xref: /linux/drivers/md/dm-table.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27 
28 #define DM_MSG_PREFIX "table"
29 
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 
34 /*
35  * Similar to ceiling(log_size(n))
36  */
37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 	int result = 0;
40 
41 	while (n > 1) {
42 		n = dm_div_up(n, base);
43 		result++;
44 	}
45 
46 	return result;
47 }
48 
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 	return (n * CHILDREN_PER_NODE) + k;
55 }
56 
57 /*
58  * Return the n'th node of level l from table t.
59  */
60 static inline sector_t *get_node(struct dm_table *t,
61 				 unsigned int l, unsigned int n)
62 {
63 	return t->index[l] + (n * KEYS_PER_NODE);
64 }
65 
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 	for (; l < t->depth - 1; l++)
73 		n = get_child(n, CHILDREN_PER_NODE - 1);
74 
75 	if (n >= t->counts[l])
76 		return (sector_t) -1;
77 
78 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80 
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 	unsigned int n, k;
88 	sector_t *node;
89 
90 	for (n = 0U; n < t->counts[l]; n++) {
91 		node = get_node(t, l, n);
92 
93 		for (k = 0U; k < KEYS_PER_NODE; k++)
94 			node[k] = high(t, l + 1, get_child(n, k));
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 	sector_t *n_highs;
107 	struct dm_target *n_targets;
108 
109 	/*
110 	 * Allocate both the target array and offset array at once.
111 	 */
112 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 			   GFP_KERNEL);
114 	if (!n_highs)
115 		return -ENOMEM;
116 
117 	n_targets = (struct dm_target *) (n_highs + num);
118 
119 	memset(n_highs, -1, sizeof(*n_highs) * num);
120 	kvfree(t->highs);
121 
122 	t->num_allocated = num;
123 	t->highs = n_highs;
124 	t->targets = n_targets;
125 
126 	return 0;
127 }
128 
129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 		    unsigned int num_targets, struct mapped_device *md)
131 {
132 	struct dm_table *t;
133 
134 	if (num_targets > DM_MAX_TARGETS)
135 		return -EOVERFLOW;
136 
137 	t = kzalloc(sizeof(*t), GFP_KERNEL);
138 
139 	if (!t)
140 		return -ENOMEM;
141 
142 	INIT_LIST_HEAD(&t->devices);
143 	init_rwsem(&t->devices_lock);
144 
145 	if (!num_targets)
146 		num_targets = KEYS_PER_NODE;
147 
148 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149 
150 	if (!num_targets) {
151 		kfree(t);
152 		return -EOVERFLOW;
153 	}
154 
155 	if (alloc_targets(t, num_targets)) {
156 		kfree(t);
157 		return -ENOMEM;
158 	}
159 
160 	t->type = DM_TYPE_NONE;
161 	t->mode = mode;
162 	t->md = md;
163 	t->flush_bypasses_map = true;
164 	*result = t;
165 	return 0;
166 }
167 
168 static void free_devices(struct list_head *devices, struct mapped_device *md)
169 {
170 	struct list_head *tmp, *next;
171 
172 	list_for_each_safe(tmp, next, devices) {
173 		struct dm_dev_internal *dd =
174 		    list_entry(tmp, struct dm_dev_internal, list);
175 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
176 		       dm_device_name(md), dd->dm_dev->name);
177 		dm_put_table_device(md, dd->dm_dev);
178 		kfree(dd);
179 	}
180 }
181 
182 static void dm_table_destroy_crypto_profile(struct dm_table *t);
183 
184 void dm_table_destroy(struct dm_table *t)
185 {
186 	if (!t)
187 		return;
188 
189 	/* free the indexes */
190 	if (t->depth >= 2)
191 		kvfree(t->index[t->depth - 2]);
192 
193 	/* free the targets */
194 	for (unsigned int i = 0; i < t->num_targets; i++) {
195 		struct dm_target *ti = dm_table_get_target(t, i);
196 
197 		if (ti->type->dtr)
198 			ti->type->dtr(ti);
199 
200 		dm_put_target_type(ti->type);
201 	}
202 
203 	kvfree(t->highs);
204 
205 	/* free the device list */
206 	free_devices(&t->devices, t->md);
207 
208 	dm_free_md_mempools(t->mempools);
209 
210 	dm_table_destroy_crypto_profile(t);
211 
212 	kfree(t);
213 }
214 
215 /*
216  * See if we've already got a device in the list.
217  */
218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
219 {
220 	struct dm_dev_internal *dd;
221 
222 	list_for_each_entry(dd, l, list)
223 		if (dd->dm_dev->bdev->bd_dev == dev)
224 			return dd;
225 
226 	return NULL;
227 }
228 
229 /*
230  * If possible, this checks an area of a destination device is invalid.
231  */
232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
233 				  sector_t start, sector_t len, void *data)
234 {
235 	struct queue_limits *limits = data;
236 	struct block_device *bdev = dev->bdev;
237 	sector_t dev_size = bdev_nr_sectors(bdev);
238 	unsigned short logical_block_size_sectors =
239 		limits->logical_block_size >> SECTOR_SHIFT;
240 
241 	if (!dev_size)
242 		return 0;
243 
244 	if ((start >= dev_size) || (start + len > dev_size)) {
245 		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
246 		      dm_device_name(ti->table->md), bdev,
247 		      (unsigned long long)start,
248 		      (unsigned long long)len,
249 		      (unsigned long long)dev_size);
250 		return 1;
251 	}
252 
253 	/*
254 	 * If the target is mapped to zoned block device(s), check
255 	 * that the zones are not partially mapped.
256 	 */
257 	if (bdev_is_zoned(bdev)) {
258 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
259 
260 		if (start & (zone_sectors - 1)) {
261 			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
262 			      dm_device_name(ti->table->md),
263 			      (unsigned long long)start,
264 			      zone_sectors, bdev);
265 			return 1;
266 		}
267 
268 		/*
269 		 * Note: The last zone of a zoned block device may be smaller
270 		 * than other zones. So for a target mapping the end of a
271 		 * zoned block device with such a zone, len would not be zone
272 		 * aligned. We do not allow such last smaller zone to be part
273 		 * of the mapping here to ensure that mappings with multiple
274 		 * devices do not end up with a smaller zone in the middle of
275 		 * the sector range.
276 		 */
277 		if (len & (zone_sectors - 1)) {
278 			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
279 			      dm_device_name(ti->table->md),
280 			      (unsigned long long)len,
281 			      zone_sectors, bdev);
282 			return 1;
283 		}
284 	}
285 
286 	if (logical_block_size_sectors <= 1)
287 		return 0;
288 
289 	if (start & (logical_block_size_sectors - 1)) {
290 		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
291 		      dm_device_name(ti->table->md),
292 		      (unsigned long long)start,
293 		      limits->logical_block_size, bdev);
294 		return 1;
295 	}
296 
297 	if (len & (logical_block_size_sectors - 1)) {
298 		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
299 		      dm_device_name(ti->table->md),
300 		      (unsigned long long)len,
301 		      limits->logical_block_size, bdev);
302 		return 1;
303 	}
304 
305 	return 0;
306 }
307 
308 /*
309  * This upgrades the mode on an already open dm_dev, being
310  * careful to leave things as they were if we fail to reopen the
311  * device and not to touch the existing bdev field in case
312  * it is accessed concurrently.
313  */
314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
315 			struct mapped_device *md)
316 {
317 	int r;
318 	struct dm_dev *old_dev, *new_dev;
319 
320 	old_dev = dd->dm_dev;
321 
322 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
323 				dd->dm_dev->mode | new_mode, &new_dev);
324 	if (r)
325 		return r;
326 
327 	dd->dm_dev = new_dev;
328 	dm_put_table_device(md, old_dev);
329 
330 	return 0;
331 }
332 
333 /*
334  * Note: the __ref annotation is because this function can call the __init
335  * marked early_lookup_bdev when called during early boot code from dm-init.c.
336  */
337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
338 {
339 	int r;
340 	dev_t dev;
341 	unsigned int major, minor;
342 	char dummy;
343 
344 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
345 		/* Extract the major/minor numbers */
346 		dev = MKDEV(major, minor);
347 		if (MAJOR(dev) != major || MINOR(dev) != minor)
348 			return -EOVERFLOW;
349 	} else {
350 		r = lookup_bdev(path, &dev);
351 #ifndef MODULE
352 		if (r && system_state < SYSTEM_RUNNING)
353 			r = early_lookup_bdev(path, &dev);
354 #endif
355 		if (r)
356 			return r;
357 	}
358 	*dev_p = dev;
359 	return 0;
360 }
361 EXPORT_SYMBOL(dm_devt_from_path);
362 
363 /*
364  * Add a device to the list, or just increment the usage count if
365  * it's already present.
366  */
367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
368 		  struct dm_dev **result)
369 {
370 	int r;
371 	dev_t dev;
372 	struct dm_dev_internal *dd;
373 	struct dm_table *t = ti->table;
374 
375 	BUG_ON(!t);
376 
377 	r = dm_devt_from_path(path, &dev);
378 	if (r)
379 		return r;
380 
381 	if (dev == disk_devt(t->md->disk))
382 		return -EINVAL;
383 
384 	down_write(&t->devices_lock);
385 
386 	dd = find_device(&t->devices, dev);
387 	if (!dd) {
388 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
389 		if (!dd) {
390 			r = -ENOMEM;
391 			goto unlock_ret_r;
392 		}
393 
394 		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
395 		if (r) {
396 			kfree(dd);
397 			goto unlock_ret_r;
398 		}
399 
400 		refcount_set(&dd->count, 1);
401 		list_add(&dd->list, &t->devices);
402 		goto out;
403 
404 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
405 		r = upgrade_mode(dd, mode, t->md);
406 		if (r)
407 			goto unlock_ret_r;
408 	}
409 	refcount_inc(&dd->count);
410 out:
411 	up_write(&t->devices_lock);
412 	*result = dd->dm_dev;
413 	return 0;
414 
415 unlock_ret_r:
416 	up_write(&t->devices_lock);
417 	return r;
418 }
419 EXPORT_SYMBOL(dm_get_device);
420 
421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
422 				sector_t start, sector_t len, void *data)
423 {
424 	struct queue_limits *limits = data;
425 	struct block_device *bdev = dev->bdev;
426 	struct request_queue *q = bdev_get_queue(bdev);
427 
428 	if (unlikely(!q)) {
429 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
430 		       dm_device_name(ti->table->md), bdev);
431 		return 0;
432 	}
433 
434 	if (blk_stack_limits(limits, &q->limits,
435 			get_start_sect(bdev) + start) < 0)
436 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
437 		       "physical_block_size=%u, logical_block_size=%u, "
438 		       "alignment_offset=%u, start=%llu",
439 		       dm_device_name(ti->table->md), bdev,
440 		       q->limits.physical_block_size,
441 		       q->limits.logical_block_size,
442 		       q->limits.alignment_offset,
443 		       (unsigned long long) start << SECTOR_SHIFT);
444 
445 	/*
446 	 * Only stack the integrity profile if the target doesn't have native
447 	 * integrity support.
448 	 */
449 	if (!dm_target_has_integrity(ti->type))
450 		queue_limits_stack_integrity_bdev(limits, bdev);
451 	return 0;
452 }
453 
454 /*
455  * Decrement a device's use count and remove it if necessary.
456  */
457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459 	int found = 0;
460 	struct dm_table *t = ti->table;
461 	struct list_head *devices = &t->devices;
462 	struct dm_dev_internal *dd;
463 
464 	down_write(&t->devices_lock);
465 
466 	list_for_each_entry(dd, devices, list) {
467 		if (dd->dm_dev == d) {
468 			found = 1;
469 			break;
470 		}
471 	}
472 	if (!found) {
473 		DMERR("%s: device %s not in table devices list",
474 		      dm_device_name(t->md), d->name);
475 		goto unlock_ret;
476 	}
477 	if (refcount_dec_and_test(&dd->count)) {
478 		dm_put_table_device(t->md, d);
479 		list_del(&dd->list);
480 		kfree(dd);
481 	}
482 
483 unlock_ret:
484 	up_write(&t->devices_lock);
485 }
486 EXPORT_SYMBOL(dm_put_device);
487 
488 /*
489  * Checks to see if the target joins onto the end of the table.
490  */
491 static int adjoin(struct dm_table *t, struct dm_target *ti)
492 {
493 	struct dm_target *prev;
494 
495 	if (!t->num_targets)
496 		return !ti->begin;
497 
498 	prev = &t->targets[t->num_targets - 1];
499 	return (ti->begin == (prev->begin + prev->len));
500 }
501 
502 /*
503  * Used to dynamically allocate the arg array.
504  *
505  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
506  * process messages even if some device is suspended. These messages have a
507  * small fixed number of arguments.
508  *
509  * On the other hand, dm-switch needs to process bulk data using messages and
510  * excessive use of GFP_NOIO could cause trouble.
511  */
512 static char **realloc_argv(unsigned int *size, char **old_argv)
513 {
514 	char **argv;
515 	unsigned int new_size;
516 	gfp_t gfp;
517 
518 	if (*size) {
519 		new_size = *size * 2;
520 		gfp = GFP_KERNEL;
521 	} else {
522 		new_size = 8;
523 		gfp = GFP_NOIO;
524 	}
525 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
526 	if (argv && old_argv) {
527 		memcpy(argv, old_argv, *size * sizeof(*argv));
528 		*size = new_size;
529 	}
530 
531 	kfree(old_argv);
532 	return argv;
533 }
534 
535 /*
536  * Destructively splits up the argument list to pass to ctr.
537  */
538 int dm_split_args(int *argc, char ***argvp, char *input)
539 {
540 	char *start, *end = input, *out, **argv = NULL;
541 	unsigned int array_size = 0;
542 
543 	*argc = 0;
544 
545 	if (!input) {
546 		*argvp = NULL;
547 		return 0;
548 	}
549 
550 	argv = realloc_argv(&array_size, argv);
551 	if (!argv)
552 		return -ENOMEM;
553 
554 	while (1) {
555 		/* Skip whitespace */
556 		start = skip_spaces(end);
557 
558 		if (!*start)
559 			break;	/* success, we hit the end */
560 
561 		/* 'out' is used to remove any back-quotes */
562 		end = out = start;
563 		while (*end) {
564 			/* Everything apart from '\0' can be quoted */
565 			if (*end == '\\' && *(end + 1)) {
566 				*out++ = *(end + 1);
567 				end += 2;
568 				continue;
569 			}
570 
571 			if (isspace(*end))
572 				break;	/* end of token */
573 
574 			*out++ = *end++;
575 		}
576 
577 		/* have we already filled the array ? */
578 		if ((*argc + 1) > array_size) {
579 			argv = realloc_argv(&array_size, argv);
580 			if (!argv)
581 				return -ENOMEM;
582 		}
583 
584 		/* we know this is whitespace */
585 		if (*end)
586 			end++;
587 
588 		/* terminate the string and put it in the array */
589 		*out = '\0';
590 		argv[*argc] = start;
591 		(*argc)++;
592 	}
593 
594 	*argvp = argv;
595 	return 0;
596 }
597 
598 static void dm_set_stacking_limits(struct queue_limits *limits)
599 {
600 	blk_set_stacking_limits(limits);
601 	limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
602 }
603 
604 /*
605  * Impose necessary and sufficient conditions on a devices's table such
606  * that any incoming bio which respects its logical_block_size can be
607  * processed successfully.  If it falls across the boundary between
608  * two or more targets, the size of each piece it gets split into must
609  * be compatible with the logical_block_size of the target processing it.
610  */
611 static int validate_hardware_logical_block_alignment(struct dm_table *t,
612 						     struct queue_limits *limits)
613 {
614 	/*
615 	 * This function uses arithmetic modulo the logical_block_size
616 	 * (in units of 512-byte sectors).
617 	 */
618 	unsigned short device_logical_block_size_sects =
619 		limits->logical_block_size >> SECTOR_SHIFT;
620 
621 	/*
622 	 * Offset of the start of the next table entry, mod logical_block_size.
623 	 */
624 	unsigned short next_target_start = 0;
625 
626 	/*
627 	 * Given an aligned bio that extends beyond the end of a
628 	 * target, how many sectors must the next target handle?
629 	 */
630 	unsigned short remaining = 0;
631 
632 	struct dm_target *ti;
633 	struct queue_limits ti_limits;
634 	unsigned int i;
635 
636 	/*
637 	 * Check each entry in the table in turn.
638 	 */
639 	for (i = 0; i < t->num_targets; i++) {
640 		ti = dm_table_get_target(t, i);
641 
642 		dm_set_stacking_limits(&ti_limits);
643 
644 		/* combine all target devices' limits */
645 		if (ti->type->iterate_devices)
646 			ti->type->iterate_devices(ti, dm_set_device_limits,
647 						  &ti_limits);
648 
649 		/*
650 		 * If the remaining sectors fall entirely within this
651 		 * table entry are they compatible with its logical_block_size?
652 		 */
653 		if (remaining < ti->len &&
654 		    remaining & ((ti_limits.logical_block_size >>
655 				  SECTOR_SHIFT) - 1))
656 			break;	/* Error */
657 
658 		next_target_start =
659 		    (unsigned short) ((next_target_start + ti->len) &
660 				      (device_logical_block_size_sects - 1));
661 		remaining = next_target_start ?
662 		    device_logical_block_size_sects - next_target_start : 0;
663 	}
664 
665 	if (remaining) {
666 		DMERR("%s: table line %u (start sect %llu len %llu) "
667 		      "not aligned to h/w logical block size %u",
668 		      dm_device_name(t->md), i,
669 		      (unsigned long long) ti->begin,
670 		      (unsigned long long) ti->len,
671 		      limits->logical_block_size);
672 		return -EINVAL;
673 	}
674 
675 	return 0;
676 }
677 
678 int dm_table_add_target(struct dm_table *t, const char *type,
679 			sector_t start, sector_t len, char *params)
680 {
681 	int r = -EINVAL, argc;
682 	char **argv;
683 	struct dm_target *ti;
684 
685 	if (t->singleton) {
686 		DMERR("%s: target type %s must appear alone in table",
687 		      dm_device_name(t->md), t->targets->type->name);
688 		return -EINVAL;
689 	}
690 
691 	BUG_ON(t->num_targets >= t->num_allocated);
692 
693 	ti = t->targets + t->num_targets;
694 	memset(ti, 0, sizeof(*ti));
695 
696 	if (!len) {
697 		DMERR("%s: zero-length target", dm_device_name(t->md));
698 		return -EINVAL;
699 	}
700 
701 	ti->type = dm_get_target_type(type);
702 	if (!ti->type) {
703 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
704 		return -EINVAL;
705 	}
706 
707 	if (dm_target_needs_singleton(ti->type)) {
708 		if (t->num_targets) {
709 			ti->error = "singleton target type must appear alone in table";
710 			goto bad;
711 		}
712 		t->singleton = true;
713 	}
714 
715 	if (dm_target_always_writeable(ti->type) &&
716 	    !(t->mode & BLK_OPEN_WRITE)) {
717 		ti->error = "target type may not be included in a read-only table";
718 		goto bad;
719 	}
720 
721 	if (t->immutable_target_type) {
722 		if (t->immutable_target_type != ti->type) {
723 			ti->error = "immutable target type cannot be mixed with other target types";
724 			goto bad;
725 		}
726 	} else if (dm_target_is_immutable(ti->type)) {
727 		if (t->num_targets) {
728 			ti->error = "immutable target type cannot be mixed with other target types";
729 			goto bad;
730 		}
731 		t->immutable_target_type = ti->type;
732 	}
733 
734 	ti->table = t;
735 	ti->begin = start;
736 	ti->len = len;
737 	ti->error = "Unknown error";
738 
739 	/*
740 	 * Does this target adjoin the previous one ?
741 	 */
742 	if (!adjoin(t, ti)) {
743 		ti->error = "Gap in table";
744 		goto bad;
745 	}
746 
747 	r = dm_split_args(&argc, &argv, params);
748 	if (r) {
749 		ti->error = "couldn't split parameters";
750 		goto bad;
751 	}
752 
753 	r = ti->type->ctr(ti, argc, argv);
754 	kfree(argv);
755 	if (r)
756 		goto bad;
757 
758 	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
759 
760 	if (!ti->num_discard_bios && ti->discards_supported)
761 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
762 		       dm_device_name(t->md), type);
763 
764 	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
765 		static_branch_enable(&swap_bios_enabled);
766 
767 	if (!ti->flush_bypasses_map)
768 		t->flush_bypasses_map = false;
769 
770 	return 0;
771 
772  bad:
773 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
774 	dm_put_target_type(ti->type);
775 	return r;
776 }
777 
778 /*
779  * Target argument parsing helpers.
780  */
781 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
782 			     unsigned int *value, char **error, unsigned int grouped)
783 {
784 	const char *arg_str = dm_shift_arg(arg_set);
785 	char dummy;
786 
787 	if (!arg_str ||
788 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
789 	    (*value < arg->min) ||
790 	    (*value > arg->max) ||
791 	    (grouped && arg_set->argc < *value)) {
792 		*error = arg->error;
793 		return -EINVAL;
794 	}
795 
796 	return 0;
797 }
798 
799 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
800 		unsigned int *value, char **error)
801 {
802 	return validate_next_arg(arg, arg_set, value, error, 0);
803 }
804 EXPORT_SYMBOL(dm_read_arg);
805 
806 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
807 		      unsigned int *value, char **error)
808 {
809 	return validate_next_arg(arg, arg_set, value, error, 1);
810 }
811 EXPORT_SYMBOL(dm_read_arg_group);
812 
813 const char *dm_shift_arg(struct dm_arg_set *as)
814 {
815 	char *r;
816 
817 	if (as->argc) {
818 		as->argc--;
819 		r = *as->argv;
820 		as->argv++;
821 		return r;
822 	}
823 
824 	return NULL;
825 }
826 EXPORT_SYMBOL(dm_shift_arg);
827 
828 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
829 {
830 	BUG_ON(as->argc < num_args);
831 	as->argc -= num_args;
832 	as->argv += num_args;
833 }
834 EXPORT_SYMBOL(dm_consume_args);
835 
836 static bool __table_type_bio_based(enum dm_queue_mode table_type)
837 {
838 	return (table_type == DM_TYPE_BIO_BASED ||
839 		table_type == DM_TYPE_DAX_BIO_BASED);
840 }
841 
842 static bool __table_type_request_based(enum dm_queue_mode table_type)
843 {
844 	return table_type == DM_TYPE_REQUEST_BASED;
845 }
846 
847 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
848 {
849 	t->type = type;
850 }
851 EXPORT_SYMBOL_GPL(dm_table_set_type);
852 
853 /* validate the dax capability of the target device span */
854 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
855 			sector_t start, sector_t len, void *data)
856 {
857 	if (dev->dax_dev)
858 		return false;
859 
860 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
861 	return true;
862 }
863 
864 /* Check devices support synchronous DAX */
865 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
866 					      sector_t start, sector_t len, void *data)
867 {
868 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
869 }
870 
871 static bool dm_table_supports_dax(struct dm_table *t,
872 				  iterate_devices_callout_fn iterate_fn)
873 {
874 	/* Ensure that all targets support DAX. */
875 	for (unsigned int i = 0; i < t->num_targets; i++) {
876 		struct dm_target *ti = dm_table_get_target(t, i);
877 
878 		if (!ti->type->direct_access)
879 			return false;
880 
881 		if (dm_target_is_wildcard(ti->type) ||
882 		    !ti->type->iterate_devices ||
883 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
884 			return false;
885 	}
886 
887 	return true;
888 }
889 
890 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
891 				  sector_t start, sector_t len, void *data)
892 {
893 	struct block_device *bdev = dev->bdev;
894 	struct request_queue *q = bdev_get_queue(bdev);
895 
896 	/* request-based cannot stack on partitions! */
897 	if (bdev_is_partition(bdev))
898 		return false;
899 
900 	return queue_is_mq(q);
901 }
902 
903 static int dm_table_determine_type(struct dm_table *t)
904 {
905 	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
906 	struct dm_target *ti;
907 	struct list_head *devices = dm_table_get_devices(t);
908 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
909 
910 	if (t->type != DM_TYPE_NONE) {
911 		/* target already set the table's type */
912 		if (t->type == DM_TYPE_BIO_BASED) {
913 			/* possibly upgrade to a variant of bio-based */
914 			goto verify_bio_based;
915 		}
916 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
917 		goto verify_rq_based;
918 	}
919 
920 	for (unsigned int i = 0; i < t->num_targets; i++) {
921 		ti = dm_table_get_target(t, i);
922 		if (dm_target_hybrid(ti))
923 			hybrid = 1;
924 		else if (dm_target_request_based(ti))
925 			request_based = 1;
926 		else
927 			bio_based = 1;
928 
929 		if (bio_based && request_based) {
930 			DMERR("Inconsistent table: different target types can't be mixed up");
931 			return -EINVAL;
932 		}
933 	}
934 
935 	if (hybrid && !bio_based && !request_based) {
936 		/*
937 		 * The targets can work either way.
938 		 * Determine the type from the live device.
939 		 * Default to bio-based if device is new.
940 		 */
941 		if (__table_type_request_based(live_md_type))
942 			request_based = 1;
943 		else
944 			bio_based = 1;
945 	}
946 
947 	if (bio_based) {
948 verify_bio_based:
949 		/* We must use this table as bio-based */
950 		t->type = DM_TYPE_BIO_BASED;
951 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
952 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
953 			t->type = DM_TYPE_DAX_BIO_BASED;
954 		}
955 		return 0;
956 	}
957 
958 	BUG_ON(!request_based); /* No targets in this table */
959 
960 	t->type = DM_TYPE_REQUEST_BASED;
961 
962 verify_rq_based:
963 	/*
964 	 * Request-based dm supports only tables that have a single target now.
965 	 * To support multiple targets, request splitting support is needed,
966 	 * and that needs lots of changes in the block-layer.
967 	 * (e.g. request completion process for partial completion.)
968 	 */
969 	if (t->num_targets > 1) {
970 		DMERR("request-based DM doesn't support multiple targets");
971 		return -EINVAL;
972 	}
973 
974 	if (list_empty(devices)) {
975 		int srcu_idx;
976 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
977 
978 		/* inherit live table's type */
979 		if (live_table)
980 			t->type = live_table->type;
981 		dm_put_live_table(t->md, srcu_idx);
982 		return 0;
983 	}
984 
985 	ti = dm_table_get_immutable_target(t);
986 	if (!ti) {
987 		DMERR("table load rejected: immutable target is required");
988 		return -EINVAL;
989 	} else if (ti->max_io_len) {
990 		DMERR("table load rejected: immutable target that splits IO is not supported");
991 		return -EINVAL;
992 	}
993 
994 	/* Non-request-stackable devices can't be used for request-based dm */
995 	if (!ti->type->iterate_devices ||
996 	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
997 		DMERR("table load rejected: including non-request-stackable devices");
998 		return -EINVAL;
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1005 {
1006 	return t->type;
1007 }
1008 
1009 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1010 {
1011 	return t->immutable_target_type;
1012 }
1013 
1014 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1015 {
1016 	/* Immutable target is implicitly a singleton */
1017 	if (t->num_targets > 1 ||
1018 	    !dm_target_is_immutable(t->targets[0].type))
1019 		return NULL;
1020 
1021 	return t->targets;
1022 }
1023 
1024 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1025 {
1026 	for (unsigned int i = 0; i < t->num_targets; i++) {
1027 		struct dm_target *ti = dm_table_get_target(t, i);
1028 
1029 		if (dm_target_is_wildcard(ti->type))
1030 			return ti;
1031 	}
1032 
1033 	return NULL;
1034 }
1035 
1036 bool dm_table_bio_based(struct dm_table *t)
1037 {
1038 	return __table_type_bio_based(dm_table_get_type(t));
1039 }
1040 
1041 bool dm_table_request_based(struct dm_table *t)
1042 {
1043 	return __table_type_request_based(dm_table_get_type(t));
1044 }
1045 
1046 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1047 {
1048 	enum dm_queue_mode type = dm_table_get_type(t);
1049 	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1050 	unsigned int min_pool_size = 0, pool_size;
1051 	struct dm_md_mempools *pools;
1052 	unsigned int bioset_flags = 0;
1053 	bool mempool_needs_integrity = t->integrity_supported;
1054 
1055 	if (unlikely(type == DM_TYPE_NONE)) {
1056 		DMERR("no table type is set, can't allocate mempools");
1057 		return -EINVAL;
1058 	}
1059 
1060 	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1061 	if (!pools)
1062 		return -ENOMEM;
1063 
1064 	if (type == DM_TYPE_REQUEST_BASED) {
1065 		pool_size = dm_get_reserved_rq_based_ios();
1066 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1067 		goto init_bs;
1068 	}
1069 
1070 	if (md->queue->limits.features & BLK_FEAT_POLL)
1071 		bioset_flags |= BIOSET_PERCPU_CACHE;
1072 
1073 	for (unsigned int i = 0; i < t->num_targets; i++) {
1074 		struct dm_target *ti = dm_table_get_target(t, i);
1075 
1076 		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1077 		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1078 
1079 		mempool_needs_integrity |= ti->mempool_needs_integrity;
1080 	}
1081 	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1082 	front_pad = roundup(per_io_data_size,
1083 		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1084 
1085 	io_front_pad = roundup(per_io_data_size,
1086 		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1087 	if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1088 		goto out_free_pools;
1089 	if (mempool_needs_integrity &&
1090 	    bioset_integrity_create(&pools->io_bs, pool_size))
1091 		goto out_free_pools;
1092 init_bs:
1093 	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1094 		goto out_free_pools;
1095 	if (mempool_needs_integrity &&
1096 	    bioset_integrity_create(&pools->bs, pool_size))
1097 		goto out_free_pools;
1098 
1099 	t->mempools = pools;
1100 	return 0;
1101 
1102 out_free_pools:
1103 	dm_free_md_mempools(pools);
1104 	return -ENOMEM;
1105 }
1106 
1107 static int setup_indexes(struct dm_table *t)
1108 {
1109 	int i;
1110 	unsigned int total = 0;
1111 	sector_t *indexes;
1112 
1113 	/* allocate the space for *all* the indexes */
1114 	for (i = t->depth - 2; i >= 0; i--) {
1115 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1116 		total += t->counts[i];
1117 	}
1118 
1119 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1120 	if (!indexes)
1121 		return -ENOMEM;
1122 
1123 	/* set up internal nodes, bottom-up */
1124 	for (i = t->depth - 2; i >= 0; i--) {
1125 		t->index[i] = indexes;
1126 		indexes += (KEYS_PER_NODE * t->counts[i]);
1127 		setup_btree_index(i, t);
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 /*
1134  * Builds the btree to index the map.
1135  */
1136 static int dm_table_build_index(struct dm_table *t)
1137 {
1138 	int r = 0;
1139 	unsigned int leaf_nodes;
1140 
1141 	/* how many indexes will the btree have ? */
1142 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1143 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1144 
1145 	/* leaf layer has already been set up */
1146 	t->counts[t->depth - 1] = leaf_nodes;
1147 	t->index[t->depth - 1] = t->highs;
1148 
1149 	if (t->depth >= 2)
1150 		r = setup_indexes(t);
1151 
1152 	return r;
1153 }
1154 
1155 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1156 
1157 struct dm_crypto_profile {
1158 	struct blk_crypto_profile profile;
1159 	struct mapped_device *md;
1160 };
1161 
1162 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1163 				     sector_t start, sector_t len, void *data)
1164 {
1165 	const struct blk_crypto_key *key = data;
1166 
1167 	blk_crypto_evict_key(dev->bdev, key);
1168 	return 0;
1169 }
1170 
1171 /*
1172  * When an inline encryption key is evicted from a device-mapper device, evict
1173  * it from all the underlying devices.
1174  */
1175 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1176 			    const struct blk_crypto_key *key, unsigned int slot)
1177 {
1178 	struct mapped_device *md =
1179 		container_of(profile, struct dm_crypto_profile, profile)->md;
1180 	struct dm_table *t;
1181 	int srcu_idx;
1182 
1183 	t = dm_get_live_table(md, &srcu_idx);
1184 	if (!t)
1185 		return 0;
1186 
1187 	for (unsigned int i = 0; i < t->num_targets; i++) {
1188 		struct dm_target *ti = dm_table_get_target(t, i);
1189 
1190 		if (!ti->type->iterate_devices)
1191 			continue;
1192 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1193 					  (void *)key);
1194 	}
1195 
1196 	dm_put_live_table(md, srcu_idx);
1197 	return 0;
1198 }
1199 
1200 static int
1201 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1202 				     sector_t start, sector_t len, void *data)
1203 {
1204 	struct blk_crypto_profile *parent = data;
1205 	struct blk_crypto_profile *child =
1206 		bdev_get_queue(dev->bdev)->crypto_profile;
1207 
1208 	blk_crypto_intersect_capabilities(parent, child);
1209 	return 0;
1210 }
1211 
1212 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1213 {
1214 	struct dm_crypto_profile *dmcp = container_of(profile,
1215 						      struct dm_crypto_profile,
1216 						      profile);
1217 
1218 	if (!profile)
1219 		return;
1220 
1221 	blk_crypto_profile_destroy(profile);
1222 	kfree(dmcp);
1223 }
1224 
1225 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1226 {
1227 	dm_destroy_crypto_profile(t->crypto_profile);
1228 	t->crypto_profile = NULL;
1229 }
1230 
1231 /*
1232  * Constructs and initializes t->crypto_profile with a crypto profile that
1233  * represents the common set of crypto capabilities of the devices described by
1234  * the dm_table.  However, if the constructed crypto profile doesn't support all
1235  * crypto capabilities that are supported by the current mapped_device, it
1236  * returns an error instead, since we don't support removing crypto capabilities
1237  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1238  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1239  */
1240 static int dm_table_construct_crypto_profile(struct dm_table *t)
1241 {
1242 	struct dm_crypto_profile *dmcp;
1243 	struct blk_crypto_profile *profile;
1244 	unsigned int i;
1245 	bool empty_profile = true;
1246 
1247 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1248 	if (!dmcp)
1249 		return -ENOMEM;
1250 	dmcp->md = t->md;
1251 
1252 	profile = &dmcp->profile;
1253 	blk_crypto_profile_init(profile, 0);
1254 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1255 	profile->max_dun_bytes_supported = UINT_MAX;
1256 	memset(profile->modes_supported, 0xFF,
1257 	       sizeof(profile->modes_supported));
1258 
1259 	for (i = 0; i < t->num_targets; i++) {
1260 		struct dm_target *ti = dm_table_get_target(t, i);
1261 
1262 		if (!dm_target_passes_crypto(ti->type)) {
1263 			blk_crypto_intersect_capabilities(profile, NULL);
1264 			break;
1265 		}
1266 		if (!ti->type->iterate_devices)
1267 			continue;
1268 		ti->type->iterate_devices(ti,
1269 					  device_intersect_crypto_capabilities,
1270 					  profile);
1271 	}
1272 
1273 	if (t->md->queue &&
1274 	    !blk_crypto_has_capabilities(profile,
1275 					 t->md->queue->crypto_profile)) {
1276 		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1277 		dm_destroy_crypto_profile(profile);
1278 		return -EINVAL;
1279 	}
1280 
1281 	/*
1282 	 * If the new profile doesn't actually support any crypto capabilities,
1283 	 * we may as well represent it with a NULL profile.
1284 	 */
1285 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1286 		if (profile->modes_supported[i]) {
1287 			empty_profile = false;
1288 			break;
1289 		}
1290 	}
1291 
1292 	if (empty_profile) {
1293 		dm_destroy_crypto_profile(profile);
1294 		profile = NULL;
1295 	}
1296 
1297 	/*
1298 	 * t->crypto_profile is only set temporarily while the table is being
1299 	 * set up, and it gets set to NULL after the profile has been
1300 	 * transferred to the request_queue.
1301 	 */
1302 	t->crypto_profile = profile;
1303 
1304 	return 0;
1305 }
1306 
1307 static void dm_update_crypto_profile(struct request_queue *q,
1308 				     struct dm_table *t)
1309 {
1310 	if (!t->crypto_profile)
1311 		return;
1312 
1313 	/* Make the crypto profile less restrictive. */
1314 	if (!q->crypto_profile) {
1315 		blk_crypto_register(t->crypto_profile, q);
1316 	} else {
1317 		blk_crypto_update_capabilities(q->crypto_profile,
1318 					       t->crypto_profile);
1319 		dm_destroy_crypto_profile(t->crypto_profile);
1320 	}
1321 	t->crypto_profile = NULL;
1322 }
1323 
1324 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1325 
1326 static int dm_table_construct_crypto_profile(struct dm_table *t)
1327 {
1328 	return 0;
1329 }
1330 
1331 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1332 {
1333 }
1334 
1335 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1336 {
1337 }
1338 
1339 static void dm_update_crypto_profile(struct request_queue *q,
1340 				     struct dm_table *t)
1341 {
1342 }
1343 
1344 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1345 
1346 /*
1347  * Prepares the table for use by building the indices,
1348  * setting the type, and allocating mempools.
1349  */
1350 int dm_table_complete(struct dm_table *t)
1351 {
1352 	int r;
1353 
1354 	r = dm_table_determine_type(t);
1355 	if (r) {
1356 		DMERR("unable to determine table type");
1357 		return r;
1358 	}
1359 
1360 	r = dm_table_build_index(t);
1361 	if (r) {
1362 		DMERR("unable to build btrees");
1363 		return r;
1364 	}
1365 
1366 	r = dm_table_construct_crypto_profile(t);
1367 	if (r) {
1368 		DMERR("could not construct crypto profile.");
1369 		return r;
1370 	}
1371 
1372 	r = dm_table_alloc_md_mempools(t, t->md);
1373 	if (r)
1374 		DMERR("unable to allocate mempools");
1375 
1376 	return r;
1377 }
1378 
1379 static DEFINE_MUTEX(_event_lock);
1380 void dm_table_event_callback(struct dm_table *t,
1381 			     void (*fn)(void *), void *context)
1382 {
1383 	mutex_lock(&_event_lock);
1384 	t->event_fn = fn;
1385 	t->event_context = context;
1386 	mutex_unlock(&_event_lock);
1387 }
1388 
1389 void dm_table_event(struct dm_table *t)
1390 {
1391 	mutex_lock(&_event_lock);
1392 	if (t->event_fn)
1393 		t->event_fn(t->event_context);
1394 	mutex_unlock(&_event_lock);
1395 }
1396 EXPORT_SYMBOL(dm_table_event);
1397 
1398 inline sector_t dm_table_get_size(struct dm_table *t)
1399 {
1400 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1401 }
1402 EXPORT_SYMBOL(dm_table_get_size);
1403 
1404 /*
1405  * Search the btree for the correct target.
1406  *
1407  * Caller should check returned pointer for NULL
1408  * to trap I/O beyond end of device.
1409  */
1410 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1411 {
1412 	unsigned int l, n = 0, k = 0;
1413 	sector_t *node;
1414 
1415 	if (unlikely(sector >= dm_table_get_size(t)))
1416 		return NULL;
1417 
1418 	for (l = 0; l < t->depth; l++) {
1419 		n = get_child(n, k);
1420 		node = get_node(t, l, n);
1421 
1422 		for (k = 0; k < KEYS_PER_NODE; k++)
1423 			if (node[k] >= sector)
1424 				break;
1425 	}
1426 
1427 	return &t->targets[(KEYS_PER_NODE * n) + k];
1428 }
1429 
1430 /*
1431  * type->iterate_devices() should be called when the sanity check needs to
1432  * iterate and check all underlying data devices. iterate_devices() will
1433  * iterate all underlying data devices until it encounters a non-zero return
1434  * code, returned by whether the input iterate_devices_callout_fn, or
1435  * iterate_devices() itself internally.
1436  *
1437  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1438  * iterate multiple underlying devices internally, in which case a non-zero
1439  * return code returned by iterate_devices_callout_fn will stop the iteration
1440  * in advance.
1441  *
1442  * Cases requiring _any_ underlying device supporting some kind of attribute,
1443  * should use the iteration structure like dm_table_any_dev_attr(), or call
1444  * it directly. @func should handle semantics of positive examples, e.g.
1445  * capable of something.
1446  *
1447  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1448  * should use the iteration structure like dm_table_supports_nowait() or
1449  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1450  * uses an @anti_func that handle semantics of counter examples, e.g. not
1451  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1452  */
1453 static bool dm_table_any_dev_attr(struct dm_table *t,
1454 				  iterate_devices_callout_fn func, void *data)
1455 {
1456 	for (unsigned int i = 0; i < t->num_targets; i++) {
1457 		struct dm_target *ti = dm_table_get_target(t, i);
1458 
1459 		if (ti->type->iterate_devices &&
1460 		    ti->type->iterate_devices(ti, func, data))
1461 			return true;
1462 	}
1463 
1464 	return false;
1465 }
1466 
1467 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1468 			sector_t start, sector_t len, void *data)
1469 {
1470 	unsigned int *num_devices = data;
1471 
1472 	(*num_devices)++;
1473 
1474 	return 0;
1475 }
1476 
1477 /*
1478  * Check whether a table has no data devices attached using each
1479  * target's iterate_devices method.
1480  * Returns false if the result is unknown because a target doesn't
1481  * support iterate_devices.
1482  */
1483 bool dm_table_has_no_data_devices(struct dm_table *t)
1484 {
1485 	for (unsigned int i = 0; i < t->num_targets; i++) {
1486 		struct dm_target *ti = dm_table_get_target(t, i);
1487 		unsigned int num_devices = 0;
1488 
1489 		if (!ti->type->iterate_devices)
1490 			return false;
1491 
1492 		ti->type->iterate_devices(ti, count_device, &num_devices);
1493 		if (num_devices)
1494 			return false;
1495 	}
1496 
1497 	return true;
1498 }
1499 
1500 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1501 			    sector_t start, sector_t len, void *data)
1502 {
1503 	bool *zoned = data;
1504 
1505 	return bdev_is_zoned(dev->bdev) != *zoned;
1506 }
1507 
1508 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1509 				 sector_t start, sector_t len, void *data)
1510 {
1511 	return bdev_is_zoned(dev->bdev);
1512 }
1513 
1514 /*
1515  * Check the device zoned model based on the target feature flag. If the target
1516  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1517  * also accepted but all devices must have the same zoned model. If the target
1518  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1519  * zoned model with all zoned devices having the same zone size.
1520  */
1521 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1522 {
1523 	for (unsigned int i = 0; i < t->num_targets; i++) {
1524 		struct dm_target *ti = dm_table_get_target(t, i);
1525 
1526 		/*
1527 		 * For the wildcard target (dm-error), if we do not have a
1528 		 * backing device, we must always return false. If we have a
1529 		 * backing device, the result must depend on checking zoned
1530 		 * model, like for any other target. So for this, check directly
1531 		 * if the target backing device is zoned as we get "false" when
1532 		 * dm-error was set without a backing device.
1533 		 */
1534 		if (dm_target_is_wildcard(ti->type) &&
1535 		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1536 			return false;
1537 
1538 		if (dm_target_supports_zoned_hm(ti->type)) {
1539 			if (!ti->type->iterate_devices ||
1540 			    ti->type->iterate_devices(ti, device_not_zoned,
1541 						      &zoned))
1542 				return false;
1543 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1544 			if (zoned)
1545 				return false;
1546 		}
1547 	}
1548 
1549 	return true;
1550 }
1551 
1552 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1553 					   sector_t start, sector_t len, void *data)
1554 {
1555 	unsigned int *zone_sectors = data;
1556 
1557 	if (!bdev_is_zoned(dev->bdev))
1558 		return 0;
1559 	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1560 }
1561 
1562 /*
1563  * Check consistency of zoned model and zone sectors across all targets. For
1564  * zone sectors, if the destination device is a zoned block device, it shall
1565  * have the specified zone_sectors.
1566  */
1567 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1568 				   unsigned int zone_sectors)
1569 {
1570 	if (!zoned)
1571 		return 0;
1572 
1573 	if (!dm_table_supports_zoned(t, zoned)) {
1574 		DMERR("%s: zoned model is not consistent across all devices",
1575 		      dm_device_name(t->md));
1576 		return -EINVAL;
1577 	}
1578 
1579 	/* Check zone size validity and compatibility */
1580 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1581 		return -EINVAL;
1582 
1583 	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1584 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1585 		      dm_device_name(t->md));
1586 		return -EINVAL;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 /*
1593  * Establish the new table's queue_limits and validate them.
1594  */
1595 int dm_calculate_queue_limits(struct dm_table *t,
1596 			      struct queue_limits *limits)
1597 {
1598 	struct queue_limits ti_limits;
1599 	unsigned int zone_sectors = 0;
1600 	bool zoned = false;
1601 
1602 	dm_set_stacking_limits(limits);
1603 
1604 	t->integrity_supported = true;
1605 	for (unsigned int i = 0; i < t->num_targets; i++) {
1606 		struct dm_target *ti = dm_table_get_target(t, i);
1607 
1608 		if (!dm_target_passes_integrity(ti->type))
1609 			t->integrity_supported = false;
1610 	}
1611 
1612 	for (unsigned int i = 0; i < t->num_targets; i++) {
1613 		struct dm_target *ti = dm_table_get_target(t, i);
1614 
1615 		dm_set_stacking_limits(&ti_limits);
1616 
1617 		if (!ti->type->iterate_devices) {
1618 			/* Set I/O hints portion of queue limits */
1619 			if (ti->type->io_hints)
1620 				ti->type->io_hints(ti, &ti_limits);
1621 			goto combine_limits;
1622 		}
1623 
1624 		/*
1625 		 * Combine queue limits of all the devices this target uses.
1626 		 */
1627 		ti->type->iterate_devices(ti, dm_set_device_limits,
1628 					  &ti_limits);
1629 
1630 		if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1631 			/*
1632 			 * After stacking all limits, validate all devices
1633 			 * in table support this zoned model and zone sectors.
1634 			 */
1635 			zoned = (ti_limits.features & BLK_FEAT_ZONED);
1636 			zone_sectors = ti_limits.chunk_sectors;
1637 		}
1638 
1639 		/* Set I/O hints portion of queue limits */
1640 		if (ti->type->io_hints)
1641 			ti->type->io_hints(ti, &ti_limits);
1642 
1643 		/*
1644 		 * Check each device area is consistent with the target's
1645 		 * overall queue limits.
1646 		 */
1647 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1648 					      &ti_limits))
1649 			return -EINVAL;
1650 
1651 combine_limits:
1652 		/*
1653 		 * Merge this target's queue limits into the overall limits
1654 		 * for the table.
1655 		 */
1656 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1657 			DMWARN("%s: adding target device (start sect %llu len %llu) "
1658 			       "caused an alignment inconsistency",
1659 			       dm_device_name(t->md),
1660 			       (unsigned long long) ti->begin,
1661 			       (unsigned long long) ti->len);
1662 
1663 		if (t->integrity_supported ||
1664 		    dm_target_has_integrity(ti->type)) {
1665 			if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1666 				DMWARN("%s: adding target device (start sect %llu len %llu) "
1667 				       "disabled integrity support due to incompatibility",
1668 				       dm_device_name(t->md),
1669 				       (unsigned long long) ti->begin,
1670 				       (unsigned long long) ti->len);
1671 				t->integrity_supported = false;
1672 			}
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * Verify that the zoned model and zone sectors, as determined before
1678 	 * any .io_hints override, are the same across all devices in the table.
1679 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1680 	 *   zoned model on host-managed zoned block devices.
1681 	 * BUT...
1682 	 */
1683 	if (limits->features & BLK_FEAT_ZONED) {
1684 		/*
1685 		 * ...IF the above limits stacking determined a zoned model
1686 		 * validate that all of the table's devices conform to it.
1687 		 */
1688 		zoned = limits->features & BLK_FEAT_ZONED;
1689 		zone_sectors = limits->chunk_sectors;
1690 	}
1691 	if (validate_hardware_zoned(t, zoned, zone_sectors))
1692 		return -EINVAL;
1693 
1694 	return validate_hardware_logical_block_alignment(t, limits);
1695 }
1696 
1697 /*
1698  * Check if a target requires flush support even if none of the underlying
1699  * devices need it (e.g. to persist target-specific metadata).
1700  */
1701 static bool dm_table_supports_flush(struct dm_table *t)
1702 {
1703 	for (unsigned int i = 0; i < t->num_targets; i++) {
1704 		struct dm_target *ti = dm_table_get_target(t, i);
1705 
1706 		if (ti->num_flush_bios && ti->flush_supported)
1707 			return true;
1708 	}
1709 
1710 	return false;
1711 }
1712 
1713 static int device_dax_write_cache_enabled(struct dm_target *ti,
1714 					  struct dm_dev *dev, sector_t start,
1715 					  sector_t len, void *data)
1716 {
1717 	struct dax_device *dax_dev = dev->dax_dev;
1718 
1719 	if (!dax_dev)
1720 		return false;
1721 
1722 	if (dax_write_cache_enabled(dax_dev))
1723 		return true;
1724 	return false;
1725 }
1726 
1727 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1728 					   sector_t start, sector_t len, void *data)
1729 {
1730 	struct request_queue *q = bdev_get_queue(dev->bdev);
1731 
1732 	return !q->limits.max_write_zeroes_sectors;
1733 }
1734 
1735 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1736 {
1737 	for (unsigned int i = 0; i < t->num_targets; i++) {
1738 		struct dm_target *ti = dm_table_get_target(t, i);
1739 
1740 		if (!ti->num_write_zeroes_bios)
1741 			return false;
1742 
1743 		if (!ti->type->iterate_devices ||
1744 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1745 			return false;
1746 	}
1747 
1748 	return true;
1749 }
1750 
1751 static bool dm_table_supports_nowait(struct dm_table *t)
1752 {
1753 	for (unsigned int i = 0; i < t->num_targets; i++) {
1754 		struct dm_target *ti = dm_table_get_target(t, i);
1755 
1756 		if (!dm_target_supports_nowait(ti->type))
1757 			return false;
1758 	}
1759 
1760 	return true;
1761 }
1762 
1763 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1764 				      sector_t start, sector_t len, void *data)
1765 {
1766 	return !bdev_max_discard_sectors(dev->bdev);
1767 }
1768 
1769 static bool dm_table_supports_discards(struct dm_table *t)
1770 {
1771 	for (unsigned int i = 0; i < t->num_targets; i++) {
1772 		struct dm_target *ti = dm_table_get_target(t, i);
1773 
1774 		if (!ti->num_discard_bios)
1775 			return false;
1776 
1777 		/*
1778 		 * Either the target provides discard support (as implied by setting
1779 		 * 'discards_supported') or it relies on _all_ data devices having
1780 		 * discard support.
1781 		 */
1782 		if (!ti->discards_supported &&
1783 		    (!ti->type->iterate_devices ||
1784 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1785 			return false;
1786 	}
1787 
1788 	return true;
1789 }
1790 
1791 static int device_not_secure_erase_capable(struct dm_target *ti,
1792 					   struct dm_dev *dev, sector_t start,
1793 					   sector_t len, void *data)
1794 {
1795 	return !bdev_max_secure_erase_sectors(dev->bdev);
1796 }
1797 
1798 static bool dm_table_supports_secure_erase(struct dm_table *t)
1799 {
1800 	for (unsigned int i = 0; i < t->num_targets; i++) {
1801 		struct dm_target *ti = dm_table_get_target(t, i);
1802 
1803 		if (!ti->num_secure_erase_bios)
1804 			return false;
1805 
1806 		if (!ti->type->iterate_devices ||
1807 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1808 			return false;
1809 	}
1810 
1811 	return true;
1812 }
1813 
1814 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1815 			      struct queue_limits *limits)
1816 {
1817 	int r;
1818 
1819 	if (!dm_table_supports_nowait(t))
1820 		limits->features &= ~BLK_FEAT_NOWAIT;
1821 
1822 	/*
1823 	 * The current polling impementation does not support request based
1824 	 * stacking.
1825 	 */
1826 	if (!__table_type_bio_based(t->type))
1827 		limits->features &= ~BLK_FEAT_POLL;
1828 
1829 	if (!dm_table_supports_discards(t)) {
1830 		limits->max_hw_discard_sectors = 0;
1831 		limits->discard_granularity = 0;
1832 		limits->discard_alignment = 0;
1833 	}
1834 
1835 	if (!dm_table_supports_write_zeroes(t))
1836 		limits->max_write_zeroes_sectors = 0;
1837 
1838 	if (!dm_table_supports_secure_erase(t))
1839 		limits->max_secure_erase_sectors = 0;
1840 
1841 	if (dm_table_supports_flush(t))
1842 		limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1843 
1844 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1845 		limits->features |= BLK_FEAT_DAX;
1846 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1847 			set_dax_synchronous(t->md->dax_dev);
1848 	} else
1849 		limits->features &= ~BLK_FEAT_DAX;
1850 
1851 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1852 		dax_write_cache(t->md->dax_dev, true);
1853 
1854 	/* For a zoned table, setup the zone related queue attributes. */
1855 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1856 	    (limits->features & BLK_FEAT_ZONED)) {
1857 		r = dm_set_zones_restrictions(t, q, limits);
1858 		if (r)
1859 			return r;
1860 	}
1861 
1862 	r = queue_limits_set(q, limits);
1863 	if (r)
1864 		return r;
1865 
1866 	/*
1867 	 * Now that the limits are set, check the zones mapped by the table
1868 	 * and setup the resources for zone append emulation if necessary.
1869 	 */
1870 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1871 	    (limits->features & BLK_FEAT_ZONED)) {
1872 		r = dm_revalidate_zones(t, q);
1873 		if (r)
1874 			return r;
1875 	}
1876 
1877 	dm_update_crypto_profile(q, t);
1878 	return 0;
1879 }
1880 
1881 struct list_head *dm_table_get_devices(struct dm_table *t)
1882 {
1883 	return &t->devices;
1884 }
1885 
1886 blk_mode_t dm_table_get_mode(struct dm_table *t)
1887 {
1888 	return t->mode;
1889 }
1890 EXPORT_SYMBOL(dm_table_get_mode);
1891 
1892 enum suspend_mode {
1893 	PRESUSPEND,
1894 	PRESUSPEND_UNDO,
1895 	POSTSUSPEND,
1896 };
1897 
1898 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1899 {
1900 	lockdep_assert_held(&t->md->suspend_lock);
1901 
1902 	for (unsigned int i = 0; i < t->num_targets; i++) {
1903 		struct dm_target *ti = dm_table_get_target(t, i);
1904 
1905 		switch (mode) {
1906 		case PRESUSPEND:
1907 			if (ti->type->presuspend)
1908 				ti->type->presuspend(ti);
1909 			break;
1910 		case PRESUSPEND_UNDO:
1911 			if (ti->type->presuspend_undo)
1912 				ti->type->presuspend_undo(ti);
1913 			break;
1914 		case POSTSUSPEND:
1915 			if (ti->type->postsuspend)
1916 				ti->type->postsuspend(ti);
1917 			break;
1918 		}
1919 	}
1920 }
1921 
1922 void dm_table_presuspend_targets(struct dm_table *t)
1923 {
1924 	if (!t)
1925 		return;
1926 
1927 	suspend_targets(t, PRESUSPEND);
1928 }
1929 
1930 void dm_table_presuspend_undo_targets(struct dm_table *t)
1931 {
1932 	if (!t)
1933 		return;
1934 
1935 	suspend_targets(t, PRESUSPEND_UNDO);
1936 }
1937 
1938 void dm_table_postsuspend_targets(struct dm_table *t)
1939 {
1940 	if (!t)
1941 		return;
1942 
1943 	suspend_targets(t, POSTSUSPEND);
1944 }
1945 
1946 int dm_table_resume_targets(struct dm_table *t)
1947 {
1948 	unsigned int i;
1949 	int r = 0;
1950 
1951 	lockdep_assert_held(&t->md->suspend_lock);
1952 
1953 	for (i = 0; i < t->num_targets; i++) {
1954 		struct dm_target *ti = dm_table_get_target(t, i);
1955 
1956 		if (!ti->type->preresume)
1957 			continue;
1958 
1959 		r = ti->type->preresume(ti);
1960 		if (r) {
1961 			DMERR("%s: %s: preresume failed, error = %d",
1962 			      dm_device_name(t->md), ti->type->name, r);
1963 			return r;
1964 		}
1965 	}
1966 
1967 	for (i = 0; i < t->num_targets; i++) {
1968 		struct dm_target *ti = dm_table_get_target(t, i);
1969 
1970 		if (ti->type->resume)
1971 			ti->type->resume(ti);
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 struct mapped_device *dm_table_get_md(struct dm_table *t)
1978 {
1979 	return t->md;
1980 }
1981 EXPORT_SYMBOL(dm_table_get_md);
1982 
1983 const char *dm_table_device_name(struct dm_table *t)
1984 {
1985 	return dm_device_name(t->md);
1986 }
1987 EXPORT_SYMBOL_GPL(dm_table_device_name);
1988 
1989 void dm_table_run_md_queue_async(struct dm_table *t)
1990 {
1991 	if (!dm_table_request_based(t))
1992 		return;
1993 
1994 	if (t->md->queue)
1995 		blk_mq_run_hw_queues(t->md->queue, true);
1996 }
1997 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1998 
1999