1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t; 133 134 if (num_targets > DM_MAX_TARGETS) 135 return -EOVERFLOW; 136 137 t = kzalloc(sizeof(*t), GFP_KERNEL); 138 139 if (!t) 140 return -ENOMEM; 141 142 INIT_LIST_HEAD(&t->devices); 143 init_rwsem(&t->devices_lock); 144 145 if (!num_targets) 146 num_targets = KEYS_PER_NODE; 147 148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 149 150 if (!num_targets) { 151 kfree(t); 152 return -EOVERFLOW; 153 } 154 155 if (alloc_targets(t, num_targets)) { 156 kfree(t); 157 return -ENOMEM; 158 } 159 160 t->type = DM_TYPE_NONE; 161 t->mode = mode; 162 t->md = md; 163 t->flush_bypasses_map = true; 164 *result = t; 165 return 0; 166 } 167 168 static void free_devices(struct list_head *devices, struct mapped_device *md) 169 { 170 struct list_head *tmp, *next; 171 172 list_for_each_safe(tmp, next, devices) { 173 struct dm_dev_internal *dd = 174 list_entry(tmp, struct dm_dev_internal, list); 175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 176 dm_device_name(md), dd->dm_dev->name); 177 dm_put_table_device(md, dd->dm_dev); 178 kfree(dd); 179 } 180 } 181 182 static void dm_table_destroy_crypto_profile(struct dm_table *t); 183 184 void dm_table_destroy(struct dm_table *t) 185 { 186 if (!t) 187 return; 188 189 /* free the indexes */ 190 if (t->depth >= 2) 191 kvfree(t->index[t->depth - 2]); 192 193 /* free the targets */ 194 for (unsigned int i = 0; i < t->num_targets; i++) { 195 struct dm_target *ti = dm_table_get_target(t, i); 196 197 if (ti->type->dtr) 198 ti->type->dtr(ti); 199 200 dm_put_target_type(ti->type); 201 } 202 203 kvfree(t->highs); 204 205 /* free the device list */ 206 free_devices(&t->devices, t->md); 207 208 dm_free_md_mempools(t->mempools); 209 210 dm_table_destroy_crypto_profile(t); 211 212 kfree(t); 213 } 214 215 /* 216 * See if we've already got a device in the list. 217 */ 218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 219 { 220 struct dm_dev_internal *dd; 221 222 list_for_each_entry(dd, l, list) 223 if (dd->dm_dev->bdev->bd_dev == dev) 224 return dd; 225 226 return NULL; 227 } 228 229 /* 230 * If possible, this checks an area of a destination device is invalid. 231 */ 232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 233 sector_t start, sector_t len, void *data) 234 { 235 struct queue_limits *limits = data; 236 struct block_device *bdev = dev->bdev; 237 sector_t dev_size = bdev_nr_sectors(bdev); 238 unsigned short logical_block_size_sectors = 239 limits->logical_block_size >> SECTOR_SHIFT; 240 241 if (!dev_size) 242 return 0; 243 244 if ((start >= dev_size) || (start + len > dev_size)) { 245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 246 dm_device_name(ti->table->md), bdev, 247 (unsigned long long)start, 248 (unsigned long long)len, 249 (unsigned long long)dev_size); 250 return 1; 251 } 252 253 /* 254 * If the target is mapped to zoned block device(s), check 255 * that the zones are not partially mapped. 256 */ 257 if (bdev_is_zoned(bdev)) { 258 unsigned int zone_sectors = bdev_zone_sectors(bdev); 259 260 if (start & (zone_sectors - 1)) { 261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 262 dm_device_name(ti->table->md), 263 (unsigned long long)start, 264 zone_sectors, bdev); 265 return 1; 266 } 267 268 /* 269 * Note: The last zone of a zoned block device may be smaller 270 * than other zones. So for a target mapping the end of a 271 * zoned block device with such a zone, len would not be zone 272 * aligned. We do not allow such last smaller zone to be part 273 * of the mapping here to ensure that mappings with multiple 274 * devices do not end up with a smaller zone in the middle of 275 * the sector range. 276 */ 277 if (len & (zone_sectors - 1)) { 278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 279 dm_device_name(ti->table->md), 280 (unsigned long long)len, 281 zone_sectors, bdev); 282 return 1; 283 } 284 } 285 286 if (logical_block_size_sectors <= 1) 287 return 0; 288 289 if (start & (logical_block_size_sectors - 1)) { 290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 291 dm_device_name(ti->table->md), 292 (unsigned long long)start, 293 limits->logical_block_size, bdev); 294 return 1; 295 } 296 297 if (len & (logical_block_size_sectors - 1)) { 298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 299 dm_device_name(ti->table->md), 300 (unsigned long long)len, 301 limits->logical_block_size, bdev); 302 return 1; 303 } 304 305 return 0; 306 } 307 308 /* 309 * This upgrades the mode on an already open dm_dev, being 310 * careful to leave things as they were if we fail to reopen the 311 * device and not to touch the existing bdev field in case 312 * it is accessed concurrently. 313 */ 314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 315 struct mapped_device *md) 316 { 317 int r; 318 struct dm_dev *old_dev, *new_dev; 319 320 old_dev = dd->dm_dev; 321 322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 323 dd->dm_dev->mode | new_mode, &new_dev); 324 if (r) 325 return r; 326 327 dd->dm_dev = new_dev; 328 dm_put_table_device(md, old_dev); 329 330 return 0; 331 } 332 333 /* 334 * Note: the __ref annotation is because this function can call the __init 335 * marked early_lookup_bdev when called during early boot code from dm-init.c. 336 */ 337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p) 338 { 339 int r; 340 dev_t dev; 341 unsigned int major, minor; 342 char dummy; 343 344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 345 /* Extract the major/minor numbers */ 346 dev = MKDEV(major, minor); 347 if (MAJOR(dev) != major || MINOR(dev) != minor) 348 return -EOVERFLOW; 349 } else { 350 r = lookup_bdev(path, &dev); 351 #ifndef MODULE 352 if (r && system_state < SYSTEM_RUNNING) 353 r = early_lookup_bdev(path, &dev); 354 #endif 355 if (r) 356 return r; 357 } 358 *dev_p = dev; 359 return 0; 360 } 361 EXPORT_SYMBOL(dm_devt_from_path); 362 363 /* 364 * Add a device to the list, or just increment the usage count if 365 * it's already present. 366 */ 367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 368 struct dm_dev **result) 369 { 370 int r; 371 dev_t dev; 372 struct dm_dev_internal *dd; 373 struct dm_table *t = ti->table; 374 375 BUG_ON(!t); 376 377 r = dm_devt_from_path(path, &dev); 378 if (r) 379 return r; 380 381 if (dev == disk_devt(t->md->disk)) 382 return -EINVAL; 383 384 down_write(&t->devices_lock); 385 386 dd = find_device(&t->devices, dev); 387 if (!dd) { 388 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 389 if (!dd) { 390 r = -ENOMEM; 391 goto unlock_ret_r; 392 } 393 394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 395 if (r) { 396 kfree(dd); 397 goto unlock_ret_r; 398 } 399 400 refcount_set(&dd->count, 1); 401 list_add(&dd->list, &t->devices); 402 goto out; 403 404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 405 r = upgrade_mode(dd, mode, t->md); 406 if (r) 407 goto unlock_ret_r; 408 } 409 refcount_inc(&dd->count); 410 out: 411 up_write(&t->devices_lock); 412 *result = dd->dm_dev; 413 return 0; 414 415 unlock_ret_r: 416 up_write(&t->devices_lock); 417 return r; 418 } 419 EXPORT_SYMBOL(dm_get_device); 420 421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 422 sector_t start, sector_t len, void *data) 423 { 424 struct queue_limits *limits = data; 425 struct block_device *bdev = dev->bdev; 426 struct request_queue *q = bdev_get_queue(bdev); 427 428 if (unlikely(!q)) { 429 DMWARN("%s: Cannot set limits for nonexistent device %pg", 430 dm_device_name(ti->table->md), bdev); 431 return 0; 432 } 433 434 if (blk_stack_limits(limits, &q->limits, 435 get_start_sect(bdev) + start) < 0) 436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 437 "physical_block_size=%u, logical_block_size=%u, " 438 "alignment_offset=%u, start=%llu", 439 dm_device_name(ti->table->md), bdev, 440 q->limits.physical_block_size, 441 q->limits.logical_block_size, 442 q->limits.alignment_offset, 443 (unsigned long long) start << SECTOR_SHIFT); 444 445 /* 446 * Only stack the integrity profile if the target doesn't have native 447 * integrity support. 448 */ 449 if (!dm_target_has_integrity(ti->type)) 450 queue_limits_stack_integrity_bdev(limits, bdev); 451 return 0; 452 } 453 454 /* 455 * Decrement a device's use count and remove it if necessary. 456 */ 457 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 458 { 459 int found = 0; 460 struct dm_table *t = ti->table; 461 struct list_head *devices = &t->devices; 462 struct dm_dev_internal *dd; 463 464 down_write(&t->devices_lock); 465 466 list_for_each_entry(dd, devices, list) { 467 if (dd->dm_dev == d) { 468 found = 1; 469 break; 470 } 471 } 472 if (!found) { 473 DMERR("%s: device %s not in table devices list", 474 dm_device_name(t->md), d->name); 475 goto unlock_ret; 476 } 477 if (refcount_dec_and_test(&dd->count)) { 478 dm_put_table_device(t->md, d); 479 list_del(&dd->list); 480 kfree(dd); 481 } 482 483 unlock_ret: 484 up_write(&t->devices_lock); 485 } 486 EXPORT_SYMBOL(dm_put_device); 487 488 /* 489 * Checks to see if the target joins onto the end of the table. 490 */ 491 static int adjoin(struct dm_table *t, struct dm_target *ti) 492 { 493 struct dm_target *prev; 494 495 if (!t->num_targets) 496 return !ti->begin; 497 498 prev = &t->targets[t->num_targets - 1]; 499 return (ti->begin == (prev->begin + prev->len)); 500 } 501 502 /* 503 * Used to dynamically allocate the arg array. 504 * 505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 506 * process messages even if some device is suspended. These messages have a 507 * small fixed number of arguments. 508 * 509 * On the other hand, dm-switch needs to process bulk data using messages and 510 * excessive use of GFP_NOIO could cause trouble. 511 */ 512 static char **realloc_argv(unsigned int *size, char **old_argv) 513 { 514 char **argv; 515 unsigned int new_size; 516 gfp_t gfp; 517 518 if (*size) { 519 new_size = *size * 2; 520 gfp = GFP_KERNEL; 521 } else { 522 new_size = 8; 523 gfp = GFP_NOIO; 524 } 525 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 526 if (argv) { 527 *size = new_size; 528 if (old_argv) 529 memcpy(argv, old_argv, *size * sizeof(*argv)); 530 } 531 532 kfree(old_argv); 533 return argv; 534 } 535 536 /* 537 * Destructively splits up the argument list to pass to ctr. 538 */ 539 int dm_split_args(int *argc, char ***argvp, char *input) 540 { 541 char *start, *end = input, *out, **argv = NULL; 542 unsigned int array_size = 0; 543 544 *argc = 0; 545 546 if (!input) { 547 *argvp = NULL; 548 return 0; 549 } 550 551 argv = realloc_argv(&array_size, argv); 552 if (!argv) 553 return -ENOMEM; 554 555 while (1) { 556 /* Skip whitespace */ 557 start = skip_spaces(end); 558 559 if (!*start) 560 break; /* success, we hit the end */ 561 562 /* 'out' is used to remove any back-quotes */ 563 end = out = start; 564 while (*end) { 565 /* Everything apart from '\0' can be quoted */ 566 if (*end == '\\' && *(end + 1)) { 567 *out++ = *(end + 1); 568 end += 2; 569 continue; 570 } 571 572 if (isspace(*end)) 573 break; /* end of token */ 574 575 *out++ = *end++; 576 } 577 578 /* have we already filled the array ? */ 579 if ((*argc + 1) > array_size) { 580 argv = realloc_argv(&array_size, argv); 581 if (!argv) 582 return -ENOMEM; 583 } 584 585 /* we know this is whitespace */ 586 if (*end) 587 end++; 588 589 /* terminate the string and put it in the array */ 590 *out = '\0'; 591 argv[*argc] = start; 592 (*argc)++; 593 } 594 595 *argvp = argv; 596 return 0; 597 } 598 599 static void dm_set_stacking_limits(struct queue_limits *limits) 600 { 601 blk_set_stacking_limits(limits); 602 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL; 603 } 604 605 /* 606 * Impose necessary and sufficient conditions on a devices's table such 607 * that any incoming bio which respects its logical_block_size can be 608 * processed successfully. If it falls across the boundary between 609 * two or more targets, the size of each piece it gets split into must 610 * be compatible with the logical_block_size of the target processing it. 611 */ 612 static int validate_hardware_logical_block_alignment(struct dm_table *t, 613 struct queue_limits *limits) 614 { 615 /* 616 * This function uses arithmetic modulo the logical_block_size 617 * (in units of 512-byte sectors). 618 */ 619 unsigned short device_logical_block_size_sects = 620 limits->logical_block_size >> SECTOR_SHIFT; 621 622 /* 623 * Offset of the start of the next table entry, mod logical_block_size. 624 */ 625 unsigned short next_target_start = 0; 626 627 /* 628 * Given an aligned bio that extends beyond the end of a 629 * target, how many sectors must the next target handle? 630 */ 631 unsigned short remaining = 0; 632 633 struct dm_target *ti; 634 struct queue_limits ti_limits; 635 unsigned int i; 636 637 /* 638 * Check each entry in the table in turn. 639 */ 640 for (i = 0; i < t->num_targets; i++) { 641 ti = dm_table_get_target(t, i); 642 643 dm_set_stacking_limits(&ti_limits); 644 645 /* combine all target devices' limits */ 646 if (ti->type->iterate_devices) 647 ti->type->iterate_devices(ti, dm_set_device_limits, 648 &ti_limits); 649 650 /* 651 * If the remaining sectors fall entirely within this 652 * table entry are they compatible with its logical_block_size? 653 */ 654 if (remaining < ti->len && 655 remaining & ((ti_limits.logical_block_size >> 656 SECTOR_SHIFT) - 1)) 657 break; /* Error */ 658 659 next_target_start = 660 (unsigned short) ((next_target_start + ti->len) & 661 (device_logical_block_size_sects - 1)); 662 remaining = next_target_start ? 663 device_logical_block_size_sects - next_target_start : 0; 664 } 665 666 if (remaining) { 667 DMERR("%s: table line %u (start sect %llu len %llu) " 668 "not aligned to h/w logical block size %u", 669 dm_device_name(t->md), i, 670 (unsigned long long) ti->begin, 671 (unsigned long long) ti->len, 672 limits->logical_block_size); 673 return -EINVAL; 674 } 675 676 return 0; 677 } 678 679 int dm_table_add_target(struct dm_table *t, const char *type, 680 sector_t start, sector_t len, char *params) 681 { 682 int r = -EINVAL, argc; 683 char **argv; 684 struct dm_target *ti; 685 686 if (t->singleton) { 687 DMERR("%s: target type %s must appear alone in table", 688 dm_device_name(t->md), t->targets->type->name); 689 return -EINVAL; 690 } 691 692 BUG_ON(t->num_targets >= t->num_allocated); 693 694 ti = t->targets + t->num_targets; 695 memset(ti, 0, sizeof(*ti)); 696 697 if (!len) { 698 DMERR("%s: zero-length target", dm_device_name(t->md)); 699 return -EINVAL; 700 } 701 if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) { 702 DMERR("%s: too large device", dm_device_name(t->md)); 703 return -EINVAL; 704 } 705 706 ti->type = dm_get_target_type(type); 707 if (!ti->type) { 708 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 709 return -EINVAL; 710 } 711 712 if (dm_target_needs_singleton(ti->type)) { 713 if (t->num_targets) { 714 ti->error = "singleton target type must appear alone in table"; 715 goto bad; 716 } 717 t->singleton = true; 718 } 719 720 if (dm_target_always_writeable(ti->type) && 721 !(t->mode & BLK_OPEN_WRITE)) { 722 ti->error = "target type may not be included in a read-only table"; 723 goto bad; 724 } 725 726 if (t->immutable_target_type) { 727 if (t->immutable_target_type != ti->type) { 728 ti->error = "immutable target type cannot be mixed with other target types"; 729 goto bad; 730 } 731 } else if (dm_target_is_immutable(ti->type)) { 732 if (t->num_targets) { 733 ti->error = "immutable target type cannot be mixed with other target types"; 734 goto bad; 735 } 736 t->immutable_target_type = ti->type; 737 } 738 739 ti->table = t; 740 ti->begin = start; 741 ti->len = len; 742 ti->error = "Unknown error"; 743 744 /* 745 * Does this target adjoin the previous one ? 746 */ 747 if (!adjoin(t, ti)) { 748 ti->error = "Gap in table"; 749 goto bad; 750 } 751 752 r = dm_split_args(&argc, &argv, params); 753 if (r) { 754 ti->error = "couldn't split parameters"; 755 goto bad; 756 } 757 758 r = ti->type->ctr(ti, argc, argv); 759 kfree(argv); 760 if (r) 761 goto bad; 762 763 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 764 765 if (!ti->num_discard_bios && ti->discards_supported) 766 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 767 dm_device_name(t->md), type); 768 769 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 770 static_branch_enable(&swap_bios_enabled); 771 772 if (!ti->flush_bypasses_map) 773 t->flush_bypasses_map = false; 774 775 return 0; 776 777 bad: 778 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 779 dm_put_target_type(ti->type); 780 return r; 781 } 782 783 /* 784 * Target argument parsing helpers. 785 */ 786 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 787 unsigned int *value, char **error, unsigned int grouped) 788 { 789 const char *arg_str = dm_shift_arg(arg_set); 790 char dummy; 791 792 if (!arg_str || 793 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 794 (*value < arg->min) || 795 (*value > arg->max) || 796 (grouped && arg_set->argc < *value)) { 797 *error = arg->error; 798 return -EINVAL; 799 } 800 801 return 0; 802 } 803 804 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 805 unsigned int *value, char **error) 806 { 807 return validate_next_arg(arg, arg_set, value, error, 0); 808 } 809 EXPORT_SYMBOL(dm_read_arg); 810 811 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 812 unsigned int *value, char **error) 813 { 814 return validate_next_arg(arg, arg_set, value, error, 1); 815 } 816 EXPORT_SYMBOL(dm_read_arg_group); 817 818 const char *dm_shift_arg(struct dm_arg_set *as) 819 { 820 char *r; 821 822 if (as->argc) { 823 as->argc--; 824 r = *as->argv; 825 as->argv++; 826 return r; 827 } 828 829 return NULL; 830 } 831 EXPORT_SYMBOL(dm_shift_arg); 832 833 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 834 { 835 BUG_ON(as->argc < num_args); 836 as->argc -= num_args; 837 as->argv += num_args; 838 } 839 EXPORT_SYMBOL(dm_consume_args); 840 841 static bool __table_type_bio_based(enum dm_queue_mode table_type) 842 { 843 return (table_type == DM_TYPE_BIO_BASED || 844 table_type == DM_TYPE_DAX_BIO_BASED); 845 } 846 847 static bool __table_type_request_based(enum dm_queue_mode table_type) 848 { 849 return table_type == DM_TYPE_REQUEST_BASED; 850 } 851 852 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 853 { 854 t->type = type; 855 } 856 EXPORT_SYMBOL_GPL(dm_table_set_type); 857 858 /* validate the dax capability of the target device span */ 859 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 860 sector_t start, sector_t len, void *data) 861 { 862 if (dev->dax_dev) 863 return false; 864 865 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 866 return true; 867 } 868 869 /* Check devices support synchronous DAX */ 870 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 871 sector_t start, sector_t len, void *data) 872 { 873 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 874 } 875 876 static bool dm_table_supports_dax(struct dm_table *t, 877 iterate_devices_callout_fn iterate_fn) 878 { 879 /* Ensure that all targets support DAX. */ 880 for (unsigned int i = 0; i < t->num_targets; i++) { 881 struct dm_target *ti = dm_table_get_target(t, i); 882 883 if (!ti->type->direct_access) 884 return false; 885 886 if (dm_target_is_wildcard(ti->type) || 887 !ti->type->iterate_devices || 888 ti->type->iterate_devices(ti, iterate_fn, NULL)) 889 return false; 890 } 891 892 return true; 893 } 894 895 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 896 sector_t start, sector_t len, void *data) 897 { 898 struct block_device *bdev = dev->bdev; 899 struct request_queue *q = bdev_get_queue(bdev); 900 901 /* request-based cannot stack on partitions! */ 902 if (bdev_is_partition(bdev)) 903 return false; 904 905 return queue_is_mq(q); 906 } 907 908 static int dm_table_determine_type(struct dm_table *t) 909 { 910 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 911 struct dm_target *ti; 912 struct list_head *devices = dm_table_get_devices(t); 913 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 914 915 if (t->type != DM_TYPE_NONE) { 916 /* target already set the table's type */ 917 if (t->type == DM_TYPE_BIO_BASED) { 918 /* possibly upgrade to a variant of bio-based */ 919 goto verify_bio_based; 920 } 921 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 922 goto verify_rq_based; 923 } 924 925 for (unsigned int i = 0; i < t->num_targets; i++) { 926 ti = dm_table_get_target(t, i); 927 if (dm_target_hybrid(ti)) 928 hybrid = 1; 929 else if (dm_target_request_based(ti)) 930 request_based = 1; 931 else 932 bio_based = 1; 933 934 if (bio_based && request_based) { 935 DMERR("Inconsistent table: different target types can't be mixed up"); 936 return -EINVAL; 937 } 938 } 939 940 if (hybrid && !bio_based && !request_based) { 941 /* 942 * The targets can work either way. 943 * Determine the type from the live device. 944 * Default to bio-based if device is new. 945 */ 946 if (__table_type_request_based(live_md_type)) 947 request_based = 1; 948 else 949 bio_based = 1; 950 } 951 952 if (bio_based) { 953 verify_bio_based: 954 /* We must use this table as bio-based */ 955 t->type = DM_TYPE_BIO_BASED; 956 if (dm_table_supports_dax(t, device_not_dax_capable) || 957 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 958 t->type = DM_TYPE_DAX_BIO_BASED; 959 } 960 return 0; 961 } 962 963 BUG_ON(!request_based); /* No targets in this table */ 964 965 t->type = DM_TYPE_REQUEST_BASED; 966 967 verify_rq_based: 968 /* 969 * Request-based dm supports only tables that have a single target now. 970 * To support multiple targets, request splitting support is needed, 971 * and that needs lots of changes in the block-layer. 972 * (e.g. request completion process for partial completion.) 973 */ 974 if (t->num_targets > 1) { 975 DMERR("request-based DM doesn't support multiple targets"); 976 return -EINVAL; 977 } 978 979 if (list_empty(devices)) { 980 int srcu_idx; 981 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 982 983 /* inherit live table's type */ 984 if (live_table) 985 t->type = live_table->type; 986 dm_put_live_table(t->md, srcu_idx); 987 return 0; 988 } 989 990 ti = dm_table_get_immutable_target(t); 991 if (!ti) { 992 DMERR("table load rejected: immutable target is required"); 993 return -EINVAL; 994 } else if (ti->max_io_len) { 995 DMERR("table load rejected: immutable target that splits IO is not supported"); 996 return -EINVAL; 997 } 998 999 /* Non-request-stackable devices can't be used for request-based dm */ 1000 if (!ti->type->iterate_devices || 1001 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 1002 DMERR("table load rejected: including non-request-stackable devices"); 1003 return -EINVAL; 1004 } 1005 1006 return 0; 1007 } 1008 1009 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1010 { 1011 return t->type; 1012 } 1013 1014 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1015 { 1016 return t->immutable_target_type; 1017 } 1018 1019 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1020 { 1021 /* Immutable target is implicitly a singleton */ 1022 if (t->num_targets > 1 || 1023 !dm_target_is_immutable(t->targets[0].type)) 1024 return NULL; 1025 1026 return t->targets; 1027 } 1028 1029 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1030 { 1031 for (unsigned int i = 0; i < t->num_targets; i++) { 1032 struct dm_target *ti = dm_table_get_target(t, i); 1033 1034 if (dm_target_is_wildcard(ti->type)) 1035 return ti; 1036 } 1037 1038 return NULL; 1039 } 1040 1041 bool dm_table_request_based(struct dm_table *t) 1042 { 1043 return __table_type_request_based(dm_table_get_type(t)); 1044 } 1045 1046 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1047 { 1048 enum dm_queue_mode type = dm_table_get_type(t); 1049 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1050 unsigned int min_pool_size = 0, pool_size; 1051 struct dm_md_mempools *pools; 1052 unsigned int bioset_flags = 0; 1053 1054 if (unlikely(type == DM_TYPE_NONE)) { 1055 DMERR("no table type is set, can't allocate mempools"); 1056 return -EINVAL; 1057 } 1058 1059 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1060 if (!pools) 1061 return -ENOMEM; 1062 1063 if (type == DM_TYPE_REQUEST_BASED) { 1064 pool_size = dm_get_reserved_rq_based_ios(); 1065 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1066 goto init_bs; 1067 } 1068 1069 if (md->queue->limits.features & BLK_FEAT_POLL) 1070 bioset_flags |= BIOSET_PERCPU_CACHE; 1071 1072 for (unsigned int i = 0; i < t->num_targets; i++) { 1073 struct dm_target *ti = dm_table_get_target(t, i); 1074 1075 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1076 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1077 } 1078 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1079 front_pad = roundup(per_io_data_size, 1080 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1081 1082 io_front_pad = roundup(per_io_data_size, 1083 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1084 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags)) 1085 goto out_free_pools; 1086 init_bs: 1087 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1088 goto out_free_pools; 1089 1090 t->mempools = pools; 1091 return 0; 1092 1093 out_free_pools: 1094 dm_free_md_mempools(pools); 1095 return -ENOMEM; 1096 } 1097 1098 static int setup_indexes(struct dm_table *t) 1099 { 1100 int i; 1101 unsigned int total = 0; 1102 sector_t *indexes; 1103 1104 /* allocate the space for *all* the indexes */ 1105 for (i = t->depth - 2; i >= 0; i--) { 1106 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1107 total += t->counts[i]; 1108 } 1109 1110 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1111 if (!indexes) 1112 return -ENOMEM; 1113 1114 /* set up internal nodes, bottom-up */ 1115 for (i = t->depth - 2; i >= 0; i--) { 1116 t->index[i] = indexes; 1117 indexes += (KEYS_PER_NODE * t->counts[i]); 1118 setup_btree_index(i, t); 1119 } 1120 1121 return 0; 1122 } 1123 1124 /* 1125 * Builds the btree to index the map. 1126 */ 1127 static int dm_table_build_index(struct dm_table *t) 1128 { 1129 int r = 0; 1130 unsigned int leaf_nodes; 1131 1132 /* how many indexes will the btree have ? */ 1133 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1134 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1135 1136 /* leaf layer has already been set up */ 1137 t->counts[t->depth - 1] = leaf_nodes; 1138 t->index[t->depth - 1] = t->highs; 1139 1140 if (t->depth >= 2) 1141 r = setup_indexes(t); 1142 1143 return r; 1144 } 1145 1146 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1147 1148 struct dm_crypto_profile { 1149 struct blk_crypto_profile profile; 1150 struct mapped_device *md; 1151 }; 1152 1153 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1154 sector_t start, sector_t len, void *data) 1155 { 1156 const struct blk_crypto_key *key = data; 1157 1158 blk_crypto_evict_key(dev->bdev, key); 1159 return 0; 1160 } 1161 1162 /* 1163 * When an inline encryption key is evicted from a device-mapper device, evict 1164 * it from all the underlying devices. 1165 */ 1166 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1167 const struct blk_crypto_key *key, unsigned int slot) 1168 { 1169 struct mapped_device *md = 1170 container_of(profile, struct dm_crypto_profile, profile)->md; 1171 struct dm_table *t; 1172 int srcu_idx; 1173 1174 t = dm_get_live_table(md, &srcu_idx); 1175 if (!t) 1176 return 0; 1177 1178 for (unsigned int i = 0; i < t->num_targets; i++) { 1179 struct dm_target *ti = dm_table_get_target(t, i); 1180 1181 if (!ti->type->iterate_devices) 1182 continue; 1183 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1184 (void *)key); 1185 } 1186 1187 dm_put_live_table(md, srcu_idx); 1188 return 0; 1189 } 1190 1191 static int 1192 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1193 sector_t start, sector_t len, void *data) 1194 { 1195 struct blk_crypto_profile *parent = data; 1196 struct blk_crypto_profile *child = 1197 bdev_get_queue(dev->bdev)->crypto_profile; 1198 1199 blk_crypto_intersect_capabilities(parent, child); 1200 return 0; 1201 } 1202 1203 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1204 { 1205 struct dm_crypto_profile *dmcp = container_of(profile, 1206 struct dm_crypto_profile, 1207 profile); 1208 1209 if (!profile) 1210 return; 1211 1212 blk_crypto_profile_destroy(profile); 1213 kfree(dmcp); 1214 } 1215 1216 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1217 { 1218 dm_destroy_crypto_profile(t->crypto_profile); 1219 t->crypto_profile = NULL; 1220 } 1221 1222 /* 1223 * Constructs and initializes t->crypto_profile with a crypto profile that 1224 * represents the common set of crypto capabilities of the devices described by 1225 * the dm_table. However, if the constructed crypto profile doesn't support all 1226 * crypto capabilities that are supported by the current mapped_device, it 1227 * returns an error instead, since we don't support removing crypto capabilities 1228 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1229 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1230 */ 1231 static int dm_table_construct_crypto_profile(struct dm_table *t) 1232 { 1233 struct dm_crypto_profile *dmcp; 1234 struct blk_crypto_profile *profile; 1235 unsigned int i; 1236 bool empty_profile = true; 1237 1238 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1239 if (!dmcp) 1240 return -ENOMEM; 1241 dmcp->md = t->md; 1242 1243 profile = &dmcp->profile; 1244 blk_crypto_profile_init(profile, 0); 1245 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1246 profile->max_dun_bytes_supported = UINT_MAX; 1247 memset(profile->modes_supported, 0xFF, 1248 sizeof(profile->modes_supported)); 1249 profile->key_types_supported = ~0; 1250 1251 for (i = 0; i < t->num_targets; i++) { 1252 struct dm_target *ti = dm_table_get_target(t, i); 1253 1254 if (!dm_target_passes_crypto(ti->type)) { 1255 blk_crypto_intersect_capabilities(profile, NULL); 1256 break; 1257 } 1258 if (!ti->type->iterate_devices) 1259 continue; 1260 ti->type->iterate_devices(ti, 1261 device_intersect_crypto_capabilities, 1262 profile); 1263 } 1264 1265 if (t->md->queue && 1266 !blk_crypto_has_capabilities(profile, 1267 t->md->queue->crypto_profile)) { 1268 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1269 dm_destroy_crypto_profile(profile); 1270 return -EINVAL; 1271 } 1272 1273 /* 1274 * If the new profile doesn't actually support any crypto capabilities, 1275 * we may as well represent it with a NULL profile. 1276 */ 1277 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1278 if (profile->modes_supported[i]) { 1279 empty_profile = false; 1280 break; 1281 } 1282 } 1283 1284 if (empty_profile) { 1285 dm_destroy_crypto_profile(profile); 1286 profile = NULL; 1287 } 1288 1289 /* 1290 * t->crypto_profile is only set temporarily while the table is being 1291 * set up, and it gets set to NULL after the profile has been 1292 * transferred to the request_queue. 1293 */ 1294 t->crypto_profile = profile; 1295 1296 return 0; 1297 } 1298 1299 static void dm_update_crypto_profile(struct request_queue *q, 1300 struct dm_table *t) 1301 { 1302 if (!t->crypto_profile) 1303 return; 1304 1305 /* Make the crypto profile less restrictive. */ 1306 if (!q->crypto_profile) { 1307 blk_crypto_register(t->crypto_profile, q); 1308 } else { 1309 blk_crypto_update_capabilities(q->crypto_profile, 1310 t->crypto_profile); 1311 dm_destroy_crypto_profile(t->crypto_profile); 1312 } 1313 t->crypto_profile = NULL; 1314 } 1315 1316 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1317 1318 static int dm_table_construct_crypto_profile(struct dm_table *t) 1319 { 1320 return 0; 1321 } 1322 1323 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1324 { 1325 } 1326 1327 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1328 { 1329 } 1330 1331 static void dm_update_crypto_profile(struct request_queue *q, 1332 struct dm_table *t) 1333 { 1334 } 1335 1336 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1337 1338 /* 1339 * Prepares the table for use by building the indices, 1340 * setting the type, and allocating mempools. 1341 */ 1342 int dm_table_complete(struct dm_table *t) 1343 { 1344 int r; 1345 1346 r = dm_table_determine_type(t); 1347 if (r) { 1348 DMERR("unable to determine table type"); 1349 return r; 1350 } 1351 1352 r = dm_table_build_index(t); 1353 if (r) { 1354 DMERR("unable to build btrees"); 1355 return r; 1356 } 1357 1358 r = dm_table_construct_crypto_profile(t); 1359 if (r) { 1360 DMERR("could not construct crypto profile."); 1361 return r; 1362 } 1363 1364 r = dm_table_alloc_md_mempools(t, t->md); 1365 if (r) 1366 DMERR("unable to allocate mempools"); 1367 1368 return r; 1369 } 1370 1371 static DEFINE_MUTEX(_event_lock); 1372 void dm_table_event_callback(struct dm_table *t, 1373 void (*fn)(void *), void *context) 1374 { 1375 mutex_lock(&_event_lock); 1376 t->event_fn = fn; 1377 t->event_context = context; 1378 mutex_unlock(&_event_lock); 1379 } 1380 1381 void dm_table_event(struct dm_table *t) 1382 { 1383 mutex_lock(&_event_lock); 1384 if (t->event_fn) 1385 t->event_fn(t->event_context); 1386 mutex_unlock(&_event_lock); 1387 } 1388 EXPORT_SYMBOL(dm_table_event); 1389 1390 inline sector_t dm_table_get_size(struct dm_table *t) 1391 { 1392 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1393 } 1394 EXPORT_SYMBOL(dm_table_get_size); 1395 1396 /* 1397 * Search the btree for the correct target. 1398 * 1399 * Caller should check returned pointer for NULL 1400 * to trap I/O beyond end of device. 1401 */ 1402 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1403 { 1404 unsigned int l, n = 0, k = 0; 1405 sector_t *node; 1406 1407 if (unlikely(sector >= dm_table_get_size(t))) 1408 return NULL; 1409 1410 for (l = 0; l < t->depth; l++) { 1411 n = get_child(n, k); 1412 node = get_node(t, l, n); 1413 1414 for (k = 0; k < KEYS_PER_NODE; k++) 1415 if (node[k] >= sector) 1416 break; 1417 } 1418 1419 return &t->targets[(KEYS_PER_NODE * n) + k]; 1420 } 1421 1422 /* 1423 * type->iterate_devices() should be called when the sanity check needs to 1424 * iterate and check all underlying data devices. iterate_devices() will 1425 * iterate all underlying data devices until it encounters a non-zero return 1426 * code, returned by whether the input iterate_devices_callout_fn, or 1427 * iterate_devices() itself internally. 1428 * 1429 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1430 * iterate multiple underlying devices internally, in which case a non-zero 1431 * return code returned by iterate_devices_callout_fn will stop the iteration 1432 * in advance. 1433 * 1434 * Cases requiring _any_ underlying device supporting some kind of attribute, 1435 * should use the iteration structure like dm_table_any_dev_attr(), or call 1436 * it directly. @func should handle semantics of positive examples, e.g. 1437 * capable of something. 1438 * 1439 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1440 * should use the iteration structure like dm_table_supports_nowait() or 1441 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1442 * uses an @anti_func that handle semantics of counter examples, e.g. not 1443 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1444 */ 1445 static bool dm_table_any_dev_attr(struct dm_table *t, 1446 iterate_devices_callout_fn func, void *data) 1447 { 1448 for (unsigned int i = 0; i < t->num_targets; i++) { 1449 struct dm_target *ti = dm_table_get_target(t, i); 1450 1451 if (ti->type->iterate_devices && 1452 ti->type->iterate_devices(ti, func, data)) 1453 return true; 1454 } 1455 1456 return false; 1457 } 1458 1459 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1460 sector_t start, sector_t len, void *data) 1461 { 1462 unsigned int *num_devices = data; 1463 1464 (*num_devices)++; 1465 1466 return 0; 1467 } 1468 1469 /* 1470 * Check whether a table has no data devices attached using each 1471 * target's iterate_devices method. 1472 * Returns false if the result is unknown because a target doesn't 1473 * support iterate_devices. 1474 */ 1475 bool dm_table_has_no_data_devices(struct dm_table *t) 1476 { 1477 for (unsigned int i = 0; i < t->num_targets; i++) { 1478 struct dm_target *ti = dm_table_get_target(t, i); 1479 unsigned int num_devices = 0; 1480 1481 if (!ti->type->iterate_devices) 1482 return false; 1483 1484 ti->type->iterate_devices(ti, count_device, &num_devices); 1485 if (num_devices) 1486 return false; 1487 } 1488 1489 return true; 1490 } 1491 1492 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1493 sector_t start, sector_t len, void *data) 1494 { 1495 bool *zoned = data; 1496 1497 return bdev_is_zoned(dev->bdev) != *zoned; 1498 } 1499 1500 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1501 sector_t start, sector_t len, void *data) 1502 { 1503 return bdev_is_zoned(dev->bdev); 1504 } 1505 1506 /* 1507 * Check the device zoned model based on the target feature flag. If the target 1508 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1509 * also accepted but all devices must have the same zoned model. If the target 1510 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1511 * zoned model with all zoned devices having the same zone size. 1512 */ 1513 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1514 { 1515 for (unsigned int i = 0; i < t->num_targets; i++) { 1516 struct dm_target *ti = dm_table_get_target(t, i); 1517 1518 /* 1519 * For the wildcard target (dm-error), if we do not have a 1520 * backing device, we must always return false. If we have a 1521 * backing device, the result must depend on checking zoned 1522 * model, like for any other target. So for this, check directly 1523 * if the target backing device is zoned as we get "false" when 1524 * dm-error was set without a backing device. 1525 */ 1526 if (dm_target_is_wildcard(ti->type) && 1527 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1528 return false; 1529 1530 if (dm_target_supports_zoned_hm(ti->type)) { 1531 if (!ti->type->iterate_devices || 1532 ti->type->iterate_devices(ti, device_not_zoned, 1533 &zoned)) 1534 return false; 1535 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1536 if (zoned) 1537 return false; 1538 } 1539 } 1540 1541 return true; 1542 } 1543 1544 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1545 sector_t start, sector_t len, void *data) 1546 { 1547 unsigned int *zone_sectors = data; 1548 1549 if (!bdev_is_zoned(dev->bdev)) 1550 return 0; 1551 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1552 } 1553 1554 /* 1555 * Check consistency of zoned model and zone sectors across all targets. For 1556 * zone sectors, if the destination device is a zoned block device, it shall 1557 * have the specified zone_sectors. 1558 */ 1559 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1560 unsigned int zone_sectors) 1561 { 1562 if (!zoned) 1563 return 0; 1564 1565 if (!dm_table_supports_zoned(t, zoned)) { 1566 DMERR("%s: zoned model is not consistent across all devices", 1567 dm_device_name(t->md)); 1568 return -EINVAL; 1569 } 1570 1571 /* Check zone size validity and compatibility */ 1572 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1573 return -EINVAL; 1574 1575 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1576 DMERR("%s: zone sectors is not consistent across all zoned devices", 1577 dm_device_name(t->md)); 1578 return -EINVAL; 1579 } 1580 1581 return 0; 1582 } 1583 1584 /* 1585 * Establish the new table's queue_limits and validate them. 1586 */ 1587 int dm_calculate_queue_limits(struct dm_table *t, 1588 struct queue_limits *limits) 1589 { 1590 struct queue_limits ti_limits; 1591 unsigned int zone_sectors = 0; 1592 bool zoned = false; 1593 1594 dm_set_stacking_limits(limits); 1595 1596 t->integrity_supported = true; 1597 for (unsigned int i = 0; i < t->num_targets; i++) { 1598 struct dm_target *ti = dm_table_get_target(t, i); 1599 1600 if (!dm_target_passes_integrity(ti->type)) 1601 t->integrity_supported = false; 1602 } 1603 1604 for (unsigned int i = 0; i < t->num_targets; i++) { 1605 struct dm_target *ti = dm_table_get_target(t, i); 1606 1607 dm_set_stacking_limits(&ti_limits); 1608 1609 if (!ti->type->iterate_devices) { 1610 /* Set I/O hints portion of queue limits */ 1611 if (ti->type->io_hints) 1612 ti->type->io_hints(ti, &ti_limits); 1613 goto combine_limits; 1614 } 1615 1616 /* 1617 * Combine queue limits of all the devices this target uses. 1618 */ 1619 ti->type->iterate_devices(ti, dm_set_device_limits, 1620 &ti_limits); 1621 1622 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) { 1623 /* 1624 * After stacking all limits, validate all devices 1625 * in table support this zoned model and zone sectors. 1626 */ 1627 zoned = (ti_limits.features & BLK_FEAT_ZONED); 1628 zone_sectors = ti_limits.chunk_sectors; 1629 } 1630 1631 /* Set I/O hints portion of queue limits */ 1632 if (ti->type->io_hints) 1633 ti->type->io_hints(ti, &ti_limits); 1634 1635 /* 1636 * Check each device area is consistent with the target's 1637 * overall queue limits. 1638 */ 1639 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1640 &ti_limits)) 1641 return -EINVAL; 1642 1643 combine_limits: 1644 /* 1645 * Merge this target's queue limits into the overall limits 1646 * for the table. 1647 */ 1648 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1649 DMWARN("%s: adding target device (start sect %llu len %llu) " 1650 "caused an alignment inconsistency", 1651 dm_device_name(t->md), 1652 (unsigned long long) ti->begin, 1653 (unsigned long long) ti->len); 1654 1655 if (t->integrity_supported || 1656 dm_target_has_integrity(ti->type)) { 1657 if (!queue_limits_stack_integrity(limits, &ti_limits)) { 1658 DMWARN("%s: adding target device (start sect %llu len %llu) " 1659 "disabled integrity support due to incompatibility", 1660 dm_device_name(t->md), 1661 (unsigned long long) ti->begin, 1662 (unsigned long long) ti->len); 1663 t->integrity_supported = false; 1664 } 1665 } 1666 } 1667 1668 /* 1669 * Verify that the zoned model and zone sectors, as determined before 1670 * any .io_hints override, are the same across all devices in the table. 1671 * - this is especially relevant if .io_hints is emulating a disk-managed 1672 * zoned model on host-managed zoned block devices. 1673 * BUT... 1674 */ 1675 if (limits->features & BLK_FEAT_ZONED) { 1676 /* 1677 * ...IF the above limits stacking determined a zoned model 1678 * validate that all of the table's devices conform to it. 1679 */ 1680 zoned = limits->features & BLK_FEAT_ZONED; 1681 zone_sectors = limits->chunk_sectors; 1682 } 1683 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1684 return -EINVAL; 1685 1686 return validate_hardware_logical_block_alignment(t, limits); 1687 } 1688 1689 /* 1690 * Check if a target requires flush support even if none of the underlying 1691 * devices need it (e.g. to persist target-specific metadata). 1692 */ 1693 static bool dm_table_supports_flush(struct dm_table *t) 1694 { 1695 for (unsigned int i = 0; i < t->num_targets; i++) { 1696 struct dm_target *ti = dm_table_get_target(t, i); 1697 1698 if (ti->num_flush_bios && ti->flush_supported) 1699 return true; 1700 } 1701 1702 return false; 1703 } 1704 1705 static int device_dax_write_cache_enabled(struct dm_target *ti, 1706 struct dm_dev *dev, sector_t start, 1707 sector_t len, void *data) 1708 { 1709 struct dax_device *dax_dev = dev->dax_dev; 1710 1711 if (!dax_dev) 1712 return false; 1713 1714 if (dax_write_cache_enabled(dax_dev)) 1715 return true; 1716 return false; 1717 } 1718 1719 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1720 sector_t start, sector_t len, void *data) 1721 { 1722 struct request_queue *q = bdev_get_queue(dev->bdev); 1723 1724 return !q->limits.max_write_zeroes_sectors; 1725 } 1726 1727 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1728 { 1729 for (unsigned int i = 0; i < t->num_targets; i++) { 1730 struct dm_target *ti = dm_table_get_target(t, i); 1731 1732 if (!ti->num_write_zeroes_bios) 1733 return false; 1734 1735 if (!ti->type->iterate_devices || 1736 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1737 return false; 1738 } 1739 1740 return true; 1741 } 1742 1743 static bool dm_table_supports_nowait(struct dm_table *t) 1744 { 1745 for (unsigned int i = 0; i < t->num_targets; i++) { 1746 struct dm_target *ti = dm_table_get_target(t, i); 1747 1748 if (!dm_target_supports_nowait(ti->type)) 1749 return false; 1750 } 1751 1752 return true; 1753 } 1754 1755 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1756 sector_t start, sector_t len, void *data) 1757 { 1758 return !bdev_max_discard_sectors(dev->bdev); 1759 } 1760 1761 static bool dm_table_supports_discards(struct dm_table *t) 1762 { 1763 for (unsigned int i = 0; i < t->num_targets; i++) { 1764 struct dm_target *ti = dm_table_get_target(t, i); 1765 1766 if (!ti->num_discard_bios) 1767 return false; 1768 1769 /* 1770 * Either the target provides discard support (as implied by setting 1771 * 'discards_supported') or it relies on _all_ data devices having 1772 * discard support. 1773 */ 1774 if (!ti->discards_supported && 1775 (!ti->type->iterate_devices || 1776 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1777 return false; 1778 } 1779 1780 return true; 1781 } 1782 1783 static int device_not_secure_erase_capable(struct dm_target *ti, 1784 struct dm_dev *dev, sector_t start, 1785 sector_t len, void *data) 1786 { 1787 return !bdev_max_secure_erase_sectors(dev->bdev); 1788 } 1789 1790 static bool dm_table_supports_secure_erase(struct dm_table *t) 1791 { 1792 for (unsigned int i = 0; i < t->num_targets; i++) { 1793 struct dm_target *ti = dm_table_get_target(t, i); 1794 1795 if (!ti->num_secure_erase_bios) 1796 return false; 1797 1798 if (!ti->type->iterate_devices || 1799 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1800 return false; 1801 } 1802 1803 return true; 1804 } 1805 1806 static int device_not_atomic_write_capable(struct dm_target *ti, 1807 struct dm_dev *dev, sector_t start, 1808 sector_t len, void *data) 1809 { 1810 return !bdev_can_atomic_write(dev->bdev); 1811 } 1812 1813 static bool dm_table_supports_atomic_writes(struct dm_table *t) 1814 { 1815 for (unsigned int i = 0; i < t->num_targets; i++) { 1816 struct dm_target *ti = dm_table_get_target(t, i); 1817 1818 if (!dm_target_supports_atomic_writes(ti->type)) 1819 return false; 1820 1821 if (!ti->type->iterate_devices) 1822 return false; 1823 1824 if (ti->type->iterate_devices(ti, 1825 device_not_atomic_write_capable, NULL)) { 1826 return false; 1827 } 1828 } 1829 return true; 1830 } 1831 1832 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1833 struct queue_limits *limits) 1834 { 1835 int r; 1836 1837 if (!dm_table_supports_nowait(t)) 1838 limits->features &= ~BLK_FEAT_NOWAIT; 1839 1840 /* 1841 * The current polling impementation does not support request based 1842 * stacking. 1843 */ 1844 if (!__table_type_bio_based(t->type)) 1845 limits->features &= ~BLK_FEAT_POLL; 1846 1847 if (!dm_table_supports_discards(t)) { 1848 limits->max_hw_discard_sectors = 0; 1849 limits->discard_granularity = 0; 1850 limits->discard_alignment = 0; 1851 } 1852 1853 if (!dm_table_supports_write_zeroes(t)) 1854 limits->max_write_zeroes_sectors = 0; 1855 1856 if (!dm_table_supports_secure_erase(t)) 1857 limits->max_secure_erase_sectors = 0; 1858 1859 if (dm_table_supports_flush(t)) 1860 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 1861 1862 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1863 limits->features |= BLK_FEAT_DAX; 1864 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1865 set_dax_synchronous(t->md->dax_dev); 1866 } else 1867 limits->features &= ~BLK_FEAT_DAX; 1868 1869 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1870 dax_write_cache(t->md->dax_dev, true); 1871 1872 /* For a zoned table, setup the zone related queue attributes. */ 1873 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1874 (limits->features & BLK_FEAT_ZONED)) { 1875 r = dm_set_zones_restrictions(t, q, limits); 1876 if (r) 1877 return r; 1878 } 1879 1880 if (dm_table_supports_atomic_writes(t)) 1881 limits->features |= BLK_FEAT_ATOMIC_WRITES; 1882 1883 r = queue_limits_set(q, limits); 1884 if (r) 1885 return r; 1886 1887 /* 1888 * Now that the limits are set, check the zones mapped by the table 1889 * and setup the resources for zone append emulation if necessary. 1890 */ 1891 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 1892 (limits->features & BLK_FEAT_ZONED)) { 1893 r = dm_revalidate_zones(t, q); 1894 if (r) 1895 return r; 1896 } 1897 1898 dm_update_crypto_profile(q, t); 1899 return 0; 1900 } 1901 1902 struct list_head *dm_table_get_devices(struct dm_table *t) 1903 { 1904 return &t->devices; 1905 } 1906 1907 blk_mode_t dm_table_get_mode(struct dm_table *t) 1908 { 1909 return t->mode; 1910 } 1911 EXPORT_SYMBOL(dm_table_get_mode); 1912 1913 enum suspend_mode { 1914 PRESUSPEND, 1915 PRESUSPEND_UNDO, 1916 POSTSUSPEND, 1917 }; 1918 1919 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1920 { 1921 lockdep_assert_held(&t->md->suspend_lock); 1922 1923 for (unsigned int i = 0; i < t->num_targets; i++) { 1924 struct dm_target *ti = dm_table_get_target(t, i); 1925 1926 switch (mode) { 1927 case PRESUSPEND: 1928 if (ti->type->presuspend) 1929 ti->type->presuspend(ti); 1930 break; 1931 case PRESUSPEND_UNDO: 1932 if (ti->type->presuspend_undo) 1933 ti->type->presuspend_undo(ti); 1934 break; 1935 case POSTSUSPEND: 1936 if (ti->type->postsuspend) 1937 ti->type->postsuspend(ti); 1938 break; 1939 } 1940 } 1941 } 1942 1943 void dm_table_presuspend_targets(struct dm_table *t) 1944 { 1945 if (!t) 1946 return; 1947 1948 suspend_targets(t, PRESUSPEND); 1949 } 1950 1951 void dm_table_presuspend_undo_targets(struct dm_table *t) 1952 { 1953 if (!t) 1954 return; 1955 1956 suspend_targets(t, PRESUSPEND_UNDO); 1957 } 1958 1959 void dm_table_postsuspend_targets(struct dm_table *t) 1960 { 1961 if (!t) 1962 return; 1963 1964 suspend_targets(t, POSTSUSPEND); 1965 } 1966 1967 int dm_table_resume_targets(struct dm_table *t) 1968 { 1969 unsigned int i; 1970 int r = 0; 1971 1972 lockdep_assert_held(&t->md->suspend_lock); 1973 1974 for (i = 0; i < t->num_targets; i++) { 1975 struct dm_target *ti = dm_table_get_target(t, i); 1976 1977 if (!ti->type->preresume) 1978 continue; 1979 1980 r = ti->type->preresume(ti); 1981 if (r) { 1982 DMERR("%s: %s: preresume failed, error = %d", 1983 dm_device_name(t->md), ti->type->name, r); 1984 return r; 1985 } 1986 } 1987 1988 for (i = 0; i < t->num_targets; i++) { 1989 struct dm_target *ti = dm_table_get_target(t, i); 1990 1991 if (ti->type->resume) 1992 ti->type->resume(ti); 1993 } 1994 1995 return 0; 1996 } 1997 1998 struct mapped_device *dm_table_get_md(struct dm_table *t) 1999 { 2000 return t->md; 2001 } 2002 EXPORT_SYMBOL(dm_table_get_md); 2003 2004 const char *dm_table_device_name(struct dm_table *t) 2005 { 2006 return dm_device_name(t->md); 2007 } 2008 EXPORT_SYMBOL_GPL(dm_table_device_name); 2009 2010 void dm_table_run_md_queue_async(struct dm_table *t) 2011 { 2012 if (!dm_table_request_based(t)) 2013 return; 2014 2015 if (t->md->queue) 2016 blk_mq_run_hw_queues(t->md->queue, true); 2017 } 2018 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2019 2020