1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <asm/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 /* 30 * The table has always exactly one reference from either mapped_device->map 31 * or hash_cell->new_map. This reference is not counted in table->holders. 32 * A pair of dm_create_table/dm_destroy_table functions is used for table 33 * creation/destruction. 34 * 35 * Temporary references from the other code increase table->holders. A pair 36 * of dm_table_get/dm_table_put functions is used to manipulate it. 37 * 38 * When the table is about to be destroyed, we wait for table->holders to 39 * drop to zero. 40 */ 41 42 struct dm_table { 43 struct mapped_device *md; 44 atomic_t holders; 45 unsigned type; 46 47 /* btree table */ 48 unsigned int depth; 49 unsigned int counts[MAX_DEPTH]; /* in nodes */ 50 sector_t *index[MAX_DEPTH]; 51 52 unsigned int num_targets; 53 unsigned int num_allocated; 54 sector_t *highs; 55 struct dm_target *targets; 56 57 unsigned discards_supported:1; 58 unsigned integrity_supported:1; 59 60 /* 61 * Indicates the rw permissions for the new logical 62 * device. This should be a combination of FMODE_READ 63 * and FMODE_WRITE. 64 */ 65 fmode_t mode; 66 67 /* a list of devices used by this table */ 68 struct list_head devices; 69 70 /* events get handed up using this callback */ 71 void (*event_fn)(void *); 72 void *event_context; 73 74 struct dm_md_mempools *mempools; 75 76 struct list_head target_callbacks; 77 }; 78 79 /* 80 * Similar to ceiling(log_size(n)) 81 */ 82 static unsigned int int_log(unsigned int n, unsigned int base) 83 { 84 int result = 0; 85 86 while (n > 1) { 87 n = dm_div_up(n, base); 88 result++; 89 } 90 91 return result; 92 } 93 94 /* 95 * Calculate the index of the child node of the n'th node k'th key. 96 */ 97 static inline unsigned int get_child(unsigned int n, unsigned int k) 98 { 99 return (n * CHILDREN_PER_NODE) + k; 100 } 101 102 /* 103 * Return the n'th node of level l from table t. 104 */ 105 static inline sector_t *get_node(struct dm_table *t, 106 unsigned int l, unsigned int n) 107 { 108 return t->index[l] + (n * KEYS_PER_NODE); 109 } 110 111 /* 112 * Return the highest key that you could lookup from the n'th 113 * node on level l of the btree. 114 */ 115 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 116 { 117 for (; l < t->depth - 1; l++) 118 n = get_child(n, CHILDREN_PER_NODE - 1); 119 120 if (n >= t->counts[l]) 121 return (sector_t) - 1; 122 123 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 124 } 125 126 /* 127 * Fills in a level of the btree based on the highs of the level 128 * below it. 129 */ 130 static int setup_btree_index(unsigned int l, struct dm_table *t) 131 { 132 unsigned int n, k; 133 sector_t *node; 134 135 for (n = 0U; n < t->counts[l]; n++) { 136 node = get_node(t, l, n); 137 138 for (k = 0U; k < KEYS_PER_NODE; k++) 139 node[k] = high(t, l + 1, get_child(n, k)); 140 } 141 142 return 0; 143 } 144 145 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 146 { 147 unsigned long size; 148 void *addr; 149 150 /* 151 * Check that we're not going to overflow. 152 */ 153 if (nmemb > (ULONG_MAX / elem_size)) 154 return NULL; 155 156 size = nmemb * elem_size; 157 addr = vmalloc(size); 158 if (addr) 159 memset(addr, 0, size); 160 161 return addr; 162 } 163 164 /* 165 * highs, and targets are managed as dynamic arrays during a 166 * table load. 167 */ 168 static int alloc_targets(struct dm_table *t, unsigned int num) 169 { 170 sector_t *n_highs; 171 struct dm_target *n_targets; 172 int n = t->num_targets; 173 174 /* 175 * Allocate both the target array and offset array at once. 176 * Append an empty entry to catch sectors beyond the end of 177 * the device. 178 */ 179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 180 sizeof(sector_t)); 181 if (!n_highs) 182 return -ENOMEM; 183 184 n_targets = (struct dm_target *) (n_highs + num); 185 186 if (n) { 187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 189 } 190 191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 192 vfree(t->highs); 193 194 t->num_allocated = num; 195 t->highs = n_highs; 196 t->targets = n_targets; 197 198 return 0; 199 } 200 201 int dm_table_create(struct dm_table **result, fmode_t mode, 202 unsigned num_targets, struct mapped_device *md) 203 { 204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 205 206 if (!t) 207 return -ENOMEM; 208 209 INIT_LIST_HEAD(&t->devices); 210 INIT_LIST_HEAD(&t->target_callbacks); 211 atomic_set(&t->holders, 0); 212 t->discards_supported = 1; 213 214 if (!num_targets) 215 num_targets = KEYS_PER_NODE; 216 217 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 218 219 if (alloc_targets(t, num_targets)) { 220 kfree(t); 221 t = NULL; 222 return -ENOMEM; 223 } 224 225 t->mode = mode; 226 t->md = md; 227 *result = t; 228 return 0; 229 } 230 231 static void free_devices(struct list_head *devices) 232 { 233 struct list_head *tmp, *next; 234 235 list_for_each_safe(tmp, next, devices) { 236 struct dm_dev_internal *dd = 237 list_entry(tmp, struct dm_dev_internal, list); 238 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 239 dd->dm_dev.name); 240 kfree(dd); 241 } 242 } 243 244 void dm_table_destroy(struct dm_table *t) 245 { 246 unsigned int i; 247 248 if (!t) 249 return; 250 251 while (atomic_read(&t->holders)) 252 msleep(1); 253 smp_mb(); 254 255 /* free the indexes */ 256 if (t->depth >= 2) 257 vfree(t->index[t->depth - 2]); 258 259 /* free the targets */ 260 for (i = 0; i < t->num_targets; i++) { 261 struct dm_target *tgt = t->targets + i; 262 263 if (tgt->type->dtr) 264 tgt->type->dtr(tgt); 265 266 dm_put_target_type(tgt->type); 267 } 268 269 vfree(t->highs); 270 271 /* free the device list */ 272 if (t->devices.next != &t->devices) 273 free_devices(&t->devices); 274 275 dm_free_md_mempools(t->mempools); 276 277 kfree(t); 278 } 279 280 void dm_table_get(struct dm_table *t) 281 { 282 atomic_inc(&t->holders); 283 } 284 285 void dm_table_put(struct dm_table *t) 286 { 287 if (!t) 288 return; 289 290 smp_mb__before_atomic_dec(); 291 atomic_dec(&t->holders); 292 } 293 294 /* 295 * Checks to see if we need to extend highs or targets. 296 */ 297 static inline int check_space(struct dm_table *t) 298 { 299 if (t->num_targets >= t->num_allocated) 300 return alloc_targets(t, t->num_allocated * 2); 301 302 return 0; 303 } 304 305 /* 306 * See if we've already got a device in the list. 307 */ 308 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 309 { 310 struct dm_dev_internal *dd; 311 312 list_for_each_entry (dd, l, list) 313 if (dd->dm_dev.bdev->bd_dev == dev) 314 return dd; 315 316 return NULL; 317 } 318 319 /* 320 * Open a device so we can use it as a map destination. 321 */ 322 static int open_dev(struct dm_dev_internal *d, dev_t dev, 323 struct mapped_device *md) 324 { 325 static char *_claim_ptr = "I belong to device-mapper"; 326 struct block_device *bdev; 327 328 int r; 329 330 BUG_ON(d->dm_dev.bdev); 331 332 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 333 if (IS_ERR(bdev)) 334 return PTR_ERR(bdev); 335 336 r = bd_link_disk_holder(bdev, dm_disk(md)); 337 if (r) { 338 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 339 return r; 340 } 341 342 d->dm_dev.bdev = bdev; 343 return 0; 344 } 345 346 /* 347 * Close a device that we've been using. 348 */ 349 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 350 { 351 if (!d->dm_dev.bdev) 352 return; 353 354 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 355 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 356 d->dm_dev.bdev = NULL; 357 } 358 359 /* 360 * If possible, this checks an area of a destination device is invalid. 361 */ 362 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 363 sector_t start, sector_t len, void *data) 364 { 365 struct queue_limits *limits = data; 366 struct block_device *bdev = dev->bdev; 367 sector_t dev_size = 368 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 369 unsigned short logical_block_size_sectors = 370 limits->logical_block_size >> SECTOR_SHIFT; 371 char b[BDEVNAME_SIZE]; 372 373 if (!dev_size) 374 return 0; 375 376 if ((start >= dev_size) || (start + len > dev_size)) { 377 DMWARN("%s: %s too small for target: " 378 "start=%llu, len=%llu, dev_size=%llu", 379 dm_device_name(ti->table->md), bdevname(bdev, b), 380 (unsigned long long)start, 381 (unsigned long long)len, 382 (unsigned long long)dev_size); 383 return 1; 384 } 385 386 if (logical_block_size_sectors <= 1) 387 return 0; 388 389 if (start & (logical_block_size_sectors - 1)) { 390 DMWARN("%s: start=%llu not aligned to h/w " 391 "logical block size %u of %s", 392 dm_device_name(ti->table->md), 393 (unsigned long long)start, 394 limits->logical_block_size, bdevname(bdev, b)); 395 return 1; 396 } 397 398 if (len & (logical_block_size_sectors - 1)) { 399 DMWARN("%s: len=%llu not aligned to h/w " 400 "logical block size %u of %s", 401 dm_device_name(ti->table->md), 402 (unsigned long long)len, 403 limits->logical_block_size, bdevname(bdev, b)); 404 return 1; 405 } 406 407 return 0; 408 } 409 410 /* 411 * This upgrades the mode on an already open dm_dev, being 412 * careful to leave things as they were if we fail to reopen the 413 * device and not to touch the existing bdev field in case 414 * it is accessed concurrently inside dm_table_any_congested(). 415 */ 416 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 417 struct mapped_device *md) 418 { 419 int r; 420 struct dm_dev_internal dd_new, dd_old; 421 422 dd_new = dd_old = *dd; 423 424 dd_new.dm_dev.mode |= new_mode; 425 dd_new.dm_dev.bdev = NULL; 426 427 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 428 if (r) 429 return r; 430 431 dd->dm_dev.mode |= new_mode; 432 close_dev(&dd_old, md); 433 434 return 0; 435 } 436 437 /* 438 * Add a device to the list, or just increment the usage count if 439 * it's already present. 440 */ 441 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 442 const char *path, fmode_t mode, struct dm_dev **result) 443 { 444 int r; 445 dev_t uninitialized_var(dev); 446 struct dm_dev_internal *dd; 447 unsigned int major, minor; 448 449 BUG_ON(!t); 450 451 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 452 /* Extract the major/minor numbers */ 453 dev = MKDEV(major, minor); 454 if (MAJOR(dev) != major || MINOR(dev) != minor) 455 return -EOVERFLOW; 456 } else { 457 /* convert the path to a device */ 458 struct block_device *bdev = lookup_bdev(path); 459 460 if (IS_ERR(bdev)) 461 return PTR_ERR(bdev); 462 dev = bdev->bd_dev; 463 bdput(bdev); 464 } 465 466 dd = find_device(&t->devices, dev); 467 if (!dd) { 468 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 469 if (!dd) 470 return -ENOMEM; 471 472 dd->dm_dev.mode = mode; 473 dd->dm_dev.bdev = NULL; 474 475 if ((r = open_dev(dd, dev, t->md))) { 476 kfree(dd); 477 return r; 478 } 479 480 format_dev_t(dd->dm_dev.name, dev); 481 482 atomic_set(&dd->count, 0); 483 list_add(&dd->list, &t->devices); 484 485 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 486 r = upgrade_mode(dd, mode, t->md); 487 if (r) 488 return r; 489 } 490 atomic_inc(&dd->count); 491 492 *result = &dd->dm_dev; 493 return 0; 494 } 495 496 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 497 sector_t start, sector_t len, void *data) 498 { 499 struct queue_limits *limits = data; 500 struct block_device *bdev = dev->bdev; 501 struct request_queue *q = bdev_get_queue(bdev); 502 char b[BDEVNAME_SIZE]; 503 504 if (unlikely(!q)) { 505 DMWARN("%s: Cannot set limits for nonexistent device %s", 506 dm_device_name(ti->table->md), bdevname(bdev, b)); 507 return 0; 508 } 509 510 if (bdev_stack_limits(limits, bdev, start) < 0) 511 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 512 "physical_block_size=%u, logical_block_size=%u, " 513 "alignment_offset=%u, start=%llu", 514 dm_device_name(ti->table->md), bdevname(bdev, b), 515 q->limits.physical_block_size, 516 q->limits.logical_block_size, 517 q->limits.alignment_offset, 518 (unsigned long long) start << SECTOR_SHIFT); 519 520 /* 521 * Check if merge fn is supported. 522 * If not we'll force DM to use PAGE_SIZE or 523 * smaller I/O, just to be safe. 524 */ 525 526 if (q->merge_bvec_fn && !ti->type->merge) 527 blk_limits_max_hw_sectors(limits, 528 (unsigned int) (PAGE_SIZE >> 9)); 529 return 0; 530 } 531 EXPORT_SYMBOL_GPL(dm_set_device_limits); 532 533 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 534 struct dm_dev **result) 535 { 536 return __table_get_device(ti->table, ti, path, mode, result); 537 } 538 539 540 /* 541 * Decrement a devices use count and remove it if necessary. 542 */ 543 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 544 { 545 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 546 dm_dev); 547 548 if (atomic_dec_and_test(&dd->count)) { 549 close_dev(dd, ti->table->md); 550 list_del(&dd->list); 551 kfree(dd); 552 } 553 } 554 555 /* 556 * Checks to see if the target joins onto the end of the table. 557 */ 558 static int adjoin(struct dm_table *table, struct dm_target *ti) 559 { 560 struct dm_target *prev; 561 562 if (!table->num_targets) 563 return !ti->begin; 564 565 prev = &table->targets[table->num_targets - 1]; 566 return (ti->begin == (prev->begin + prev->len)); 567 } 568 569 /* 570 * Used to dynamically allocate the arg array. 571 */ 572 static char **realloc_argv(unsigned *array_size, char **old_argv) 573 { 574 char **argv; 575 unsigned new_size; 576 577 new_size = *array_size ? *array_size * 2 : 64; 578 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 579 if (argv) { 580 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 581 *array_size = new_size; 582 } 583 584 kfree(old_argv); 585 return argv; 586 } 587 588 /* 589 * Destructively splits up the argument list to pass to ctr. 590 */ 591 int dm_split_args(int *argc, char ***argvp, char *input) 592 { 593 char *start, *end = input, *out, **argv = NULL; 594 unsigned array_size = 0; 595 596 *argc = 0; 597 598 if (!input) { 599 *argvp = NULL; 600 return 0; 601 } 602 603 argv = realloc_argv(&array_size, argv); 604 if (!argv) 605 return -ENOMEM; 606 607 while (1) { 608 /* Skip whitespace */ 609 start = skip_spaces(end); 610 611 if (!*start) 612 break; /* success, we hit the end */ 613 614 /* 'out' is used to remove any back-quotes */ 615 end = out = start; 616 while (*end) { 617 /* Everything apart from '\0' can be quoted */ 618 if (*end == '\\' && *(end + 1)) { 619 *out++ = *(end + 1); 620 end += 2; 621 continue; 622 } 623 624 if (isspace(*end)) 625 break; /* end of token */ 626 627 *out++ = *end++; 628 } 629 630 /* have we already filled the array ? */ 631 if ((*argc + 1) > array_size) { 632 argv = realloc_argv(&array_size, argv); 633 if (!argv) 634 return -ENOMEM; 635 } 636 637 /* we know this is whitespace */ 638 if (*end) 639 end++; 640 641 /* terminate the string and put it in the array */ 642 *out = '\0'; 643 argv[*argc] = start; 644 (*argc)++; 645 } 646 647 *argvp = argv; 648 return 0; 649 } 650 651 /* 652 * Impose necessary and sufficient conditions on a devices's table such 653 * that any incoming bio which respects its logical_block_size can be 654 * processed successfully. If it falls across the boundary between 655 * two or more targets, the size of each piece it gets split into must 656 * be compatible with the logical_block_size of the target processing it. 657 */ 658 static int validate_hardware_logical_block_alignment(struct dm_table *table, 659 struct queue_limits *limits) 660 { 661 /* 662 * This function uses arithmetic modulo the logical_block_size 663 * (in units of 512-byte sectors). 664 */ 665 unsigned short device_logical_block_size_sects = 666 limits->logical_block_size >> SECTOR_SHIFT; 667 668 /* 669 * Offset of the start of the next table entry, mod logical_block_size. 670 */ 671 unsigned short next_target_start = 0; 672 673 /* 674 * Given an aligned bio that extends beyond the end of a 675 * target, how many sectors must the next target handle? 676 */ 677 unsigned short remaining = 0; 678 679 struct dm_target *uninitialized_var(ti); 680 struct queue_limits ti_limits; 681 unsigned i = 0; 682 683 /* 684 * Check each entry in the table in turn. 685 */ 686 while (i < dm_table_get_num_targets(table)) { 687 ti = dm_table_get_target(table, i++); 688 689 blk_set_default_limits(&ti_limits); 690 691 /* combine all target devices' limits */ 692 if (ti->type->iterate_devices) 693 ti->type->iterate_devices(ti, dm_set_device_limits, 694 &ti_limits); 695 696 /* 697 * If the remaining sectors fall entirely within this 698 * table entry are they compatible with its logical_block_size? 699 */ 700 if (remaining < ti->len && 701 remaining & ((ti_limits.logical_block_size >> 702 SECTOR_SHIFT) - 1)) 703 break; /* Error */ 704 705 next_target_start = 706 (unsigned short) ((next_target_start + ti->len) & 707 (device_logical_block_size_sects - 1)); 708 remaining = next_target_start ? 709 device_logical_block_size_sects - next_target_start : 0; 710 } 711 712 if (remaining) { 713 DMWARN("%s: table line %u (start sect %llu len %llu) " 714 "not aligned to h/w logical block size %u", 715 dm_device_name(table->md), i, 716 (unsigned long long) ti->begin, 717 (unsigned long long) ti->len, 718 limits->logical_block_size); 719 return -EINVAL; 720 } 721 722 return 0; 723 } 724 725 int dm_table_add_target(struct dm_table *t, const char *type, 726 sector_t start, sector_t len, char *params) 727 { 728 int r = -EINVAL, argc; 729 char **argv; 730 struct dm_target *tgt; 731 732 if ((r = check_space(t))) 733 return r; 734 735 tgt = t->targets + t->num_targets; 736 memset(tgt, 0, sizeof(*tgt)); 737 738 if (!len) { 739 DMERR("%s: zero-length target", dm_device_name(t->md)); 740 return -EINVAL; 741 } 742 743 tgt->type = dm_get_target_type(type); 744 if (!tgt->type) { 745 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 746 type); 747 return -EINVAL; 748 } 749 750 tgt->table = t; 751 tgt->begin = start; 752 tgt->len = len; 753 tgt->error = "Unknown error"; 754 755 /* 756 * Does this target adjoin the previous one ? 757 */ 758 if (!adjoin(t, tgt)) { 759 tgt->error = "Gap in table"; 760 r = -EINVAL; 761 goto bad; 762 } 763 764 r = dm_split_args(&argc, &argv, params); 765 if (r) { 766 tgt->error = "couldn't split parameters (insufficient memory)"; 767 goto bad; 768 } 769 770 r = tgt->type->ctr(tgt, argc, argv); 771 kfree(argv); 772 if (r) 773 goto bad; 774 775 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 776 777 if (!tgt->num_discard_requests) 778 t->discards_supported = 0; 779 780 return 0; 781 782 bad: 783 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 784 dm_put_target_type(tgt->type); 785 return r; 786 } 787 788 static int dm_table_set_type(struct dm_table *t) 789 { 790 unsigned i; 791 unsigned bio_based = 0, request_based = 0; 792 struct dm_target *tgt; 793 struct dm_dev_internal *dd; 794 struct list_head *devices; 795 796 for (i = 0; i < t->num_targets; i++) { 797 tgt = t->targets + i; 798 if (dm_target_request_based(tgt)) 799 request_based = 1; 800 else 801 bio_based = 1; 802 803 if (bio_based && request_based) { 804 DMWARN("Inconsistent table: different target types" 805 " can't be mixed up"); 806 return -EINVAL; 807 } 808 } 809 810 if (bio_based) { 811 /* We must use this table as bio-based */ 812 t->type = DM_TYPE_BIO_BASED; 813 return 0; 814 } 815 816 BUG_ON(!request_based); /* No targets in this table */ 817 818 /* Non-request-stackable devices can't be used for request-based dm */ 819 devices = dm_table_get_devices(t); 820 list_for_each_entry(dd, devices, list) { 821 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 822 DMWARN("table load rejected: including" 823 " non-request-stackable devices"); 824 return -EINVAL; 825 } 826 } 827 828 /* 829 * Request-based dm supports only tables that have a single target now. 830 * To support multiple targets, request splitting support is needed, 831 * and that needs lots of changes in the block-layer. 832 * (e.g. request completion process for partial completion.) 833 */ 834 if (t->num_targets > 1) { 835 DMWARN("Request-based dm doesn't support multiple targets yet"); 836 return -EINVAL; 837 } 838 839 t->type = DM_TYPE_REQUEST_BASED; 840 841 return 0; 842 } 843 844 unsigned dm_table_get_type(struct dm_table *t) 845 { 846 return t->type; 847 } 848 849 bool dm_table_request_based(struct dm_table *t) 850 { 851 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 852 } 853 854 int dm_table_alloc_md_mempools(struct dm_table *t) 855 { 856 unsigned type = dm_table_get_type(t); 857 858 if (unlikely(type == DM_TYPE_NONE)) { 859 DMWARN("no table type is set, can't allocate mempools"); 860 return -EINVAL; 861 } 862 863 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported); 864 if (!t->mempools) 865 return -ENOMEM; 866 867 return 0; 868 } 869 870 void dm_table_free_md_mempools(struct dm_table *t) 871 { 872 dm_free_md_mempools(t->mempools); 873 t->mempools = NULL; 874 } 875 876 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 877 { 878 return t->mempools; 879 } 880 881 static int setup_indexes(struct dm_table *t) 882 { 883 int i; 884 unsigned int total = 0; 885 sector_t *indexes; 886 887 /* allocate the space for *all* the indexes */ 888 for (i = t->depth - 2; i >= 0; i--) { 889 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 890 total += t->counts[i]; 891 } 892 893 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 894 if (!indexes) 895 return -ENOMEM; 896 897 /* set up internal nodes, bottom-up */ 898 for (i = t->depth - 2; i >= 0; i--) { 899 t->index[i] = indexes; 900 indexes += (KEYS_PER_NODE * t->counts[i]); 901 setup_btree_index(i, t); 902 } 903 904 return 0; 905 } 906 907 /* 908 * Builds the btree to index the map. 909 */ 910 static int dm_table_build_index(struct dm_table *t) 911 { 912 int r = 0; 913 unsigned int leaf_nodes; 914 915 /* how many indexes will the btree have ? */ 916 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 917 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 918 919 /* leaf layer has already been set up */ 920 t->counts[t->depth - 1] = leaf_nodes; 921 t->index[t->depth - 1] = t->highs; 922 923 if (t->depth >= 2) 924 r = setup_indexes(t); 925 926 return r; 927 } 928 929 /* 930 * Get a disk whose integrity profile reflects the table's profile. 931 * If %match_all is true, all devices' profiles must match. 932 * If %match_all is false, all devices must at least have an 933 * allocated integrity profile; but uninitialized is ok. 934 * Returns NULL if integrity support was inconsistent or unavailable. 935 */ 936 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 937 bool match_all) 938 { 939 struct list_head *devices = dm_table_get_devices(t); 940 struct dm_dev_internal *dd = NULL; 941 struct gendisk *prev_disk = NULL, *template_disk = NULL; 942 943 list_for_each_entry(dd, devices, list) { 944 template_disk = dd->dm_dev.bdev->bd_disk; 945 if (!blk_get_integrity(template_disk)) 946 goto no_integrity; 947 if (!match_all && !blk_integrity_is_initialized(template_disk)) 948 continue; /* skip uninitialized profiles */ 949 else if (prev_disk && 950 blk_integrity_compare(prev_disk, template_disk) < 0) 951 goto no_integrity; 952 prev_disk = template_disk; 953 } 954 955 return template_disk; 956 957 no_integrity: 958 if (prev_disk) 959 DMWARN("%s: integrity not set: %s and %s profile mismatch", 960 dm_device_name(t->md), 961 prev_disk->disk_name, 962 template_disk->disk_name); 963 return NULL; 964 } 965 966 /* 967 * Register the mapped device for blk_integrity support if 968 * the underlying devices have an integrity profile. But all devices 969 * may not have matching profiles (checking all devices isn't reliable 970 * during table load because this table may use other DM device(s) which 971 * must be resumed before they will have an initialized integity profile). 972 * Stacked DM devices force a 2 stage integrity profile validation: 973 * 1 - during load, validate all initialized integrity profiles match 974 * 2 - during resume, validate all integrity profiles match 975 */ 976 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 977 { 978 struct gendisk *template_disk = NULL; 979 980 template_disk = dm_table_get_integrity_disk(t, false); 981 if (!template_disk) 982 return 0; 983 984 if (!blk_integrity_is_initialized(dm_disk(md))) { 985 t->integrity_supported = 1; 986 return blk_integrity_register(dm_disk(md), NULL); 987 } 988 989 /* 990 * If DM device already has an initalized integrity 991 * profile the new profile should not conflict. 992 */ 993 if (blk_integrity_is_initialized(template_disk) && 994 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 995 DMWARN("%s: conflict with existing integrity profile: " 996 "%s profile mismatch", 997 dm_device_name(t->md), 998 template_disk->disk_name); 999 return 1; 1000 } 1001 1002 /* Preserve existing initialized integrity profile */ 1003 t->integrity_supported = 1; 1004 return 0; 1005 } 1006 1007 /* 1008 * Prepares the table for use by building the indices, 1009 * setting the type, and allocating mempools. 1010 */ 1011 int dm_table_complete(struct dm_table *t) 1012 { 1013 int r; 1014 1015 r = dm_table_set_type(t); 1016 if (r) { 1017 DMERR("unable to set table type"); 1018 return r; 1019 } 1020 1021 r = dm_table_build_index(t); 1022 if (r) { 1023 DMERR("unable to build btrees"); 1024 return r; 1025 } 1026 1027 r = dm_table_prealloc_integrity(t, t->md); 1028 if (r) { 1029 DMERR("could not register integrity profile."); 1030 return r; 1031 } 1032 1033 r = dm_table_alloc_md_mempools(t); 1034 if (r) 1035 DMERR("unable to allocate mempools"); 1036 1037 return r; 1038 } 1039 1040 static DEFINE_MUTEX(_event_lock); 1041 void dm_table_event_callback(struct dm_table *t, 1042 void (*fn)(void *), void *context) 1043 { 1044 mutex_lock(&_event_lock); 1045 t->event_fn = fn; 1046 t->event_context = context; 1047 mutex_unlock(&_event_lock); 1048 } 1049 1050 void dm_table_event(struct dm_table *t) 1051 { 1052 /* 1053 * You can no longer call dm_table_event() from interrupt 1054 * context, use a bottom half instead. 1055 */ 1056 BUG_ON(in_interrupt()); 1057 1058 mutex_lock(&_event_lock); 1059 if (t->event_fn) 1060 t->event_fn(t->event_context); 1061 mutex_unlock(&_event_lock); 1062 } 1063 1064 sector_t dm_table_get_size(struct dm_table *t) 1065 { 1066 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1067 } 1068 1069 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1070 { 1071 if (index >= t->num_targets) 1072 return NULL; 1073 1074 return t->targets + index; 1075 } 1076 1077 /* 1078 * Search the btree for the correct target. 1079 * 1080 * Caller should check returned pointer with dm_target_is_valid() 1081 * to trap I/O beyond end of device. 1082 */ 1083 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1084 { 1085 unsigned int l, n = 0, k = 0; 1086 sector_t *node; 1087 1088 for (l = 0; l < t->depth; l++) { 1089 n = get_child(n, k); 1090 node = get_node(t, l, n); 1091 1092 for (k = 0; k < KEYS_PER_NODE; k++) 1093 if (node[k] >= sector) 1094 break; 1095 } 1096 1097 return &t->targets[(KEYS_PER_NODE * n) + k]; 1098 } 1099 1100 /* 1101 * Establish the new table's queue_limits and validate them. 1102 */ 1103 int dm_calculate_queue_limits(struct dm_table *table, 1104 struct queue_limits *limits) 1105 { 1106 struct dm_target *uninitialized_var(ti); 1107 struct queue_limits ti_limits; 1108 unsigned i = 0; 1109 1110 blk_set_default_limits(limits); 1111 1112 while (i < dm_table_get_num_targets(table)) { 1113 blk_set_default_limits(&ti_limits); 1114 1115 ti = dm_table_get_target(table, i++); 1116 1117 if (!ti->type->iterate_devices) 1118 goto combine_limits; 1119 1120 /* 1121 * Combine queue limits of all the devices this target uses. 1122 */ 1123 ti->type->iterate_devices(ti, dm_set_device_limits, 1124 &ti_limits); 1125 1126 /* Set I/O hints portion of queue limits */ 1127 if (ti->type->io_hints) 1128 ti->type->io_hints(ti, &ti_limits); 1129 1130 /* 1131 * Check each device area is consistent with the target's 1132 * overall queue limits. 1133 */ 1134 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1135 &ti_limits)) 1136 return -EINVAL; 1137 1138 combine_limits: 1139 /* 1140 * Merge this target's queue limits into the overall limits 1141 * for the table. 1142 */ 1143 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1144 DMWARN("%s: adding target device " 1145 "(start sect %llu len %llu) " 1146 "caused an alignment inconsistency", 1147 dm_device_name(table->md), 1148 (unsigned long long) ti->begin, 1149 (unsigned long long) ti->len); 1150 } 1151 1152 return validate_hardware_logical_block_alignment(table, limits); 1153 } 1154 1155 /* 1156 * Set the integrity profile for this device if all devices used have 1157 * matching profiles. We're quite deep in the resume path but still 1158 * don't know if all devices (particularly DM devices this device 1159 * may be stacked on) have matching profiles. Even if the profiles 1160 * don't match we have no way to fail (to resume) at this point. 1161 */ 1162 static void dm_table_set_integrity(struct dm_table *t) 1163 { 1164 struct gendisk *template_disk = NULL; 1165 1166 if (!blk_get_integrity(dm_disk(t->md))) 1167 return; 1168 1169 template_disk = dm_table_get_integrity_disk(t, true); 1170 if (!template_disk && 1171 blk_integrity_is_initialized(dm_disk(t->md))) { 1172 DMWARN("%s: device no longer has a valid integrity profile", 1173 dm_device_name(t->md)); 1174 return; 1175 } 1176 blk_integrity_register(dm_disk(t->md), 1177 blk_get_integrity(template_disk)); 1178 } 1179 1180 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1181 struct queue_limits *limits) 1182 { 1183 /* 1184 * Copy table's limits to the DM device's request_queue 1185 */ 1186 q->limits = *limits; 1187 1188 if (!dm_table_supports_discards(t)) 1189 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1190 else 1191 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1192 1193 dm_table_set_integrity(t); 1194 1195 /* 1196 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1197 * visible to other CPUs because, once the flag is set, incoming bios 1198 * are processed by request-based dm, which refers to the queue 1199 * settings. 1200 * Until the flag set, bios are passed to bio-based dm and queued to 1201 * md->deferred where queue settings are not needed yet. 1202 * Those bios are passed to request-based dm at the resume time. 1203 */ 1204 smp_mb(); 1205 if (dm_table_request_based(t)) 1206 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1207 } 1208 1209 unsigned int dm_table_get_num_targets(struct dm_table *t) 1210 { 1211 return t->num_targets; 1212 } 1213 1214 struct list_head *dm_table_get_devices(struct dm_table *t) 1215 { 1216 return &t->devices; 1217 } 1218 1219 fmode_t dm_table_get_mode(struct dm_table *t) 1220 { 1221 return t->mode; 1222 } 1223 1224 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1225 { 1226 int i = t->num_targets; 1227 struct dm_target *ti = t->targets; 1228 1229 while (i--) { 1230 if (postsuspend) { 1231 if (ti->type->postsuspend) 1232 ti->type->postsuspend(ti); 1233 } else if (ti->type->presuspend) 1234 ti->type->presuspend(ti); 1235 1236 ti++; 1237 } 1238 } 1239 1240 void dm_table_presuspend_targets(struct dm_table *t) 1241 { 1242 if (!t) 1243 return; 1244 1245 suspend_targets(t, 0); 1246 } 1247 1248 void dm_table_postsuspend_targets(struct dm_table *t) 1249 { 1250 if (!t) 1251 return; 1252 1253 suspend_targets(t, 1); 1254 } 1255 1256 int dm_table_resume_targets(struct dm_table *t) 1257 { 1258 int i, r = 0; 1259 1260 for (i = 0; i < t->num_targets; i++) { 1261 struct dm_target *ti = t->targets + i; 1262 1263 if (!ti->type->preresume) 1264 continue; 1265 1266 r = ti->type->preresume(ti); 1267 if (r) 1268 return r; 1269 } 1270 1271 for (i = 0; i < t->num_targets; i++) { 1272 struct dm_target *ti = t->targets + i; 1273 1274 if (ti->type->resume) 1275 ti->type->resume(ti); 1276 } 1277 1278 return 0; 1279 } 1280 1281 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1282 { 1283 list_add(&cb->list, &t->target_callbacks); 1284 } 1285 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1286 1287 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1288 { 1289 struct dm_dev_internal *dd; 1290 struct list_head *devices = dm_table_get_devices(t); 1291 struct dm_target_callbacks *cb; 1292 int r = 0; 1293 1294 list_for_each_entry(dd, devices, list) { 1295 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1296 char b[BDEVNAME_SIZE]; 1297 1298 if (likely(q)) 1299 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1300 else 1301 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1302 dm_device_name(t->md), 1303 bdevname(dd->dm_dev.bdev, b)); 1304 } 1305 1306 list_for_each_entry(cb, &t->target_callbacks, list) 1307 if (cb->congested_fn) 1308 r |= cb->congested_fn(cb, bdi_bits); 1309 1310 return r; 1311 } 1312 1313 int dm_table_any_busy_target(struct dm_table *t) 1314 { 1315 unsigned i; 1316 struct dm_target *ti; 1317 1318 for (i = 0; i < t->num_targets; i++) { 1319 ti = t->targets + i; 1320 if (ti->type->busy && ti->type->busy(ti)) 1321 return 1; 1322 } 1323 1324 return 0; 1325 } 1326 1327 struct mapped_device *dm_table_get_md(struct dm_table *t) 1328 { 1329 return t->md; 1330 } 1331 1332 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1333 sector_t start, sector_t len, void *data) 1334 { 1335 struct request_queue *q = bdev_get_queue(dev->bdev); 1336 1337 return q && blk_queue_discard(q); 1338 } 1339 1340 bool dm_table_supports_discards(struct dm_table *t) 1341 { 1342 struct dm_target *ti; 1343 unsigned i = 0; 1344 1345 if (!t->discards_supported) 1346 return 0; 1347 1348 /* 1349 * Ensure that at least one underlying device supports discards. 1350 * t->devices includes internal dm devices such as mirror logs 1351 * so we need to use iterate_devices here, which targets 1352 * supporting discard must provide. 1353 */ 1354 while (i < dm_table_get_num_targets(t)) { 1355 ti = dm_table_get_target(t, i++); 1356 1357 if (ti->type->iterate_devices && 1358 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1359 return 1; 1360 } 1361 1362 return 0; 1363 } 1364 1365 EXPORT_SYMBOL(dm_vcalloc); 1366 EXPORT_SYMBOL(dm_get_device); 1367 EXPORT_SYMBOL(dm_put_device); 1368 EXPORT_SYMBOL(dm_table_event); 1369 EXPORT_SYMBOL(dm_table_get_size); 1370 EXPORT_SYMBOL(dm_table_get_mode); 1371 EXPORT_SYMBOL(dm_table_get_md); 1372 EXPORT_SYMBOL(dm_table_put); 1373 EXPORT_SYMBOL(dm_table_get); 1374