dd->dm_dev->bdev->bd_dev == dev) 274 return dd; 275 276 return NULL; 277 } 278 279 /* 280 * If possible, this checks an area of a destination device is invalid. 281 */ 282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 283 sector_t start, sector_t len, void *data) 284 { 285 struct request_queue *q; 286 struct queue_limits *limits = data; 287 struct block_device *bdev = dev->bdev; 288 sector_t dev_size = 289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 290 unsigned short logical_block_size_sectors = 291 limits->logical_block_size >> SECTOR_SHIFT; 292 char b[BDEVNAME_SIZE]; 293 294 /* 295 * Some devices exist without request functions, 296 * such as loop devices not yet bound to backing files. 297 * Forbid the use of such devices. 298 */ 299 q = bdev_get_queue(bdev); 300 if (!q || !q->make_request_fn) { 301 DMWARN("%s: %s is not yet initialised: " 302 "start=%llu, len=%llu, dev_size=%llu", 303 dm_device_name(ti->table->md), bdevname(bdev, b), 304 (unsigned long long)start, 305 (unsigned long long)len, 306 (unsigned long long)dev_size); 307 return 1; 308 } 309 310 if (!dev_size) 311 return 0; 312 313 if ((start >= dev_size) || (start + len > dev_size)) { 314 DMWARN("%s: %s too small for target: " 315 "start=%llu, len=%llu, dev_size=%llu", 316 dm_device_name(ti->table->md), bdevname(bdev, b), 317 (unsigned long long)start, 318 (unsigned long long)len, 319 (unsigned long long)dev_size); 320 return 1; 321 } 322 323 /* 324 * If the target is mapped to zoned block device(s), check 325 * that the zones are not partially mapped. 326 */ 327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 328 unsigned int zone_sectors = bdev_zone_sectors(bdev); 329 330 if (start & (zone_sectors - 1)) { 331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 332 dm_device_name(ti->table->md), 333 (unsigned long long)start, 334 zone_sectors, bdevname(bdev, b)); 335 return 1; 336 } 337 338 /* 339 * Note: The last zone of a zoned block device may be smaller 340 * than other zones. So for a target mapping the end of a 341 * zoned block device with such a zone, len would not be zone 342 * aligned. We do not allow such last smaller zone to be part 343 * of the mapping here to ensure that mappings with multiple 344 * devices do not end up with a smaller zone in the middle of 345 * the sector range. 346 */ 347 if (len & (zone_sectors - 1)) { 348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 349 dm_device_name(ti->table->md), 350 (unsigned long long)len, 351 zone_sectors, bdevname(bdev, b)); 352 return 1; 353 } 354 } 355 356 if (logical_block_size_sectors <= 1) 357 return 0; 358 359 if (start & (logical_block_size_sectors - 1)) { 360 DMWARN("%s: start=%llu not aligned to h/w " 361 "logical block size %u of %s", 362 dm_device_name(ti->table->md), 363 (unsigned long long)start, 364 limits->logical_block_size, bdevname(bdev, b)); 365 return 1; 366 } 367 368 if (len & (logical_block_size_sectors - 1)) { 369 DMWARN("%s: len=%llu not aligned to h/w " 370 "logical block size %u of %s", 371 dm_device_name(ti->table->md), 372 (unsigned long long)len, 373 limits->logical_block_size, bdevname(bdev, b)); 374 return 1; 375 } 376 377 return 0; 378 } 379 380 /* 381 * This upgrades the mode on an already open dm_dev, being 382 * careful to leave things as they were if we fail to reopen the 383 * device and not to touch the existing bdev field in case 384 * it is accessed concurrently inside dm_table_any_congested(). 385 */ 386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 387 struct mapped_device *md) 388 { 389 int r; 390 struct dm_dev *old_dev, *new_dev; 391 392 old_dev = dd->dm_dev; 393 394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 395 dd->dm_dev->mode | new_mode, &new_dev); 396 if (r) 397 return r; 398 399 dd->dm_dev = new_dev; 400 dm_put_table_device(md, old_dev); 401 402 return 0; 403 } 404 405 /* 406 * Convert the path to a device 407 */ 408 dev_t dm_get_dev_t(const char *path) 409 { 410 dev_t dev; 411 struct block_device *bdev; 412 413 bdev = lookup_bdev(path); 414 if (IS_ERR(bdev)) 415 dev = name_to_dev_t(path); 416 else { 417 dev = bdev->bd_dev; 418 bdput(bdev); 419 } 420 421 return dev; 422 } 423 EXPORT_SYMBOL_GPL(dm_get_dev_t); 424 425 /* 426 * Add a device to the list, or just increment the usage count if 427 * it's already present. 428 */ 429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 430 struct dm_dev **result) 431 { 432 int r; 433 dev_t dev; 434 struct dm_dev_internal *dd; 435 struct dm_table *t = ti->table; 436 437 BUG_ON(!t); 438 439 dev = dm_get_dev_t(path); 440 if (!dev) 441 return -ENODEV; 442 443 dd = find_device(&t->devices, dev); 444 if (!dd) { 445 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 446 if (!dd) 447 return -ENOMEM; 448 449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 450 kfree(dd); 451 return r; 452 } 453 454 refcount_set(&dd->count, 1); 455 list_add(&dd->list, &t->devices); 456 goto out; 457 458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 459 r = upgrade_mode(dd, mode, t->md); 460 if (r) 461 return r; 462 } 463 refcount_inc(&dd->count); 464 out: 465 *result = dd->dm_dev; 466 return 0; 467 } 468 EXPORT_SYMBOL(dm_get_device); 469 470 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 471 sector_t start, sector_t len, void *data) 472 { 473 struct queue_limits *limits = data; 474 struct block_device *bdev = dev->bdev; 475 struct request_queue *q = bdev_get_queue(bdev); 476 char b[BDEVNAME_SIZE]; 477 478 if (unlikely(!q)) { 479 DMWARN("%s: Cannot set limits for nonexistent device %s", 480 dm_device_name(ti->table->md), bdevname(bdev, b)); 481 return 0; 482 } 483 484 if (bdev_stack_limits(limits, bdev, start) < 0) 485 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 486 "physical_block_size=%u, logical_block_size=%u, " 487 "alignment_offset=%u, start=%llu", 488 dm_device_name(ti->table->md), bdevname(bdev, b), 489 q->limits.physical_block_size, 490 q->limits.logical_block_size, 491 q->limits.alignment_offset, 492 (unsigned long long) start << SECTOR_SHIFT); 493 494 limits->zoned = blk_queue_zoned_model(q); 495 496 return 0; 497 } 498 499 /* 500 * Decrement a device's use count and remove it if necessary. 501 */ 502 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 503 { 504 int found = 0; 505 struct list_head *devices = &ti->table->devices; 506 struct dm_dev_internal *dd; 507 508 list_for_each_entry(dd, devices, list) { 509 if (dd->dm_dev == d) { 510 found = 1; 511 break; 512 } 513 } 514 if (!found) { 515 DMWARN("%s: device %s not in table devices list", 516 dm_device_name(ti->table->md), d->name); 517 return; 518 } 519 if (refcount_dec_and_test(&dd->count)) { 520 dm_put_table_device(ti->table->md, d); 521 list_del(&dd->list); 522 kfree(dd); 523 } 524 } 525 EXPORT_SYMBOL(dm_put_device); 526 527 /* 528 * Checks to see if the target joins onto the end of the table. 529 */ 530 static int adjoin(struct dm_table *table, struct dm_target *ti) 531 { 532 struct dm_target *prev; 533 534 if (!table->num_targets) 535 return !ti->begin; 536 537 prev = &table->targets[table->num_targets - 1]; 538 return (ti->begin == (prev->begin + prev->len)); 539 } 540 541 /* 542 * Used to dynamically allocate the arg array. 543 * 544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 545 * process messages even if some device is suspended. These messages have a 546 * small fixed number of arguments. 547 * 548 * On the other hand, dm-switch needs to process bulk data using messages and 549 * excessive use of GFP_NOIO could cause trouble. 550 */ 551 static char **realloc_argv(unsigned *size, char **old_argv) 552 { 553 char **argv; 554 unsigned new_size; 555 gfp_t gfp; 556 557 if (*size) { 558 new_size = *size * 2; 559 gfp = GFP_KERNEL; 560 } else { 561 new_size = 8; 562 gfp = GFP_NOIO; 563 } 564 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 565 if (argv) { 566 memcpy(argv, old_argv, *size * sizeof(*argv)); 567 *size = new_size; 568 } 569 570 kfree(old_argv); 571 return argv; 572 } 573 574 /* 575 * Destructively splits up the argument list to pass to ctr. 576 */ 577 int dm_split_args(int *argc, char ***argvp, char *input) 578 { 579 char *start, *end = input, *out, **argv = NULL; 580 unsigned array_size = 0; 581 582 *argc = 0; 583 584 if (!input) { 585 *argvp = NULL; 586 return 0; 587 } 588 589 argv = realloc_argv(&array_size, argv); 590 if (!argv) 591 return -ENOMEM; 592 593 while (1) { 594 /* Skip whitespace */ 595 start = skip_spaces(end); 596 597 if (!*start) 598 break; /* success, we hit the end */ 599 600 /* 'out' is used to remove any back-quotes */ 601 end = out = start; 602 while (*end) { 603 /* Everything apart from '\0' can be quoted */ 604 if (*end == '\\' && *(end + 1)) { 605 *out++ = *(end + 1); 606 end += 2; 607 continue; 608 } 609 610 if (isspace(*end)) 611 break; /* end of token */ 612 613 *out++ = *end++; 614 } 615 616 /* have we already filled the array ? */ 617 if ((*argc + 1) > array_size) { 618 argv = realloc_argv(&array_size, argv); 619 if (!argv) 620 return -ENOMEM; 621 } 622 623 /* we know this is whitespace */ 624 if (*end) 625 end++; 626 627 /* terminate the string and put it in the array */ 628 *out = '\0'; 629 argv[*argc] = start; 630 (*argc)++; 631 } 632 633 *argvp = argv; 634 return 0; 635 } 636 637 /* 638 * Impose necessary and sufficient conditions on a devices's table such 639 * that any incoming bio which respects its logical_block_size can be 640 * processed successfully. If it falls across the boundary between 641 * two or more targets, the size of each piece it gets split into must 642 * be compatible with the logical_block_size of the target processing it. 643 */ 644 static int validate_hardware_logical_block_alignment(struct dm_table *table, 645 struct queue_limits *limits) 646 { 647 /* 648 * This function uses arithmetic modulo the logical_block_size 649 * (in units of 512-byte sectors). 650 */ 651 unsigned short device_logical_block_size_sects = 652 limits->logical_block_size >> SECTOR_SHIFT; 653 654 /* 655 * Offset of the start of the next table entry, mod logical_block_size. 656 */ 657 unsigned short next_target_start = 0; 658 659 /* 660 * Given an aligned bio that extends beyond the end of a 661 * target, how many sectors must the next target handle? 662 */ 663 unsigned short remaining = 0; 664 665 struct dm_target *uninitialized_var(ti); 666 struct queue_limits ti_limits; 667 unsigned i; 668 669 /* 670 * Check each entry in the table in turn. 671 */ 672 for (i = 0; i < dm_table_get_num_targets(table); i++) { 673 ti = dm_table_get_target(table, i); 674 675 blk_set_stacking_limits(&ti_limits); 676 677 /* combine all target devices' limits */ 678 if (ti->type->iterate_devices) 679 ti->type->iterate_devices(ti, dm_set_device_limits, 680 &ti_limits); 681 682 /* 683 * If the remaining sectors fall entirely within this 684 * table entry are they compatible with its logical_block_size? 685 */ 686 if (remaining < ti->len && 687 remaining & ((ti_limits.logical_block_size >> 688 SECTOR_SHIFT) - 1)) 689 break; /* Error */ 690 691 next_target_start = 692 (unsigned short) ((next_target_start + ti->len) & 693 (device_logical_block_size_sects - 1)); 694 remaining = next_target_start ? 695 device_logical_block_size_sects - next_target_start : 0; 696 } 697 698 if (remaining) { 699 DMWARN("%s: table line %u (start sect %llu len %llu) " 700 "not aligned to h/w logical block size %u", 701 dm_device_name(table->md), i, 702 (unsigned long long) ti->begin, 703 (unsigned long long) ti->len, 704 limits->logical_block_size); 705 return -EINVAL; 706 } 707 708 return 0; 709 } 710 711 int dm_table_add_target(struct dm_table *t, const char *type, 712 sector_t start, sector_t len, char *params) 713 { 714 int r = -EINVAL, argc; 715 char **argv; 716 struct dm_target *tgt; 717 718 if (t->singleton) { 719 DMERR("%s: target type %s must appear alone in table", 720 dm_device_name(t->md), t->targets->type->name); 721 return -EINVAL; 722 } 723 724 BUG_ON(t->num_targets >= t->num_allocated); 725 726 tgt = t->targets + t->num_targets; 727 memset(tgt, 0, sizeof(*tgt)); 728 729 if (!len) { 730 DMERR("%s: zero-length target", dm_device_name(t->md)); 731 return -EINVAL; 732 } 733 734 tgt->type = dm_get_target_type(type); 735 if (!tgt->type) { 736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 737 return -EINVAL; 738 } 739 740 if (dm_target_needs_singleton(tgt->type)) { 741 if (t->num_targets) { 742 tgt->error = "singleton target type must appear alone in table"; 743 goto bad; 744 } 745 t->singleton = true; 746 } 747 748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 749 tgt->error = "target type may not be included in a read-only table"; 750 goto bad; 751 } 752 753 if (t->immutable_target_type) { 754 if (t->immutable_target_type != tgt->type) { 755 tgt->error = "immutable target type cannot be mixed with other target types"; 756 goto bad; 757 } 758 } else if (dm_target_is_immutable(tgt->type)) { 759 if (t->num_targets) { 760 tgt->error = "immutable target type cannot be mixed with other target types"; 761 goto bad; 762 } 763 t->immutable_target_type = tgt->type; 764 } 765 766 if (dm_target_has_integrity(tgt->type)) 767 t->integrity_added = 1; 768 769 tgt->table = t; 770 tgt->begin = start; 771 tgt->len = len; 772 tgt->error = "Unknown error"; 773 774 /* 775 * Does this target adjoin the previous one ? 776 */ 777 if (!adjoin(t, tgt)) { 778 tgt->error = "Gap in table"; 779 goto bad; 780 } 781 782 r = dm_split_args(&argc, &argv, params); 783 if (r) { 784 tgt->error = "couldn't split parameters (insufficient memory)"; 785 goto bad; 786 } 787 788 r = tgt->type->ctr(tgt, argc, argv); 789 kfree(argv); 790 if (r) 791 goto bad; 792 793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 794 795 if (!tgt->num_discard_bios && tgt->discards_supported) 796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 797 dm_device_name(t->md), type); 798 799 return 0; 800 801 bad: 802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 803 dm_put_target_type(tgt->type); 804 return r; 805 } 806 807 /* 808 * Target argument parsing helpers. 809 */ 810 static int validate_next_arg(const struct dm_arg *arg, 811 struct dm_arg_set *arg_set, 812 unsigned *value, char **error, unsigned grouped) 813 { 814 const char *arg_str = dm_shift_arg(arg_set); 815 char dummy; 816 817 if (!arg_str || 818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 819 (*value < arg->min) || 820 (*value > arg->max) || 821 (grouped && arg_set->argc < *value)) { 822 *error = arg->error; 823 return -EINVAL; 824 } 825 826 return 0; 827 } 828 829 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 830 unsigned *value, char **error) 831 { 832 return validate_next_arg(arg, arg_set, value, error, 0); 833 } 834 EXPORT_SYMBOL(dm_read_arg); 835 836 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 837 unsigned *value, char **error) 838 { 839 return validate_next_arg(arg, arg_set, value, error, 1); 840 } 841 EXPORT_SYMBOL(dm_read_arg_group); 842 843 const char *dm_shift_arg(struct dm_arg_set *as) 844 { 845 char *r; 846 847 if (as->argc) { 848 as->argc--; 849 r = *as->argv; 850 as->argv++; 851 return r; 852 } 853 854 return NULL; 855 } 856 EXPORT_SYMBOL(dm_shift_arg); 857 858 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 859 { 860 BUG_ON(as->argc < num_args); 861 as->argc -= num_args; 862 as->argv += num_args; 863 } 864 EXPORT_SYMBOL(dm_consume_args); 865 866 static bool __table_type_bio_based(enum dm_queue_mode table_type) 867 { 868 return (table_type == DM_TYPE_BIO_BASED || 869 table_type == DM_TYPE_DAX_BIO_BASED || 870 table_type == DM_TYPE_NVME_BIO_BASED); 871 } 872 873 static bool __table_type_request_based(enum dm_queue_mode table_type) 874 { 875 return (table_type == DM_TYPE_REQUEST_BASED || 876 table_type == DM_TYPE_MQ_REQUEST_BASED); 877 } 878 879 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 880 { 881 t->type = type; 882 } 883 EXPORT_SYMBOL_GPL(dm_table_set_type); 884 885 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 886 sector_t start, sector_t len, void *data) 887 { 888 struct request_queue *q = bdev_get_queue(dev->bdev); 889 890 return q && blk_queue_dax(q); 891 } 892 893 static bool dm_table_supports_dax(struct dm_table *t) 894 { 895 struct dm_target *ti; 896 unsigned i; 897 898 /* Ensure that all targets support DAX. */ 899 for (i = 0; i < dm_table_get_num_targets(t); i++) { 900 ti = dm_table_get_target(t, i); 901 902 if (!ti->type->direct_access) 903 return false; 904 905 if (!ti->type->iterate_devices || 906 !ti->type->iterate_devices(ti, device_supports_dax, NULL)) 907 return false; 908 } 909 910 return true; 911 } 912 913 static bool dm_table_does_not_support_partial_completion(struct dm_table *t); 914 915 struct verify_rq_based_data { 916 unsigned sq_count; 917 unsigned mq_count; 918 }; 919 920 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev, 921 sector_t start, sector_t len, void *data) 922 { 923 struct request_queue *q = bdev_get_queue(dev->bdev); 924 struct verify_rq_based_data *v = data; 925 926 if (q->mq_ops) 927 v->mq_count++; 928 else 929 v->sq_count++; 930 931 return queue_is_rq_based(q); 932 } 933 934 static int dm_table_determine_type(struct dm_table *t) 935 { 936 unsigned i; 937 unsigned bio_based = 0, request_based = 0, hybrid = 0; 938 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0}; 939 struct dm_target *tgt; 940 struct list_head *devices = dm_table_get_devices(t); 941 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 942 943 if (t->type != DM_TYPE_NONE) { 944 /* target already set the table's type */ 945 if (t->type == DM_TYPE_BIO_BASED) { 946 /* possibly upgrade to a variant of bio-based */ 947 goto verify_bio_based; 948 } 949 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 950 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED); 951 goto verify_rq_based; 952 } 953 954 for (i = 0; i < t->num_targets; i++) { 955 tgt = t->targets + i; 956 if (dm_target_hybrid(tgt)) 957 hybrid = 1; 958 else if (dm_target_request_based(tgt)) 959 request_based = 1; 960 else 961 bio_based = 1; 962 963 if (bio_based && request_based) { 964 DMERR("Inconsistent table: different target types" 965 " can't be mixed up"); 966 return -EINVAL; 967 } 968 } 969 970 if (hybrid && !bio_based && !request_based) { 971 /* 972 * The targets can work either way. 973 * Determine the type from the live device. 974 * Default to bio-based if device is new. 975 */ 976 if (__table_type_request_based(live_md_type)) 977 request_based = 1; 978 else 979 bio_based = 1; 980 } 981 982 if (bio_based) { 983 verify_bio_based: 984 /* We must use this table as bio-based */ 985 t->type = DM_TYPE_BIO_BASED; 986 if (dm_table_supports_dax(t) || 987 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 988 t->type = DM_TYPE_DAX_BIO_BASED; 989 } else { 990 /* Check if upgrading to NVMe bio-based is valid or required */ 991 tgt = dm_table_get_immutable_target(t); 992 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) { 993 t->type = DM_TYPE_NVME_BIO_BASED; 994 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */ 995 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) { 996 t->type = DM_TYPE_NVME_BIO_BASED; 997 } 998 } 999 return 0; 1000 } 1001 1002 BUG_ON(!request_based); /* No targets in this table */ 1003 1004 /* 1005 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by 1006 * having a compatible target use dm_table_set_type. 1007 */ 1008 t->type = DM_TYPE_REQUEST_BASED; 1009 1010 verify_rq_based: 1011 /* 1012 * Request-based dm supports only tables that have a single target now. 1013 * To support multiple targets, request splitting support is needed, 1014 * and that needs lots of changes in the block-layer. 1015 * (e.g. request completion process for partial completion.) 1016 */ 1017 if (t->num_targets > 1) { 1018 DMERR("%s DM doesn't support multiple targets", 1019 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based"); 1020 return -EINVAL; 1021 } 1022 1023 if (list_empty(devices)) { 1024 int srcu_idx; 1025 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 1026 1027 /* inherit live table's type and all_blk_mq */ 1028 if (live_table) { 1029 t->type = live_table->type; 1030 t->all_blk_mq = live_table->all_blk_mq; 1031 } 1032 dm_put_live_table(t->md, srcu_idx); 1033 return 0; 1034 } 1035 1036 tgt = dm_table_get_immutable_target(t); 1037 if (!tgt) { 1038 DMERR("table load rejected: immutable target is required"); 1039 return -EINVAL; 1040 } else if (tgt->max_io_len) { 1041 DMERR("table load rejected: immutable target that splits IO is not supported"); 1042 return -EINVAL; 1043 } 1044 1045 /* Non-request-stackable devices can't be used for request-based dm */ 1046 if (!tgt->type->iterate_devices || 1047 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) { 1048 DMERR("table load rejected: including non-request-stackable devices"); 1049 return -EINVAL; 1050 } 1051 if (v.sq_count && v.mq_count) { 1052 DMERR("table load rejected: not all devices are blk-mq request-stackable"); 1053 return -EINVAL; 1054 } 1055 t->all_blk_mq = v.mq_count > 0; 1056 1057 if (!t->all_blk_mq && 1058 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) { 1059 DMERR("table load rejected: all devices are not blk-mq request-stackable"); 1060 return -EINVAL; 1061 } 1062 1063 return 0; 1064 } 1065 1066 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1067 { 1068 return t->type; 1069 } 1070 1071 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1072 { 1073 return t->immutable_target_type; 1074 } 1075 1076 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1077 { 1078 /* Immutable target is implicitly a singleton */ 1079 if (t->num_targets > 1 || 1080 !dm_target_is_immutable(t->targets[0].type)) 1081 return NULL; 1082 1083 return t->targets; 1084 } 1085 1086 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1087 { 1088 struct dm_target *ti; 1089 unsigned i; 1090 1091 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1092 ti = dm_table_get_target(t, i); 1093 if (dm_target_is_wildcard(ti->type)) 1094 return ti; 1095 } 1096 1097 return NULL; 1098 } 1099 1100 bool dm_table_bio_based(struct dm_table *t) 1101 { 1102 return __table_type_bio_based(dm_table_get_type(t)); 1103 } 1104 1105 bool dm_table_request_based(struct dm_table *t) 1106 { 1107 return __table_type_request_based(dm_table_get_type(t)); 1108 } 1109 1110 bool dm_table_all_blk_mq_devices(struct dm_table *t) 1111 { 1112 return t->all_blk_mq; 1113 } 1114 1115 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1116 { 1117 enum dm_queue_mode type = dm_table_get_type(t); 1118 unsigned per_io_data_size = 0; 1119 unsigned min_pool_size = 0; 1120 struct dm_target *ti; 1121 unsigned i; 1122 1123 if (unlikely(type == DM_TYPE_NONE)) { 1124 DMWARN("no table type is set, can't allocate mempools"); 1125 return -EINVAL; 1126 } 1127 1128 if (__table_type_bio_based(type)) 1129 for (i = 0; i < t->num_targets; i++) { 1130 ti = t->targets + i; 1131 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1132 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1133 } 1134 1135 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1136 per_io_data_size, min_pool_size); 1137 if (!t->mempools) 1138 return -ENOMEM; 1139 1140 return 0; 1141 } 1142 1143 void dm_table_free_md_mempools(struct dm_table *t) 1144 { 1145 dm_free_md_mempools(t->mempools); 1146 t->mempools = NULL; 1147 } 1148 1149 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1150 { 1151 return t->mempools; 1152 } 1153 1154 static int setup_indexes(struct dm_table *t) 1155 { 1156 int i; 1157 unsigned int total = 0; 1158 sector_t *indexes; 1159 1160 /* allocate the space for *all* the indexes */ 1161 for (i = t->depth - 2; i >= 0; i--) { 1162 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1163 total += t->counts[i]; 1164 } 1165 1166 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1167 if (!indexes) 1168 return -ENOMEM; 1169 1170 /* set up internal nodes, bottom-up */ 1171 for (i = t->depth - 2; i >= 0; i--) { 1172 t->index[i] = indexes; 1173 indexes += (KEYS_PER_NODE * t->counts[i]); 1174 setup_btree_index(i, t); 1175 } 1176 1177 return 0; 1178 } 1179 1180 /* 1181 * Builds the btree to index the map. 1182 */ 1183 static int dm_table_build_index(struct dm_table *t) 1184 { 1185 int r = 0; 1186 unsigned int leaf_nodes; 1187 1188 /* how many indexes will the btree have ? */ 1189 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1190 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1191 1192 /* leaf layer has already been set up */ 1193 t->counts[t->depth - 1] = leaf_nodes; 1194 t->index[t->depth - 1] = t->highs; 1195 1196 if (t->depth >= 2) 1197 r = setup_indexes(t); 1198 1199 return r; 1200 } 1201 1202 static bool integrity_profile_exists(struct gendisk *disk) 1203 { 1204 return !!blk_get_integrity(disk); 1205 } 1206 1207 /* 1208 * Get a disk whose integrity profile reflects the table's profile. 1209 * Returns NULL if integrity support was inconsistent or unavailable. 1210 */ 1211 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1212 { 1213 struct list_head *devices = dm_table_get_devices(t); 1214 struct dm_dev_internal *dd = NULL; 1215 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1216 unsigned i; 1217 1218 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1219 struct dm_target *ti = dm_table_get_target(t, i); 1220 if (!dm_target_passes_integrity(ti->type)) 1221 goto no_integrity; 1222 } 1223 1224 list_for_each_entry(dd, devices, list) { 1225 template_disk = dd->dm_dev->bdev->bd_disk; 1226 if (!integrity_profile_exists(template_disk)) 1227 goto no_integrity; 1228 else if (prev_disk && 1229 blk_integrity_compare(prev_disk, template_disk) < 0) 1230 goto no_integrity; 1231 prev_disk = template_disk; 1232 } 1233 1234 return template_disk; 1235 1236 no_integrity: 1237 if (prev_disk) 1238 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1239 dm_device_name(t->md), 1240 prev_disk->disk_name, 1241 template_disk->disk_name); 1242 return NULL; 1243 } 1244 1245 /* 1246 * Register the mapped device for blk_integrity support if the 1247 * underlying devices have an integrity profile. But all devices may 1248 * not have matching profiles (checking all devices isn't reliable 1249 * during table load because this table may use other DM device(s) which 1250 * must be resumed before they will have an initialized integity 1251 * profile). Consequently, stacked DM devices force a 2 stage integrity 1252 * profile validation: First pass during table load, final pass during 1253 * resume. 1254 */ 1255 static int dm_table_register_integrity(struct dm_table *t) 1256 { 1257 struct mapped_device *md = t->md; 1258 struct gendisk *template_disk = NULL; 1259 1260 /* If target handles integrity itself do not register it here. */ 1261 if (t->integrity_added) 1262 return 0; 1263 1264 template_disk = dm_table_get_integrity_disk(t); 1265 if (!template_disk) 1266 return 0; 1267 1268 if (!integrity_profile_exists(dm_disk(md))) { 1269 t->integrity_supported = true; 1270 /* 1271 * Register integrity profile during table load; we can do 1272 * this because the final profile must match during resume. 1273 */ 1274 blk_integrity_register(dm_disk(md), 1275 blk_get_integrity(template_disk)); 1276 return 0; 1277 } 1278 1279 /* 1280 * If DM device already has an initialized integrity 1281 * profile the new profile should not conflict. 1282 */ 1283 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1284 DMWARN("%s: conflict with existing integrity profile: " 1285 "%s profile mismatch", 1286 dm_device_name(t->md), 1287 template_disk->disk_name); 1288 return 1; 1289 } 1290 1291 /* Preserve existing integrity profile */ 1292 t->integrity_supported = true; 1293 return 0; 1294 } 1295 1296 /* 1297 * Prepares the table for use by building the indices, 1298 * setting the type, and allocating mempools. 1299 */ 1300 int dm_table_complete(struct dm_table *t) 1301 { 1302 int r; 1303 1304 r = dm_table_determine_type(t); 1305 if (r) { 1306 DMERR("unable to determine table type"); 1307 return r; 1308 } 1309 1310 r = dm_table_build_index(t); 1311 if (r) { 1312 DMERR("unable to build btrees"); 1313 return r; 1314 } 1315 1316 r = dm_table_register_integrity(t); 1317 if (r) { 1318 DMERR("could not register integrity profile."); 1319 return r; 1320 } 1321 1322 r = dm_table_alloc_md_mempools(t, t->md); 1323 if (r) 1324 DMERR("unable to allocate mempools"); 1325 1326 return r; 1327 } 1328 1329 static DEFINE_MUTEX(_event_lock); 1330 void dm_table_event_callback(struct dm_table *t, 1331 void (*fn)(void *), void *context) 1332 { 1333 mutex_lock(&_event_lock); 1334 t->event_fn = fn; 1335 t->event_context = context; 1336 mutex_unlock(&_event_lock); 1337 } 1338 1339 void dm_table_event(struct dm_table *t) 1340 { 1341 /* 1342 * You can no longer call dm_table_event() from interrupt 1343 * context, use a bottom half instead. 1344 */ 1345 BUG_ON(in_interrupt()); 1346 1347 mutex_lock(&_event_lock); 1348 if (t->event_fn) 1349 t->event_fn(t->event_context); 1350 mutex_unlock(&_event_lock); 1351 } 1352 EXPORT_SYMBOL(dm_table_event); 1353 1354 sector_t dm_table_get_size(struct dm_table *t) 1355 { 1356 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1357 } 1358 EXPORT_SYMBOL(dm_table_get_size); 1359 1360 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1361 { 1362 if (index >= t->num_targets) 1363 return NULL; 1364 1365 return t->targets + index; 1366 } 1367 1368 /* 1369 * Search the btree for the correct target. 1370 * 1371 * Caller should check returned pointer with dm_target_is_valid() 1372 * to trap I/O beyond end of device. 1373 */ 1374 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1375 { 1376 unsigned int l, n = 0, k = 0; 1377 sector_t *node; 1378 1379 for (l = 0; l < t->depth; l++) { 1380 n = get_child(n, k); 1381 node = get_node(t, l, n); 1382 1383 for (k = 0; k < KEYS_PER_NODE; k++) 1384 if (node[k] >= sector) 1385 break; 1386 } 1387 1388 return &t->targets[(KEYS_PER_NODE * n) + k]; 1389 } 1390 1391 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1392 sector_t start, sector_t len, void *data) 1393 { 1394 unsigned *num_devices = data; 1395 1396 (*num_devices)++; 1397 1398 return 0; 1399 } 1400 1401 /* 1402 * Check whether a table has no data devices attached using each 1403 * target's iterate_devices method. 1404 * Returns false if the result is unknown because a target doesn't 1405 * support iterate_devices. 1406 */ 1407 bool dm_table_has_no_data_devices(struct dm_table *table) 1408 { 1409 struct dm_target *ti; 1410 unsigned i, num_devices; 1411 1412 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1413 ti = dm_table_get_target(table, i); 1414 1415 if (!ti->type->iterate_devices) 1416 return false; 1417 1418 num_devices = 0; 1419 ti->type->iterate_devices(ti, count_device, &num_devices); 1420 if (num_devices) 1421 return false; 1422 } 1423 1424 return true; 1425 } 1426 1427 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1428 sector_t start, sector_t len, void *data) 1429 { 1430 struct request_queue *q = bdev_get_queue(dev->bdev); 1431 enum blk_zoned_model *zoned_model = data; 1432 1433 return q && blk_queue_zoned_model(q) == *zoned_model; 1434 } 1435 1436 static bool dm_table_supports_zoned_model(struct dm_table *t, 1437 enum blk_zoned_model zoned_model) 1438 { 1439 struct dm_target *ti; 1440 unsigned i; 1441 1442 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1443 ti = dm_table_get_target(t, i); 1444 1445 if (zoned_model == BLK_ZONED_HM && 1446 !dm_target_supports_zoned_hm(ti->type)) 1447 return false; 1448 1449 if (!ti->type->iterate_devices || 1450 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1451 return false; 1452 } 1453 1454 return true; 1455 } 1456 1457 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1458 sector_t start, sector_t len, void *data) 1459 { 1460 struct request_queue *q = bdev_get_queue(dev->bdev); 1461 unsigned int *zone_sectors = data; 1462 1463 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1464 } 1465 1466 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1467 unsigned int zone_sectors) 1468 { 1469 struct dm_target *ti; 1470 unsigned i; 1471 1472 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1473 ti = dm_table_get_target(t, i); 1474 1475 if (!ti->type->iterate_devices || 1476 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1477 return false; 1478 } 1479 1480 return true; 1481 } 1482 1483 static int validate_hardware_zoned_model(struct dm_table *table, 1484 enum blk_zoned_model zoned_model, 1485 unsigned int zone_sectors) 1486 { 1487 if (zoned_model == BLK_ZONED_NONE) 1488 return 0; 1489 1490 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1491 DMERR("%s: zoned model is not consistent across all devices", 1492 dm_device_name(table->md)); 1493 return -EINVAL; 1494 } 1495 1496 /* Check zone size validity and compatibility */ 1497 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1498 return -EINVAL; 1499 1500 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1501 DMERR("%s: zone sectors is not consistent across all devices", 1502 dm_device_name(table->md)); 1503 return -EINVAL; 1504 } 1505 1506 return 0; 1507 } 1508 1509 /* 1510 * Establish the new table's queue_limits and validate them. 1511 */ 1512 int dm_calculate_queue_limits(struct dm_table *table, 1513 struct queue_limits *limits) 1514 { 1515 struct dm_target *ti; 1516 struct queue_limits ti_limits; 1517 unsigned i; 1518 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1519 unsigned int zone_sectors = 0; 1520 1521 blk_set_stacking_limits(limits); 1522 1523 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1524 blk_set_stacking_limits(&ti_limits); 1525 1526 ti = dm_table_get_target(table, i); 1527 1528 if (!ti->type->iterate_devices) 1529 goto combine_limits; 1530 1531 /* 1532 * Combine queue limits of all the devices this target uses. 1533 */ 1534 ti->type->iterate_devices(ti, dm_set_device_limits, 1535 &ti_limits); 1536 1537 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1538 /* 1539 * After stacking all limits, validate all devices 1540 * in table support this zoned model and zone sectors. 1541 */ 1542 zoned_model = ti_limits.zoned; 1543 zone_sectors = ti_limits.chunk_sectors; 1544 } 1545 1546 /* Set I/O hints portion of queue limits */ 1547 if (ti->type->io_hints) 1548 ti->type->io_hints(ti, &ti_limits); 1549 1550 /* 1551 * Check each device area is consistent with the target's 1552 * overall queue limits. 1553 */ 1554 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1555 &ti_limits)) 1556 return -EINVAL; 1557 1558 combine_limits: 1559 /* 1560 * Merge this target's queue limits into the overall limits 1561 * for the table. 1562 */ 1563 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1564 DMWARN("%s: adding target device " 1565 "(start sect %llu len %llu) " 1566 "caused an alignment inconsistency", 1567 dm_device_name(table->md), 1568 (unsigned long long) ti->begin, 1569 (unsigned long long) ti->len); 1570 1571 /* 1572 * FIXME: this should likely be moved to blk_stack_limits(), would 1573 * also eliminate limits->zoned stacking hack in dm_set_device_limits() 1574 */ 1575 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1576 /* 1577 * By default, the stacked limits zoned model is set to 1578 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update 1579 * this model using the first target model reported 1580 * that is not BLK_ZONED_NONE. This will be either the 1581 * first target device zoned model or the model reported 1582 * by the target .io_hints. 1583 */ 1584 limits->zoned = ti_limits.zoned; 1585 } 1586 } 1587 1588 /* 1589 * Verify that the zoned model and zone sectors, as determined before 1590 * any .io_hints override, are the same across all devices in the table. 1591 * - this is especially relevant if .io_hints is emulating a disk-managed 1592 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1593 * BUT... 1594 */ 1595 if (limits->zoned != BLK_ZONED_NONE) { 1596 /* 1597 * ...IF the above limits stacking determined a zoned model 1598 * validate that all of the table's devices conform to it. 1599 */ 1600 zoned_model = limits->zoned; 1601 zone_sectors = limits->chunk_sectors; 1602 } 1603 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1604 return -EINVAL; 1605 1606 return validate_hardware_logical_block_alignment(table, limits); 1607 } 1608 1609 /* 1610 * Verify that all devices have an integrity profile that matches the 1611 * DM device's registered integrity profile. If the profiles don't 1612 * match then unregister the DM device's integrity profile. 1613 */ 1614 static void dm_table_verify_integrity(struct dm_table *t) 1615 { 1616 struct gendisk *template_disk = NULL; 1617 1618 if (t->integrity_added) 1619 return; 1620 1621 if (t->integrity_supported) { 1622 /* 1623 * Verify that the original integrity profile 1624 * matches all the devices in this table. 1625 */ 1626 template_disk = dm_table_get_integrity_disk(t); 1627 if (template_disk && 1628 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1629 return; 1630 } 1631 1632 if (integrity_profile_exists(dm_disk(t->md))) { 1633 DMWARN("%s: unable to establish an integrity profile", 1634 dm_device_name(t->md)); 1635 blk_integrity_unregister(dm_disk(t->md)); 1636 } 1637 } 1638 1639 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1640 sector_t start, sector_t len, void *data) 1641 { 1642 unsigned long flush = (unsigned long) data; 1643 struct request_queue *q = bdev_get_queue(dev->bdev); 1644 1645 return q && (q->queue_flags & flush); 1646 } 1647 1648 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1649 { 1650 struct dm_target *ti; 1651 unsigned i; 1652 1653 /* 1654 * Require at least one underlying device to support flushes. 1655 * t->devices includes internal dm devices such as mirror logs 1656 * so we need to use iterate_devices here, which targets 1657 * supporting flushes must provide. 1658 */ 1659 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1660 ti = dm_table_get_target(t, i); 1661 1662 if (!ti->num_flush_bios) 1663 continue; 1664 1665 if (ti->flush_supported) 1666 return true; 1667 1668 if (ti->type->iterate_devices && 1669 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1670 return true; 1671 } 1672 1673 return false; 1674 } 1675 1676 static int device_dax_write_cache_enabled(struct dm_target *ti, 1677 struct dm_dev *dev, sector_t start, 1678 sector_t len, void *data) 1679 { 1680 struct dax_device *dax_dev = dev->dax_dev; 1681 1682 if (!dax_dev) 1683 return false; 1684 1685 if (dax_write_cache_enabled(dax_dev)) 1686 return true; 1687 return false; 1688 } 1689 1690 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1691 { 1692 struct dm_target *ti; 1693 unsigned i; 1694 1695 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1696 ti = dm_table_get_target(t, i); 1697 1698 if (ti->type->iterate_devices && 1699 ti->type->iterate_devices(ti, 1700 device_dax_write_cache_enabled, NULL)) 1701 return true; 1702 } 1703 1704 return false; 1705 } 1706 1707 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1708 sector_t start, sector_t len, void *data) 1709 { 1710 struct request_queue *q = bdev_get_queue(dev->bdev); 1711 1712 return q && blk_queue_nonrot(q); 1713 } 1714 1715 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1716 sector_t start, sector_t len, void *data) 1717 { 1718 struct request_queue *q = bdev_get_queue(dev->bdev); 1719 1720 return q && !blk_queue_add_random(q); 1721 } 1722 1723 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1724 sector_t start, sector_t len, void *data) 1725 { 1726 struct request_queue *q = bdev_get_queue(dev->bdev); 1727 1728 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1729 } 1730 1731 static bool dm_table_all_devices_attribute(struct dm_table *t, 1732 iterate_devices_callout_fn func) 1733 { 1734 struct dm_target *ti; 1735 unsigned i; 1736 1737 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1738 ti = dm_table_get_target(t, i); 1739 1740 if (!ti->type->iterate_devices || 1741 !ti->type->iterate_devices(ti, func, NULL)) 1742 return false; 1743 } 1744 1745 return true; 1746 } 1747 1748 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev, 1749 sector_t start, sector_t len, void *data) 1750 { 1751 char b[BDEVNAME_SIZE]; 1752 1753 /* For now, NVMe devices are the only devices of this class */ 1754 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0); 1755 } 1756 1757 static bool dm_table_does_not_support_partial_completion(struct dm_table *t) 1758 { 1759 return dm_table_all_devices_attribute(t, device_no_partial_completion); 1760 } 1761 1762 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1763 sector_t start, sector_t len, void *data) 1764 { 1765 struct request_queue *q = bdev_get_queue(dev->bdev); 1766 1767 return q && !q->limits.max_write_same_sectors; 1768 } 1769 1770 static bool dm_table_supports_write_same(struct dm_table *t) 1771 { 1772 struct dm_target *ti; 1773 unsigned i; 1774 1775 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1776 ti = dm_table_get_target(t, i); 1777 1778 if (!ti->num_write_same_bios) 1779 return false; 1780 1781 if (!ti->type->iterate_devices || 1782 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1783 return false; 1784 } 1785 1786 return true; 1787 } 1788 1789 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1790 sector_t start, sector_t len, void *data) 1791 { 1792 struct request_queue *q = bdev_get_queue(dev->bdev); 1793 1794 return q && !q->limits.max_write_zeroes_sectors; 1795 } 1796 1797 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1798 { 1799 struct dm_target *ti; 1800 unsigned i = 0; 1801 1802 while (i < dm_table_get_num_targets(t)) { 1803 ti = dm_table_get_target(t, i++); 1804 1805 if (!ti->num_write_zeroes_bios) 1806 return false; 1807 1808 if (!ti->type->iterate_devices || 1809 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1810 return false; 1811 } 1812 1813 return true; 1814 } 1815 1816 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1817 sector_t start, sector_t len, void *data) 1818 { 1819 struct request_queue *q = bdev_get_queue(dev->bdev); 1820 1821 return q && !blk_queue_discard(q); 1822 } 1823 1824 static bool dm_table_supports_discards(struct dm_table *t) 1825 { 1826 struct dm_target *ti; 1827 unsigned i; 1828 1829 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1830 ti = dm_table_get_target(t, i); 1831 1832 if (!ti->num_discard_bios) 1833 return false; 1834 1835 /* 1836 * Either the target provides discard support (as implied by setting 1837 * 'discards_supported') or it relies on _all_ data devices having 1838 * discard support. 1839 */ 1840 if (!ti->discards_supported && 1841 (!ti->type->iterate_devices || 1842 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1843 return false; 1844 } 1845 1846 return true; 1847 } 1848 1849 static int device_not_secure_erase_capable(struct dm_target *ti, 1850 struct dm_dev *dev, sector_t start, 1851 sector_t len, void *data) 1852 { 1853 struct request_queue *q = bdev_get_queue(dev->bdev); 1854 1855 return q && !blk_queue_secure_erase(q); 1856 } 1857 1858 static bool dm_table_supports_secure_erase(struct dm_table *t) 1859 { 1860 struct dm_target *ti; 1861 unsigned int i; 1862 1863 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1864 ti = dm_table_get_target(t, i); 1865 1866 if (!ti->num_secure_erase_bios) 1867 return false; 1868 1869 if (!ti->type->iterate_devices || 1870 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1871 return false; 1872 } 1873 1874 return true; 1875 } 1876 1877 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1878 struct queue_limits *limits) 1879 { 1880 bool wc = false, fua = false; 1881 1882 /* 1883 * Copy table's limits to the DM device's request_queue 1884 */ 1885 q->limits = *limits; 1886 1887 if (!dm_table_supports_discards(t)) { 1888 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1889 /* Must also clear discard limits... */ 1890 q->limits.max_discard_sectors = 0; 1891 q->limits.max_hw_discard_sectors = 0; 1892 q->limits.discard_granularity = 0; 1893 q->limits.discard_alignment = 0; 1894 q->limits.discard_misaligned = 0; 1895 } else 1896 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1897 1898 if (dm_table_supports_secure_erase(t)) 1899 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1900 1901 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1902 wc = true; 1903 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1904 fua = true; 1905 } 1906 blk_queue_write_cache(q, wc, fua); 1907 1908 if (dm_table_supports_dax(t)) 1909 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1910 if (dm_table_supports_dax_write_cache(t)) 1911 dax_write_cache(t->md->dax_dev, true); 1912 1913 /* Ensure that all underlying devices are non-rotational. */ 1914 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1915 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1916 else 1917 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1918 1919 if (!dm_table_supports_write_same(t)) 1920 q->limits.max_write_same_sectors = 0; 1921 if (!dm_table_supports_write_zeroes(t)) 1922 q->limits.max_write_zeroes_sectors = 0; 1923 1924 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1925 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q); 1926 else 1927 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q); 1928 1929 dm_table_verify_integrity(t); 1930 1931 /* 1932 * Determine whether or not this queue's I/O timings contribute 1933 * to the entropy pool, Only request-based targets use this. 1934 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1935 * have it set. 1936 */ 1937 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1938 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1939 } 1940 1941 unsigned int dm_table_get_num_targets(struct dm_table *t) 1942 { 1943 return t->num_targets; 1944 } 1945 1946 struct list_head *dm_table_get_devices(struct dm_table *t) 1947 { 1948 return &t->devices; 1949 } 1950 1951 fmode_t dm_table_get_mode(struct dm_table *t) 1952 { 1953 return t->mode; 1954 } 1955 EXPORT_SYMBOL(dm_table_get_mode); 1956 1957 enum suspend_mode { 1958 PRESUSPEND, 1959 PRESUSPEND_UNDO, 1960 POSTSUSPEND, 1961 }; 1962 1963 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1964 { 1965 int i = t->num_targets; 1966 struct dm_target *ti = t->targets; 1967 1968 lockdep_assert_held(&t->md->suspend_lock); 1969 1970 while (i--) { 1971 switch (mode) { 1972 case PRESUSPEND: 1973 if (ti->type->presuspend) 1974 ti->type->presuspend(ti); 1975 break; 1976 case PRESUSPEND_UNDO: 1977 if (ti->type->presuspend_undo) 1978 ti->type->presuspend_undo(ti); 1979 break; 1980 case POSTSUSPEND: 1981 if (ti->type->postsuspend) 1982 ti->type->postsuspend(ti); 1983 break; 1984 } 1985 ti++; 1986 } 1987 } 1988 1989 void dm_table_presuspend_targets(struct dm_table *t) 1990 { 1991 if (!t) 1992 return; 1993 1994 suspend_targets(t, PRESUSPEND); 1995 } 1996 1997 void dm_table_presuspend_undo_targets(struct dm_table *t) 1998 { 1999 if (!t) 2000 return; 2001 2002 suspend_targets(t, PRESUSPEND_UNDO); 2003 } 2004 2005 void dm_table_postsuspend_targets(struct dm_table *t) 2006 { 2007 if (!t) 2008 return; 2009 2010 suspend_targets(t, POSTSUSPEND); 2011 } 2012 2013 int dm_table_resume_targets(struct dm_table *t) 2014 { 2015 int i, r = 0; 2016 2017 lockdep_assert_held(&t->md->suspend_lock); 2018 2019 for (i = 0; i < t->num_targets; i++) { 2020 struct dm_target *ti = t->targets + i; 2021 2022 if (!ti->type->preresume) 2023 continue; 2024 2025 r = ti->type->preresume(ti); 2026 if (r) { 2027 DMERR("%s: %s: preresume failed, error = %d", 2028 dm_device_name(t->md), ti->type->name, r); 2029 return r; 2030 } 2031 } 2032 2033 for (i = 0; i < t->num_targets; i++) { 2034 struct dm_target *ti = t->targets + i; 2035 2036 if (ti->type->resume) 2037 ti->type->resume(ti); 2038 } 2039 2040 return 0; 2041 } 2042 2043 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 2044 { 2045 list_add(&cb->list, &t->target_callbacks); 2046 } 2047 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 2048 2049 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 2050 { 2051 struct dm_dev_internal *dd; 2052 struct list_head *devices = dm_table_get_devices(t); 2053 struct dm_target_callbacks *cb; 2054 int r = 0; 2055 2056 list_for_each_entry(dd, devices, list) { 2057 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 2058 char b[BDEVNAME_SIZE]; 2059 2060 if (likely(q)) 2061 r |= bdi_congested(q->backing_dev_info, bdi_bits); 2062 else 2063 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 2064 dm_device_name(t->md), 2065 bdevname(dd->dm_dev->bdev, b)); 2066 } 2067 2068 list_for_each_entry(cb, &t->target_callbacks, list) 2069 if (cb->congested_fn) 2070 r |= cb->congested_fn(cb, bdi_bits); 2071 2072 return r; 2073 } 2074 2075 struct mapped_device *dm_table_get_md(struct dm_table *t) 2076 { 2077 return t->md; 2078 } 2079 EXPORT_SYMBOL(dm_table_get_md); 2080 2081 void dm_table_run_md_queue_async(struct dm_table *t) 2082 { 2083 struct mapped_device *md; 2084 struct request_queue *queue; 2085 unsigned long flags; 2086 2087 if (!dm_table_request_based(t)) 2088 return; 2089 2090 md = dm_table_get_md(t); 2091 queue = dm_get_md_queue(md); 2092 if (queue) { 2093 if (queue->mq_ops) 2094 blk_mq_run_hw_queues(queue, true); 2095 else { 2096 spin_lock_irqsave(queue->queue_lock, flags); 2097 blk_run_queue_async(queue); 2098 spin_unlock_irqrestore(queue->queue_lock, flags); 2099 } 2100 } 2101 } 2102 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2103 2104