xref: /linux/drivers/md/dm-table.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
19 
20 #define DM_MSG_PREFIX "table"
21 
22 #define MAX_DEPTH 16
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
26 
27 struct dm_table {
28 	struct mapped_device *md;
29 	atomic_t holders;
30 
31 	/* btree table */
32 	unsigned int depth;
33 	unsigned int counts[MAX_DEPTH];	/* in nodes */
34 	sector_t *index[MAX_DEPTH];
35 
36 	unsigned int num_targets;
37 	unsigned int num_allocated;
38 	sector_t *highs;
39 	struct dm_target *targets;
40 
41 	/*
42 	 * Indicates the rw permissions for the new logical
43 	 * device.  This should be a combination of FMODE_READ
44 	 * and FMODE_WRITE.
45 	 */
46 	int mode;
47 
48 	/* a list of devices used by this table */
49 	struct list_head devices;
50 
51 	/*
52 	 * These are optimistic limits taken from all the
53 	 * targets, some targets will need smaller limits.
54 	 */
55 	struct io_restrictions limits;
56 
57 	/* events get handed up using this callback */
58 	void (*event_fn)(void *);
59 	void *event_context;
60 };
61 
62 /*
63  * Similar to ceiling(log_size(n))
64  */
65 static unsigned int int_log(unsigned int n, unsigned int base)
66 {
67 	int result = 0;
68 
69 	while (n > 1) {
70 		n = dm_div_up(n, base);
71 		result++;
72 	}
73 
74 	return result;
75 }
76 
77 /*
78  * Returns the minimum that is _not_ zero, unless both are zero.
79  */
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
81 
82 /*
83  * Combine two io_restrictions, always taking the lower value.
84  */
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 				     struct io_restrictions *rhs)
87 {
88 	lhs->max_sectors =
89 		min_not_zero(lhs->max_sectors, rhs->max_sectors);
90 
91 	lhs->max_phys_segments =
92 		min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
93 
94 	lhs->max_hw_segments =
95 		min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
96 
97 	lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
98 
99 	lhs->max_segment_size =
100 		min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
101 
102 	lhs->seg_boundary_mask =
103 		min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
104 
105 	lhs->no_cluster |= rhs->no_cluster;
106 }
107 
108 /*
109  * Calculate the index of the child node of the n'th node k'th key.
110  */
111 static inline unsigned int get_child(unsigned int n, unsigned int k)
112 {
113 	return (n * CHILDREN_PER_NODE) + k;
114 }
115 
116 /*
117  * Return the n'th node of level l from table t.
118  */
119 static inline sector_t *get_node(struct dm_table *t,
120 				 unsigned int l, unsigned int n)
121 {
122 	return t->index[l] + (n * KEYS_PER_NODE);
123 }
124 
125 /*
126  * Return the highest key that you could lookup from the n'th
127  * node on level l of the btree.
128  */
129 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
130 {
131 	for (; l < t->depth - 1; l++)
132 		n = get_child(n, CHILDREN_PER_NODE - 1);
133 
134 	if (n >= t->counts[l])
135 		return (sector_t) - 1;
136 
137 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
138 }
139 
140 /*
141  * Fills in a level of the btree based on the highs of the level
142  * below it.
143  */
144 static int setup_btree_index(unsigned int l, struct dm_table *t)
145 {
146 	unsigned int n, k;
147 	sector_t *node;
148 
149 	for (n = 0U; n < t->counts[l]; n++) {
150 		node = get_node(t, l, n);
151 
152 		for (k = 0U; k < KEYS_PER_NODE; k++)
153 			node[k] = high(t, l + 1, get_child(n, k));
154 	}
155 
156 	return 0;
157 }
158 
159 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
160 {
161 	unsigned long size;
162 	void *addr;
163 
164 	/*
165 	 * Check that we're not going to overflow.
166 	 */
167 	if (nmemb > (ULONG_MAX / elem_size))
168 		return NULL;
169 
170 	size = nmemb * elem_size;
171 	addr = vmalloc(size);
172 	if (addr)
173 		memset(addr, 0, size);
174 
175 	return addr;
176 }
177 
178 /*
179  * highs, and targets are managed as dynamic arrays during a
180  * table load.
181  */
182 static int alloc_targets(struct dm_table *t, unsigned int num)
183 {
184 	sector_t *n_highs;
185 	struct dm_target *n_targets;
186 	int n = t->num_targets;
187 
188 	/*
189 	 * Allocate both the target array and offset array at once.
190 	 */
191 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
192 					  sizeof(sector_t));
193 	if (!n_highs)
194 		return -ENOMEM;
195 
196 	n_targets = (struct dm_target *) (n_highs + num);
197 
198 	if (n) {
199 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
200 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
201 	}
202 
203 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
204 	vfree(t->highs);
205 
206 	t->num_allocated = num;
207 	t->highs = n_highs;
208 	t->targets = n_targets;
209 
210 	return 0;
211 }
212 
213 int dm_table_create(struct dm_table **result, int mode,
214 		    unsigned num_targets, struct mapped_device *md)
215 {
216 	struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
217 
218 	if (!t)
219 		return -ENOMEM;
220 
221 	memset(t, 0, sizeof(*t));
222 	INIT_LIST_HEAD(&t->devices);
223 	atomic_set(&t->holders, 1);
224 
225 	if (!num_targets)
226 		num_targets = KEYS_PER_NODE;
227 
228 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
229 
230 	if (alloc_targets(t, num_targets)) {
231 		kfree(t);
232 		t = NULL;
233 		return -ENOMEM;
234 	}
235 
236 	t->mode = mode;
237 	t->md = md;
238 	*result = t;
239 	return 0;
240 }
241 
242 int dm_create_error_table(struct dm_table **result, struct mapped_device *md)
243 {
244 	struct dm_table *t;
245 	sector_t dev_size = 1;
246 	int r;
247 
248 	/*
249 	 * Find current size of device.
250 	 * Default to 1 sector if inactive.
251 	 */
252 	t = dm_get_table(md);
253 	if (t) {
254 		dev_size = dm_table_get_size(t);
255 		dm_table_put(t);
256 	}
257 
258 	r = dm_table_create(&t, FMODE_READ, 1, md);
259 	if (r)
260 		return r;
261 
262 	r = dm_table_add_target(t, "error", 0, dev_size, NULL);
263 	if (r)
264 		goto out;
265 
266 	r = dm_table_complete(t);
267 	if (r)
268 		goto out;
269 
270 	*result = t;
271 
272 out:
273 	if (r)
274 		dm_table_put(t);
275 
276 	return r;
277 }
278 EXPORT_SYMBOL_GPL(dm_create_error_table);
279 
280 static void free_devices(struct list_head *devices)
281 {
282 	struct list_head *tmp, *next;
283 
284 	for (tmp = devices->next; tmp != devices; tmp = next) {
285 		struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
286 		next = tmp->next;
287 		kfree(dd);
288 	}
289 }
290 
291 static void table_destroy(struct dm_table *t)
292 {
293 	unsigned int i;
294 
295 	/* free the indexes (see dm_table_complete) */
296 	if (t->depth >= 2)
297 		vfree(t->index[t->depth - 2]);
298 
299 	/* free the targets */
300 	for (i = 0; i < t->num_targets; i++) {
301 		struct dm_target *tgt = t->targets + i;
302 
303 		if (tgt->type->dtr)
304 			tgt->type->dtr(tgt);
305 
306 		dm_put_target_type(tgt->type);
307 	}
308 
309 	vfree(t->highs);
310 
311 	/* free the device list */
312 	if (t->devices.next != &t->devices) {
313 		DMWARN("devices still present during destroy: "
314 		       "dm_table_remove_device calls missing");
315 
316 		free_devices(&t->devices);
317 	}
318 
319 	kfree(t);
320 }
321 
322 void dm_table_get(struct dm_table *t)
323 {
324 	atomic_inc(&t->holders);
325 }
326 
327 void dm_table_put(struct dm_table *t)
328 {
329 	if (!t)
330 		return;
331 
332 	if (atomic_dec_and_test(&t->holders))
333 		table_destroy(t);
334 }
335 
336 /*
337  * Checks to see if we need to extend highs or targets.
338  */
339 static inline int check_space(struct dm_table *t)
340 {
341 	if (t->num_targets >= t->num_allocated)
342 		return alloc_targets(t, t->num_allocated * 2);
343 
344 	return 0;
345 }
346 
347 /*
348  * Convert a device path to a dev_t.
349  */
350 static int lookup_device(const char *path, dev_t *dev)
351 {
352 	int r;
353 	struct nameidata nd;
354 	struct inode *inode;
355 
356 	if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
357 		return r;
358 
359 	inode = nd.dentry->d_inode;
360 	if (!inode) {
361 		r = -ENOENT;
362 		goto out;
363 	}
364 
365 	if (!S_ISBLK(inode->i_mode)) {
366 		r = -ENOTBLK;
367 		goto out;
368 	}
369 
370 	*dev = inode->i_rdev;
371 
372  out:
373 	path_release(&nd);
374 	return r;
375 }
376 
377 /*
378  * See if we've already got a device in the list.
379  */
380 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
381 {
382 	struct dm_dev *dd;
383 
384 	list_for_each_entry (dd, l, list)
385 		if (dd->bdev->bd_dev == dev)
386 			return dd;
387 
388 	return NULL;
389 }
390 
391 /*
392  * Open a device so we can use it as a map destination.
393  */
394 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
395 {
396 	static char *_claim_ptr = "I belong to device-mapper";
397 	struct block_device *bdev;
398 
399 	int r;
400 
401 	BUG_ON(d->bdev);
402 
403 	bdev = open_by_devnum(dev, d->mode);
404 	if (IS_ERR(bdev))
405 		return PTR_ERR(bdev);
406 	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
407 	if (r)
408 		blkdev_put(bdev);
409 	else
410 		d->bdev = bdev;
411 	return r;
412 }
413 
414 /*
415  * Close a device that we've been using.
416  */
417 static void close_dev(struct dm_dev *d, struct mapped_device *md)
418 {
419 	if (!d->bdev)
420 		return;
421 
422 	bd_release_from_disk(d->bdev, dm_disk(md));
423 	blkdev_put(d->bdev);
424 	d->bdev = NULL;
425 }
426 
427 /*
428  * If possible (ie. blk_size[major] is set), this checks an area
429  * of a destination device is valid.
430  */
431 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
432 {
433 	sector_t dev_size;
434 	dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
435 	return ((start < dev_size) && (len <= (dev_size - start)));
436 }
437 
438 /*
439  * This upgrades the mode on an already open dm_dev.  Being
440  * careful to leave things as they were if we fail to reopen the
441  * device.
442  */
443 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
444 {
445 	int r;
446 	struct dm_dev dd_copy;
447 	dev_t dev = dd->bdev->bd_dev;
448 
449 	dd_copy = *dd;
450 
451 	dd->mode |= new_mode;
452 	dd->bdev = NULL;
453 	r = open_dev(dd, dev, md);
454 	if (!r)
455 		close_dev(&dd_copy, md);
456 	else
457 		*dd = dd_copy;
458 
459 	return r;
460 }
461 
462 /*
463  * Add a device to the list, or just increment the usage count if
464  * it's already present.
465  */
466 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
467 			      const char *path, sector_t start, sector_t len,
468 			      int mode, struct dm_dev **result)
469 {
470 	int r;
471 	dev_t dev;
472 	struct dm_dev *dd;
473 	unsigned int major, minor;
474 
475 	BUG_ON(!t);
476 
477 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
478 		/* Extract the major/minor numbers */
479 		dev = MKDEV(major, minor);
480 		if (MAJOR(dev) != major || MINOR(dev) != minor)
481 			return -EOVERFLOW;
482 	} else {
483 		/* convert the path to a device */
484 		if ((r = lookup_device(path, &dev)))
485 			return r;
486 	}
487 
488 	dd = find_device(&t->devices, dev);
489 	if (!dd) {
490 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
491 		if (!dd)
492 			return -ENOMEM;
493 
494 		dd->mode = mode;
495 		dd->bdev = NULL;
496 
497 		if ((r = open_dev(dd, dev, t->md))) {
498 			kfree(dd);
499 			return r;
500 		}
501 
502 		format_dev_t(dd->name, dev);
503 
504 		atomic_set(&dd->count, 0);
505 		list_add(&dd->list, &t->devices);
506 
507 	} else if (dd->mode != (mode | dd->mode)) {
508 		r = upgrade_mode(dd, mode, t->md);
509 		if (r)
510 			return r;
511 	}
512 	atomic_inc(&dd->count);
513 
514 	if (!check_device_area(dd, start, len)) {
515 		DMWARN("device %s too small for target", path);
516 		dm_put_device(ti, dd);
517 		return -EINVAL;
518 	}
519 
520 	*result = dd;
521 
522 	return 0;
523 }
524 
525 
526 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
527 		  sector_t len, int mode, struct dm_dev **result)
528 {
529 	int r = __table_get_device(ti->table, ti, path,
530 				   start, len, mode, result);
531 	if (!r) {
532 		request_queue_t *q = bdev_get_queue((*result)->bdev);
533 		struct io_restrictions *rs = &ti->limits;
534 
535 		/*
536 		 * Combine the device limits low.
537 		 *
538 		 * FIXME: if we move an io_restriction struct
539 		 *        into q this would just be a call to
540 		 *        combine_restrictions_low()
541 		 */
542 		rs->max_sectors =
543 			min_not_zero(rs->max_sectors, q->max_sectors);
544 
545 		/* FIXME: Device-Mapper on top of RAID-0 breaks because DM
546 		 *        currently doesn't honor MD's merge_bvec_fn routine.
547 		 *        In this case, we'll force DM to use PAGE_SIZE or
548 		 *        smaller I/O, just to be safe. A better fix is in the
549 		 *        works, but add this for the time being so it will at
550 		 *        least operate correctly.
551 		 */
552 		if (q->merge_bvec_fn)
553 			rs->max_sectors =
554 				min_not_zero(rs->max_sectors,
555 					     (unsigned int) (PAGE_SIZE >> 9));
556 
557 		rs->max_phys_segments =
558 			min_not_zero(rs->max_phys_segments,
559 				     q->max_phys_segments);
560 
561 		rs->max_hw_segments =
562 			min_not_zero(rs->max_hw_segments, q->max_hw_segments);
563 
564 		rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
565 
566 		rs->max_segment_size =
567 			min_not_zero(rs->max_segment_size, q->max_segment_size);
568 
569 		rs->seg_boundary_mask =
570 			min_not_zero(rs->seg_boundary_mask,
571 				     q->seg_boundary_mask);
572 
573 		rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
574 	}
575 
576 	return r;
577 }
578 
579 /*
580  * Decrement a devices use count and remove it if necessary.
581  */
582 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
583 {
584 	if (atomic_dec_and_test(&dd->count)) {
585 		close_dev(dd, ti->table->md);
586 		list_del(&dd->list);
587 		kfree(dd);
588 	}
589 }
590 
591 /*
592  * Checks to see if the target joins onto the end of the table.
593  */
594 static int adjoin(struct dm_table *table, struct dm_target *ti)
595 {
596 	struct dm_target *prev;
597 
598 	if (!table->num_targets)
599 		return !ti->begin;
600 
601 	prev = &table->targets[table->num_targets - 1];
602 	return (ti->begin == (prev->begin + prev->len));
603 }
604 
605 /*
606  * Used to dynamically allocate the arg array.
607  */
608 static char **realloc_argv(unsigned *array_size, char **old_argv)
609 {
610 	char **argv;
611 	unsigned new_size;
612 
613 	new_size = *array_size ? *array_size * 2 : 64;
614 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
615 	if (argv) {
616 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
617 		*array_size = new_size;
618 	}
619 
620 	kfree(old_argv);
621 	return argv;
622 }
623 
624 /*
625  * Destructively splits up the argument list to pass to ctr.
626  */
627 int dm_split_args(int *argc, char ***argvp, char *input)
628 {
629 	char *start, *end = input, *out, **argv = NULL;
630 	unsigned array_size = 0;
631 
632 	*argc = 0;
633 
634 	if (!input) {
635 		*argvp = NULL;
636 		return 0;
637 	}
638 
639 	argv = realloc_argv(&array_size, argv);
640 	if (!argv)
641 		return -ENOMEM;
642 
643 	while (1) {
644 		start = end;
645 
646 		/* Skip whitespace */
647 		while (*start && isspace(*start))
648 			start++;
649 
650 		if (!*start)
651 			break;	/* success, we hit the end */
652 
653 		/* 'out' is used to remove any back-quotes */
654 		end = out = start;
655 		while (*end) {
656 			/* Everything apart from '\0' can be quoted */
657 			if (*end == '\\' && *(end + 1)) {
658 				*out++ = *(end + 1);
659 				end += 2;
660 				continue;
661 			}
662 
663 			if (isspace(*end))
664 				break;	/* end of token */
665 
666 			*out++ = *end++;
667 		}
668 
669 		/* have we already filled the array ? */
670 		if ((*argc + 1) > array_size) {
671 			argv = realloc_argv(&array_size, argv);
672 			if (!argv)
673 				return -ENOMEM;
674 		}
675 
676 		/* we know this is whitespace */
677 		if (*end)
678 			end++;
679 
680 		/* terminate the string and put it in the array */
681 		*out = '\0';
682 		argv[*argc] = start;
683 		(*argc)++;
684 	}
685 
686 	*argvp = argv;
687 	return 0;
688 }
689 
690 static void check_for_valid_limits(struct io_restrictions *rs)
691 {
692 	if (!rs->max_sectors)
693 		rs->max_sectors = SAFE_MAX_SECTORS;
694 	if (!rs->max_phys_segments)
695 		rs->max_phys_segments = MAX_PHYS_SEGMENTS;
696 	if (!rs->max_hw_segments)
697 		rs->max_hw_segments = MAX_HW_SEGMENTS;
698 	if (!rs->hardsect_size)
699 		rs->hardsect_size = 1 << SECTOR_SHIFT;
700 	if (!rs->max_segment_size)
701 		rs->max_segment_size = MAX_SEGMENT_SIZE;
702 	if (!rs->seg_boundary_mask)
703 		rs->seg_boundary_mask = -1;
704 }
705 
706 int dm_table_add_target(struct dm_table *t, const char *type,
707 			sector_t start, sector_t len, char *params)
708 {
709 	int r = -EINVAL, argc;
710 	char **argv;
711 	struct dm_target *tgt;
712 
713 	if ((r = check_space(t)))
714 		return r;
715 
716 	tgt = t->targets + t->num_targets;
717 	memset(tgt, 0, sizeof(*tgt));
718 
719 	if (!len) {
720 		DMERR("%s: zero-length target", dm_device_name(t->md));
721 		return -EINVAL;
722 	}
723 
724 	tgt->type = dm_get_target_type(type);
725 	if (!tgt->type) {
726 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
727 		      type);
728 		return -EINVAL;
729 	}
730 
731 	tgt->table = t;
732 	tgt->begin = start;
733 	tgt->len = len;
734 	tgt->error = "Unknown error";
735 
736 	/*
737 	 * Does this target adjoin the previous one ?
738 	 */
739 	if (!adjoin(t, tgt)) {
740 		tgt->error = "Gap in table";
741 		r = -EINVAL;
742 		goto bad;
743 	}
744 
745 	r = dm_split_args(&argc, &argv, params);
746 	if (r) {
747 		tgt->error = "couldn't split parameters (insufficient memory)";
748 		goto bad;
749 	}
750 
751 	r = tgt->type->ctr(tgt, argc, argv);
752 	kfree(argv);
753 	if (r)
754 		goto bad;
755 
756 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
757 
758 	/* FIXME: the plan is to combine high here and then have
759 	 * the merge fn apply the target level restrictions. */
760 	combine_restrictions_low(&t->limits, &tgt->limits);
761 	return 0;
762 
763  bad:
764 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
765 	dm_put_target_type(tgt->type);
766 	return r;
767 }
768 
769 static int setup_indexes(struct dm_table *t)
770 {
771 	int i;
772 	unsigned int total = 0;
773 	sector_t *indexes;
774 
775 	/* allocate the space for *all* the indexes */
776 	for (i = t->depth - 2; i >= 0; i--) {
777 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
778 		total += t->counts[i];
779 	}
780 
781 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
782 	if (!indexes)
783 		return -ENOMEM;
784 
785 	/* set up internal nodes, bottom-up */
786 	for (i = t->depth - 2, total = 0; i >= 0; i--) {
787 		t->index[i] = indexes;
788 		indexes += (KEYS_PER_NODE * t->counts[i]);
789 		setup_btree_index(i, t);
790 	}
791 
792 	return 0;
793 }
794 
795 /*
796  * Builds the btree to index the map.
797  */
798 int dm_table_complete(struct dm_table *t)
799 {
800 	int r = 0;
801 	unsigned int leaf_nodes;
802 
803 	check_for_valid_limits(&t->limits);
804 
805 	/* how many indexes will the btree have ? */
806 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
807 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
808 
809 	/* leaf layer has already been set up */
810 	t->counts[t->depth - 1] = leaf_nodes;
811 	t->index[t->depth - 1] = t->highs;
812 
813 	if (t->depth >= 2)
814 		r = setup_indexes(t);
815 
816 	return r;
817 }
818 
819 static DEFINE_MUTEX(_event_lock);
820 void dm_table_event_callback(struct dm_table *t,
821 			     void (*fn)(void *), void *context)
822 {
823 	mutex_lock(&_event_lock);
824 	t->event_fn = fn;
825 	t->event_context = context;
826 	mutex_unlock(&_event_lock);
827 }
828 
829 void dm_table_event(struct dm_table *t)
830 {
831 	/*
832 	 * You can no longer call dm_table_event() from interrupt
833 	 * context, use a bottom half instead.
834 	 */
835 	BUG_ON(in_interrupt());
836 
837 	mutex_lock(&_event_lock);
838 	if (t->event_fn)
839 		t->event_fn(t->event_context);
840 	mutex_unlock(&_event_lock);
841 }
842 
843 sector_t dm_table_get_size(struct dm_table *t)
844 {
845 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
846 }
847 
848 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
849 {
850 	if (index >= t->num_targets)
851 		return NULL;
852 
853 	return t->targets + index;
854 }
855 
856 /*
857  * Search the btree for the correct target.
858  */
859 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
860 {
861 	unsigned int l, n = 0, k = 0;
862 	sector_t *node;
863 
864 	for (l = 0; l < t->depth; l++) {
865 		n = get_child(n, k);
866 		node = get_node(t, l, n);
867 
868 		for (k = 0; k < KEYS_PER_NODE; k++)
869 			if (node[k] >= sector)
870 				break;
871 	}
872 
873 	return &t->targets[(KEYS_PER_NODE * n) + k];
874 }
875 
876 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
877 {
878 	/*
879 	 * Make sure we obey the optimistic sub devices
880 	 * restrictions.
881 	 */
882 	blk_queue_max_sectors(q, t->limits.max_sectors);
883 	q->max_phys_segments = t->limits.max_phys_segments;
884 	q->max_hw_segments = t->limits.max_hw_segments;
885 	q->hardsect_size = t->limits.hardsect_size;
886 	q->max_segment_size = t->limits.max_segment_size;
887 	q->seg_boundary_mask = t->limits.seg_boundary_mask;
888 	if (t->limits.no_cluster)
889 		q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER);
890 	else
891 		q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER);
892 
893 }
894 
895 unsigned int dm_table_get_num_targets(struct dm_table *t)
896 {
897 	return t->num_targets;
898 }
899 
900 struct list_head *dm_table_get_devices(struct dm_table *t)
901 {
902 	return &t->devices;
903 }
904 
905 int dm_table_get_mode(struct dm_table *t)
906 {
907 	return t->mode;
908 }
909 
910 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
911 {
912 	int i = t->num_targets;
913 	struct dm_target *ti = t->targets;
914 
915 	while (i--) {
916 		if (postsuspend) {
917 			if (ti->type->postsuspend)
918 				ti->type->postsuspend(ti);
919 		} else if (ti->type->presuspend)
920 			ti->type->presuspend(ti);
921 
922 		ti++;
923 	}
924 }
925 
926 void dm_table_presuspend_targets(struct dm_table *t)
927 {
928 	if (!t)
929 		return;
930 
931 	return suspend_targets(t, 0);
932 }
933 
934 void dm_table_postsuspend_targets(struct dm_table *t)
935 {
936 	if (!t)
937 		return;
938 
939 	return suspend_targets(t, 1);
940 }
941 
942 void dm_table_resume_targets(struct dm_table *t)
943 {
944 	int i;
945 
946 	for (i = 0; i < t->num_targets; i++) {
947 		struct dm_target *ti = t->targets + i;
948 
949 		if (ti->type->resume)
950 			ti->type->resume(ti);
951 	}
952 }
953 
954 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
955 {
956 	struct list_head *d, *devices;
957 	int r = 0;
958 
959 	devices = dm_table_get_devices(t);
960 	for (d = devices->next; d != devices; d = d->next) {
961 		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
962 		request_queue_t *q = bdev_get_queue(dd->bdev);
963 		r |= bdi_congested(&q->backing_dev_info, bdi_bits);
964 	}
965 
966 	return r;
967 }
968 
969 void dm_table_unplug_all(struct dm_table *t)
970 {
971 	struct list_head *d, *devices = dm_table_get_devices(t);
972 
973 	for (d = devices->next; d != devices; d = d->next) {
974 		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
975 		request_queue_t *q = bdev_get_queue(dd->bdev);
976 
977 		if (q->unplug_fn)
978 			q->unplug_fn(q);
979 	}
980 }
981 
982 int dm_table_flush_all(struct dm_table *t)
983 {
984 	struct list_head *d, *devices = dm_table_get_devices(t);
985 	int ret = 0;
986 
987 	for (d = devices->next; d != devices; d = d->next) {
988 		struct dm_dev *dd = list_entry(d, struct dm_dev, list);
989 		request_queue_t *q = bdev_get_queue(dd->bdev);
990 		int err;
991 
992 		if (!q->issue_flush_fn)
993 			err = -EOPNOTSUPP;
994 		else
995 			err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL);
996 
997 		if (!ret)
998 			ret = err;
999 	}
1000 
1001 	return ret;
1002 }
1003 
1004 struct mapped_device *dm_table_get_md(struct dm_table *t)
1005 {
1006 	dm_get(t->md);
1007 
1008 	return t->md;
1009 }
1010 
1011 EXPORT_SYMBOL(dm_vcalloc);
1012 EXPORT_SYMBOL(dm_get_device);
1013 EXPORT_SYMBOL(dm_put_device);
1014 EXPORT_SYMBOL(dm_table_event);
1015 EXPORT_SYMBOL(dm_table_get_size);
1016 EXPORT_SYMBOL(dm_table_get_mode);
1017 EXPORT_SYMBOL(dm_table_get_md);
1018 EXPORT_SYMBOL(dm_table_put);
1019 EXPORT_SYMBOL(dm_table_get);
1020 EXPORT_SYMBOL(dm_table_unplug_all);
1021 EXPORT_SYMBOL(dm_table_flush_all);
1022