xref: /linux/drivers/md/dm-table.c (revision 3de9c42d02a79a5e09bbee7a4421ddc00cfd5c6d)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2001 Sistina Software (UK) Limited.
4   * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5   *
6   * This file is released under the GPL.
7   */
8  
9  #include "dm-core.h"
10  #include "dm-rq.h"
11  
12  #include <linux/module.h>
13  #include <linux/vmalloc.h>
14  #include <linux/blkdev.h>
15  #include <linux/blk-integrity.h>
16  #include <linux/namei.h>
17  #include <linux/ctype.h>
18  #include <linux/string.h>
19  #include <linux/slab.h>
20  #include <linux/interrupt.h>
21  #include <linux/mutex.h>
22  #include <linux/delay.h>
23  #include <linux/atomic.h>
24  #include <linux/blk-mq.h>
25  #include <linux/mount.h>
26  #include <linux/dax.h>
27  
28  #define DM_MSG_PREFIX "table"
29  
30  #define NODE_SIZE L1_CACHE_BYTES
31  #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32  #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33  
34  /*
35   * Similar to ceiling(log_size(n))
36   */
37  static unsigned int int_log(unsigned int n, unsigned int base)
38  {
39  	int result = 0;
40  
41  	while (n > 1) {
42  		n = dm_div_up(n, base);
43  		result++;
44  	}
45  
46  	return result;
47  }
48  
49  /*
50   * Calculate the index of the child node of the n'th node k'th key.
51   */
52  static inline unsigned int get_child(unsigned int n, unsigned int k)
53  {
54  	return (n * CHILDREN_PER_NODE) + k;
55  }
56  
57  /*
58   * Return the n'th node of level l from table t.
59   */
60  static inline sector_t *get_node(struct dm_table *t,
61  				 unsigned int l, unsigned int n)
62  {
63  	return t->index[l] + (n * KEYS_PER_NODE);
64  }
65  
66  /*
67   * Return the highest key that you could lookup from the n'th
68   * node on level l of the btree.
69   */
70  static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71  {
72  	for (; l < t->depth - 1; l++)
73  		n = get_child(n, CHILDREN_PER_NODE - 1);
74  
75  	if (n >= t->counts[l])
76  		return (sector_t) -1;
77  
78  	return get_node(t, l, n)[KEYS_PER_NODE - 1];
79  }
80  
81  /*
82   * Fills in a level of the btree based on the highs of the level
83   * below it.
84   */
85  static int setup_btree_index(unsigned int l, struct dm_table *t)
86  {
87  	unsigned int n, k;
88  	sector_t *node;
89  
90  	for (n = 0U; n < t->counts[l]; n++) {
91  		node = get_node(t, l, n);
92  
93  		for (k = 0U; k < KEYS_PER_NODE; k++)
94  			node[k] = high(t, l + 1, get_child(n, k));
95  	}
96  
97  	return 0;
98  }
99  
100  /*
101   * highs, and targets are managed as dynamic arrays during a
102   * table load.
103   */
104  static int alloc_targets(struct dm_table *t, unsigned int num)
105  {
106  	sector_t *n_highs;
107  	struct dm_target *n_targets;
108  
109  	/*
110  	 * Allocate both the target array and offset array at once.
111  	 */
112  	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113  			   GFP_KERNEL);
114  	if (!n_highs)
115  		return -ENOMEM;
116  
117  	n_targets = (struct dm_target *) (n_highs + num);
118  
119  	memset(n_highs, -1, sizeof(*n_highs) * num);
120  	kvfree(t->highs);
121  
122  	t->num_allocated = num;
123  	t->highs = n_highs;
124  	t->targets = n_targets;
125  
126  	return 0;
127  }
128  
129  int dm_table_create(struct dm_table **result, blk_mode_t mode,
130  		    unsigned int num_targets, struct mapped_device *md)
131  {
132  	struct dm_table *t;
133  
134  	if (num_targets > DM_MAX_TARGETS)
135  		return -EOVERFLOW;
136  
137  	t = kzalloc(sizeof(*t), GFP_KERNEL);
138  
139  	if (!t)
140  		return -ENOMEM;
141  
142  	INIT_LIST_HEAD(&t->devices);
143  	init_rwsem(&t->devices_lock);
144  
145  	if (!num_targets)
146  		num_targets = KEYS_PER_NODE;
147  
148  	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149  
150  	if (!num_targets) {
151  		kfree(t);
152  		return -EOVERFLOW;
153  	}
154  
155  	if (alloc_targets(t, num_targets)) {
156  		kfree(t);
157  		return -ENOMEM;
158  	}
159  
160  	t->type = DM_TYPE_NONE;
161  	t->mode = mode;
162  	t->md = md;
163  	*result = t;
164  	return 0;
165  }
166  
167  static void free_devices(struct list_head *devices, struct mapped_device *md)
168  {
169  	struct list_head *tmp, *next;
170  
171  	list_for_each_safe(tmp, next, devices) {
172  		struct dm_dev_internal *dd =
173  		    list_entry(tmp, struct dm_dev_internal, list);
174  		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175  		       dm_device_name(md), dd->dm_dev->name);
176  		dm_put_table_device(md, dd->dm_dev);
177  		kfree(dd);
178  	}
179  }
180  
181  static void dm_table_destroy_crypto_profile(struct dm_table *t);
182  
183  void dm_table_destroy(struct dm_table *t)
184  {
185  	if (!t)
186  		return;
187  
188  	/* free the indexes */
189  	if (t->depth >= 2)
190  		kvfree(t->index[t->depth - 2]);
191  
192  	/* free the targets */
193  	for (unsigned int i = 0; i < t->num_targets; i++) {
194  		struct dm_target *ti = dm_table_get_target(t, i);
195  
196  		if (ti->type->dtr)
197  			ti->type->dtr(ti);
198  
199  		dm_put_target_type(ti->type);
200  	}
201  
202  	kvfree(t->highs);
203  
204  	/* free the device list */
205  	free_devices(&t->devices, t->md);
206  
207  	dm_free_md_mempools(t->mempools);
208  
209  	dm_table_destroy_crypto_profile(t);
210  
211  	kfree(t);
212  }
213  
214  /*
215   * See if we've already got a device in the list.
216   */
217  static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218  {
219  	struct dm_dev_internal *dd;
220  
221  	list_for_each_entry(dd, l, list)
222  		if (dd->dm_dev->bdev->bd_dev == dev)
223  			return dd;
224  
225  	return NULL;
226  }
227  
228  /*
229   * If possible, this checks an area of a destination device is invalid.
230   */
231  static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232  				  sector_t start, sector_t len, void *data)
233  {
234  	struct queue_limits *limits = data;
235  	struct block_device *bdev = dev->bdev;
236  	sector_t dev_size = bdev_nr_sectors(bdev);
237  	unsigned short logical_block_size_sectors =
238  		limits->logical_block_size >> SECTOR_SHIFT;
239  
240  	if (!dev_size)
241  		return 0;
242  
243  	if ((start >= dev_size) || (start + len > dev_size)) {
244  		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245  		      dm_device_name(ti->table->md), bdev,
246  		      (unsigned long long)start,
247  		      (unsigned long long)len,
248  		      (unsigned long long)dev_size);
249  		return 1;
250  	}
251  
252  	/*
253  	 * If the target is mapped to zoned block device(s), check
254  	 * that the zones are not partially mapped.
255  	 */
256  	if (bdev_is_zoned(bdev)) {
257  		unsigned int zone_sectors = bdev_zone_sectors(bdev);
258  
259  		if (start & (zone_sectors - 1)) {
260  			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261  			      dm_device_name(ti->table->md),
262  			      (unsigned long long)start,
263  			      zone_sectors, bdev);
264  			return 1;
265  		}
266  
267  		/*
268  		 * Note: The last zone of a zoned block device may be smaller
269  		 * than other zones. So for a target mapping the end of a
270  		 * zoned block device with such a zone, len would not be zone
271  		 * aligned. We do not allow such last smaller zone to be part
272  		 * of the mapping here to ensure that mappings with multiple
273  		 * devices do not end up with a smaller zone in the middle of
274  		 * the sector range.
275  		 */
276  		if (len & (zone_sectors - 1)) {
277  			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278  			      dm_device_name(ti->table->md),
279  			      (unsigned long long)len,
280  			      zone_sectors, bdev);
281  			return 1;
282  		}
283  	}
284  
285  	if (logical_block_size_sectors <= 1)
286  		return 0;
287  
288  	if (start & (logical_block_size_sectors - 1)) {
289  		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290  		      dm_device_name(ti->table->md),
291  		      (unsigned long long)start,
292  		      limits->logical_block_size, bdev);
293  		return 1;
294  	}
295  
296  	if (len & (logical_block_size_sectors - 1)) {
297  		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298  		      dm_device_name(ti->table->md),
299  		      (unsigned long long)len,
300  		      limits->logical_block_size, bdev);
301  		return 1;
302  	}
303  
304  	return 0;
305  }
306  
307  /*
308   * This upgrades the mode on an already open dm_dev, being
309   * careful to leave things as they were if we fail to reopen the
310   * device and not to touch the existing bdev field in case
311   * it is accessed concurrently.
312   */
313  static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314  			struct mapped_device *md)
315  {
316  	int r;
317  	struct dm_dev *old_dev, *new_dev;
318  
319  	old_dev = dd->dm_dev;
320  
321  	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322  				dd->dm_dev->mode | new_mode, &new_dev);
323  	if (r)
324  		return r;
325  
326  	dd->dm_dev = new_dev;
327  	dm_put_table_device(md, old_dev);
328  
329  	return 0;
330  }
331  
332  /*
333   * Add a device to the list, or just increment the usage count if
334   * it's already present.
335   *
336   * Note: the __ref annotation is because this function can call the __init
337   * marked early_lookup_bdev when called during early boot code from dm-init.c.
338   */
339  int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340  		  struct dm_dev **result)
341  {
342  	int r;
343  	dev_t dev;
344  	unsigned int major, minor;
345  	char dummy;
346  	struct dm_dev_internal *dd;
347  	struct dm_table *t = ti->table;
348  
349  	BUG_ON(!t);
350  
351  	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352  		/* Extract the major/minor numbers */
353  		dev = MKDEV(major, minor);
354  		if (MAJOR(dev) != major || MINOR(dev) != minor)
355  			return -EOVERFLOW;
356  	} else {
357  		r = lookup_bdev(path, &dev);
358  #ifndef MODULE
359  		if (r && system_state < SYSTEM_RUNNING)
360  			r = early_lookup_bdev(path, &dev);
361  #endif
362  		if (r)
363  			return r;
364  	}
365  	if (dev == disk_devt(t->md->disk))
366  		return -EINVAL;
367  
368  	down_write(&t->devices_lock);
369  
370  	dd = find_device(&t->devices, dev);
371  	if (!dd) {
372  		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373  		if (!dd) {
374  			r = -ENOMEM;
375  			goto unlock_ret_r;
376  		}
377  
378  		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379  		if (r) {
380  			kfree(dd);
381  			goto unlock_ret_r;
382  		}
383  
384  		refcount_set(&dd->count, 1);
385  		list_add(&dd->list, &t->devices);
386  		goto out;
387  
388  	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389  		r = upgrade_mode(dd, mode, t->md);
390  		if (r)
391  			goto unlock_ret_r;
392  	}
393  	refcount_inc(&dd->count);
394  out:
395  	up_write(&t->devices_lock);
396  	*result = dd->dm_dev;
397  	return 0;
398  
399  unlock_ret_r:
400  	up_write(&t->devices_lock);
401  	return r;
402  }
403  EXPORT_SYMBOL(dm_get_device);
404  
405  static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406  				sector_t start, sector_t len, void *data)
407  {
408  	struct queue_limits *limits = data;
409  	struct block_device *bdev = dev->bdev;
410  	struct request_queue *q = bdev_get_queue(bdev);
411  
412  	if (unlikely(!q)) {
413  		DMWARN("%s: Cannot set limits for nonexistent device %pg",
414  		       dm_device_name(ti->table->md), bdev);
415  		return 0;
416  	}
417  
418  	if (blk_stack_limits(limits, &q->limits,
419  			get_start_sect(bdev) + start) < 0)
420  		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421  		       "physical_block_size=%u, logical_block_size=%u, "
422  		       "alignment_offset=%u, start=%llu",
423  		       dm_device_name(ti->table->md), bdev,
424  		       q->limits.physical_block_size,
425  		       q->limits.logical_block_size,
426  		       q->limits.alignment_offset,
427  		       (unsigned long long) start << SECTOR_SHIFT);
428  	return 0;
429  }
430  
431  /*
432   * Decrement a device's use count and remove it if necessary.
433   */
434  void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435  {
436  	int found = 0;
437  	struct dm_table *t = ti->table;
438  	struct list_head *devices = &t->devices;
439  	struct dm_dev_internal *dd;
440  
441  	down_write(&t->devices_lock);
442  
443  	list_for_each_entry(dd, devices, list) {
444  		if (dd->dm_dev == d) {
445  			found = 1;
446  			break;
447  		}
448  	}
449  	if (!found) {
450  		DMERR("%s: device %s not in table devices list",
451  		      dm_device_name(t->md), d->name);
452  		goto unlock_ret;
453  	}
454  	if (refcount_dec_and_test(&dd->count)) {
455  		dm_put_table_device(t->md, d);
456  		list_del(&dd->list);
457  		kfree(dd);
458  	}
459  
460  unlock_ret:
461  	up_write(&t->devices_lock);
462  }
463  EXPORT_SYMBOL(dm_put_device);
464  
465  /*
466   * Checks to see if the target joins onto the end of the table.
467   */
468  static int adjoin(struct dm_table *t, struct dm_target *ti)
469  {
470  	struct dm_target *prev;
471  
472  	if (!t->num_targets)
473  		return !ti->begin;
474  
475  	prev = &t->targets[t->num_targets - 1];
476  	return (ti->begin == (prev->begin + prev->len));
477  }
478  
479  /*
480   * Used to dynamically allocate the arg array.
481   *
482   * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483   * process messages even if some device is suspended. These messages have a
484   * small fixed number of arguments.
485   *
486   * On the other hand, dm-switch needs to process bulk data using messages and
487   * excessive use of GFP_NOIO could cause trouble.
488   */
489  static char **realloc_argv(unsigned int *size, char **old_argv)
490  {
491  	char **argv;
492  	unsigned int new_size;
493  	gfp_t gfp;
494  
495  	if (*size) {
496  		new_size = *size * 2;
497  		gfp = GFP_KERNEL;
498  	} else {
499  		new_size = 8;
500  		gfp = GFP_NOIO;
501  	}
502  	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503  	if (argv && old_argv) {
504  		memcpy(argv, old_argv, *size * sizeof(*argv));
505  		*size = new_size;
506  	}
507  
508  	kfree(old_argv);
509  	return argv;
510  }
511  
512  /*
513   * Destructively splits up the argument list to pass to ctr.
514   */
515  int dm_split_args(int *argc, char ***argvp, char *input)
516  {
517  	char *start, *end = input, *out, **argv = NULL;
518  	unsigned int array_size = 0;
519  
520  	*argc = 0;
521  
522  	if (!input) {
523  		*argvp = NULL;
524  		return 0;
525  	}
526  
527  	argv = realloc_argv(&array_size, argv);
528  	if (!argv)
529  		return -ENOMEM;
530  
531  	while (1) {
532  		/* Skip whitespace */
533  		start = skip_spaces(end);
534  
535  		if (!*start)
536  			break;	/* success, we hit the end */
537  
538  		/* 'out' is used to remove any back-quotes */
539  		end = out = start;
540  		while (*end) {
541  			/* Everything apart from '\0' can be quoted */
542  			if (*end == '\\' && *(end + 1)) {
543  				*out++ = *(end + 1);
544  				end += 2;
545  				continue;
546  			}
547  
548  			if (isspace(*end))
549  				break;	/* end of token */
550  
551  			*out++ = *end++;
552  		}
553  
554  		/* have we already filled the array ? */
555  		if ((*argc + 1) > array_size) {
556  			argv = realloc_argv(&array_size, argv);
557  			if (!argv)
558  				return -ENOMEM;
559  		}
560  
561  		/* we know this is whitespace */
562  		if (*end)
563  			end++;
564  
565  		/* terminate the string and put it in the array */
566  		*out = '\0';
567  		argv[*argc] = start;
568  		(*argc)++;
569  	}
570  
571  	*argvp = argv;
572  	return 0;
573  }
574  
575  /*
576   * Impose necessary and sufficient conditions on a devices's table such
577   * that any incoming bio which respects its logical_block_size can be
578   * processed successfully.  If it falls across the boundary between
579   * two or more targets, the size of each piece it gets split into must
580   * be compatible with the logical_block_size of the target processing it.
581   */
582  static int validate_hardware_logical_block_alignment(struct dm_table *t,
583  						     struct queue_limits *limits)
584  {
585  	/*
586  	 * This function uses arithmetic modulo the logical_block_size
587  	 * (in units of 512-byte sectors).
588  	 */
589  	unsigned short device_logical_block_size_sects =
590  		limits->logical_block_size >> SECTOR_SHIFT;
591  
592  	/*
593  	 * Offset of the start of the next table entry, mod logical_block_size.
594  	 */
595  	unsigned short next_target_start = 0;
596  
597  	/*
598  	 * Given an aligned bio that extends beyond the end of a
599  	 * target, how many sectors must the next target handle?
600  	 */
601  	unsigned short remaining = 0;
602  
603  	struct dm_target *ti;
604  	struct queue_limits ti_limits;
605  	unsigned int i;
606  
607  	/*
608  	 * Check each entry in the table in turn.
609  	 */
610  	for (i = 0; i < t->num_targets; i++) {
611  		ti = dm_table_get_target(t, i);
612  
613  		blk_set_stacking_limits(&ti_limits);
614  
615  		/* combine all target devices' limits */
616  		if (ti->type->iterate_devices)
617  			ti->type->iterate_devices(ti, dm_set_device_limits,
618  						  &ti_limits);
619  
620  		/*
621  		 * If the remaining sectors fall entirely within this
622  		 * table entry are they compatible with its logical_block_size?
623  		 */
624  		if (remaining < ti->len &&
625  		    remaining & ((ti_limits.logical_block_size >>
626  				  SECTOR_SHIFT) - 1))
627  			break;	/* Error */
628  
629  		next_target_start =
630  		    (unsigned short) ((next_target_start + ti->len) &
631  				      (device_logical_block_size_sects - 1));
632  		remaining = next_target_start ?
633  		    device_logical_block_size_sects - next_target_start : 0;
634  	}
635  
636  	if (remaining) {
637  		DMERR("%s: table line %u (start sect %llu len %llu) "
638  		      "not aligned to h/w logical block size %u",
639  		      dm_device_name(t->md), i,
640  		      (unsigned long long) ti->begin,
641  		      (unsigned long long) ti->len,
642  		      limits->logical_block_size);
643  		return -EINVAL;
644  	}
645  
646  	return 0;
647  }
648  
649  int dm_table_add_target(struct dm_table *t, const char *type,
650  			sector_t start, sector_t len, char *params)
651  {
652  	int r = -EINVAL, argc;
653  	char **argv;
654  	struct dm_target *ti;
655  
656  	if (t->singleton) {
657  		DMERR("%s: target type %s must appear alone in table",
658  		      dm_device_name(t->md), t->targets->type->name);
659  		return -EINVAL;
660  	}
661  
662  	BUG_ON(t->num_targets >= t->num_allocated);
663  
664  	ti = t->targets + t->num_targets;
665  	memset(ti, 0, sizeof(*ti));
666  
667  	if (!len) {
668  		DMERR("%s: zero-length target", dm_device_name(t->md));
669  		return -EINVAL;
670  	}
671  
672  	ti->type = dm_get_target_type(type);
673  	if (!ti->type) {
674  		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675  		return -EINVAL;
676  	}
677  
678  	if (dm_target_needs_singleton(ti->type)) {
679  		if (t->num_targets) {
680  			ti->error = "singleton target type must appear alone in table";
681  			goto bad;
682  		}
683  		t->singleton = true;
684  	}
685  
686  	if (dm_target_always_writeable(ti->type) &&
687  	    !(t->mode & BLK_OPEN_WRITE)) {
688  		ti->error = "target type may not be included in a read-only table";
689  		goto bad;
690  	}
691  
692  	if (t->immutable_target_type) {
693  		if (t->immutable_target_type != ti->type) {
694  			ti->error = "immutable target type cannot be mixed with other target types";
695  			goto bad;
696  		}
697  	} else if (dm_target_is_immutable(ti->type)) {
698  		if (t->num_targets) {
699  			ti->error = "immutable target type cannot be mixed with other target types";
700  			goto bad;
701  		}
702  		t->immutable_target_type = ti->type;
703  	}
704  
705  	if (dm_target_has_integrity(ti->type))
706  		t->integrity_added = 1;
707  
708  	ti->table = t;
709  	ti->begin = start;
710  	ti->len = len;
711  	ti->error = "Unknown error";
712  
713  	/*
714  	 * Does this target adjoin the previous one ?
715  	 */
716  	if (!adjoin(t, ti)) {
717  		ti->error = "Gap in table";
718  		goto bad;
719  	}
720  
721  	r = dm_split_args(&argc, &argv, params);
722  	if (r) {
723  		ti->error = "couldn't split parameters";
724  		goto bad;
725  	}
726  
727  	r = ti->type->ctr(ti, argc, argv);
728  	kfree(argv);
729  	if (r)
730  		goto bad;
731  
732  	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
733  
734  	if (!ti->num_discard_bios && ti->discards_supported)
735  		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736  		       dm_device_name(t->md), type);
737  
738  	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
739  		static_branch_enable(&swap_bios_enabled);
740  
741  	return 0;
742  
743   bad:
744  	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
745  	dm_put_target_type(ti->type);
746  	return r;
747  }
748  
749  /*
750   * Target argument parsing helpers.
751   */
752  static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753  			     unsigned int *value, char **error, unsigned int grouped)
754  {
755  	const char *arg_str = dm_shift_arg(arg_set);
756  	char dummy;
757  
758  	if (!arg_str ||
759  	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
760  	    (*value < arg->min) ||
761  	    (*value > arg->max) ||
762  	    (grouped && arg_set->argc < *value)) {
763  		*error = arg->error;
764  		return -EINVAL;
765  	}
766  
767  	return 0;
768  }
769  
770  int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
771  		unsigned int *value, char **error)
772  {
773  	return validate_next_arg(arg, arg_set, value, error, 0);
774  }
775  EXPORT_SYMBOL(dm_read_arg);
776  
777  int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
778  		      unsigned int *value, char **error)
779  {
780  	return validate_next_arg(arg, arg_set, value, error, 1);
781  }
782  EXPORT_SYMBOL(dm_read_arg_group);
783  
784  const char *dm_shift_arg(struct dm_arg_set *as)
785  {
786  	char *r;
787  
788  	if (as->argc) {
789  		as->argc--;
790  		r = *as->argv;
791  		as->argv++;
792  		return r;
793  	}
794  
795  	return NULL;
796  }
797  EXPORT_SYMBOL(dm_shift_arg);
798  
799  void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
800  {
801  	BUG_ON(as->argc < num_args);
802  	as->argc -= num_args;
803  	as->argv += num_args;
804  }
805  EXPORT_SYMBOL(dm_consume_args);
806  
807  static bool __table_type_bio_based(enum dm_queue_mode table_type)
808  {
809  	return (table_type == DM_TYPE_BIO_BASED ||
810  		table_type == DM_TYPE_DAX_BIO_BASED);
811  }
812  
813  static bool __table_type_request_based(enum dm_queue_mode table_type)
814  {
815  	return table_type == DM_TYPE_REQUEST_BASED;
816  }
817  
818  void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
819  {
820  	t->type = type;
821  }
822  EXPORT_SYMBOL_GPL(dm_table_set_type);
823  
824  /* validate the dax capability of the target device span */
825  static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
826  			sector_t start, sector_t len, void *data)
827  {
828  	if (dev->dax_dev)
829  		return false;
830  
831  	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
832  	return true;
833  }
834  
835  /* Check devices support synchronous DAX */
836  static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
837  					      sector_t start, sector_t len, void *data)
838  {
839  	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
840  }
841  
842  static bool dm_table_supports_dax(struct dm_table *t,
843  				  iterate_devices_callout_fn iterate_fn)
844  {
845  	/* Ensure that all targets support DAX. */
846  	for (unsigned int i = 0; i < t->num_targets; i++) {
847  		struct dm_target *ti = dm_table_get_target(t, i);
848  
849  		if (!ti->type->direct_access)
850  			return false;
851  
852  		if (dm_target_is_wildcard(ti->type) ||
853  		    !ti->type->iterate_devices ||
854  		    ti->type->iterate_devices(ti, iterate_fn, NULL))
855  			return false;
856  	}
857  
858  	return true;
859  }
860  
861  static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
862  				  sector_t start, sector_t len, void *data)
863  {
864  	struct block_device *bdev = dev->bdev;
865  	struct request_queue *q = bdev_get_queue(bdev);
866  
867  	/* request-based cannot stack on partitions! */
868  	if (bdev_is_partition(bdev))
869  		return false;
870  
871  	return queue_is_mq(q);
872  }
873  
874  static int dm_table_determine_type(struct dm_table *t)
875  {
876  	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
877  	struct dm_target *ti;
878  	struct list_head *devices = dm_table_get_devices(t);
879  	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
880  
881  	if (t->type != DM_TYPE_NONE) {
882  		/* target already set the table's type */
883  		if (t->type == DM_TYPE_BIO_BASED) {
884  			/* possibly upgrade to a variant of bio-based */
885  			goto verify_bio_based;
886  		}
887  		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
888  		goto verify_rq_based;
889  	}
890  
891  	for (unsigned int i = 0; i < t->num_targets; i++) {
892  		ti = dm_table_get_target(t, i);
893  		if (dm_target_hybrid(ti))
894  			hybrid = 1;
895  		else if (dm_target_request_based(ti))
896  			request_based = 1;
897  		else
898  			bio_based = 1;
899  
900  		if (bio_based && request_based) {
901  			DMERR("Inconsistent table: different target types can't be mixed up");
902  			return -EINVAL;
903  		}
904  	}
905  
906  	if (hybrid && !bio_based && !request_based) {
907  		/*
908  		 * The targets can work either way.
909  		 * Determine the type from the live device.
910  		 * Default to bio-based if device is new.
911  		 */
912  		if (__table_type_request_based(live_md_type))
913  			request_based = 1;
914  		else
915  			bio_based = 1;
916  	}
917  
918  	if (bio_based) {
919  verify_bio_based:
920  		/* We must use this table as bio-based */
921  		t->type = DM_TYPE_BIO_BASED;
922  		if (dm_table_supports_dax(t, device_not_dax_capable) ||
923  		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
924  			t->type = DM_TYPE_DAX_BIO_BASED;
925  		}
926  		return 0;
927  	}
928  
929  	BUG_ON(!request_based); /* No targets in this table */
930  
931  	t->type = DM_TYPE_REQUEST_BASED;
932  
933  verify_rq_based:
934  	/*
935  	 * Request-based dm supports only tables that have a single target now.
936  	 * To support multiple targets, request splitting support is needed,
937  	 * and that needs lots of changes in the block-layer.
938  	 * (e.g. request completion process for partial completion.)
939  	 */
940  	if (t->num_targets > 1) {
941  		DMERR("request-based DM doesn't support multiple targets");
942  		return -EINVAL;
943  	}
944  
945  	if (list_empty(devices)) {
946  		int srcu_idx;
947  		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948  
949  		/* inherit live table's type */
950  		if (live_table)
951  			t->type = live_table->type;
952  		dm_put_live_table(t->md, srcu_idx);
953  		return 0;
954  	}
955  
956  	ti = dm_table_get_immutable_target(t);
957  	if (!ti) {
958  		DMERR("table load rejected: immutable target is required");
959  		return -EINVAL;
960  	} else if (ti->max_io_len) {
961  		DMERR("table load rejected: immutable target that splits IO is not supported");
962  		return -EINVAL;
963  	}
964  
965  	/* Non-request-stackable devices can't be used for request-based dm */
966  	if (!ti->type->iterate_devices ||
967  	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
968  		DMERR("table load rejected: including non-request-stackable devices");
969  		return -EINVAL;
970  	}
971  
972  	return 0;
973  }
974  
975  enum dm_queue_mode dm_table_get_type(struct dm_table *t)
976  {
977  	return t->type;
978  }
979  
980  struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
981  {
982  	return t->immutable_target_type;
983  }
984  
985  struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
986  {
987  	/* Immutable target is implicitly a singleton */
988  	if (t->num_targets > 1 ||
989  	    !dm_target_is_immutable(t->targets[0].type))
990  		return NULL;
991  
992  	return t->targets;
993  }
994  
995  struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
996  {
997  	for (unsigned int i = 0; i < t->num_targets; i++) {
998  		struct dm_target *ti = dm_table_get_target(t, i);
999  
1000  		if (dm_target_is_wildcard(ti->type))
1001  			return ti;
1002  	}
1003  
1004  	return NULL;
1005  }
1006  
1007  bool dm_table_bio_based(struct dm_table *t)
1008  {
1009  	return __table_type_bio_based(dm_table_get_type(t));
1010  }
1011  
1012  bool dm_table_request_based(struct dm_table *t)
1013  {
1014  	return __table_type_request_based(dm_table_get_type(t));
1015  }
1016  
1017  static bool dm_table_supports_poll(struct dm_table *t);
1018  
1019  static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020  {
1021  	enum dm_queue_mode type = dm_table_get_type(t);
1022  	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023  	unsigned int min_pool_size = 0, pool_size;
1024  	struct dm_md_mempools *pools;
1025  
1026  	if (unlikely(type == DM_TYPE_NONE)) {
1027  		DMERR("no table type is set, can't allocate mempools");
1028  		return -EINVAL;
1029  	}
1030  
1031  	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032  	if (!pools)
1033  		return -ENOMEM;
1034  
1035  	if (type == DM_TYPE_REQUEST_BASED) {
1036  		pool_size = dm_get_reserved_rq_based_ios();
1037  		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038  		goto init_bs;
1039  	}
1040  
1041  	for (unsigned int i = 0; i < t->num_targets; i++) {
1042  		struct dm_target *ti = dm_table_get_target(t, i);
1043  
1044  		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045  		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046  	}
1047  	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048  	front_pad = roundup(per_io_data_size,
1049  		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050  
1051  	io_front_pad = roundup(per_io_data_size,
1052  		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053  	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054  			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055  		goto out_free_pools;
1056  	if (t->integrity_supported &&
1057  	    bioset_integrity_create(&pools->io_bs, pool_size))
1058  		goto out_free_pools;
1059  init_bs:
1060  	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061  		goto out_free_pools;
1062  	if (t->integrity_supported &&
1063  	    bioset_integrity_create(&pools->bs, pool_size))
1064  		goto out_free_pools;
1065  
1066  	t->mempools = pools;
1067  	return 0;
1068  
1069  out_free_pools:
1070  	dm_free_md_mempools(pools);
1071  	return -ENOMEM;
1072  }
1073  
1074  static int setup_indexes(struct dm_table *t)
1075  {
1076  	int i;
1077  	unsigned int total = 0;
1078  	sector_t *indexes;
1079  
1080  	/* allocate the space for *all* the indexes */
1081  	for (i = t->depth - 2; i >= 0; i--) {
1082  		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083  		total += t->counts[i];
1084  	}
1085  
1086  	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087  	if (!indexes)
1088  		return -ENOMEM;
1089  
1090  	/* set up internal nodes, bottom-up */
1091  	for (i = t->depth - 2; i >= 0; i--) {
1092  		t->index[i] = indexes;
1093  		indexes += (KEYS_PER_NODE * t->counts[i]);
1094  		setup_btree_index(i, t);
1095  	}
1096  
1097  	return 0;
1098  }
1099  
1100  /*
1101   * Builds the btree to index the map.
1102   */
1103  static int dm_table_build_index(struct dm_table *t)
1104  {
1105  	int r = 0;
1106  	unsigned int leaf_nodes;
1107  
1108  	/* how many indexes will the btree have ? */
1109  	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110  	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111  
1112  	/* leaf layer has already been set up */
1113  	t->counts[t->depth - 1] = leaf_nodes;
1114  	t->index[t->depth - 1] = t->highs;
1115  
1116  	if (t->depth >= 2)
1117  		r = setup_indexes(t);
1118  
1119  	return r;
1120  }
1121  
1122  static bool integrity_profile_exists(struct gendisk *disk)
1123  {
1124  	return !!blk_get_integrity(disk);
1125  }
1126  
1127  /*
1128   * Get a disk whose integrity profile reflects the table's profile.
1129   * Returns NULL if integrity support was inconsistent or unavailable.
1130   */
1131  static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132  {
1133  	struct list_head *devices = dm_table_get_devices(t);
1134  	struct dm_dev_internal *dd = NULL;
1135  	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1136  
1137  	for (unsigned int i = 0; i < t->num_targets; i++) {
1138  		struct dm_target *ti = dm_table_get_target(t, i);
1139  
1140  		if (!dm_target_passes_integrity(ti->type))
1141  			goto no_integrity;
1142  	}
1143  
1144  	list_for_each_entry(dd, devices, list) {
1145  		template_disk = dd->dm_dev->bdev->bd_disk;
1146  		if (!integrity_profile_exists(template_disk))
1147  			goto no_integrity;
1148  		else if (prev_disk &&
1149  			 blk_integrity_compare(prev_disk, template_disk) < 0)
1150  			goto no_integrity;
1151  		prev_disk = template_disk;
1152  	}
1153  
1154  	return template_disk;
1155  
1156  no_integrity:
1157  	if (prev_disk)
1158  		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159  		       dm_device_name(t->md),
1160  		       prev_disk->disk_name,
1161  		       template_disk->disk_name);
1162  	return NULL;
1163  }
1164  
1165  /*
1166   * Register the mapped device for blk_integrity support if the
1167   * underlying devices have an integrity profile.  But all devices may
1168   * not have matching profiles (checking all devices isn't reliable
1169   * during table load because this table may use other DM device(s) which
1170   * must be resumed before they will have an initialized integity
1171   * profile).  Consequently, stacked DM devices force a 2 stage integrity
1172   * profile validation: First pass during table load, final pass during
1173   * resume.
1174   */
1175  static int dm_table_register_integrity(struct dm_table *t)
1176  {
1177  	struct mapped_device *md = t->md;
1178  	struct gendisk *template_disk = NULL;
1179  
1180  	/* If target handles integrity itself do not register it here. */
1181  	if (t->integrity_added)
1182  		return 0;
1183  
1184  	template_disk = dm_table_get_integrity_disk(t);
1185  	if (!template_disk)
1186  		return 0;
1187  
1188  	if (!integrity_profile_exists(dm_disk(md))) {
1189  		t->integrity_supported = true;
1190  		/*
1191  		 * Register integrity profile during table load; we can do
1192  		 * this because the final profile must match during resume.
1193  		 */
1194  		blk_integrity_register(dm_disk(md),
1195  				       blk_get_integrity(template_disk));
1196  		return 0;
1197  	}
1198  
1199  	/*
1200  	 * If DM device already has an initialized integrity
1201  	 * profile the new profile should not conflict.
1202  	 */
1203  	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204  		DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205  		      dm_device_name(t->md),
1206  		      template_disk->disk_name);
1207  		return 1;
1208  	}
1209  
1210  	/* Preserve existing integrity profile */
1211  	t->integrity_supported = true;
1212  	return 0;
1213  }
1214  
1215  #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216  
1217  struct dm_crypto_profile {
1218  	struct blk_crypto_profile profile;
1219  	struct mapped_device *md;
1220  };
1221  
1222  static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223  				     sector_t start, sector_t len, void *data)
1224  {
1225  	const struct blk_crypto_key *key = data;
1226  
1227  	blk_crypto_evict_key(dev->bdev, key);
1228  	return 0;
1229  }
1230  
1231  /*
1232   * When an inline encryption key is evicted from a device-mapper device, evict
1233   * it from all the underlying devices.
1234   */
1235  static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236  			    const struct blk_crypto_key *key, unsigned int slot)
1237  {
1238  	struct mapped_device *md =
1239  		container_of(profile, struct dm_crypto_profile, profile)->md;
1240  	struct dm_table *t;
1241  	int srcu_idx;
1242  
1243  	t = dm_get_live_table(md, &srcu_idx);
1244  	if (!t)
1245  		return 0;
1246  
1247  	for (unsigned int i = 0; i < t->num_targets; i++) {
1248  		struct dm_target *ti = dm_table_get_target(t, i);
1249  
1250  		if (!ti->type->iterate_devices)
1251  			continue;
1252  		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253  					  (void *)key);
1254  	}
1255  
1256  	dm_put_live_table(md, srcu_idx);
1257  	return 0;
1258  }
1259  
1260  static int
1261  device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262  				     sector_t start, sector_t len, void *data)
1263  {
1264  	struct blk_crypto_profile *parent = data;
1265  	struct blk_crypto_profile *child =
1266  		bdev_get_queue(dev->bdev)->crypto_profile;
1267  
1268  	blk_crypto_intersect_capabilities(parent, child);
1269  	return 0;
1270  }
1271  
1272  void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273  {
1274  	struct dm_crypto_profile *dmcp = container_of(profile,
1275  						      struct dm_crypto_profile,
1276  						      profile);
1277  
1278  	if (!profile)
1279  		return;
1280  
1281  	blk_crypto_profile_destroy(profile);
1282  	kfree(dmcp);
1283  }
1284  
1285  static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286  {
1287  	dm_destroy_crypto_profile(t->crypto_profile);
1288  	t->crypto_profile = NULL;
1289  }
1290  
1291  /*
1292   * Constructs and initializes t->crypto_profile with a crypto profile that
1293   * represents the common set of crypto capabilities of the devices described by
1294   * the dm_table.  However, if the constructed crypto profile doesn't support all
1295   * crypto capabilities that are supported by the current mapped_device, it
1296   * returns an error instead, since we don't support removing crypto capabilities
1297   * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1298   * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299   */
1300  static int dm_table_construct_crypto_profile(struct dm_table *t)
1301  {
1302  	struct dm_crypto_profile *dmcp;
1303  	struct blk_crypto_profile *profile;
1304  	unsigned int i;
1305  	bool empty_profile = true;
1306  
1307  	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308  	if (!dmcp)
1309  		return -ENOMEM;
1310  	dmcp->md = t->md;
1311  
1312  	profile = &dmcp->profile;
1313  	blk_crypto_profile_init(profile, 0);
1314  	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315  	profile->max_dun_bytes_supported = UINT_MAX;
1316  	memset(profile->modes_supported, 0xFF,
1317  	       sizeof(profile->modes_supported));
1318  
1319  	for (i = 0; i < t->num_targets; i++) {
1320  		struct dm_target *ti = dm_table_get_target(t, i);
1321  
1322  		if (!dm_target_passes_crypto(ti->type)) {
1323  			blk_crypto_intersect_capabilities(profile, NULL);
1324  			break;
1325  		}
1326  		if (!ti->type->iterate_devices)
1327  			continue;
1328  		ti->type->iterate_devices(ti,
1329  					  device_intersect_crypto_capabilities,
1330  					  profile);
1331  	}
1332  
1333  	if (t->md->queue &&
1334  	    !blk_crypto_has_capabilities(profile,
1335  					 t->md->queue->crypto_profile)) {
1336  		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337  		dm_destroy_crypto_profile(profile);
1338  		return -EINVAL;
1339  	}
1340  
1341  	/*
1342  	 * If the new profile doesn't actually support any crypto capabilities,
1343  	 * we may as well represent it with a NULL profile.
1344  	 */
1345  	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346  		if (profile->modes_supported[i]) {
1347  			empty_profile = false;
1348  			break;
1349  		}
1350  	}
1351  
1352  	if (empty_profile) {
1353  		dm_destroy_crypto_profile(profile);
1354  		profile = NULL;
1355  	}
1356  
1357  	/*
1358  	 * t->crypto_profile is only set temporarily while the table is being
1359  	 * set up, and it gets set to NULL after the profile has been
1360  	 * transferred to the request_queue.
1361  	 */
1362  	t->crypto_profile = profile;
1363  
1364  	return 0;
1365  }
1366  
1367  static void dm_update_crypto_profile(struct request_queue *q,
1368  				     struct dm_table *t)
1369  {
1370  	if (!t->crypto_profile)
1371  		return;
1372  
1373  	/* Make the crypto profile less restrictive. */
1374  	if (!q->crypto_profile) {
1375  		blk_crypto_register(t->crypto_profile, q);
1376  	} else {
1377  		blk_crypto_update_capabilities(q->crypto_profile,
1378  					       t->crypto_profile);
1379  		dm_destroy_crypto_profile(t->crypto_profile);
1380  	}
1381  	t->crypto_profile = NULL;
1382  }
1383  
1384  #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385  
1386  static int dm_table_construct_crypto_profile(struct dm_table *t)
1387  {
1388  	return 0;
1389  }
1390  
1391  void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392  {
1393  }
1394  
1395  static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396  {
1397  }
1398  
1399  static void dm_update_crypto_profile(struct request_queue *q,
1400  				     struct dm_table *t)
1401  {
1402  }
1403  
1404  #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405  
1406  /*
1407   * Prepares the table for use by building the indices,
1408   * setting the type, and allocating mempools.
1409   */
1410  int dm_table_complete(struct dm_table *t)
1411  {
1412  	int r;
1413  
1414  	r = dm_table_determine_type(t);
1415  	if (r) {
1416  		DMERR("unable to determine table type");
1417  		return r;
1418  	}
1419  
1420  	r = dm_table_build_index(t);
1421  	if (r) {
1422  		DMERR("unable to build btrees");
1423  		return r;
1424  	}
1425  
1426  	r = dm_table_register_integrity(t);
1427  	if (r) {
1428  		DMERR("could not register integrity profile.");
1429  		return r;
1430  	}
1431  
1432  	r = dm_table_construct_crypto_profile(t);
1433  	if (r) {
1434  		DMERR("could not construct crypto profile.");
1435  		return r;
1436  	}
1437  
1438  	r = dm_table_alloc_md_mempools(t, t->md);
1439  	if (r)
1440  		DMERR("unable to allocate mempools");
1441  
1442  	return r;
1443  }
1444  
1445  static DEFINE_MUTEX(_event_lock);
1446  void dm_table_event_callback(struct dm_table *t,
1447  			     void (*fn)(void *), void *context)
1448  {
1449  	mutex_lock(&_event_lock);
1450  	t->event_fn = fn;
1451  	t->event_context = context;
1452  	mutex_unlock(&_event_lock);
1453  }
1454  
1455  void dm_table_event(struct dm_table *t)
1456  {
1457  	mutex_lock(&_event_lock);
1458  	if (t->event_fn)
1459  		t->event_fn(t->event_context);
1460  	mutex_unlock(&_event_lock);
1461  }
1462  EXPORT_SYMBOL(dm_table_event);
1463  
1464  inline sector_t dm_table_get_size(struct dm_table *t)
1465  {
1466  	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467  }
1468  EXPORT_SYMBOL(dm_table_get_size);
1469  
1470  /*
1471   * Search the btree for the correct target.
1472   *
1473   * Caller should check returned pointer for NULL
1474   * to trap I/O beyond end of device.
1475   */
1476  struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477  {
1478  	unsigned int l, n = 0, k = 0;
1479  	sector_t *node;
1480  
1481  	if (unlikely(sector >= dm_table_get_size(t)))
1482  		return NULL;
1483  
1484  	for (l = 0; l < t->depth; l++) {
1485  		n = get_child(n, k);
1486  		node = get_node(t, l, n);
1487  
1488  		for (k = 0; k < KEYS_PER_NODE; k++)
1489  			if (node[k] >= sector)
1490  				break;
1491  	}
1492  
1493  	return &t->targets[(KEYS_PER_NODE * n) + k];
1494  }
1495  
1496  static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497  				   sector_t start, sector_t len, void *data)
1498  {
1499  	struct request_queue *q = bdev_get_queue(dev->bdev);
1500  
1501  	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502  }
1503  
1504  /*
1505   * type->iterate_devices() should be called when the sanity check needs to
1506   * iterate and check all underlying data devices. iterate_devices() will
1507   * iterate all underlying data devices until it encounters a non-zero return
1508   * code, returned by whether the input iterate_devices_callout_fn, or
1509   * iterate_devices() itself internally.
1510   *
1511   * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512   * iterate multiple underlying devices internally, in which case a non-zero
1513   * return code returned by iterate_devices_callout_fn will stop the iteration
1514   * in advance.
1515   *
1516   * Cases requiring _any_ underlying device supporting some kind of attribute,
1517   * should use the iteration structure like dm_table_any_dev_attr(), or call
1518   * it directly. @func should handle semantics of positive examples, e.g.
1519   * capable of something.
1520   *
1521   * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522   * should use the iteration structure like dm_table_supports_nowait() or
1523   * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524   * uses an @anti_func that handle semantics of counter examples, e.g. not
1525   * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526   */
1527  static bool dm_table_any_dev_attr(struct dm_table *t,
1528  				  iterate_devices_callout_fn func, void *data)
1529  {
1530  	for (unsigned int i = 0; i < t->num_targets; i++) {
1531  		struct dm_target *ti = dm_table_get_target(t, i);
1532  
1533  		if (ti->type->iterate_devices &&
1534  		    ti->type->iterate_devices(ti, func, data))
1535  			return true;
1536  	}
1537  
1538  	return false;
1539  }
1540  
1541  static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542  			sector_t start, sector_t len, void *data)
1543  {
1544  	unsigned int *num_devices = data;
1545  
1546  	(*num_devices)++;
1547  
1548  	return 0;
1549  }
1550  
1551  static bool dm_table_supports_poll(struct dm_table *t)
1552  {
1553  	for (unsigned int i = 0; i < t->num_targets; i++) {
1554  		struct dm_target *ti = dm_table_get_target(t, i);
1555  
1556  		if (!ti->type->iterate_devices ||
1557  		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558  			return false;
1559  	}
1560  
1561  	return true;
1562  }
1563  
1564  /*
1565   * Check whether a table has no data devices attached using each
1566   * target's iterate_devices method.
1567   * Returns false if the result is unknown because a target doesn't
1568   * support iterate_devices.
1569   */
1570  bool dm_table_has_no_data_devices(struct dm_table *t)
1571  {
1572  	for (unsigned int i = 0; i < t->num_targets; i++) {
1573  		struct dm_target *ti = dm_table_get_target(t, i);
1574  		unsigned int num_devices = 0;
1575  
1576  		if (!ti->type->iterate_devices)
1577  			return false;
1578  
1579  		ti->type->iterate_devices(ti, count_device, &num_devices);
1580  		if (num_devices)
1581  			return false;
1582  	}
1583  
1584  	return true;
1585  }
1586  
1587  static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588  			    sector_t start, sector_t len, void *data)
1589  {
1590  	bool *zoned = data;
1591  
1592  	return bdev_is_zoned(dev->bdev) != *zoned;
1593  }
1594  
1595  static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596  				 sector_t start, sector_t len, void *data)
1597  {
1598  	return bdev_is_zoned(dev->bdev);
1599  }
1600  
1601  /*
1602   * Check the device zoned model based on the target feature flag. If the target
1603   * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604   * also accepted but all devices must have the same zoned model. If the target
1605   * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606   * zoned model with all zoned devices having the same zone size.
1607   */
1608  static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609  {
1610  	for (unsigned int i = 0; i < t->num_targets; i++) {
1611  		struct dm_target *ti = dm_table_get_target(t, i);
1612  
1613  		/*
1614  		 * For the wildcard target (dm-error), if we do not have a
1615  		 * backing device, we must always return false. If we have a
1616  		 * backing device, the result must depend on checking zoned
1617  		 * model, like for any other target. So for this, check directly
1618  		 * if the target backing device is zoned as we get "false" when
1619  		 * dm-error was set without a backing device.
1620  		 */
1621  		if (dm_target_is_wildcard(ti->type) &&
1622  		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623  			return false;
1624  
1625  		if (dm_target_supports_zoned_hm(ti->type)) {
1626  			if (!ti->type->iterate_devices ||
1627  			    ti->type->iterate_devices(ti, device_not_zoned,
1628  						      &zoned))
1629  				return false;
1630  		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631  			if (zoned)
1632  				return false;
1633  		}
1634  	}
1635  
1636  	return true;
1637  }
1638  
1639  static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640  					   sector_t start, sector_t len, void *data)
1641  {
1642  	unsigned int *zone_sectors = data;
1643  
1644  	if (!bdev_is_zoned(dev->bdev))
1645  		return 0;
1646  	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647  }
1648  
1649  /*
1650   * Check consistency of zoned model and zone sectors across all targets. For
1651   * zone sectors, if the destination device is a zoned block device, it shall
1652   * have the specified zone_sectors.
1653   */
1654  static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655  				   unsigned int zone_sectors)
1656  {
1657  	if (!zoned)
1658  		return 0;
1659  
1660  	if (!dm_table_supports_zoned(t, zoned)) {
1661  		DMERR("%s: zoned model is not consistent across all devices",
1662  		      dm_device_name(t->md));
1663  		return -EINVAL;
1664  	}
1665  
1666  	/* Check zone size validity and compatibility */
1667  	if (!zone_sectors || !is_power_of_2(zone_sectors))
1668  		return -EINVAL;
1669  
1670  	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671  		DMERR("%s: zone sectors is not consistent across all zoned devices",
1672  		      dm_device_name(t->md));
1673  		return -EINVAL;
1674  	}
1675  
1676  	return 0;
1677  }
1678  
1679  /*
1680   * Establish the new table's queue_limits and validate them.
1681   */
1682  int dm_calculate_queue_limits(struct dm_table *t,
1683  			      struct queue_limits *limits)
1684  {
1685  	struct queue_limits ti_limits;
1686  	unsigned int zone_sectors = 0;
1687  	bool zoned = false;
1688  
1689  	blk_set_stacking_limits(limits);
1690  
1691  	for (unsigned int i = 0; i < t->num_targets; i++) {
1692  		struct dm_target *ti = dm_table_get_target(t, i);
1693  
1694  		blk_set_stacking_limits(&ti_limits);
1695  
1696  		if (!ti->type->iterate_devices) {
1697  			/* Set I/O hints portion of queue limits */
1698  			if (ti->type->io_hints)
1699  				ti->type->io_hints(ti, &ti_limits);
1700  			goto combine_limits;
1701  		}
1702  
1703  		/*
1704  		 * Combine queue limits of all the devices this target uses.
1705  		 */
1706  		ti->type->iterate_devices(ti, dm_set_device_limits,
1707  					  &ti_limits);
1708  
1709  		if (!zoned && ti_limits.zoned) {
1710  			/*
1711  			 * After stacking all limits, validate all devices
1712  			 * in table support this zoned model and zone sectors.
1713  			 */
1714  			zoned = ti_limits.zoned;
1715  			zone_sectors = ti_limits.chunk_sectors;
1716  		}
1717  
1718  		/* Set I/O hints portion of queue limits */
1719  		if (ti->type->io_hints)
1720  			ti->type->io_hints(ti, &ti_limits);
1721  
1722  		/*
1723  		 * Check each device area is consistent with the target's
1724  		 * overall queue limits.
1725  		 */
1726  		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727  					      &ti_limits))
1728  			return -EINVAL;
1729  
1730  combine_limits:
1731  		/*
1732  		 * Merge this target's queue limits into the overall limits
1733  		 * for the table.
1734  		 */
1735  		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736  			DMWARN("%s: adding target device (start sect %llu len %llu) "
1737  			       "caused an alignment inconsistency",
1738  			       dm_device_name(t->md),
1739  			       (unsigned long long) ti->begin,
1740  			       (unsigned long long) ti->len);
1741  	}
1742  
1743  	/*
1744  	 * Verify that the zoned model and zone sectors, as determined before
1745  	 * any .io_hints override, are the same across all devices in the table.
1746  	 * - this is especially relevant if .io_hints is emulating a disk-managed
1747  	 *   zoned model on host-managed zoned block devices.
1748  	 * BUT...
1749  	 */
1750  	if (limits->zoned) {
1751  		/*
1752  		 * ...IF the above limits stacking determined a zoned model
1753  		 * validate that all of the table's devices conform to it.
1754  		 */
1755  		zoned = limits->zoned;
1756  		zone_sectors = limits->chunk_sectors;
1757  	}
1758  	if (validate_hardware_zoned(t, zoned, zone_sectors))
1759  		return -EINVAL;
1760  
1761  	return validate_hardware_logical_block_alignment(t, limits);
1762  }
1763  
1764  /*
1765   * Verify that all devices have an integrity profile that matches the
1766   * DM device's registered integrity profile.  If the profiles don't
1767   * match then unregister the DM device's integrity profile.
1768   */
1769  static void dm_table_verify_integrity(struct dm_table *t)
1770  {
1771  	struct gendisk *template_disk = NULL;
1772  
1773  	if (t->integrity_added)
1774  		return;
1775  
1776  	if (t->integrity_supported) {
1777  		/*
1778  		 * Verify that the original integrity profile
1779  		 * matches all the devices in this table.
1780  		 */
1781  		template_disk = dm_table_get_integrity_disk(t);
1782  		if (template_disk &&
1783  		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784  			return;
1785  	}
1786  
1787  	if (integrity_profile_exists(dm_disk(t->md))) {
1788  		DMWARN("%s: unable to establish an integrity profile",
1789  		       dm_device_name(t->md));
1790  		blk_integrity_unregister(dm_disk(t->md));
1791  	}
1792  }
1793  
1794  static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795  				sector_t start, sector_t len, void *data)
1796  {
1797  	unsigned long flush = (unsigned long) data;
1798  	struct request_queue *q = bdev_get_queue(dev->bdev);
1799  
1800  	return (q->queue_flags & flush);
1801  }
1802  
1803  static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804  {
1805  	/*
1806  	 * Require at least one underlying device to support flushes.
1807  	 * t->devices includes internal dm devices such as mirror logs
1808  	 * so we need to use iterate_devices here, which targets
1809  	 * supporting flushes must provide.
1810  	 */
1811  	for (unsigned int i = 0; i < t->num_targets; i++) {
1812  		struct dm_target *ti = dm_table_get_target(t, i);
1813  
1814  		if (!ti->num_flush_bios)
1815  			continue;
1816  
1817  		if (ti->flush_supported)
1818  			return true;
1819  
1820  		if (ti->type->iterate_devices &&
1821  		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822  			return true;
1823  	}
1824  
1825  	return false;
1826  }
1827  
1828  static int device_dax_write_cache_enabled(struct dm_target *ti,
1829  					  struct dm_dev *dev, sector_t start,
1830  					  sector_t len, void *data)
1831  {
1832  	struct dax_device *dax_dev = dev->dax_dev;
1833  
1834  	if (!dax_dev)
1835  		return false;
1836  
1837  	if (dax_write_cache_enabled(dax_dev))
1838  		return true;
1839  	return false;
1840  }
1841  
1842  static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843  				sector_t start, sector_t len, void *data)
1844  {
1845  	return !bdev_nonrot(dev->bdev);
1846  }
1847  
1848  static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849  			     sector_t start, sector_t len, void *data)
1850  {
1851  	struct request_queue *q = bdev_get_queue(dev->bdev);
1852  
1853  	return !blk_queue_add_random(q);
1854  }
1855  
1856  static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857  					   sector_t start, sector_t len, void *data)
1858  {
1859  	struct request_queue *q = bdev_get_queue(dev->bdev);
1860  
1861  	return !q->limits.max_write_zeroes_sectors;
1862  }
1863  
1864  static bool dm_table_supports_write_zeroes(struct dm_table *t)
1865  {
1866  	for (unsigned int i = 0; i < t->num_targets; i++) {
1867  		struct dm_target *ti = dm_table_get_target(t, i);
1868  
1869  		if (!ti->num_write_zeroes_bios)
1870  			return false;
1871  
1872  		if (!ti->type->iterate_devices ||
1873  		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874  			return false;
1875  	}
1876  
1877  	return true;
1878  }
1879  
1880  static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881  				     sector_t start, sector_t len, void *data)
1882  {
1883  	return !bdev_nowait(dev->bdev);
1884  }
1885  
1886  static bool dm_table_supports_nowait(struct dm_table *t)
1887  {
1888  	for (unsigned int i = 0; i < t->num_targets; i++) {
1889  		struct dm_target *ti = dm_table_get_target(t, i);
1890  
1891  		if (!dm_target_supports_nowait(ti->type))
1892  			return false;
1893  
1894  		if (!ti->type->iterate_devices ||
1895  		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896  			return false;
1897  	}
1898  
1899  	return true;
1900  }
1901  
1902  static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903  				      sector_t start, sector_t len, void *data)
1904  {
1905  	return !bdev_max_discard_sectors(dev->bdev);
1906  }
1907  
1908  static bool dm_table_supports_discards(struct dm_table *t)
1909  {
1910  	for (unsigned int i = 0; i < t->num_targets; i++) {
1911  		struct dm_target *ti = dm_table_get_target(t, i);
1912  
1913  		if (!ti->num_discard_bios)
1914  			return false;
1915  
1916  		/*
1917  		 * Either the target provides discard support (as implied by setting
1918  		 * 'discards_supported') or it relies on _all_ data devices having
1919  		 * discard support.
1920  		 */
1921  		if (!ti->discards_supported &&
1922  		    (!ti->type->iterate_devices ||
1923  		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924  			return false;
1925  	}
1926  
1927  	return true;
1928  }
1929  
1930  static int device_not_secure_erase_capable(struct dm_target *ti,
1931  					   struct dm_dev *dev, sector_t start,
1932  					   sector_t len, void *data)
1933  {
1934  	return !bdev_max_secure_erase_sectors(dev->bdev);
1935  }
1936  
1937  static bool dm_table_supports_secure_erase(struct dm_table *t)
1938  {
1939  	for (unsigned int i = 0; i < t->num_targets; i++) {
1940  		struct dm_target *ti = dm_table_get_target(t, i);
1941  
1942  		if (!ti->num_secure_erase_bios)
1943  			return false;
1944  
1945  		if (!ti->type->iterate_devices ||
1946  		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947  			return false;
1948  	}
1949  
1950  	return true;
1951  }
1952  
1953  static int device_requires_stable_pages(struct dm_target *ti,
1954  					struct dm_dev *dev, sector_t start,
1955  					sector_t len, void *data)
1956  {
1957  	return bdev_stable_writes(dev->bdev);
1958  }
1959  
1960  int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961  			      struct queue_limits *limits)
1962  {
1963  	bool wc = false, fua = false;
1964  	int r;
1965  
1966  	if (dm_table_supports_nowait(t))
1967  		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1968  	else
1969  		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1970  
1971  	if (!dm_table_supports_discards(t)) {
1972  		limits->max_hw_discard_sectors = 0;
1973  		limits->discard_granularity = 0;
1974  		limits->discard_alignment = 0;
1975  		limits->discard_misaligned = 0;
1976  	}
1977  
1978  	if (!dm_table_supports_write_zeroes(t))
1979  		limits->max_write_zeroes_sectors = 0;
1980  
1981  	if (!dm_table_supports_secure_erase(t))
1982  		limits->max_secure_erase_sectors = 0;
1983  
1984  	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1985  		wc = true;
1986  		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1987  			fua = true;
1988  	}
1989  	blk_queue_write_cache(q, wc, fua);
1990  
1991  	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1992  		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1993  		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1994  			set_dax_synchronous(t->md->dax_dev);
1995  	} else
1996  		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1997  
1998  	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1999  		dax_write_cache(t->md->dax_dev, true);
2000  
2001  	/* Ensure that all underlying devices are non-rotational. */
2002  	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2003  		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2004  	else
2005  		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2006  
2007  	dm_table_verify_integrity(t);
2008  
2009  	/*
2010  	 * Some devices don't use blk_integrity but still want stable pages
2011  	 * because they do their own checksumming.
2012  	 * If any underlying device requires stable pages, a table must require
2013  	 * them as well.  Only targets that support iterate_devices are considered:
2014  	 * don't want error, zero, etc to require stable pages.
2015  	 */
2016  	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2017  		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2018  	else
2019  		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2020  
2021  	/*
2022  	 * Determine whether or not this queue's I/O timings contribute
2023  	 * to the entropy pool, Only request-based targets use this.
2024  	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2025  	 * have it set.
2026  	 */
2027  	if (blk_queue_add_random(q) &&
2028  	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2029  		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2030  
2031  	/*
2032  	 * For a zoned target, setup the zones related queue attributes
2033  	 * and resources necessary for zone append emulation if necessary.
2034  	 */
2035  	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && limits->zoned) {
2036  		r = dm_set_zones_restrictions(t, q, limits);
2037  		if (r)
2038  			return r;
2039  	}
2040  
2041  	r = queue_limits_set(q, limits);
2042  	if (r)
2043  		return r;
2044  
2045  	dm_update_crypto_profile(q, t);
2046  
2047  	/*
2048  	 * Check for request-based device is left to
2049  	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2050  	 *
2051  	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2052  	 * underlying devices supporting polling.
2053  	 */
2054  	if (__table_type_bio_based(t->type)) {
2055  		if (dm_table_supports_poll(t))
2056  			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2057  		else
2058  			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2059  	}
2060  
2061  	return 0;
2062  }
2063  
2064  struct list_head *dm_table_get_devices(struct dm_table *t)
2065  {
2066  	return &t->devices;
2067  }
2068  
2069  blk_mode_t dm_table_get_mode(struct dm_table *t)
2070  {
2071  	return t->mode;
2072  }
2073  EXPORT_SYMBOL(dm_table_get_mode);
2074  
2075  enum suspend_mode {
2076  	PRESUSPEND,
2077  	PRESUSPEND_UNDO,
2078  	POSTSUSPEND,
2079  };
2080  
2081  static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2082  {
2083  	lockdep_assert_held(&t->md->suspend_lock);
2084  
2085  	for (unsigned int i = 0; i < t->num_targets; i++) {
2086  		struct dm_target *ti = dm_table_get_target(t, i);
2087  
2088  		switch (mode) {
2089  		case PRESUSPEND:
2090  			if (ti->type->presuspend)
2091  				ti->type->presuspend(ti);
2092  			break;
2093  		case PRESUSPEND_UNDO:
2094  			if (ti->type->presuspend_undo)
2095  				ti->type->presuspend_undo(ti);
2096  			break;
2097  		case POSTSUSPEND:
2098  			if (ti->type->postsuspend)
2099  				ti->type->postsuspend(ti);
2100  			break;
2101  		}
2102  	}
2103  }
2104  
2105  void dm_table_presuspend_targets(struct dm_table *t)
2106  {
2107  	if (!t)
2108  		return;
2109  
2110  	suspend_targets(t, PRESUSPEND);
2111  }
2112  
2113  void dm_table_presuspend_undo_targets(struct dm_table *t)
2114  {
2115  	if (!t)
2116  		return;
2117  
2118  	suspend_targets(t, PRESUSPEND_UNDO);
2119  }
2120  
2121  void dm_table_postsuspend_targets(struct dm_table *t)
2122  {
2123  	if (!t)
2124  		return;
2125  
2126  	suspend_targets(t, POSTSUSPEND);
2127  }
2128  
2129  int dm_table_resume_targets(struct dm_table *t)
2130  {
2131  	unsigned int i;
2132  	int r = 0;
2133  
2134  	lockdep_assert_held(&t->md->suspend_lock);
2135  
2136  	for (i = 0; i < t->num_targets; i++) {
2137  		struct dm_target *ti = dm_table_get_target(t, i);
2138  
2139  		if (!ti->type->preresume)
2140  			continue;
2141  
2142  		r = ti->type->preresume(ti);
2143  		if (r) {
2144  			DMERR("%s: %s: preresume failed, error = %d",
2145  			      dm_device_name(t->md), ti->type->name, r);
2146  			return r;
2147  		}
2148  	}
2149  
2150  	for (i = 0; i < t->num_targets; i++) {
2151  		struct dm_target *ti = dm_table_get_target(t, i);
2152  
2153  		if (ti->type->resume)
2154  			ti->type->resume(ti);
2155  	}
2156  
2157  	return 0;
2158  }
2159  
2160  struct mapped_device *dm_table_get_md(struct dm_table *t)
2161  {
2162  	return t->md;
2163  }
2164  EXPORT_SYMBOL(dm_table_get_md);
2165  
2166  const char *dm_table_device_name(struct dm_table *t)
2167  {
2168  	return dm_device_name(t->md);
2169  }
2170  EXPORT_SYMBOL_GPL(dm_table_device_name);
2171  
2172  void dm_table_run_md_queue_async(struct dm_table *t)
2173  {
2174  	if (!dm_table_request_based(t))
2175  		return;
2176  
2177  	if (t->md->queue)
2178  		blk_mq_run_hw_queues(t->md->queue, true);
2179  }
2180  EXPORT_SYMBOL(dm_table_run_md_queue_async);
2181  
2182