xref: /linux/drivers/md/dm-table.c (revision 5b026e34120766408e76ba19a0e33a9dc996f9f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27 
28 #define DM_MSG_PREFIX "table"
29 
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 
34 /*
35  * Similar to ceiling(log_size(n))
36  */
37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 	int result = 0;
40 
41 	while (n > 1) {
42 		n = dm_div_up(n, base);
43 		result++;
44 	}
45 
46 	return result;
47 }
48 
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 	return (n * CHILDREN_PER_NODE) + k;
55 }
56 
57 /*
58  * Return the n'th node of level l from table t.
59  */
60 static inline sector_t *get_node(struct dm_table *t,
61 				 unsigned int l, unsigned int n)
62 {
63 	return t->index[l] + (n * KEYS_PER_NODE);
64 }
65 
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 	for (; l < t->depth - 1; l++)
73 		n = get_child(n, CHILDREN_PER_NODE - 1);
74 
75 	if (n >= t->counts[l])
76 		return (sector_t) -1;
77 
78 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80 
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 	unsigned int n, k;
88 	sector_t *node;
89 
90 	for (n = 0U; n < t->counts[l]; n++) {
91 		node = get_node(t, l, n);
92 
93 		for (k = 0U; k < KEYS_PER_NODE; k++)
94 			node[k] = high(t, l + 1, get_child(n, k));
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 	sector_t *n_highs;
107 	struct dm_target *n_targets;
108 
109 	/*
110 	 * Allocate both the target array and offset array at once.
111 	 */
112 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 			   GFP_KERNEL);
114 	if (!n_highs)
115 		return -ENOMEM;
116 
117 	n_targets = (struct dm_target *) (n_highs + num);
118 
119 	memset(n_highs, -1, sizeof(*n_highs) * num);
120 	kvfree(t->highs);
121 
122 	t->num_allocated = num;
123 	t->highs = n_highs;
124 	t->targets = n_targets;
125 
126 	return 0;
127 }
128 
129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 		    unsigned int num_targets, struct mapped_device *md)
131 {
132 	struct dm_table *t;
133 
134 	if (num_targets > DM_MAX_TARGETS)
135 		return -EOVERFLOW;
136 
137 	t = kzalloc(sizeof(*t), GFP_KERNEL);
138 
139 	if (!t)
140 		return -ENOMEM;
141 
142 	INIT_LIST_HEAD(&t->devices);
143 	init_rwsem(&t->devices_lock);
144 
145 	if (!num_targets)
146 		num_targets = KEYS_PER_NODE;
147 
148 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149 
150 	if (!num_targets) {
151 		kfree(t);
152 		return -EOVERFLOW;
153 	}
154 
155 	if (alloc_targets(t, num_targets)) {
156 		kfree(t);
157 		return -ENOMEM;
158 	}
159 
160 	t->type = DM_TYPE_NONE;
161 	t->mode = mode;
162 	t->md = md;
163 	*result = t;
164 	return 0;
165 }
166 
167 static void free_devices(struct list_head *devices, struct mapped_device *md)
168 {
169 	struct list_head *tmp, *next;
170 
171 	list_for_each_safe(tmp, next, devices) {
172 		struct dm_dev_internal *dd =
173 		    list_entry(tmp, struct dm_dev_internal, list);
174 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175 		       dm_device_name(md), dd->dm_dev->name);
176 		dm_put_table_device(md, dd->dm_dev);
177 		kfree(dd);
178 	}
179 }
180 
181 static void dm_table_destroy_crypto_profile(struct dm_table *t);
182 
183 void dm_table_destroy(struct dm_table *t)
184 {
185 	if (!t)
186 		return;
187 
188 	/* free the indexes */
189 	if (t->depth >= 2)
190 		kvfree(t->index[t->depth - 2]);
191 
192 	/* free the targets */
193 	for (unsigned int i = 0; i < t->num_targets; i++) {
194 		struct dm_target *ti = dm_table_get_target(t, i);
195 
196 		if (ti->type->dtr)
197 			ti->type->dtr(ti);
198 
199 		dm_put_target_type(ti->type);
200 	}
201 
202 	kvfree(t->highs);
203 
204 	/* free the device list */
205 	free_devices(&t->devices, t->md);
206 
207 	dm_free_md_mempools(t->mempools);
208 
209 	dm_table_destroy_crypto_profile(t);
210 
211 	kfree(t);
212 }
213 
214 /*
215  * See if we've already got a device in the list.
216  */
217 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218 {
219 	struct dm_dev_internal *dd;
220 
221 	list_for_each_entry(dd, l, list)
222 		if (dd->dm_dev->bdev->bd_dev == dev)
223 			return dd;
224 
225 	return NULL;
226 }
227 
228 /*
229  * If possible, this checks an area of a destination device is invalid.
230  */
231 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232 				  sector_t start, sector_t len, void *data)
233 {
234 	struct queue_limits *limits = data;
235 	struct block_device *bdev = dev->bdev;
236 	sector_t dev_size = bdev_nr_sectors(bdev);
237 	unsigned short logical_block_size_sectors =
238 		limits->logical_block_size >> SECTOR_SHIFT;
239 
240 	if (!dev_size)
241 		return 0;
242 
243 	if ((start >= dev_size) || (start + len > dev_size)) {
244 		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245 		      dm_device_name(ti->table->md), bdev,
246 		      (unsigned long long)start,
247 		      (unsigned long long)len,
248 		      (unsigned long long)dev_size);
249 		return 1;
250 	}
251 
252 	/*
253 	 * If the target is mapped to zoned block device(s), check
254 	 * that the zones are not partially mapped.
255 	 */
256 	if (bdev_is_zoned(bdev)) {
257 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
258 
259 		if (start & (zone_sectors - 1)) {
260 			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261 			      dm_device_name(ti->table->md),
262 			      (unsigned long long)start,
263 			      zone_sectors, bdev);
264 			return 1;
265 		}
266 
267 		/*
268 		 * Note: The last zone of a zoned block device may be smaller
269 		 * than other zones. So for a target mapping the end of a
270 		 * zoned block device with such a zone, len would not be zone
271 		 * aligned. We do not allow such last smaller zone to be part
272 		 * of the mapping here to ensure that mappings with multiple
273 		 * devices do not end up with a smaller zone in the middle of
274 		 * the sector range.
275 		 */
276 		if (len & (zone_sectors - 1)) {
277 			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278 			      dm_device_name(ti->table->md),
279 			      (unsigned long long)len,
280 			      zone_sectors, bdev);
281 			return 1;
282 		}
283 	}
284 
285 	if (logical_block_size_sectors <= 1)
286 		return 0;
287 
288 	if (start & (logical_block_size_sectors - 1)) {
289 		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290 		      dm_device_name(ti->table->md),
291 		      (unsigned long long)start,
292 		      limits->logical_block_size, bdev);
293 		return 1;
294 	}
295 
296 	if (len & (logical_block_size_sectors - 1)) {
297 		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298 		      dm_device_name(ti->table->md),
299 		      (unsigned long long)len,
300 		      limits->logical_block_size, bdev);
301 		return 1;
302 	}
303 
304 	return 0;
305 }
306 
307 /*
308  * This upgrades the mode on an already open dm_dev, being
309  * careful to leave things as they were if we fail to reopen the
310  * device and not to touch the existing bdev field in case
311  * it is accessed concurrently.
312  */
313 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314 			struct mapped_device *md)
315 {
316 	int r;
317 	struct dm_dev *old_dev, *new_dev;
318 
319 	old_dev = dd->dm_dev;
320 
321 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322 				dd->dm_dev->mode | new_mode, &new_dev);
323 	if (r)
324 		return r;
325 
326 	dd->dm_dev = new_dev;
327 	dm_put_table_device(md, old_dev);
328 
329 	return 0;
330 }
331 
332 /*
333  * Add a device to the list, or just increment the usage count if
334  * it's already present.
335  *
336  * Note: the __ref annotation is because this function can call the __init
337  * marked early_lookup_bdev when called during early boot code from dm-init.c.
338  */
339 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340 		  struct dm_dev **result)
341 {
342 	int r;
343 	dev_t dev;
344 	unsigned int major, minor;
345 	char dummy;
346 	struct dm_dev_internal *dd;
347 	struct dm_table *t = ti->table;
348 
349 	BUG_ON(!t);
350 
351 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352 		/* Extract the major/minor numbers */
353 		dev = MKDEV(major, minor);
354 		if (MAJOR(dev) != major || MINOR(dev) != minor)
355 			return -EOVERFLOW;
356 	} else {
357 		r = lookup_bdev(path, &dev);
358 #ifndef MODULE
359 		if (r && system_state < SYSTEM_RUNNING)
360 			r = early_lookup_bdev(path, &dev);
361 #endif
362 		if (r)
363 			return r;
364 	}
365 	if (dev == disk_devt(t->md->disk))
366 		return -EINVAL;
367 
368 	down_write(&t->devices_lock);
369 
370 	dd = find_device(&t->devices, dev);
371 	if (!dd) {
372 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 		if (!dd) {
374 			r = -ENOMEM;
375 			goto unlock_ret_r;
376 		}
377 
378 		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379 		if (r) {
380 			kfree(dd);
381 			goto unlock_ret_r;
382 		}
383 
384 		refcount_set(&dd->count, 1);
385 		list_add(&dd->list, &t->devices);
386 		goto out;
387 
388 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389 		r = upgrade_mode(dd, mode, t->md);
390 		if (r)
391 			goto unlock_ret_r;
392 	}
393 	refcount_inc(&dd->count);
394 out:
395 	up_write(&t->devices_lock);
396 	*result = dd->dm_dev;
397 	return 0;
398 
399 unlock_ret_r:
400 	up_write(&t->devices_lock);
401 	return r;
402 }
403 EXPORT_SYMBOL(dm_get_device);
404 
405 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406 				sector_t start, sector_t len, void *data)
407 {
408 	struct queue_limits *limits = data;
409 	struct block_device *bdev = dev->bdev;
410 	struct request_queue *q = bdev_get_queue(bdev);
411 
412 	if (unlikely(!q)) {
413 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
414 		       dm_device_name(ti->table->md), bdev);
415 		return 0;
416 	}
417 
418 	if (blk_stack_limits(limits, &q->limits,
419 			get_start_sect(bdev) + start) < 0)
420 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421 		       "physical_block_size=%u, logical_block_size=%u, "
422 		       "alignment_offset=%u, start=%llu",
423 		       dm_device_name(ti->table->md), bdev,
424 		       q->limits.physical_block_size,
425 		       q->limits.logical_block_size,
426 		       q->limits.alignment_offset,
427 		       (unsigned long long) start << SECTOR_SHIFT);
428 
429 	/*
430 	 * Only stack the integrity profile if the target doesn't have native
431 	 * integrity support.
432 	 */
433 	if (!dm_target_has_integrity(ti->type))
434 		queue_limits_stack_integrity_bdev(limits, bdev);
435 	return 0;
436 }
437 
438 /*
439  * Decrement a device's use count and remove it if necessary.
440  */
441 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
442 {
443 	int found = 0;
444 	struct dm_table *t = ti->table;
445 	struct list_head *devices = &t->devices;
446 	struct dm_dev_internal *dd;
447 
448 	down_write(&t->devices_lock);
449 
450 	list_for_each_entry(dd, devices, list) {
451 		if (dd->dm_dev == d) {
452 			found = 1;
453 			break;
454 		}
455 	}
456 	if (!found) {
457 		DMERR("%s: device %s not in table devices list",
458 		      dm_device_name(t->md), d->name);
459 		goto unlock_ret;
460 	}
461 	if (refcount_dec_and_test(&dd->count)) {
462 		dm_put_table_device(t->md, d);
463 		list_del(&dd->list);
464 		kfree(dd);
465 	}
466 
467 unlock_ret:
468 	up_write(&t->devices_lock);
469 }
470 EXPORT_SYMBOL(dm_put_device);
471 
472 /*
473  * Checks to see if the target joins onto the end of the table.
474  */
475 static int adjoin(struct dm_table *t, struct dm_target *ti)
476 {
477 	struct dm_target *prev;
478 
479 	if (!t->num_targets)
480 		return !ti->begin;
481 
482 	prev = &t->targets[t->num_targets - 1];
483 	return (ti->begin == (prev->begin + prev->len));
484 }
485 
486 /*
487  * Used to dynamically allocate the arg array.
488  *
489  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
490  * process messages even if some device is suspended. These messages have a
491  * small fixed number of arguments.
492  *
493  * On the other hand, dm-switch needs to process bulk data using messages and
494  * excessive use of GFP_NOIO could cause trouble.
495  */
496 static char **realloc_argv(unsigned int *size, char **old_argv)
497 {
498 	char **argv;
499 	unsigned int new_size;
500 	gfp_t gfp;
501 
502 	if (*size) {
503 		new_size = *size * 2;
504 		gfp = GFP_KERNEL;
505 	} else {
506 		new_size = 8;
507 		gfp = GFP_NOIO;
508 	}
509 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
510 	if (argv && old_argv) {
511 		memcpy(argv, old_argv, *size * sizeof(*argv));
512 		*size = new_size;
513 	}
514 
515 	kfree(old_argv);
516 	return argv;
517 }
518 
519 /*
520  * Destructively splits up the argument list to pass to ctr.
521  */
522 int dm_split_args(int *argc, char ***argvp, char *input)
523 {
524 	char *start, *end = input, *out, **argv = NULL;
525 	unsigned int array_size = 0;
526 
527 	*argc = 0;
528 
529 	if (!input) {
530 		*argvp = NULL;
531 		return 0;
532 	}
533 
534 	argv = realloc_argv(&array_size, argv);
535 	if (!argv)
536 		return -ENOMEM;
537 
538 	while (1) {
539 		/* Skip whitespace */
540 		start = skip_spaces(end);
541 
542 		if (!*start)
543 			break;	/* success, we hit the end */
544 
545 		/* 'out' is used to remove any back-quotes */
546 		end = out = start;
547 		while (*end) {
548 			/* Everything apart from '\0' can be quoted */
549 			if (*end == '\\' && *(end + 1)) {
550 				*out++ = *(end + 1);
551 				end += 2;
552 				continue;
553 			}
554 
555 			if (isspace(*end))
556 				break;	/* end of token */
557 
558 			*out++ = *end++;
559 		}
560 
561 		/* have we already filled the array ? */
562 		if ((*argc + 1) > array_size) {
563 			argv = realloc_argv(&array_size, argv);
564 			if (!argv)
565 				return -ENOMEM;
566 		}
567 
568 		/* we know this is whitespace */
569 		if (*end)
570 			end++;
571 
572 		/* terminate the string and put it in the array */
573 		*out = '\0';
574 		argv[*argc] = start;
575 		(*argc)++;
576 	}
577 
578 	*argvp = argv;
579 	return 0;
580 }
581 
582 static void dm_set_stacking_limits(struct queue_limits *limits)
583 {
584 	blk_set_stacking_limits(limits);
585 	limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
586 }
587 
588 /*
589  * Impose necessary and sufficient conditions on a devices's table such
590  * that any incoming bio which respects its logical_block_size can be
591  * processed successfully.  If it falls across the boundary between
592  * two or more targets, the size of each piece it gets split into must
593  * be compatible with the logical_block_size of the target processing it.
594  */
595 static int validate_hardware_logical_block_alignment(struct dm_table *t,
596 						     struct queue_limits *limits)
597 {
598 	/*
599 	 * This function uses arithmetic modulo the logical_block_size
600 	 * (in units of 512-byte sectors).
601 	 */
602 	unsigned short device_logical_block_size_sects =
603 		limits->logical_block_size >> SECTOR_SHIFT;
604 
605 	/*
606 	 * Offset of the start of the next table entry, mod logical_block_size.
607 	 */
608 	unsigned short next_target_start = 0;
609 
610 	/*
611 	 * Given an aligned bio that extends beyond the end of a
612 	 * target, how many sectors must the next target handle?
613 	 */
614 	unsigned short remaining = 0;
615 
616 	struct dm_target *ti;
617 	struct queue_limits ti_limits;
618 	unsigned int i;
619 
620 	/*
621 	 * Check each entry in the table in turn.
622 	 */
623 	for (i = 0; i < t->num_targets; i++) {
624 		ti = dm_table_get_target(t, i);
625 
626 		dm_set_stacking_limits(&ti_limits);
627 
628 		/* combine all target devices' limits */
629 		if (ti->type->iterate_devices)
630 			ti->type->iterate_devices(ti, dm_set_device_limits,
631 						  &ti_limits);
632 
633 		/*
634 		 * If the remaining sectors fall entirely within this
635 		 * table entry are they compatible with its logical_block_size?
636 		 */
637 		if (remaining < ti->len &&
638 		    remaining & ((ti_limits.logical_block_size >>
639 				  SECTOR_SHIFT) - 1))
640 			break;	/* Error */
641 
642 		next_target_start =
643 		    (unsigned short) ((next_target_start + ti->len) &
644 				      (device_logical_block_size_sects - 1));
645 		remaining = next_target_start ?
646 		    device_logical_block_size_sects - next_target_start : 0;
647 	}
648 
649 	if (remaining) {
650 		DMERR("%s: table line %u (start sect %llu len %llu) "
651 		      "not aligned to h/w logical block size %u",
652 		      dm_device_name(t->md), i,
653 		      (unsigned long long) ti->begin,
654 		      (unsigned long long) ti->len,
655 		      limits->logical_block_size);
656 		return -EINVAL;
657 	}
658 
659 	return 0;
660 }
661 
662 int dm_table_add_target(struct dm_table *t, const char *type,
663 			sector_t start, sector_t len, char *params)
664 {
665 	int r = -EINVAL, argc;
666 	char **argv;
667 	struct dm_target *ti;
668 
669 	if (t->singleton) {
670 		DMERR("%s: target type %s must appear alone in table",
671 		      dm_device_name(t->md), t->targets->type->name);
672 		return -EINVAL;
673 	}
674 
675 	BUG_ON(t->num_targets >= t->num_allocated);
676 
677 	ti = t->targets + t->num_targets;
678 	memset(ti, 0, sizeof(*ti));
679 
680 	if (!len) {
681 		DMERR("%s: zero-length target", dm_device_name(t->md));
682 		return -EINVAL;
683 	}
684 
685 	ti->type = dm_get_target_type(type);
686 	if (!ti->type) {
687 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
688 		return -EINVAL;
689 	}
690 
691 	if (dm_target_needs_singleton(ti->type)) {
692 		if (t->num_targets) {
693 			ti->error = "singleton target type must appear alone in table";
694 			goto bad;
695 		}
696 		t->singleton = true;
697 	}
698 
699 	if (dm_target_always_writeable(ti->type) &&
700 	    !(t->mode & BLK_OPEN_WRITE)) {
701 		ti->error = "target type may not be included in a read-only table";
702 		goto bad;
703 	}
704 
705 	if (t->immutable_target_type) {
706 		if (t->immutable_target_type != ti->type) {
707 			ti->error = "immutable target type cannot be mixed with other target types";
708 			goto bad;
709 		}
710 	} else if (dm_target_is_immutable(ti->type)) {
711 		if (t->num_targets) {
712 			ti->error = "immutable target type cannot be mixed with other target types";
713 			goto bad;
714 		}
715 		t->immutable_target_type = ti->type;
716 	}
717 
718 	ti->table = t;
719 	ti->begin = start;
720 	ti->len = len;
721 	ti->error = "Unknown error";
722 
723 	/*
724 	 * Does this target adjoin the previous one ?
725 	 */
726 	if (!adjoin(t, ti)) {
727 		ti->error = "Gap in table";
728 		goto bad;
729 	}
730 
731 	r = dm_split_args(&argc, &argv, params);
732 	if (r) {
733 		ti->error = "couldn't split parameters";
734 		goto bad;
735 	}
736 
737 	r = ti->type->ctr(ti, argc, argv);
738 	kfree(argv);
739 	if (r)
740 		goto bad;
741 
742 	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
743 
744 	if (!ti->num_discard_bios && ti->discards_supported)
745 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
746 		       dm_device_name(t->md), type);
747 
748 	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
749 		static_branch_enable(&swap_bios_enabled);
750 
751 	return 0;
752 
753  bad:
754 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
755 	dm_put_target_type(ti->type);
756 	return r;
757 }
758 
759 /*
760  * Target argument parsing helpers.
761  */
762 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
763 			     unsigned int *value, char **error, unsigned int grouped)
764 {
765 	const char *arg_str = dm_shift_arg(arg_set);
766 	char dummy;
767 
768 	if (!arg_str ||
769 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
770 	    (*value < arg->min) ||
771 	    (*value > arg->max) ||
772 	    (grouped && arg_set->argc < *value)) {
773 		*error = arg->error;
774 		return -EINVAL;
775 	}
776 
777 	return 0;
778 }
779 
780 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
781 		unsigned int *value, char **error)
782 {
783 	return validate_next_arg(arg, arg_set, value, error, 0);
784 }
785 EXPORT_SYMBOL(dm_read_arg);
786 
787 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
788 		      unsigned int *value, char **error)
789 {
790 	return validate_next_arg(arg, arg_set, value, error, 1);
791 }
792 EXPORT_SYMBOL(dm_read_arg_group);
793 
794 const char *dm_shift_arg(struct dm_arg_set *as)
795 {
796 	char *r;
797 
798 	if (as->argc) {
799 		as->argc--;
800 		r = *as->argv;
801 		as->argv++;
802 		return r;
803 	}
804 
805 	return NULL;
806 }
807 EXPORT_SYMBOL(dm_shift_arg);
808 
809 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
810 {
811 	BUG_ON(as->argc < num_args);
812 	as->argc -= num_args;
813 	as->argv += num_args;
814 }
815 EXPORT_SYMBOL(dm_consume_args);
816 
817 static bool __table_type_bio_based(enum dm_queue_mode table_type)
818 {
819 	return (table_type == DM_TYPE_BIO_BASED ||
820 		table_type == DM_TYPE_DAX_BIO_BASED);
821 }
822 
823 static bool __table_type_request_based(enum dm_queue_mode table_type)
824 {
825 	return table_type == DM_TYPE_REQUEST_BASED;
826 }
827 
828 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
829 {
830 	t->type = type;
831 }
832 EXPORT_SYMBOL_GPL(dm_table_set_type);
833 
834 /* validate the dax capability of the target device span */
835 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
836 			sector_t start, sector_t len, void *data)
837 {
838 	if (dev->dax_dev)
839 		return false;
840 
841 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
842 	return true;
843 }
844 
845 /* Check devices support synchronous DAX */
846 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
847 					      sector_t start, sector_t len, void *data)
848 {
849 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
850 }
851 
852 static bool dm_table_supports_dax(struct dm_table *t,
853 				  iterate_devices_callout_fn iterate_fn)
854 {
855 	/* Ensure that all targets support DAX. */
856 	for (unsigned int i = 0; i < t->num_targets; i++) {
857 		struct dm_target *ti = dm_table_get_target(t, i);
858 
859 		if (!ti->type->direct_access)
860 			return false;
861 
862 		if (dm_target_is_wildcard(ti->type) ||
863 		    !ti->type->iterate_devices ||
864 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
865 			return false;
866 	}
867 
868 	return true;
869 }
870 
871 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
872 				  sector_t start, sector_t len, void *data)
873 {
874 	struct block_device *bdev = dev->bdev;
875 	struct request_queue *q = bdev_get_queue(bdev);
876 
877 	/* request-based cannot stack on partitions! */
878 	if (bdev_is_partition(bdev))
879 		return false;
880 
881 	return queue_is_mq(q);
882 }
883 
884 static int dm_table_determine_type(struct dm_table *t)
885 {
886 	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
887 	struct dm_target *ti;
888 	struct list_head *devices = dm_table_get_devices(t);
889 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
890 
891 	if (t->type != DM_TYPE_NONE) {
892 		/* target already set the table's type */
893 		if (t->type == DM_TYPE_BIO_BASED) {
894 			/* possibly upgrade to a variant of bio-based */
895 			goto verify_bio_based;
896 		}
897 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
898 		goto verify_rq_based;
899 	}
900 
901 	for (unsigned int i = 0; i < t->num_targets; i++) {
902 		ti = dm_table_get_target(t, i);
903 		if (dm_target_hybrid(ti))
904 			hybrid = 1;
905 		else if (dm_target_request_based(ti))
906 			request_based = 1;
907 		else
908 			bio_based = 1;
909 
910 		if (bio_based && request_based) {
911 			DMERR("Inconsistent table: different target types can't be mixed up");
912 			return -EINVAL;
913 		}
914 	}
915 
916 	if (hybrid && !bio_based && !request_based) {
917 		/*
918 		 * The targets can work either way.
919 		 * Determine the type from the live device.
920 		 * Default to bio-based if device is new.
921 		 */
922 		if (__table_type_request_based(live_md_type))
923 			request_based = 1;
924 		else
925 			bio_based = 1;
926 	}
927 
928 	if (bio_based) {
929 verify_bio_based:
930 		/* We must use this table as bio-based */
931 		t->type = DM_TYPE_BIO_BASED;
932 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
933 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
934 			t->type = DM_TYPE_DAX_BIO_BASED;
935 		}
936 		return 0;
937 	}
938 
939 	BUG_ON(!request_based); /* No targets in this table */
940 
941 	t->type = DM_TYPE_REQUEST_BASED;
942 
943 verify_rq_based:
944 	/*
945 	 * Request-based dm supports only tables that have a single target now.
946 	 * To support multiple targets, request splitting support is needed,
947 	 * and that needs lots of changes in the block-layer.
948 	 * (e.g. request completion process for partial completion.)
949 	 */
950 	if (t->num_targets > 1) {
951 		DMERR("request-based DM doesn't support multiple targets");
952 		return -EINVAL;
953 	}
954 
955 	if (list_empty(devices)) {
956 		int srcu_idx;
957 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
958 
959 		/* inherit live table's type */
960 		if (live_table)
961 			t->type = live_table->type;
962 		dm_put_live_table(t->md, srcu_idx);
963 		return 0;
964 	}
965 
966 	ti = dm_table_get_immutable_target(t);
967 	if (!ti) {
968 		DMERR("table load rejected: immutable target is required");
969 		return -EINVAL;
970 	} else if (ti->max_io_len) {
971 		DMERR("table load rejected: immutable target that splits IO is not supported");
972 		return -EINVAL;
973 	}
974 
975 	/* Non-request-stackable devices can't be used for request-based dm */
976 	if (!ti->type->iterate_devices ||
977 	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
978 		DMERR("table load rejected: including non-request-stackable devices");
979 		return -EINVAL;
980 	}
981 
982 	return 0;
983 }
984 
985 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
986 {
987 	return t->type;
988 }
989 
990 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
991 {
992 	return t->immutable_target_type;
993 }
994 
995 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
996 {
997 	/* Immutable target is implicitly a singleton */
998 	if (t->num_targets > 1 ||
999 	    !dm_target_is_immutable(t->targets[0].type))
1000 		return NULL;
1001 
1002 	return t->targets;
1003 }
1004 
1005 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1006 {
1007 	for (unsigned int i = 0; i < t->num_targets; i++) {
1008 		struct dm_target *ti = dm_table_get_target(t, i);
1009 
1010 		if (dm_target_is_wildcard(ti->type))
1011 			return ti;
1012 	}
1013 
1014 	return NULL;
1015 }
1016 
1017 bool dm_table_bio_based(struct dm_table *t)
1018 {
1019 	return __table_type_bio_based(dm_table_get_type(t));
1020 }
1021 
1022 bool dm_table_request_based(struct dm_table *t)
1023 {
1024 	return __table_type_request_based(dm_table_get_type(t));
1025 }
1026 
1027 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1028 {
1029 	enum dm_queue_mode type = dm_table_get_type(t);
1030 	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1031 	unsigned int min_pool_size = 0, pool_size;
1032 	struct dm_md_mempools *pools;
1033 	unsigned int bioset_flags = 0;
1034 
1035 	if (unlikely(type == DM_TYPE_NONE)) {
1036 		DMERR("no table type is set, can't allocate mempools");
1037 		return -EINVAL;
1038 	}
1039 
1040 	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1041 	if (!pools)
1042 		return -ENOMEM;
1043 
1044 	if (type == DM_TYPE_REQUEST_BASED) {
1045 		pool_size = dm_get_reserved_rq_based_ios();
1046 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1047 		goto init_bs;
1048 	}
1049 
1050 	if (md->queue->limits.features & BLK_FEAT_POLL)
1051 		bioset_flags |= BIOSET_PERCPU_CACHE;
1052 
1053 	for (unsigned int i = 0; i < t->num_targets; i++) {
1054 		struct dm_target *ti = dm_table_get_target(t, i);
1055 
1056 		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1057 		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1058 	}
1059 	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1060 	front_pad = roundup(per_io_data_size,
1061 		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1062 
1063 	io_front_pad = roundup(per_io_data_size,
1064 		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1065 	if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1066 		goto out_free_pools;
1067 	if (t->integrity_supported &&
1068 	    bioset_integrity_create(&pools->io_bs, pool_size))
1069 		goto out_free_pools;
1070 init_bs:
1071 	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1072 		goto out_free_pools;
1073 	if (t->integrity_supported &&
1074 	    bioset_integrity_create(&pools->bs, pool_size))
1075 		goto out_free_pools;
1076 
1077 	t->mempools = pools;
1078 	return 0;
1079 
1080 out_free_pools:
1081 	dm_free_md_mempools(pools);
1082 	return -ENOMEM;
1083 }
1084 
1085 static int setup_indexes(struct dm_table *t)
1086 {
1087 	int i;
1088 	unsigned int total = 0;
1089 	sector_t *indexes;
1090 
1091 	/* allocate the space for *all* the indexes */
1092 	for (i = t->depth - 2; i >= 0; i--) {
1093 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1094 		total += t->counts[i];
1095 	}
1096 
1097 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1098 	if (!indexes)
1099 		return -ENOMEM;
1100 
1101 	/* set up internal nodes, bottom-up */
1102 	for (i = t->depth - 2; i >= 0; i--) {
1103 		t->index[i] = indexes;
1104 		indexes += (KEYS_PER_NODE * t->counts[i]);
1105 		setup_btree_index(i, t);
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 /*
1112  * Builds the btree to index the map.
1113  */
1114 static int dm_table_build_index(struct dm_table *t)
1115 {
1116 	int r = 0;
1117 	unsigned int leaf_nodes;
1118 
1119 	/* how many indexes will the btree have ? */
1120 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1121 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1122 
1123 	/* leaf layer has already been set up */
1124 	t->counts[t->depth - 1] = leaf_nodes;
1125 	t->index[t->depth - 1] = t->highs;
1126 
1127 	if (t->depth >= 2)
1128 		r = setup_indexes(t);
1129 
1130 	return r;
1131 }
1132 
1133 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1134 
1135 struct dm_crypto_profile {
1136 	struct blk_crypto_profile profile;
1137 	struct mapped_device *md;
1138 };
1139 
1140 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1141 				     sector_t start, sector_t len, void *data)
1142 {
1143 	const struct blk_crypto_key *key = data;
1144 
1145 	blk_crypto_evict_key(dev->bdev, key);
1146 	return 0;
1147 }
1148 
1149 /*
1150  * When an inline encryption key is evicted from a device-mapper device, evict
1151  * it from all the underlying devices.
1152  */
1153 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1154 			    const struct blk_crypto_key *key, unsigned int slot)
1155 {
1156 	struct mapped_device *md =
1157 		container_of(profile, struct dm_crypto_profile, profile)->md;
1158 	struct dm_table *t;
1159 	int srcu_idx;
1160 
1161 	t = dm_get_live_table(md, &srcu_idx);
1162 	if (!t)
1163 		return 0;
1164 
1165 	for (unsigned int i = 0; i < t->num_targets; i++) {
1166 		struct dm_target *ti = dm_table_get_target(t, i);
1167 
1168 		if (!ti->type->iterate_devices)
1169 			continue;
1170 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1171 					  (void *)key);
1172 	}
1173 
1174 	dm_put_live_table(md, srcu_idx);
1175 	return 0;
1176 }
1177 
1178 static int
1179 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1180 				     sector_t start, sector_t len, void *data)
1181 {
1182 	struct blk_crypto_profile *parent = data;
1183 	struct blk_crypto_profile *child =
1184 		bdev_get_queue(dev->bdev)->crypto_profile;
1185 
1186 	blk_crypto_intersect_capabilities(parent, child);
1187 	return 0;
1188 }
1189 
1190 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1191 {
1192 	struct dm_crypto_profile *dmcp = container_of(profile,
1193 						      struct dm_crypto_profile,
1194 						      profile);
1195 
1196 	if (!profile)
1197 		return;
1198 
1199 	blk_crypto_profile_destroy(profile);
1200 	kfree(dmcp);
1201 }
1202 
1203 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1204 {
1205 	dm_destroy_crypto_profile(t->crypto_profile);
1206 	t->crypto_profile = NULL;
1207 }
1208 
1209 /*
1210  * Constructs and initializes t->crypto_profile with a crypto profile that
1211  * represents the common set of crypto capabilities of the devices described by
1212  * the dm_table.  However, if the constructed crypto profile doesn't support all
1213  * crypto capabilities that are supported by the current mapped_device, it
1214  * returns an error instead, since we don't support removing crypto capabilities
1215  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1216  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1217  */
1218 static int dm_table_construct_crypto_profile(struct dm_table *t)
1219 {
1220 	struct dm_crypto_profile *dmcp;
1221 	struct blk_crypto_profile *profile;
1222 	unsigned int i;
1223 	bool empty_profile = true;
1224 
1225 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1226 	if (!dmcp)
1227 		return -ENOMEM;
1228 	dmcp->md = t->md;
1229 
1230 	profile = &dmcp->profile;
1231 	blk_crypto_profile_init(profile, 0);
1232 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1233 	profile->max_dun_bytes_supported = UINT_MAX;
1234 	memset(profile->modes_supported, 0xFF,
1235 	       sizeof(profile->modes_supported));
1236 
1237 	for (i = 0; i < t->num_targets; i++) {
1238 		struct dm_target *ti = dm_table_get_target(t, i);
1239 
1240 		if (!dm_target_passes_crypto(ti->type)) {
1241 			blk_crypto_intersect_capabilities(profile, NULL);
1242 			break;
1243 		}
1244 		if (!ti->type->iterate_devices)
1245 			continue;
1246 		ti->type->iterate_devices(ti,
1247 					  device_intersect_crypto_capabilities,
1248 					  profile);
1249 	}
1250 
1251 	if (t->md->queue &&
1252 	    !blk_crypto_has_capabilities(profile,
1253 					 t->md->queue->crypto_profile)) {
1254 		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1255 		dm_destroy_crypto_profile(profile);
1256 		return -EINVAL;
1257 	}
1258 
1259 	/*
1260 	 * If the new profile doesn't actually support any crypto capabilities,
1261 	 * we may as well represent it with a NULL profile.
1262 	 */
1263 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1264 		if (profile->modes_supported[i]) {
1265 			empty_profile = false;
1266 			break;
1267 		}
1268 	}
1269 
1270 	if (empty_profile) {
1271 		dm_destroy_crypto_profile(profile);
1272 		profile = NULL;
1273 	}
1274 
1275 	/*
1276 	 * t->crypto_profile is only set temporarily while the table is being
1277 	 * set up, and it gets set to NULL after the profile has been
1278 	 * transferred to the request_queue.
1279 	 */
1280 	t->crypto_profile = profile;
1281 
1282 	return 0;
1283 }
1284 
1285 static void dm_update_crypto_profile(struct request_queue *q,
1286 				     struct dm_table *t)
1287 {
1288 	if (!t->crypto_profile)
1289 		return;
1290 
1291 	/* Make the crypto profile less restrictive. */
1292 	if (!q->crypto_profile) {
1293 		blk_crypto_register(t->crypto_profile, q);
1294 	} else {
1295 		blk_crypto_update_capabilities(q->crypto_profile,
1296 					       t->crypto_profile);
1297 		dm_destroy_crypto_profile(t->crypto_profile);
1298 	}
1299 	t->crypto_profile = NULL;
1300 }
1301 
1302 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1303 
1304 static int dm_table_construct_crypto_profile(struct dm_table *t)
1305 {
1306 	return 0;
1307 }
1308 
1309 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1310 {
1311 }
1312 
1313 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1314 {
1315 }
1316 
1317 static void dm_update_crypto_profile(struct request_queue *q,
1318 				     struct dm_table *t)
1319 {
1320 }
1321 
1322 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1323 
1324 /*
1325  * Prepares the table for use by building the indices,
1326  * setting the type, and allocating mempools.
1327  */
1328 int dm_table_complete(struct dm_table *t)
1329 {
1330 	int r;
1331 
1332 	r = dm_table_determine_type(t);
1333 	if (r) {
1334 		DMERR("unable to determine table type");
1335 		return r;
1336 	}
1337 
1338 	r = dm_table_build_index(t);
1339 	if (r) {
1340 		DMERR("unable to build btrees");
1341 		return r;
1342 	}
1343 
1344 	r = dm_table_construct_crypto_profile(t);
1345 	if (r) {
1346 		DMERR("could not construct crypto profile.");
1347 		return r;
1348 	}
1349 
1350 	r = dm_table_alloc_md_mempools(t, t->md);
1351 	if (r)
1352 		DMERR("unable to allocate mempools");
1353 
1354 	return r;
1355 }
1356 
1357 static DEFINE_MUTEX(_event_lock);
1358 void dm_table_event_callback(struct dm_table *t,
1359 			     void (*fn)(void *), void *context)
1360 {
1361 	mutex_lock(&_event_lock);
1362 	t->event_fn = fn;
1363 	t->event_context = context;
1364 	mutex_unlock(&_event_lock);
1365 }
1366 
1367 void dm_table_event(struct dm_table *t)
1368 {
1369 	mutex_lock(&_event_lock);
1370 	if (t->event_fn)
1371 		t->event_fn(t->event_context);
1372 	mutex_unlock(&_event_lock);
1373 }
1374 EXPORT_SYMBOL(dm_table_event);
1375 
1376 inline sector_t dm_table_get_size(struct dm_table *t)
1377 {
1378 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1379 }
1380 EXPORT_SYMBOL(dm_table_get_size);
1381 
1382 /*
1383  * Search the btree for the correct target.
1384  *
1385  * Caller should check returned pointer for NULL
1386  * to trap I/O beyond end of device.
1387  */
1388 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1389 {
1390 	unsigned int l, n = 0, k = 0;
1391 	sector_t *node;
1392 
1393 	if (unlikely(sector >= dm_table_get_size(t)))
1394 		return NULL;
1395 
1396 	for (l = 0; l < t->depth; l++) {
1397 		n = get_child(n, k);
1398 		node = get_node(t, l, n);
1399 
1400 		for (k = 0; k < KEYS_PER_NODE; k++)
1401 			if (node[k] >= sector)
1402 				break;
1403 	}
1404 
1405 	return &t->targets[(KEYS_PER_NODE * n) + k];
1406 }
1407 
1408 /*
1409  * type->iterate_devices() should be called when the sanity check needs to
1410  * iterate and check all underlying data devices. iterate_devices() will
1411  * iterate all underlying data devices until it encounters a non-zero return
1412  * code, returned by whether the input iterate_devices_callout_fn, or
1413  * iterate_devices() itself internally.
1414  *
1415  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1416  * iterate multiple underlying devices internally, in which case a non-zero
1417  * return code returned by iterate_devices_callout_fn will stop the iteration
1418  * in advance.
1419  *
1420  * Cases requiring _any_ underlying device supporting some kind of attribute,
1421  * should use the iteration structure like dm_table_any_dev_attr(), or call
1422  * it directly. @func should handle semantics of positive examples, e.g.
1423  * capable of something.
1424  *
1425  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1426  * should use the iteration structure like dm_table_supports_nowait() or
1427  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1428  * uses an @anti_func that handle semantics of counter examples, e.g. not
1429  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1430  */
1431 static bool dm_table_any_dev_attr(struct dm_table *t,
1432 				  iterate_devices_callout_fn func, void *data)
1433 {
1434 	for (unsigned int i = 0; i < t->num_targets; i++) {
1435 		struct dm_target *ti = dm_table_get_target(t, i);
1436 
1437 		if (ti->type->iterate_devices &&
1438 		    ti->type->iterate_devices(ti, func, data))
1439 			return true;
1440 	}
1441 
1442 	return false;
1443 }
1444 
1445 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1446 			sector_t start, sector_t len, void *data)
1447 {
1448 	unsigned int *num_devices = data;
1449 
1450 	(*num_devices)++;
1451 
1452 	return 0;
1453 }
1454 
1455 /*
1456  * Check whether a table has no data devices attached using each
1457  * target's iterate_devices method.
1458  * Returns false if the result is unknown because a target doesn't
1459  * support iterate_devices.
1460  */
1461 bool dm_table_has_no_data_devices(struct dm_table *t)
1462 {
1463 	for (unsigned int i = 0; i < t->num_targets; i++) {
1464 		struct dm_target *ti = dm_table_get_target(t, i);
1465 		unsigned int num_devices = 0;
1466 
1467 		if (!ti->type->iterate_devices)
1468 			return false;
1469 
1470 		ti->type->iterate_devices(ti, count_device, &num_devices);
1471 		if (num_devices)
1472 			return false;
1473 	}
1474 
1475 	return true;
1476 }
1477 
1478 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1479 			    sector_t start, sector_t len, void *data)
1480 {
1481 	bool *zoned = data;
1482 
1483 	return bdev_is_zoned(dev->bdev) != *zoned;
1484 }
1485 
1486 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1487 				 sector_t start, sector_t len, void *data)
1488 {
1489 	return bdev_is_zoned(dev->bdev);
1490 }
1491 
1492 /*
1493  * Check the device zoned model based on the target feature flag. If the target
1494  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1495  * also accepted but all devices must have the same zoned model. If the target
1496  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1497  * zoned model with all zoned devices having the same zone size.
1498  */
1499 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1500 {
1501 	for (unsigned int i = 0; i < t->num_targets; i++) {
1502 		struct dm_target *ti = dm_table_get_target(t, i);
1503 
1504 		/*
1505 		 * For the wildcard target (dm-error), if we do not have a
1506 		 * backing device, we must always return false. If we have a
1507 		 * backing device, the result must depend on checking zoned
1508 		 * model, like for any other target. So for this, check directly
1509 		 * if the target backing device is zoned as we get "false" when
1510 		 * dm-error was set without a backing device.
1511 		 */
1512 		if (dm_target_is_wildcard(ti->type) &&
1513 		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1514 			return false;
1515 
1516 		if (dm_target_supports_zoned_hm(ti->type)) {
1517 			if (!ti->type->iterate_devices ||
1518 			    ti->type->iterate_devices(ti, device_not_zoned,
1519 						      &zoned))
1520 				return false;
1521 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1522 			if (zoned)
1523 				return false;
1524 		}
1525 	}
1526 
1527 	return true;
1528 }
1529 
1530 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1531 					   sector_t start, sector_t len, void *data)
1532 {
1533 	unsigned int *zone_sectors = data;
1534 
1535 	if (!bdev_is_zoned(dev->bdev))
1536 		return 0;
1537 	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1538 }
1539 
1540 /*
1541  * Check consistency of zoned model and zone sectors across all targets. For
1542  * zone sectors, if the destination device is a zoned block device, it shall
1543  * have the specified zone_sectors.
1544  */
1545 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1546 				   unsigned int zone_sectors)
1547 {
1548 	if (!zoned)
1549 		return 0;
1550 
1551 	if (!dm_table_supports_zoned(t, zoned)) {
1552 		DMERR("%s: zoned model is not consistent across all devices",
1553 		      dm_device_name(t->md));
1554 		return -EINVAL;
1555 	}
1556 
1557 	/* Check zone size validity and compatibility */
1558 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1559 		return -EINVAL;
1560 
1561 	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1562 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1563 		      dm_device_name(t->md));
1564 		return -EINVAL;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Establish the new table's queue_limits and validate them.
1572  */
1573 int dm_calculate_queue_limits(struct dm_table *t,
1574 			      struct queue_limits *limits)
1575 {
1576 	struct queue_limits ti_limits;
1577 	unsigned int zone_sectors = 0;
1578 	bool zoned = false;
1579 
1580 	dm_set_stacking_limits(limits);
1581 
1582 	t->integrity_supported = true;
1583 	for (unsigned int i = 0; i < t->num_targets; i++) {
1584 		struct dm_target *ti = dm_table_get_target(t, i);
1585 
1586 		if (!dm_target_passes_integrity(ti->type))
1587 			t->integrity_supported = false;
1588 	}
1589 
1590 	for (unsigned int i = 0; i < t->num_targets; i++) {
1591 		struct dm_target *ti = dm_table_get_target(t, i);
1592 
1593 		dm_set_stacking_limits(&ti_limits);
1594 
1595 		if (!ti->type->iterate_devices) {
1596 			/* Set I/O hints portion of queue limits */
1597 			if (ti->type->io_hints)
1598 				ti->type->io_hints(ti, &ti_limits);
1599 			goto combine_limits;
1600 		}
1601 
1602 		/*
1603 		 * Combine queue limits of all the devices this target uses.
1604 		 */
1605 		ti->type->iterate_devices(ti, dm_set_device_limits,
1606 					  &ti_limits);
1607 
1608 		if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1609 			/*
1610 			 * After stacking all limits, validate all devices
1611 			 * in table support this zoned model and zone sectors.
1612 			 */
1613 			zoned = (ti_limits.features & BLK_FEAT_ZONED);
1614 			zone_sectors = ti_limits.chunk_sectors;
1615 		}
1616 
1617 		/* Set I/O hints portion of queue limits */
1618 		if (ti->type->io_hints)
1619 			ti->type->io_hints(ti, &ti_limits);
1620 
1621 		/*
1622 		 * Check each device area is consistent with the target's
1623 		 * overall queue limits.
1624 		 */
1625 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1626 					      &ti_limits))
1627 			return -EINVAL;
1628 
1629 combine_limits:
1630 		/*
1631 		 * Merge this target's queue limits into the overall limits
1632 		 * for the table.
1633 		 */
1634 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1635 			DMWARN("%s: adding target device (start sect %llu len %llu) "
1636 			       "caused an alignment inconsistency",
1637 			       dm_device_name(t->md),
1638 			       (unsigned long long) ti->begin,
1639 			       (unsigned long long) ti->len);
1640 
1641 		if (t->integrity_supported ||
1642 		    dm_target_has_integrity(ti->type)) {
1643 			if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1644 				DMWARN("%s: adding target device (start sect %llu len %llu) "
1645 				       "disabled integrity support due to incompatibility",
1646 				       dm_device_name(t->md),
1647 				       (unsigned long long) ti->begin,
1648 				       (unsigned long long) ti->len);
1649 				t->integrity_supported = false;
1650 			}
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * Verify that the zoned model and zone sectors, as determined before
1656 	 * any .io_hints override, are the same across all devices in the table.
1657 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1658 	 *   zoned model on host-managed zoned block devices.
1659 	 * BUT...
1660 	 */
1661 	if (limits->features & BLK_FEAT_ZONED) {
1662 		/*
1663 		 * ...IF the above limits stacking determined a zoned model
1664 		 * validate that all of the table's devices conform to it.
1665 		 */
1666 		zoned = limits->features & BLK_FEAT_ZONED;
1667 		zone_sectors = limits->chunk_sectors;
1668 	}
1669 	if (validate_hardware_zoned(t, zoned, zone_sectors))
1670 		return -EINVAL;
1671 
1672 	return validate_hardware_logical_block_alignment(t, limits);
1673 }
1674 
1675 /*
1676  * Check if a target requires flush support even if none of the underlying
1677  * devices need it (e.g. to persist target-specific metadata).
1678  */
1679 static bool dm_table_supports_flush(struct dm_table *t)
1680 {
1681 	for (unsigned int i = 0; i < t->num_targets; i++) {
1682 		struct dm_target *ti = dm_table_get_target(t, i);
1683 
1684 		if (ti->num_flush_bios && ti->flush_supported)
1685 			return true;
1686 	}
1687 
1688 	return false;
1689 }
1690 
1691 static int device_dax_write_cache_enabled(struct dm_target *ti,
1692 					  struct dm_dev *dev, sector_t start,
1693 					  sector_t len, void *data)
1694 {
1695 	struct dax_device *dax_dev = dev->dax_dev;
1696 
1697 	if (!dax_dev)
1698 		return false;
1699 
1700 	if (dax_write_cache_enabled(dax_dev))
1701 		return true;
1702 	return false;
1703 }
1704 
1705 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1706 					   sector_t start, sector_t len, void *data)
1707 {
1708 	struct request_queue *q = bdev_get_queue(dev->bdev);
1709 
1710 	return !q->limits.max_write_zeroes_sectors;
1711 }
1712 
1713 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1714 {
1715 	for (unsigned int i = 0; i < t->num_targets; i++) {
1716 		struct dm_target *ti = dm_table_get_target(t, i);
1717 
1718 		if (!ti->num_write_zeroes_bios)
1719 			return false;
1720 
1721 		if (!ti->type->iterate_devices ||
1722 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1723 			return false;
1724 	}
1725 
1726 	return true;
1727 }
1728 
1729 static bool dm_table_supports_nowait(struct dm_table *t)
1730 {
1731 	for (unsigned int i = 0; i < t->num_targets; i++) {
1732 		struct dm_target *ti = dm_table_get_target(t, i);
1733 
1734 		if (!dm_target_supports_nowait(ti->type))
1735 			return false;
1736 	}
1737 
1738 	return true;
1739 }
1740 
1741 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1742 				      sector_t start, sector_t len, void *data)
1743 {
1744 	return !bdev_max_discard_sectors(dev->bdev);
1745 }
1746 
1747 static bool dm_table_supports_discards(struct dm_table *t)
1748 {
1749 	for (unsigned int i = 0; i < t->num_targets; i++) {
1750 		struct dm_target *ti = dm_table_get_target(t, i);
1751 
1752 		if (!ti->num_discard_bios)
1753 			return false;
1754 
1755 		/*
1756 		 * Either the target provides discard support (as implied by setting
1757 		 * 'discards_supported') or it relies on _all_ data devices having
1758 		 * discard support.
1759 		 */
1760 		if (!ti->discards_supported &&
1761 		    (!ti->type->iterate_devices ||
1762 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1763 			return false;
1764 	}
1765 
1766 	return true;
1767 }
1768 
1769 static int device_not_secure_erase_capable(struct dm_target *ti,
1770 					   struct dm_dev *dev, sector_t start,
1771 					   sector_t len, void *data)
1772 {
1773 	return !bdev_max_secure_erase_sectors(dev->bdev);
1774 }
1775 
1776 static bool dm_table_supports_secure_erase(struct dm_table *t)
1777 {
1778 	for (unsigned int i = 0; i < t->num_targets; i++) {
1779 		struct dm_target *ti = dm_table_get_target(t, i);
1780 
1781 		if (!ti->num_secure_erase_bios)
1782 			return false;
1783 
1784 		if (!ti->type->iterate_devices ||
1785 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1786 			return false;
1787 	}
1788 
1789 	return true;
1790 }
1791 
1792 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1793 			      struct queue_limits *limits)
1794 {
1795 	int r;
1796 
1797 	if (!dm_table_supports_nowait(t))
1798 		limits->features &= ~BLK_FEAT_NOWAIT;
1799 
1800 	/*
1801 	 * The current polling impementation does not support request based
1802 	 * stacking.
1803 	 */
1804 	if (!__table_type_bio_based(t->type))
1805 		limits->features &= ~BLK_FEAT_POLL;
1806 
1807 	if (!dm_table_supports_discards(t)) {
1808 		limits->max_hw_discard_sectors = 0;
1809 		limits->discard_granularity = 0;
1810 		limits->discard_alignment = 0;
1811 	}
1812 
1813 	if (!dm_table_supports_write_zeroes(t))
1814 		limits->max_write_zeroes_sectors = 0;
1815 
1816 	if (!dm_table_supports_secure_erase(t))
1817 		limits->max_secure_erase_sectors = 0;
1818 
1819 	if (dm_table_supports_flush(t))
1820 		limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1821 
1822 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1823 		limits->features |= BLK_FEAT_DAX;
1824 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1825 			set_dax_synchronous(t->md->dax_dev);
1826 	} else
1827 		limits->features &= ~BLK_FEAT_DAX;
1828 
1829 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1830 		dax_write_cache(t->md->dax_dev, true);
1831 
1832 	/* For a zoned table, setup the zone related queue attributes. */
1833 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1834 	    (limits->features & BLK_FEAT_ZONED)) {
1835 		r = dm_set_zones_restrictions(t, q, limits);
1836 		if (r)
1837 			return r;
1838 	}
1839 
1840 	r = queue_limits_set(q, limits);
1841 	if (r)
1842 		return r;
1843 
1844 	/*
1845 	 * Now that the limits are set, check the zones mapped by the table
1846 	 * and setup the resources for zone append emulation if necessary.
1847 	 */
1848 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1849 	    (limits->features & BLK_FEAT_ZONED)) {
1850 		r = dm_revalidate_zones(t, q);
1851 		if (r)
1852 			return r;
1853 	}
1854 
1855 	dm_update_crypto_profile(q, t);
1856 	return 0;
1857 }
1858 
1859 struct list_head *dm_table_get_devices(struct dm_table *t)
1860 {
1861 	return &t->devices;
1862 }
1863 
1864 blk_mode_t dm_table_get_mode(struct dm_table *t)
1865 {
1866 	return t->mode;
1867 }
1868 EXPORT_SYMBOL(dm_table_get_mode);
1869 
1870 enum suspend_mode {
1871 	PRESUSPEND,
1872 	PRESUSPEND_UNDO,
1873 	POSTSUSPEND,
1874 };
1875 
1876 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1877 {
1878 	lockdep_assert_held(&t->md->suspend_lock);
1879 
1880 	for (unsigned int i = 0; i < t->num_targets; i++) {
1881 		struct dm_target *ti = dm_table_get_target(t, i);
1882 
1883 		switch (mode) {
1884 		case PRESUSPEND:
1885 			if (ti->type->presuspend)
1886 				ti->type->presuspend(ti);
1887 			break;
1888 		case PRESUSPEND_UNDO:
1889 			if (ti->type->presuspend_undo)
1890 				ti->type->presuspend_undo(ti);
1891 			break;
1892 		case POSTSUSPEND:
1893 			if (ti->type->postsuspend)
1894 				ti->type->postsuspend(ti);
1895 			break;
1896 		}
1897 	}
1898 }
1899 
1900 void dm_table_presuspend_targets(struct dm_table *t)
1901 {
1902 	if (!t)
1903 		return;
1904 
1905 	suspend_targets(t, PRESUSPEND);
1906 }
1907 
1908 void dm_table_presuspend_undo_targets(struct dm_table *t)
1909 {
1910 	if (!t)
1911 		return;
1912 
1913 	suspend_targets(t, PRESUSPEND_UNDO);
1914 }
1915 
1916 void dm_table_postsuspend_targets(struct dm_table *t)
1917 {
1918 	if (!t)
1919 		return;
1920 
1921 	suspend_targets(t, POSTSUSPEND);
1922 }
1923 
1924 int dm_table_resume_targets(struct dm_table *t)
1925 {
1926 	unsigned int i;
1927 	int r = 0;
1928 
1929 	lockdep_assert_held(&t->md->suspend_lock);
1930 
1931 	for (i = 0; i < t->num_targets; i++) {
1932 		struct dm_target *ti = dm_table_get_target(t, i);
1933 
1934 		if (!ti->type->preresume)
1935 			continue;
1936 
1937 		r = ti->type->preresume(ti);
1938 		if (r) {
1939 			DMERR("%s: %s: preresume failed, error = %d",
1940 			      dm_device_name(t->md), ti->type->name, r);
1941 			return r;
1942 		}
1943 	}
1944 
1945 	for (i = 0; i < t->num_targets; i++) {
1946 		struct dm_target *ti = dm_table_get_target(t, i);
1947 
1948 		if (ti->type->resume)
1949 			ti->type->resume(ti);
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 struct mapped_device *dm_table_get_md(struct dm_table *t)
1956 {
1957 	return t->md;
1958 }
1959 EXPORT_SYMBOL(dm_table_get_md);
1960 
1961 const char *dm_table_device_name(struct dm_table *t)
1962 {
1963 	return dm_device_name(t->md);
1964 }
1965 EXPORT_SYMBOL_GPL(dm_table_device_name);
1966 
1967 void dm_table_run_md_queue_async(struct dm_table *t)
1968 {
1969 	if (!dm_table_request_based(t))
1970 		return;
1971 
1972 	if (t->md->queue)
1973 		blk_mq_run_hw_queues(t->md->queue, true);
1974 }
1975 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1976 
1977