1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define MAX_DEPTH 16 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 struct dm_table { 33 struct mapped_device *md; 34 enum dm_queue_mode type; 35 36 /* btree table */ 37 unsigned int depth; 38 unsigned int counts[MAX_DEPTH]; /* in nodes */ 39 sector_t *index[MAX_DEPTH]; 40 41 unsigned int num_targets; 42 unsigned int num_allocated; 43 sector_t *highs; 44 struct dm_target *targets; 45 46 struct target_type *immutable_target_type; 47 48 bool integrity_supported:1; 49 bool singleton:1; 50 unsigned integrity_added:1; 51 52 /* 53 * Indicates the rw permissions for the new logical 54 * device. This should be a combination of FMODE_READ 55 * and FMODE_WRITE. 56 */ 57 fmode_t mode; 58 59 /* a list of devices used by this table */ 60 struct list_head devices; 61 62 /* events get handed up using this callback */ 63 void (*event_fn)(void *); 64 void *event_context; 65 66 struct dm_md_mempools *mempools; 67 68 struct list_head target_callbacks; 69 }; 70 71 /* 72 * Similar to ceiling(log_size(n)) 73 */ 74 static unsigned int int_log(unsigned int n, unsigned int base) 75 { 76 int result = 0; 77 78 while (n > 1) { 79 n = dm_div_up(n, base); 80 result++; 81 } 82 83 return result; 84 } 85 86 /* 87 * Calculate the index of the child node of the n'th node k'th key. 88 */ 89 static inline unsigned int get_child(unsigned int n, unsigned int k) 90 { 91 return (n * CHILDREN_PER_NODE) + k; 92 } 93 94 /* 95 * Return the n'th node of level l from table t. 96 */ 97 static inline sector_t *get_node(struct dm_table *t, 98 unsigned int l, unsigned int n) 99 { 100 return t->index[l] + (n * KEYS_PER_NODE); 101 } 102 103 /* 104 * Return the highest key that you could lookup from the n'th 105 * node on level l of the btree. 106 */ 107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 108 { 109 for (; l < t->depth - 1; l++) 110 n = get_child(n, CHILDREN_PER_NODE - 1); 111 112 if (n >= t->counts[l]) 113 return (sector_t) - 1; 114 115 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 116 } 117 118 /* 119 * Fills in a level of the btree based on the highs of the level 120 * below it. 121 */ 122 static int setup_btree_index(unsigned int l, struct dm_table *t) 123 { 124 unsigned int n, k; 125 sector_t *node; 126 127 for (n = 0U; n < t->counts[l]; n++) { 128 node = get_node(t, l, n); 129 130 for (k = 0U; k < KEYS_PER_NODE; k++) 131 node[k] = high(t, l + 1, get_child(n, k)); 132 } 133 134 return 0; 135 } 136 137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 138 { 139 unsigned long size; 140 void *addr; 141 142 /* 143 * Check that we're not going to overflow. 144 */ 145 if (nmemb > (ULONG_MAX / elem_size)) 146 return NULL; 147 148 size = nmemb * elem_size; 149 addr = vzalloc(size); 150 151 return addr; 152 } 153 EXPORT_SYMBOL(dm_vcalloc); 154 155 /* 156 * highs, and targets are managed as dynamic arrays during a 157 * table load. 158 */ 159 static int alloc_targets(struct dm_table *t, unsigned int num) 160 { 161 sector_t *n_highs; 162 struct dm_target *n_targets; 163 164 /* 165 * Allocate both the target array and offset array at once. 166 * Append an empty entry to catch sectors beyond the end of 167 * the device. 168 */ 169 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 170 sizeof(sector_t)); 171 if (!n_highs) 172 return -ENOMEM; 173 174 n_targets = (struct dm_target *) (n_highs + num); 175 176 memset(n_highs, -1, sizeof(*n_highs) * num); 177 vfree(t->highs); 178 179 t->num_allocated = num; 180 t->highs = n_highs; 181 t->targets = n_targets; 182 183 return 0; 184 } 185 186 int dm_table_create(struct dm_table **result, fmode_t mode, 187 unsigned num_targets, struct mapped_device *md) 188 { 189 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 190 191 if (!t) 192 return -ENOMEM; 193 194 INIT_LIST_HEAD(&t->devices); 195 INIT_LIST_HEAD(&t->target_callbacks); 196 197 if (!num_targets) 198 num_targets = KEYS_PER_NODE; 199 200 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 201 202 if (!num_targets) { 203 kfree(t); 204 return -ENOMEM; 205 } 206 207 if (alloc_targets(t, num_targets)) { 208 kfree(t); 209 return -ENOMEM; 210 } 211 212 t->type = DM_TYPE_NONE; 213 t->mode = mode; 214 t->md = md; 215 *result = t; 216 return 0; 217 } 218 219 static void free_devices(struct list_head *devices, struct mapped_device *md) 220 { 221 struct list_head *tmp, *next; 222 223 list_for_each_safe(tmp, next, devices) { 224 struct dm_dev_internal *dd = 225 list_entry(tmp, struct dm_dev_internal, list); 226 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 227 dm_device_name(md), dd->dm_dev->name); 228 dm_put_table_device(md, dd->dm_dev); 229 kfree(dd); 230 } 231 } 232 233 void dm_table_destroy(struct dm_table *t) 234 { 235 unsigned int i; 236 237 if (!t) 238 return; 239 240 /* free the indexes */ 241 if (t->depth >= 2) 242 vfree(t->index[t->depth - 2]); 243 244 /* free the targets */ 245 for (i = 0; i < t->num_targets; i++) { 246 struct dm_target *tgt = t->targets + i; 247 248 if (tgt->type->dtr) 249 tgt->type->dtr(tgt); 250 251 dm_put_target_type(tgt->type); 252 } 253 254 vfree(t->highs); 255 256 /* free the device list */ 257 free_devices(&t->devices, t->md); 258 259 dm_free_md_mempools(t->mempools); 260 261 kfree(t); 262 } 263 264 /* 265 * See if we've already got a device in the list. 266 */ 267 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 268 { 269 struct dm_dev_internal *dd; 270 271 list_for_each_entry (dd, l, list) 272 if (dd->dm_dev->bdev->bd_dev == dev) 273 return dd; 274 275 return NULL; 276 } 277 278 /* 279 * If possible, this checks an area of a destination device is invalid. 280 */ 281 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 282 sector_t start, sector_t len, void *data) 283 { 284 struct request_queue *q; 285 struct queue_limits *limits = data; 286 struct block_device *bdev = dev->bdev; 287 sector_t dev_size = 288 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 289 unsigned short logical_block_size_sectors = 290 limits->logical_block_size >> SECTOR_SHIFT; 291 char b[BDEVNAME_SIZE]; 292 293 /* 294 * Some devices exist without request functions, 295 * such as loop devices not yet bound to backing files. 296 * Forbid the use of such devices. 297 */ 298 q = bdev_get_queue(bdev); 299 if (!q || !q->make_request_fn) { 300 DMWARN("%s: %s is not yet initialised: " 301 "start=%llu, len=%llu, dev_size=%llu", 302 dm_device_name(ti->table->md), bdevname(bdev, b), 303 (unsigned long long)start, 304 (unsigned long long)len, 305 (unsigned long long)dev_size); 306 return 1; 307 } 308 309 if (!dev_size) 310 return 0; 311 312 if ((start >= dev_size) || (start + len > dev_size)) { 313 DMWARN("%s: %s too small for target: " 314 "start=%llu, len=%llu, dev_size=%llu", 315 dm_device_name(ti->table->md), bdevname(bdev, b), 316 (unsigned long long)start, 317 (unsigned long long)len, 318 (unsigned long long)dev_size); 319 return 1; 320 } 321 322 /* 323 * If the target is mapped to zoned block device(s), check 324 * that the zones are not partially mapped. 325 */ 326 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 327 unsigned int zone_sectors = bdev_zone_sectors(bdev); 328 329 if (start & (zone_sectors - 1)) { 330 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 331 dm_device_name(ti->table->md), 332 (unsigned long long)start, 333 zone_sectors, bdevname(bdev, b)); 334 return 1; 335 } 336 337 /* 338 * Note: The last zone of a zoned block device may be smaller 339 * than other zones. So for a target mapping the end of a 340 * zoned block device with such a zone, len would not be zone 341 * aligned. We do not allow such last smaller zone to be part 342 * of the mapping here to ensure that mappings with multiple 343 * devices do not end up with a smaller zone in the middle of 344 * the sector range. 345 */ 346 if (len & (zone_sectors - 1)) { 347 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 348 dm_device_name(ti->table->md), 349 (unsigned long long)len, 350 zone_sectors, bdevname(bdev, b)); 351 return 1; 352 } 353 } 354 355 if (logical_block_size_sectors <= 1) 356 return 0; 357 358 if (start & (logical_block_size_sectors - 1)) { 359 DMWARN("%s: start=%llu not aligned to h/w " 360 "logical block size %u of %s", 361 dm_device_name(ti->table->md), 362 (unsigned long long)start, 363 limits->logical_block_size, bdevname(bdev, b)); 364 return 1; 365 } 366 367 if (len & (logical_block_size_sectors - 1)) { 368 DMWARN("%s: len=%llu not aligned to h/w " 369 "logical block size %u of %s", 370 dm_device_name(ti->table->md), 371 (unsigned long long)len, 372 limits->logical_block_size, bdevname(bdev, b)); 373 return 1; 374 } 375 376 return 0; 377 } 378 379 /* 380 * This upgrades the mode on an already open dm_dev, being 381 * careful to leave things as they were if we fail to reopen the 382 * device and not to touch the existing bdev field in case 383 * it is accessed concurrently inside dm_table_any_congested(). 384 */ 385 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 386 struct mapped_device *md) 387 { 388 int r; 389 struct dm_dev *old_dev, *new_dev; 390 391 old_dev = dd->dm_dev; 392 393 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 394 dd->dm_dev->mode | new_mode, &new_dev); 395 if (r) 396 return r; 397 398 dd->dm_dev = new_dev; 399 dm_put_table_device(md, old_dev); 400 401 return 0; 402 } 403 404 /* 405 * Convert the path to a device 406 */ 407 dev_t dm_get_dev_t(const char *path) 408 { 409 dev_t dev; 410 struct block_device *bdev; 411 412 bdev = lookup_bdev(path); 413 if (IS_ERR(bdev)) 414 dev = name_to_dev_t(path); 415 else { 416 dev = bdev->bd_dev; 417 bdput(bdev); 418 } 419 420 return dev; 421 } 422 EXPORT_SYMBOL_GPL(dm_get_dev_t); 423 424 /* 425 * Add a device to the list, or just increment the usage count if 426 * it's already present. 427 */ 428 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 429 struct dm_dev **result) 430 { 431 int r; 432 dev_t dev; 433 struct dm_dev_internal *dd; 434 struct dm_table *t = ti->table; 435 436 BUG_ON(!t); 437 438 dev = dm_get_dev_t(path); 439 if (!dev) 440 return -ENODEV; 441 442 dd = find_device(&t->devices, dev); 443 if (!dd) { 444 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 445 if (!dd) 446 return -ENOMEM; 447 448 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 449 kfree(dd); 450 return r; 451 } 452 453 refcount_set(&dd->count, 1); 454 list_add(&dd->list, &t->devices); 455 goto out; 456 457 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 458 r = upgrade_mode(dd, mode, t->md); 459 if (r) 460 return r; 461 } 462 refcount_inc(&dd->count); 463 out: 464 *result = dd->dm_dev; 465 return 0; 466 } 467 EXPORT_SYMBOL(dm_get_device); 468 469 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 470 sector_t start, sector_t len, void *data) 471 { 472 struct queue_limits *limits = data; 473 struct block_device *bdev = dev->bdev; 474 struct request_queue *q = bdev_get_queue(bdev); 475 char b[BDEVNAME_SIZE]; 476 477 if (unlikely(!q)) { 478 DMWARN("%s: Cannot set limits for nonexistent device %s", 479 dm_device_name(ti->table->md), bdevname(bdev, b)); 480 return 0; 481 } 482 483 if (bdev_stack_limits(limits, bdev, start) < 0) 484 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 485 "physical_block_size=%u, logical_block_size=%u, " 486 "alignment_offset=%u, start=%llu", 487 dm_device_name(ti->table->md), bdevname(bdev, b), 488 q->limits.physical_block_size, 489 q->limits.logical_block_size, 490 q->limits.alignment_offset, 491 (unsigned long long) start << SECTOR_SHIFT); 492 493 limits->zoned = blk_queue_zoned_model(q); 494 495 return 0; 496 } 497 498 /* 499 * Decrement a device's use count and remove it if necessary. 500 */ 501 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 502 { 503 int found = 0; 504 struct list_head *devices = &ti->table->devices; 505 struct dm_dev_internal *dd; 506 507 list_for_each_entry(dd, devices, list) { 508 if (dd->dm_dev == d) { 509 found = 1; 510 break; 511 } 512 } 513 if (!found) { 514 DMWARN("%s: device %s not in table devices list", 515 dm_device_name(ti->table->md), d->name); 516 return; 517 } 518 if (refcount_dec_and_test(&dd->count)) { 519 dm_put_table_device(ti->table->md, d); 520 list_del(&dd->list); 521 kfree(dd); 522 } 523 } 524 EXPORT_SYMBOL(dm_put_device); 525 526 /* 527 * Checks to see if the target joins onto the end of the table. 528 */ 529 static int adjoin(struct dm_table *table, struct dm_target *ti) 530 { 531 struct dm_target *prev; 532 533 if (!table->num_targets) 534 return !ti->begin; 535 536 prev = &table->targets[table->num_targets - 1]; 537 return (ti->begin == (prev->begin + prev->len)); 538 } 539 540 /* 541 * Used to dynamically allocate the arg array. 542 * 543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 544 * process messages even if some device is suspended. These messages have a 545 * small fixed number of arguments. 546 * 547 * On the other hand, dm-switch needs to process bulk data using messages and 548 * excessive use of GFP_NOIO could cause trouble. 549 */ 550 static char **realloc_argv(unsigned *size, char **old_argv) 551 { 552 char **argv; 553 unsigned new_size; 554 gfp_t gfp; 555 556 if (*size) { 557 new_size = *size * 2; 558 gfp = GFP_KERNEL; 559 } else { 560 new_size = 8; 561 gfp = GFP_NOIO; 562 } 563 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 564 if (argv && old_argv) { 565 memcpy(argv, old_argv, *size * sizeof(*argv)); 566 *size = new_size; 567 } 568 569 kfree(old_argv); 570 return argv; 571 } 572 573 /* 574 * Destructively splits up the argument list to pass to ctr. 575 */ 576 int dm_split_args(int *argc, char ***argvp, char *input) 577 { 578 char *start, *end = input, *out, **argv = NULL; 579 unsigned array_size = 0; 580 581 *argc = 0; 582 583 if (!input) { 584 *argvp = NULL; 585 return 0; 586 } 587 588 argv = realloc_argv(&array_size, argv); 589 if (!argv) 590 return -ENOMEM; 591 592 while (1) { 593 /* Skip whitespace */ 594 start = skip_spaces(end); 595 596 if (!*start) 597 break; /* success, we hit the end */ 598 599 /* 'out' is used to remove any back-quotes */ 600 end = out = start; 601 while (*end) { 602 /* Everything apart from '\0' can be quoted */ 603 if (*end == '\\' && *(end + 1)) { 604 *out++ = *(end + 1); 605 end += 2; 606 continue; 607 } 608 609 if (isspace(*end)) 610 break; /* end of token */ 611 612 *out++ = *end++; 613 } 614 615 /* have we already filled the array ? */ 616 if ((*argc + 1) > array_size) { 617 argv = realloc_argv(&array_size, argv); 618 if (!argv) 619 return -ENOMEM; 620 } 621 622 /* we know this is whitespace */ 623 if (*end) 624 end++; 625 626 /* terminate the string and put it in the array */ 627 *out = '\0'; 628 argv[*argc] = start; 629 (*argc)++; 630 } 631 632 *argvp = argv; 633 return 0; 634 } 635 636 /* 637 * Impose necessary and sufficient conditions on a devices's table such 638 * that any incoming bio which respects its logical_block_size can be 639 * processed successfully. If it falls across the boundary between 640 * two or more targets, the size of each piece it gets split into must 641 * be compatible with the logical_block_size of the target processing it. 642 */ 643 static int validate_hardware_logical_block_alignment(struct dm_table *table, 644 struct queue_limits *limits) 645 { 646 /* 647 * This function uses arithmetic modulo the logical_block_size 648 * (in units of 512-byte sectors). 649 */ 650 unsigned short device_logical_block_size_sects = 651 limits->logical_block_size >> SECTOR_SHIFT; 652 653 /* 654 * Offset of the start of the next table entry, mod logical_block_size. 655 */ 656 unsigned short next_target_start = 0; 657 658 /* 659 * Given an aligned bio that extends beyond the end of a 660 * target, how many sectors must the next target handle? 661 */ 662 unsigned short remaining = 0; 663 664 struct dm_target *uninitialized_var(ti); 665 struct queue_limits ti_limits; 666 unsigned i; 667 668 /* 669 * Check each entry in the table in turn. 670 */ 671 for (i = 0; i < dm_table_get_num_targets(table); i++) { 672 ti = dm_table_get_target(table, i); 673 674 blk_set_stacking_limits(&ti_limits); 675 676 /* combine all target devices' limits */ 677 if (ti->type->iterate_devices) 678 ti->type->iterate_devices(ti, dm_set_device_limits, 679 &ti_limits); 680 681 /* 682 * If the remaining sectors fall entirely within this 683 * table entry are they compatible with its logical_block_size? 684 */ 685 if (remaining < ti->len && 686 remaining & ((ti_limits.logical_block_size >> 687 SECTOR_SHIFT) - 1)) 688 break; /* Error */ 689 690 next_target_start = 691 (unsigned short) ((next_target_start + ti->len) & 692 (device_logical_block_size_sects - 1)); 693 remaining = next_target_start ? 694 device_logical_block_size_sects - next_target_start : 0; 695 } 696 697 if (remaining) { 698 DMWARN("%s: table line %u (start sect %llu len %llu) " 699 "not aligned to h/w logical block size %u", 700 dm_device_name(table->md), i, 701 (unsigned long long) ti->begin, 702 (unsigned long long) ti->len, 703 limits->logical_block_size); 704 return -EINVAL; 705 } 706 707 return 0; 708 } 709 710 int dm_table_add_target(struct dm_table *t, const char *type, 711 sector_t start, sector_t len, char *params) 712 { 713 int r = -EINVAL, argc; 714 char **argv; 715 struct dm_target *tgt; 716 717 if (t->singleton) { 718 DMERR("%s: target type %s must appear alone in table", 719 dm_device_name(t->md), t->targets->type->name); 720 return -EINVAL; 721 } 722 723 BUG_ON(t->num_targets >= t->num_allocated); 724 725 tgt = t->targets + t->num_targets; 726 memset(tgt, 0, sizeof(*tgt)); 727 728 if (!len) { 729 DMERR("%s: zero-length target", dm_device_name(t->md)); 730 return -EINVAL; 731 } 732 733 tgt->type = dm_get_target_type(type); 734 if (!tgt->type) { 735 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 736 return -EINVAL; 737 } 738 739 if (dm_target_needs_singleton(tgt->type)) { 740 if (t->num_targets) { 741 tgt->error = "singleton target type must appear alone in table"; 742 goto bad; 743 } 744 t->singleton = true; 745 } 746 747 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 748 tgt->error = "target type may not be included in a read-only table"; 749 goto bad; 750 } 751 752 if (t->immutable_target_type) { 753 if (t->immutable_target_type != tgt->type) { 754 tgt->error = "immutable target type cannot be mixed with other target types"; 755 goto bad; 756 } 757 } else if (dm_target_is_immutable(tgt->type)) { 758 if (t->num_targets) { 759 tgt->error = "immutable target type cannot be mixed with other target types"; 760 goto bad; 761 } 762 t->immutable_target_type = tgt->type; 763 } 764 765 if (dm_target_has_integrity(tgt->type)) 766 t->integrity_added = 1; 767 768 tgt->table = t; 769 tgt->begin = start; 770 tgt->len = len; 771 tgt->error = "Unknown error"; 772 773 /* 774 * Does this target adjoin the previous one ? 775 */ 776 if (!adjoin(t, tgt)) { 777 tgt->error = "Gap in table"; 778 goto bad; 779 } 780 781 r = dm_split_args(&argc, &argv, params); 782 if (r) { 783 tgt->error = "couldn't split parameters (insufficient memory)"; 784 goto bad; 785 } 786 787 r = tgt->type->ctr(tgt, argc, argv); 788 kfree(argv); 789 if (r) 790 goto bad; 791 792 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 793 794 if (!tgt->num_discard_bios && tgt->discards_supported) 795 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 796 dm_device_name(t->md), type); 797 798 return 0; 799 800 bad: 801 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 802 dm_put_target_type(tgt->type); 803 return r; 804 } 805 806 /* 807 * Target argument parsing helpers. 808 */ 809 static int validate_next_arg(const struct dm_arg *arg, 810 struct dm_arg_set *arg_set, 811 unsigned *value, char **error, unsigned grouped) 812 { 813 const char *arg_str = dm_shift_arg(arg_set); 814 char dummy; 815 816 if (!arg_str || 817 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 818 (*value < arg->min) || 819 (*value > arg->max) || 820 (grouped && arg_set->argc < *value)) { 821 *error = arg->error; 822 return -EINVAL; 823 } 824 825 return 0; 826 } 827 828 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 829 unsigned *value, char **error) 830 { 831 return validate_next_arg(arg, arg_set, value, error, 0); 832 } 833 EXPORT_SYMBOL(dm_read_arg); 834 835 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 836 unsigned *value, char **error) 837 { 838 return validate_next_arg(arg, arg_set, value, error, 1); 839 } 840 EXPORT_SYMBOL(dm_read_arg_group); 841 842 const char *dm_shift_arg(struct dm_arg_set *as) 843 { 844 char *r; 845 846 if (as->argc) { 847 as->argc--; 848 r = *as->argv; 849 as->argv++; 850 return r; 851 } 852 853 return NULL; 854 } 855 EXPORT_SYMBOL(dm_shift_arg); 856 857 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 858 { 859 BUG_ON(as->argc < num_args); 860 as->argc -= num_args; 861 as->argv += num_args; 862 } 863 EXPORT_SYMBOL(dm_consume_args); 864 865 static bool __table_type_bio_based(enum dm_queue_mode table_type) 866 { 867 return (table_type == DM_TYPE_BIO_BASED || 868 table_type == DM_TYPE_DAX_BIO_BASED || 869 table_type == DM_TYPE_NVME_BIO_BASED); 870 } 871 872 static bool __table_type_request_based(enum dm_queue_mode table_type) 873 { 874 return table_type == DM_TYPE_REQUEST_BASED; 875 } 876 877 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 878 { 879 t->type = type; 880 } 881 EXPORT_SYMBOL_GPL(dm_table_set_type); 882 883 /* validate the dax capability of the target device span */ 884 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 885 sector_t start, sector_t len, void *data) 886 { 887 int blocksize = *(int *) data; 888 889 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize, 890 start, len); 891 } 892 893 bool dm_table_supports_dax(struct dm_table *t, int blocksize) 894 { 895 struct dm_target *ti; 896 unsigned i; 897 898 /* Ensure that all targets support DAX. */ 899 for (i = 0; i < dm_table_get_num_targets(t); i++) { 900 ti = dm_table_get_target(t, i); 901 902 if (!ti->type->direct_access) 903 return false; 904 905 if (!ti->type->iterate_devices || 906 !ti->type->iterate_devices(ti, device_supports_dax, 907 &blocksize)) 908 return false; 909 } 910 911 return true; 912 } 913 914 static bool dm_table_does_not_support_partial_completion(struct dm_table *t); 915 916 struct verify_rq_based_data { 917 unsigned sq_count; 918 unsigned mq_count; 919 }; 920 921 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev, 922 sector_t start, sector_t len, void *data) 923 { 924 struct request_queue *q = bdev_get_queue(dev->bdev); 925 struct verify_rq_based_data *v = data; 926 927 if (queue_is_mq(q)) 928 v->mq_count++; 929 else 930 v->sq_count++; 931 932 return queue_is_mq(q); 933 } 934 935 static int dm_table_determine_type(struct dm_table *t) 936 { 937 unsigned i; 938 unsigned bio_based = 0, request_based = 0, hybrid = 0; 939 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0}; 940 struct dm_target *tgt; 941 struct list_head *devices = dm_table_get_devices(t); 942 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 943 944 if (t->type != DM_TYPE_NONE) { 945 /* target already set the table's type */ 946 if (t->type == DM_TYPE_BIO_BASED) { 947 /* possibly upgrade to a variant of bio-based */ 948 goto verify_bio_based; 949 } 950 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 951 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED); 952 goto verify_rq_based; 953 } 954 955 for (i = 0; i < t->num_targets; i++) { 956 tgt = t->targets + i; 957 if (dm_target_hybrid(tgt)) 958 hybrid = 1; 959 else if (dm_target_request_based(tgt)) 960 request_based = 1; 961 else 962 bio_based = 1; 963 964 if (bio_based && request_based) { 965 DMERR("Inconsistent table: different target types" 966 " can't be mixed up"); 967 return -EINVAL; 968 } 969 } 970 971 if (hybrid && !bio_based && !request_based) { 972 /* 973 * The targets can work either way. 974 * Determine the type from the live device. 975 * Default to bio-based if device is new. 976 */ 977 if (__table_type_request_based(live_md_type)) 978 request_based = 1; 979 else 980 bio_based = 1; 981 } 982 983 if (bio_based) { 984 verify_bio_based: 985 /* We must use this table as bio-based */ 986 t->type = DM_TYPE_BIO_BASED; 987 if (dm_table_supports_dax(t, PAGE_SIZE) || 988 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 989 t->type = DM_TYPE_DAX_BIO_BASED; 990 } else { 991 /* Check if upgrading to NVMe bio-based is valid or required */ 992 tgt = dm_table_get_immutable_target(t); 993 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) { 994 t->type = DM_TYPE_NVME_BIO_BASED; 995 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */ 996 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) { 997 t->type = DM_TYPE_NVME_BIO_BASED; 998 } 999 } 1000 return 0; 1001 } 1002 1003 BUG_ON(!request_based); /* No targets in this table */ 1004 1005 t->type = DM_TYPE_REQUEST_BASED; 1006 1007 verify_rq_based: 1008 /* 1009 * Request-based dm supports only tables that have a single target now. 1010 * To support multiple targets, request splitting support is needed, 1011 * and that needs lots of changes in the block-layer. 1012 * (e.g. request completion process for partial completion.) 1013 */ 1014 if (t->num_targets > 1) { 1015 DMERR("%s DM doesn't support multiple targets", 1016 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based"); 1017 return -EINVAL; 1018 } 1019 1020 if (list_empty(devices)) { 1021 int srcu_idx; 1022 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 1023 1024 /* inherit live table's type */ 1025 if (live_table) 1026 t->type = live_table->type; 1027 dm_put_live_table(t->md, srcu_idx); 1028 return 0; 1029 } 1030 1031 tgt = dm_table_get_immutable_target(t); 1032 if (!tgt) { 1033 DMERR("table load rejected: immutable target is required"); 1034 return -EINVAL; 1035 } else if (tgt->max_io_len) { 1036 DMERR("table load rejected: immutable target that splits IO is not supported"); 1037 return -EINVAL; 1038 } 1039 1040 /* Non-request-stackable devices can't be used for request-based dm */ 1041 if (!tgt->type->iterate_devices || 1042 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) { 1043 DMERR("table load rejected: including non-request-stackable devices"); 1044 return -EINVAL; 1045 } 1046 if (v.sq_count > 0) { 1047 DMERR("table load rejected: not all devices are blk-mq request-stackable"); 1048 return -EINVAL; 1049 } 1050 1051 return 0; 1052 } 1053 1054 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1055 { 1056 return t->type; 1057 } 1058 1059 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1060 { 1061 return t->immutable_target_type; 1062 } 1063 1064 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1065 { 1066 /* Immutable target is implicitly a singleton */ 1067 if (t->num_targets > 1 || 1068 !dm_target_is_immutable(t->targets[0].type)) 1069 return NULL; 1070 1071 return t->targets; 1072 } 1073 1074 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1075 { 1076 struct dm_target *ti; 1077 unsigned i; 1078 1079 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1080 ti = dm_table_get_target(t, i); 1081 if (dm_target_is_wildcard(ti->type)) 1082 return ti; 1083 } 1084 1085 return NULL; 1086 } 1087 1088 bool dm_table_bio_based(struct dm_table *t) 1089 { 1090 return __table_type_bio_based(dm_table_get_type(t)); 1091 } 1092 1093 bool dm_table_request_based(struct dm_table *t) 1094 { 1095 return __table_type_request_based(dm_table_get_type(t)); 1096 } 1097 1098 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1099 { 1100 enum dm_queue_mode type = dm_table_get_type(t); 1101 unsigned per_io_data_size = 0; 1102 unsigned min_pool_size = 0; 1103 struct dm_target *ti; 1104 unsigned i; 1105 1106 if (unlikely(type == DM_TYPE_NONE)) { 1107 DMWARN("no table type is set, can't allocate mempools"); 1108 return -EINVAL; 1109 } 1110 1111 if (__table_type_bio_based(type)) 1112 for (i = 0; i < t->num_targets; i++) { 1113 ti = t->targets + i; 1114 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1115 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1116 } 1117 1118 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1119 per_io_data_size, min_pool_size); 1120 if (!t->mempools) 1121 return -ENOMEM; 1122 1123 return 0; 1124 } 1125 1126 void dm_table_free_md_mempools(struct dm_table *t) 1127 { 1128 dm_free_md_mempools(t->mempools); 1129 t->mempools = NULL; 1130 } 1131 1132 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1133 { 1134 return t->mempools; 1135 } 1136 1137 static int setup_indexes(struct dm_table *t) 1138 { 1139 int i; 1140 unsigned int total = 0; 1141 sector_t *indexes; 1142 1143 /* allocate the space for *all* the indexes */ 1144 for (i = t->depth - 2; i >= 0; i--) { 1145 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1146 total += t->counts[i]; 1147 } 1148 1149 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1150 if (!indexes) 1151 return -ENOMEM; 1152 1153 /* set up internal nodes, bottom-up */ 1154 for (i = t->depth - 2; i >= 0; i--) { 1155 t->index[i] = indexes; 1156 indexes += (KEYS_PER_NODE * t->counts[i]); 1157 setup_btree_index(i, t); 1158 } 1159 1160 return 0; 1161 } 1162 1163 /* 1164 * Builds the btree to index the map. 1165 */ 1166 static int dm_table_build_index(struct dm_table *t) 1167 { 1168 int r = 0; 1169 unsigned int leaf_nodes; 1170 1171 /* how many indexes will the btree have ? */ 1172 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1173 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1174 1175 /* leaf layer has already been set up */ 1176 t->counts[t->depth - 1] = leaf_nodes; 1177 t->index[t->depth - 1] = t->highs; 1178 1179 if (t->depth >= 2) 1180 r = setup_indexes(t); 1181 1182 return r; 1183 } 1184 1185 static bool integrity_profile_exists(struct gendisk *disk) 1186 { 1187 return !!blk_get_integrity(disk); 1188 } 1189 1190 /* 1191 * Get a disk whose integrity profile reflects the table's profile. 1192 * Returns NULL if integrity support was inconsistent or unavailable. 1193 */ 1194 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1195 { 1196 struct list_head *devices = dm_table_get_devices(t); 1197 struct dm_dev_internal *dd = NULL; 1198 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1199 unsigned i; 1200 1201 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1202 struct dm_target *ti = dm_table_get_target(t, i); 1203 if (!dm_target_passes_integrity(ti->type)) 1204 goto no_integrity; 1205 } 1206 1207 list_for_each_entry(dd, devices, list) { 1208 template_disk = dd->dm_dev->bdev->bd_disk; 1209 if (!integrity_profile_exists(template_disk)) 1210 goto no_integrity; 1211 else if (prev_disk && 1212 blk_integrity_compare(prev_disk, template_disk) < 0) 1213 goto no_integrity; 1214 prev_disk = template_disk; 1215 } 1216 1217 return template_disk; 1218 1219 no_integrity: 1220 if (prev_disk) 1221 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1222 dm_device_name(t->md), 1223 prev_disk->disk_name, 1224 template_disk->disk_name); 1225 return NULL; 1226 } 1227 1228 /* 1229 * Register the mapped device for blk_integrity support if the 1230 * underlying devices have an integrity profile. But all devices may 1231 * not have matching profiles (checking all devices isn't reliable 1232 * during table load because this table may use other DM device(s) which 1233 * must be resumed before they will have an initialized integity 1234 * profile). Consequently, stacked DM devices force a 2 stage integrity 1235 * profile validation: First pass during table load, final pass during 1236 * resume. 1237 */ 1238 static int dm_table_register_integrity(struct dm_table *t) 1239 { 1240 struct mapped_device *md = t->md; 1241 struct gendisk *template_disk = NULL; 1242 1243 /* If target handles integrity itself do not register it here. */ 1244 if (t->integrity_added) 1245 return 0; 1246 1247 template_disk = dm_table_get_integrity_disk(t); 1248 if (!template_disk) 1249 return 0; 1250 1251 if (!integrity_profile_exists(dm_disk(md))) { 1252 t->integrity_supported = true; 1253 /* 1254 * Register integrity profile during table load; we can do 1255 * this because the final profile must match during resume. 1256 */ 1257 blk_integrity_register(dm_disk(md), 1258 blk_get_integrity(template_disk)); 1259 return 0; 1260 } 1261 1262 /* 1263 * If DM device already has an initialized integrity 1264 * profile the new profile should not conflict. 1265 */ 1266 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1267 DMWARN("%s: conflict with existing integrity profile: " 1268 "%s profile mismatch", 1269 dm_device_name(t->md), 1270 template_disk->disk_name); 1271 return 1; 1272 } 1273 1274 /* Preserve existing integrity profile */ 1275 t->integrity_supported = true; 1276 return 0; 1277 } 1278 1279 /* 1280 * Prepares the table for use by building the indices, 1281 * setting the type, and allocating mempools. 1282 */ 1283 int dm_table_complete(struct dm_table *t) 1284 { 1285 int r; 1286 1287 r = dm_table_determine_type(t); 1288 if (r) { 1289 DMERR("unable to determine table type"); 1290 return r; 1291 } 1292 1293 r = dm_table_build_index(t); 1294 if (r) { 1295 DMERR("unable to build btrees"); 1296 return r; 1297 } 1298 1299 r = dm_table_register_integrity(t); 1300 if (r) { 1301 DMERR("could not register integrity profile."); 1302 return r; 1303 } 1304 1305 r = dm_table_alloc_md_mempools(t, t->md); 1306 if (r) 1307 DMERR("unable to allocate mempools"); 1308 1309 return r; 1310 } 1311 1312 static DEFINE_MUTEX(_event_lock); 1313 void dm_table_event_callback(struct dm_table *t, 1314 void (*fn)(void *), void *context) 1315 { 1316 mutex_lock(&_event_lock); 1317 t->event_fn = fn; 1318 t->event_context = context; 1319 mutex_unlock(&_event_lock); 1320 } 1321 1322 void dm_table_event(struct dm_table *t) 1323 { 1324 /* 1325 * You can no longer call dm_table_event() from interrupt 1326 * context, use a bottom half instead. 1327 */ 1328 BUG_ON(in_interrupt()); 1329 1330 mutex_lock(&_event_lock); 1331 if (t->event_fn) 1332 t->event_fn(t->event_context); 1333 mutex_unlock(&_event_lock); 1334 } 1335 EXPORT_SYMBOL(dm_table_event); 1336 1337 sector_t dm_table_get_size(struct dm_table *t) 1338 { 1339 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1340 } 1341 EXPORT_SYMBOL(dm_table_get_size); 1342 1343 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1344 { 1345 if (index >= t->num_targets) 1346 return NULL; 1347 1348 return t->targets + index; 1349 } 1350 1351 /* 1352 * Search the btree for the correct target. 1353 * 1354 * Caller should check returned pointer with dm_target_is_valid() 1355 * to trap I/O beyond end of device. 1356 */ 1357 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1358 { 1359 unsigned int l, n = 0, k = 0; 1360 sector_t *node; 1361 1362 for (l = 0; l < t->depth; l++) { 1363 n = get_child(n, k); 1364 node = get_node(t, l, n); 1365 1366 for (k = 0; k < KEYS_PER_NODE; k++) 1367 if (node[k] >= sector) 1368 break; 1369 } 1370 1371 return &t->targets[(KEYS_PER_NODE * n) + k]; 1372 } 1373 1374 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1375 sector_t start, sector_t len, void *data) 1376 { 1377 unsigned *num_devices = data; 1378 1379 (*num_devices)++; 1380 1381 return 0; 1382 } 1383 1384 /* 1385 * Check whether a table has no data devices attached using each 1386 * target's iterate_devices method. 1387 * Returns false if the result is unknown because a target doesn't 1388 * support iterate_devices. 1389 */ 1390 bool dm_table_has_no_data_devices(struct dm_table *table) 1391 { 1392 struct dm_target *ti; 1393 unsigned i, num_devices; 1394 1395 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1396 ti = dm_table_get_target(table, i); 1397 1398 if (!ti->type->iterate_devices) 1399 return false; 1400 1401 num_devices = 0; 1402 ti->type->iterate_devices(ti, count_device, &num_devices); 1403 if (num_devices) 1404 return false; 1405 } 1406 1407 return true; 1408 } 1409 1410 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1411 sector_t start, sector_t len, void *data) 1412 { 1413 struct request_queue *q = bdev_get_queue(dev->bdev); 1414 enum blk_zoned_model *zoned_model = data; 1415 1416 return q && blk_queue_zoned_model(q) == *zoned_model; 1417 } 1418 1419 static bool dm_table_supports_zoned_model(struct dm_table *t, 1420 enum blk_zoned_model zoned_model) 1421 { 1422 struct dm_target *ti; 1423 unsigned i; 1424 1425 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1426 ti = dm_table_get_target(t, i); 1427 1428 if (zoned_model == BLK_ZONED_HM && 1429 !dm_target_supports_zoned_hm(ti->type)) 1430 return false; 1431 1432 if (!ti->type->iterate_devices || 1433 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1434 return false; 1435 } 1436 1437 return true; 1438 } 1439 1440 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1441 sector_t start, sector_t len, void *data) 1442 { 1443 struct request_queue *q = bdev_get_queue(dev->bdev); 1444 unsigned int *zone_sectors = data; 1445 1446 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1447 } 1448 1449 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1450 unsigned int zone_sectors) 1451 { 1452 struct dm_target *ti; 1453 unsigned i; 1454 1455 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1456 ti = dm_table_get_target(t, i); 1457 1458 if (!ti->type->iterate_devices || 1459 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1460 return false; 1461 } 1462 1463 return true; 1464 } 1465 1466 static int validate_hardware_zoned_model(struct dm_table *table, 1467 enum blk_zoned_model zoned_model, 1468 unsigned int zone_sectors) 1469 { 1470 if (zoned_model == BLK_ZONED_NONE) 1471 return 0; 1472 1473 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1474 DMERR("%s: zoned model is not consistent across all devices", 1475 dm_device_name(table->md)); 1476 return -EINVAL; 1477 } 1478 1479 /* Check zone size validity and compatibility */ 1480 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1481 return -EINVAL; 1482 1483 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1484 DMERR("%s: zone sectors is not consistent across all devices", 1485 dm_device_name(table->md)); 1486 return -EINVAL; 1487 } 1488 1489 return 0; 1490 } 1491 1492 /* 1493 * Establish the new table's queue_limits and validate them. 1494 */ 1495 int dm_calculate_queue_limits(struct dm_table *table, 1496 struct queue_limits *limits) 1497 { 1498 struct dm_target *ti; 1499 struct queue_limits ti_limits; 1500 unsigned i; 1501 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1502 unsigned int zone_sectors = 0; 1503 1504 blk_set_stacking_limits(limits); 1505 1506 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1507 blk_set_stacking_limits(&ti_limits); 1508 1509 ti = dm_table_get_target(table, i); 1510 1511 if (!ti->type->iterate_devices) 1512 goto combine_limits; 1513 1514 /* 1515 * Combine queue limits of all the devices this target uses. 1516 */ 1517 ti->type->iterate_devices(ti, dm_set_device_limits, 1518 &ti_limits); 1519 1520 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1521 /* 1522 * After stacking all limits, validate all devices 1523 * in table support this zoned model and zone sectors. 1524 */ 1525 zoned_model = ti_limits.zoned; 1526 zone_sectors = ti_limits.chunk_sectors; 1527 } 1528 1529 /* Set I/O hints portion of queue limits */ 1530 if (ti->type->io_hints) 1531 ti->type->io_hints(ti, &ti_limits); 1532 1533 /* 1534 * Check each device area is consistent with the target's 1535 * overall queue limits. 1536 */ 1537 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1538 &ti_limits)) 1539 return -EINVAL; 1540 1541 combine_limits: 1542 /* 1543 * Merge this target's queue limits into the overall limits 1544 * for the table. 1545 */ 1546 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1547 DMWARN("%s: adding target device " 1548 "(start sect %llu len %llu) " 1549 "caused an alignment inconsistency", 1550 dm_device_name(table->md), 1551 (unsigned long long) ti->begin, 1552 (unsigned long long) ti->len); 1553 1554 /* 1555 * FIXME: this should likely be moved to blk_stack_limits(), would 1556 * also eliminate limits->zoned stacking hack in dm_set_device_limits() 1557 */ 1558 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1559 /* 1560 * By default, the stacked limits zoned model is set to 1561 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update 1562 * this model using the first target model reported 1563 * that is not BLK_ZONED_NONE. This will be either the 1564 * first target device zoned model or the model reported 1565 * by the target .io_hints. 1566 */ 1567 limits->zoned = ti_limits.zoned; 1568 } 1569 } 1570 1571 /* 1572 * Verify that the zoned model and zone sectors, as determined before 1573 * any .io_hints override, are the same across all devices in the table. 1574 * - this is especially relevant if .io_hints is emulating a disk-managed 1575 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1576 * BUT... 1577 */ 1578 if (limits->zoned != BLK_ZONED_NONE) { 1579 /* 1580 * ...IF the above limits stacking determined a zoned model 1581 * validate that all of the table's devices conform to it. 1582 */ 1583 zoned_model = limits->zoned; 1584 zone_sectors = limits->chunk_sectors; 1585 } 1586 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1587 return -EINVAL; 1588 1589 return validate_hardware_logical_block_alignment(table, limits); 1590 } 1591 1592 /* 1593 * Verify that all devices have an integrity profile that matches the 1594 * DM device's registered integrity profile. If the profiles don't 1595 * match then unregister the DM device's integrity profile. 1596 */ 1597 static void dm_table_verify_integrity(struct dm_table *t) 1598 { 1599 struct gendisk *template_disk = NULL; 1600 1601 if (t->integrity_added) 1602 return; 1603 1604 if (t->integrity_supported) { 1605 /* 1606 * Verify that the original integrity profile 1607 * matches all the devices in this table. 1608 */ 1609 template_disk = dm_table_get_integrity_disk(t); 1610 if (template_disk && 1611 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1612 return; 1613 } 1614 1615 if (integrity_profile_exists(dm_disk(t->md))) { 1616 DMWARN("%s: unable to establish an integrity profile", 1617 dm_device_name(t->md)); 1618 blk_integrity_unregister(dm_disk(t->md)); 1619 } 1620 } 1621 1622 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1623 sector_t start, sector_t len, void *data) 1624 { 1625 unsigned long flush = (unsigned long) data; 1626 struct request_queue *q = bdev_get_queue(dev->bdev); 1627 1628 return q && (q->queue_flags & flush); 1629 } 1630 1631 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1632 { 1633 struct dm_target *ti; 1634 unsigned i; 1635 1636 /* 1637 * Require at least one underlying device to support flushes. 1638 * t->devices includes internal dm devices such as mirror logs 1639 * so we need to use iterate_devices here, which targets 1640 * supporting flushes must provide. 1641 */ 1642 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1643 ti = dm_table_get_target(t, i); 1644 1645 if (!ti->num_flush_bios) 1646 continue; 1647 1648 if (ti->flush_supported) 1649 return true; 1650 1651 if (ti->type->iterate_devices && 1652 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1653 return true; 1654 } 1655 1656 return false; 1657 } 1658 1659 static int device_dax_write_cache_enabled(struct dm_target *ti, 1660 struct dm_dev *dev, sector_t start, 1661 sector_t len, void *data) 1662 { 1663 struct dax_device *dax_dev = dev->dax_dev; 1664 1665 if (!dax_dev) 1666 return false; 1667 1668 if (dax_write_cache_enabled(dax_dev)) 1669 return true; 1670 return false; 1671 } 1672 1673 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1674 { 1675 struct dm_target *ti; 1676 unsigned i; 1677 1678 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1679 ti = dm_table_get_target(t, i); 1680 1681 if (ti->type->iterate_devices && 1682 ti->type->iterate_devices(ti, 1683 device_dax_write_cache_enabled, NULL)) 1684 return true; 1685 } 1686 1687 return false; 1688 } 1689 1690 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1691 sector_t start, sector_t len, void *data) 1692 { 1693 struct request_queue *q = bdev_get_queue(dev->bdev); 1694 1695 return q && blk_queue_nonrot(q); 1696 } 1697 1698 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1699 sector_t start, sector_t len, void *data) 1700 { 1701 struct request_queue *q = bdev_get_queue(dev->bdev); 1702 1703 return q && !blk_queue_add_random(q); 1704 } 1705 1706 static bool dm_table_all_devices_attribute(struct dm_table *t, 1707 iterate_devices_callout_fn func) 1708 { 1709 struct dm_target *ti; 1710 unsigned i; 1711 1712 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1713 ti = dm_table_get_target(t, i); 1714 1715 if (!ti->type->iterate_devices || 1716 !ti->type->iterate_devices(ti, func, NULL)) 1717 return false; 1718 } 1719 1720 return true; 1721 } 1722 1723 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev, 1724 sector_t start, sector_t len, void *data) 1725 { 1726 char b[BDEVNAME_SIZE]; 1727 1728 /* For now, NVMe devices are the only devices of this class */ 1729 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0); 1730 } 1731 1732 static bool dm_table_does_not_support_partial_completion(struct dm_table *t) 1733 { 1734 return dm_table_all_devices_attribute(t, device_no_partial_completion); 1735 } 1736 1737 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1738 sector_t start, sector_t len, void *data) 1739 { 1740 struct request_queue *q = bdev_get_queue(dev->bdev); 1741 1742 return q && !q->limits.max_write_same_sectors; 1743 } 1744 1745 static bool dm_table_supports_write_same(struct dm_table *t) 1746 { 1747 struct dm_target *ti; 1748 unsigned i; 1749 1750 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1751 ti = dm_table_get_target(t, i); 1752 1753 if (!ti->num_write_same_bios) 1754 return false; 1755 1756 if (!ti->type->iterate_devices || 1757 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1758 return false; 1759 } 1760 1761 return true; 1762 } 1763 1764 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1765 sector_t start, sector_t len, void *data) 1766 { 1767 struct request_queue *q = bdev_get_queue(dev->bdev); 1768 1769 return q && !q->limits.max_write_zeroes_sectors; 1770 } 1771 1772 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1773 { 1774 struct dm_target *ti; 1775 unsigned i = 0; 1776 1777 while (i < dm_table_get_num_targets(t)) { 1778 ti = dm_table_get_target(t, i++); 1779 1780 if (!ti->num_write_zeroes_bios) 1781 return false; 1782 1783 if (!ti->type->iterate_devices || 1784 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1785 return false; 1786 } 1787 1788 return true; 1789 } 1790 1791 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1792 sector_t start, sector_t len, void *data) 1793 { 1794 struct request_queue *q = bdev_get_queue(dev->bdev); 1795 1796 return q && !blk_queue_discard(q); 1797 } 1798 1799 static bool dm_table_supports_discards(struct dm_table *t) 1800 { 1801 struct dm_target *ti; 1802 unsigned i; 1803 1804 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1805 ti = dm_table_get_target(t, i); 1806 1807 if (!ti->num_discard_bios) 1808 return false; 1809 1810 /* 1811 * Either the target provides discard support (as implied by setting 1812 * 'discards_supported') or it relies on _all_ data devices having 1813 * discard support. 1814 */ 1815 if (!ti->discards_supported && 1816 (!ti->type->iterate_devices || 1817 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1818 return false; 1819 } 1820 1821 return true; 1822 } 1823 1824 static int device_not_secure_erase_capable(struct dm_target *ti, 1825 struct dm_dev *dev, sector_t start, 1826 sector_t len, void *data) 1827 { 1828 struct request_queue *q = bdev_get_queue(dev->bdev); 1829 1830 return q && !blk_queue_secure_erase(q); 1831 } 1832 1833 static bool dm_table_supports_secure_erase(struct dm_table *t) 1834 { 1835 struct dm_target *ti; 1836 unsigned int i; 1837 1838 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1839 ti = dm_table_get_target(t, i); 1840 1841 if (!ti->num_secure_erase_bios) 1842 return false; 1843 1844 if (!ti->type->iterate_devices || 1845 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1846 return false; 1847 } 1848 1849 return true; 1850 } 1851 1852 static int device_requires_stable_pages(struct dm_target *ti, 1853 struct dm_dev *dev, sector_t start, 1854 sector_t len, void *data) 1855 { 1856 struct request_queue *q = bdev_get_queue(dev->bdev); 1857 1858 return q && bdi_cap_stable_pages_required(q->backing_dev_info); 1859 } 1860 1861 /* 1862 * If any underlying device requires stable pages, a table must require 1863 * them as well. Only targets that support iterate_devices are considered: 1864 * don't want error, zero, etc to require stable pages. 1865 */ 1866 static bool dm_table_requires_stable_pages(struct dm_table *t) 1867 { 1868 struct dm_target *ti; 1869 unsigned i; 1870 1871 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1872 ti = dm_table_get_target(t, i); 1873 1874 if (ti->type->iterate_devices && 1875 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL)) 1876 return true; 1877 } 1878 1879 return false; 1880 } 1881 1882 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1883 struct queue_limits *limits) 1884 { 1885 bool wc = false, fua = false; 1886 1887 /* 1888 * Copy table's limits to the DM device's request_queue 1889 */ 1890 q->limits = *limits; 1891 1892 if (!dm_table_supports_discards(t)) { 1893 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1894 /* Must also clear discard limits... */ 1895 q->limits.max_discard_sectors = 0; 1896 q->limits.max_hw_discard_sectors = 0; 1897 q->limits.discard_granularity = 0; 1898 q->limits.discard_alignment = 0; 1899 q->limits.discard_misaligned = 0; 1900 } else 1901 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1902 1903 if (dm_table_supports_secure_erase(t)) 1904 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1905 1906 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1907 wc = true; 1908 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1909 fua = true; 1910 } 1911 blk_queue_write_cache(q, wc, fua); 1912 1913 if (dm_table_supports_dax(t, PAGE_SIZE)) 1914 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1915 else 1916 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1917 1918 if (dm_table_supports_dax_write_cache(t)) 1919 dax_write_cache(t->md->dax_dev, true); 1920 1921 /* Ensure that all underlying devices are non-rotational. */ 1922 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1923 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1924 else 1925 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1926 1927 if (!dm_table_supports_write_same(t)) 1928 q->limits.max_write_same_sectors = 0; 1929 if (!dm_table_supports_write_zeroes(t)) 1930 q->limits.max_write_zeroes_sectors = 0; 1931 1932 dm_table_verify_integrity(t); 1933 1934 /* 1935 * Some devices don't use blk_integrity but still want stable pages 1936 * because they do their own checksumming. 1937 */ 1938 if (dm_table_requires_stable_pages(t)) 1939 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 1940 else 1941 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES; 1942 1943 /* 1944 * Determine whether or not this queue's I/O timings contribute 1945 * to the entropy pool, Only request-based targets use this. 1946 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1947 * have it set. 1948 */ 1949 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1950 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1951 1952 /* 1953 * For a zoned target, the number of zones should be updated for the 1954 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based 1955 * target, this is all that is needed. For a request based target, the 1956 * queue zone bitmaps must also be updated. 1957 * Use blk_revalidate_disk_zones() to handle this. 1958 */ 1959 if (blk_queue_is_zoned(q)) 1960 blk_revalidate_disk_zones(t->md->disk); 1961 1962 /* Allow reads to exceed readahead limits */ 1963 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9); 1964 } 1965 1966 unsigned int dm_table_get_num_targets(struct dm_table *t) 1967 { 1968 return t->num_targets; 1969 } 1970 1971 struct list_head *dm_table_get_devices(struct dm_table *t) 1972 { 1973 return &t->devices; 1974 } 1975 1976 fmode_t dm_table_get_mode(struct dm_table *t) 1977 { 1978 return t->mode; 1979 } 1980 EXPORT_SYMBOL(dm_table_get_mode); 1981 1982 enum suspend_mode { 1983 PRESUSPEND, 1984 PRESUSPEND_UNDO, 1985 POSTSUSPEND, 1986 }; 1987 1988 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1989 { 1990 int i = t->num_targets; 1991 struct dm_target *ti = t->targets; 1992 1993 lockdep_assert_held(&t->md->suspend_lock); 1994 1995 while (i--) { 1996 switch (mode) { 1997 case PRESUSPEND: 1998 if (ti->type->presuspend) 1999 ti->type->presuspend(ti); 2000 break; 2001 case PRESUSPEND_UNDO: 2002 if (ti->type->presuspend_undo) 2003 ti->type->presuspend_undo(ti); 2004 break; 2005 case POSTSUSPEND: 2006 if (ti->type->postsuspend) 2007 ti->type->postsuspend(ti); 2008 break; 2009 } 2010 ti++; 2011 } 2012 } 2013 2014 void dm_table_presuspend_targets(struct dm_table *t) 2015 { 2016 if (!t) 2017 return; 2018 2019 suspend_targets(t, PRESUSPEND); 2020 } 2021 2022 void dm_table_presuspend_undo_targets(struct dm_table *t) 2023 { 2024 if (!t) 2025 return; 2026 2027 suspend_targets(t, PRESUSPEND_UNDO); 2028 } 2029 2030 void dm_table_postsuspend_targets(struct dm_table *t) 2031 { 2032 if (!t) 2033 return; 2034 2035 suspend_targets(t, POSTSUSPEND); 2036 } 2037 2038 int dm_table_resume_targets(struct dm_table *t) 2039 { 2040 int i, r = 0; 2041 2042 lockdep_assert_held(&t->md->suspend_lock); 2043 2044 for (i = 0; i < t->num_targets; i++) { 2045 struct dm_target *ti = t->targets + i; 2046 2047 if (!ti->type->preresume) 2048 continue; 2049 2050 r = ti->type->preresume(ti); 2051 if (r) { 2052 DMERR("%s: %s: preresume failed, error = %d", 2053 dm_device_name(t->md), ti->type->name, r); 2054 return r; 2055 } 2056 } 2057 2058 for (i = 0; i < t->num_targets; i++) { 2059 struct dm_target *ti = t->targets + i; 2060 2061 if (ti->type->resume) 2062 ti->type->resume(ti); 2063 } 2064 2065 return 0; 2066 } 2067 2068 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 2069 { 2070 list_add(&cb->list, &t->target_callbacks); 2071 } 2072 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 2073 2074 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 2075 { 2076 struct dm_dev_internal *dd; 2077 struct list_head *devices = dm_table_get_devices(t); 2078 struct dm_target_callbacks *cb; 2079 int r = 0; 2080 2081 list_for_each_entry(dd, devices, list) { 2082 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 2083 char b[BDEVNAME_SIZE]; 2084 2085 if (likely(q)) 2086 r |= bdi_congested(q->backing_dev_info, bdi_bits); 2087 else 2088 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 2089 dm_device_name(t->md), 2090 bdevname(dd->dm_dev->bdev, b)); 2091 } 2092 2093 list_for_each_entry(cb, &t->target_callbacks, list) 2094 if (cb->congested_fn) 2095 r |= cb->congested_fn(cb, bdi_bits); 2096 2097 return r; 2098 } 2099 2100 struct mapped_device *dm_table_get_md(struct dm_table *t) 2101 { 2102 return t->md; 2103 } 2104 EXPORT_SYMBOL(dm_table_get_md); 2105 2106 const char *dm_table_device_name(struct dm_table *t) 2107 { 2108 return dm_device_name(t->md); 2109 } 2110 EXPORT_SYMBOL_GPL(dm_table_device_name); 2111 2112 void dm_table_run_md_queue_async(struct dm_table *t) 2113 { 2114 struct mapped_device *md; 2115 struct request_queue *queue; 2116 2117 if (!dm_table_request_based(t)) 2118 return; 2119 2120 md = dm_table_get_md(t); 2121 queue = dm_get_md_queue(md); 2122 if (queue) 2123 blk_mq_run_hw_queues(queue, true); 2124 } 2125 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2126 2127