1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 121 t->num_allocated = num; 122 t->highs = n_highs; 123 t->targets = n_targets; 124 125 return 0; 126 } 127 128 int dm_table_create(struct dm_table **result, blk_mode_t mode, 129 unsigned int num_targets, struct mapped_device *md) 130 { 131 struct dm_table *t; 132 133 if (num_targets > DM_MAX_TARGETS) 134 return -EOVERFLOW; 135 136 t = kzalloc(sizeof(*t), GFP_KERNEL); 137 138 if (!t) 139 return -ENOMEM; 140 141 INIT_LIST_HEAD(&t->devices); 142 init_rwsem(&t->devices_lock); 143 144 if (!num_targets) 145 num_targets = KEYS_PER_NODE; 146 147 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 148 149 if (!num_targets) { 150 kfree(t); 151 return -EOVERFLOW; 152 } 153 154 if (alloc_targets(t, num_targets)) { 155 kfree(t); 156 return -ENOMEM; 157 } 158 159 t->type = DM_TYPE_NONE; 160 t->mode = mode; 161 t->md = md; 162 t->flush_bypasses_map = true; 163 *result = t; 164 return 0; 165 } 166 167 static void free_devices(struct list_head *devices, struct mapped_device *md) 168 { 169 struct list_head *tmp, *next; 170 171 list_for_each_safe(tmp, next, devices) { 172 struct dm_dev_internal *dd = 173 list_entry(tmp, struct dm_dev_internal, list); 174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 175 dm_device_name(md), dd->dm_dev->name); 176 dm_put_table_device(md, dd->dm_dev); 177 kfree(dd); 178 } 179 } 180 181 static void dm_table_destroy_crypto_profile(struct dm_table *t); 182 183 void dm_table_destroy(struct dm_table *t) 184 { 185 if (!t) 186 return; 187 188 /* free the indexes */ 189 if (t->depth >= 2) 190 kvfree(t->index[t->depth - 2]); 191 192 /* free the targets */ 193 for (unsigned int i = 0; i < t->num_targets; i++) { 194 struct dm_target *ti = dm_table_get_target(t, i); 195 196 if (ti->type->dtr) 197 ti->type->dtr(ti); 198 199 dm_put_target_type(ti->type); 200 } 201 202 kvfree(t->highs); 203 204 /* free the device list */ 205 free_devices(&t->devices, t->md); 206 207 dm_free_md_mempools(t->mempools); 208 209 dm_table_destroy_crypto_profile(t); 210 211 kfree(t); 212 } 213 214 /* 215 * See if we've already got a device in the list. 216 */ 217 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 218 { 219 struct dm_dev_internal *dd; 220 221 list_for_each_entry(dd, l, list) 222 if (dd->dm_dev->bdev->bd_dev == dev) 223 return dd; 224 225 return NULL; 226 } 227 228 /* 229 * If possible, this checks an area of a destination device is invalid. 230 */ 231 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 232 sector_t start, sector_t len, void *data) 233 { 234 struct queue_limits *limits = data; 235 struct block_device *bdev = dev->bdev; 236 sector_t dev_size = bdev_nr_sectors(bdev); 237 unsigned short logical_block_size_sectors = 238 limits->logical_block_size >> SECTOR_SHIFT; 239 240 if (!dev_size) 241 return 0; 242 243 if ((start >= dev_size) || (start + len > dev_size)) { 244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 245 dm_device_name(ti->table->md), bdev, 246 (unsigned long long)start, 247 (unsigned long long)len, 248 (unsigned long long)dev_size); 249 return 1; 250 } 251 252 /* 253 * If the target is mapped to zoned block device(s), check 254 * that the zones are not partially mapped. 255 */ 256 if (bdev_is_zoned(bdev)) { 257 unsigned int zone_sectors = bdev_zone_sectors(bdev); 258 259 if (!bdev_is_zone_aligned(bdev, start)) { 260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 261 dm_device_name(ti->table->md), 262 (unsigned long long)start, 263 zone_sectors, bdev); 264 return 1; 265 } 266 267 /* 268 * Note: The last zone of a zoned block device may be smaller 269 * than other zones. So for a target mapping the end of a 270 * zoned block device with such a zone, len would not be zone 271 * aligned. We do not allow such last smaller zone to be part 272 * of the mapping here to ensure that mappings with multiple 273 * devices do not end up with a smaller zone in the middle of 274 * the sector range. 275 */ 276 if (!bdev_is_zone_aligned(bdev, len)) { 277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 278 dm_device_name(ti->table->md), 279 (unsigned long long)len, 280 zone_sectors, bdev); 281 return 1; 282 } 283 } 284 285 if (logical_block_size_sectors <= 1) 286 return 0; 287 288 if (start & (logical_block_size_sectors - 1)) { 289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 290 dm_device_name(ti->table->md), 291 (unsigned long long)start, 292 limits->logical_block_size, bdev); 293 return 1; 294 } 295 296 if (len & (logical_block_size_sectors - 1)) { 297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 298 dm_device_name(ti->table->md), 299 (unsigned long long)len, 300 limits->logical_block_size, bdev); 301 return 1; 302 } 303 304 return 0; 305 } 306 307 /* 308 * This upgrades the mode on an already open dm_dev, being 309 * careful to leave things as they were if we fail to reopen the 310 * device and not to touch the existing bdev field in case 311 * it is accessed concurrently. 312 */ 313 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 314 struct mapped_device *md) 315 { 316 int r; 317 struct dm_dev *old_dev, *new_dev; 318 319 old_dev = dd->dm_dev; 320 321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 322 dd->dm_dev->mode | new_mode, &new_dev); 323 if (r) 324 return r; 325 326 dd->dm_dev = new_dev; 327 dm_put_table_device(md, old_dev); 328 329 return 0; 330 } 331 332 /* 333 * Note: the __ref annotation is because this function can call the __init 334 * marked early_lookup_bdev when called during early boot code from dm-init.c. 335 */ 336 int __ref dm_devt_from_path(const char *path, dev_t *dev_p) 337 { 338 int r; 339 dev_t dev; 340 unsigned int major, minor; 341 char dummy; 342 343 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 344 /* Extract the major/minor numbers */ 345 dev = MKDEV(major, minor); 346 if (MAJOR(dev) != major || MINOR(dev) != minor) 347 return -EOVERFLOW; 348 } else { 349 r = lookup_bdev(path, &dev); 350 #ifndef MODULE 351 if (r && system_state < SYSTEM_RUNNING) 352 r = early_lookup_bdev(path, &dev); 353 #endif 354 if (r) 355 return r; 356 } 357 *dev_p = dev; 358 return 0; 359 } 360 EXPORT_SYMBOL(dm_devt_from_path); 361 362 /* 363 * Add a device to the list, or just increment the usage count if 364 * it's already present. 365 */ 366 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 367 struct dm_dev **result) 368 { 369 int r; 370 dev_t dev; 371 struct dm_dev_internal *dd; 372 struct dm_table *t = ti->table; 373 374 BUG_ON(!t); 375 376 r = dm_devt_from_path(path, &dev); 377 if (r) 378 return r; 379 380 if (dev == disk_devt(t->md->disk)) 381 return -EINVAL; 382 383 down_write(&t->devices_lock); 384 385 dd = find_device(&t->devices, dev); 386 if (!dd) { 387 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 388 if (!dd) { 389 r = -ENOMEM; 390 goto unlock_ret_r; 391 } 392 393 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 394 if (r) { 395 kfree(dd); 396 goto unlock_ret_r; 397 } 398 399 refcount_set(&dd->count, 1); 400 list_add(&dd->list, &t->devices); 401 goto out; 402 403 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 404 r = upgrade_mode(dd, mode, t->md); 405 if (r) 406 goto unlock_ret_r; 407 } 408 refcount_inc(&dd->count); 409 out: 410 up_write(&t->devices_lock); 411 *result = dd->dm_dev; 412 return 0; 413 414 unlock_ret_r: 415 up_write(&t->devices_lock); 416 return r; 417 } 418 EXPORT_SYMBOL(dm_get_device); 419 420 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 421 sector_t start, sector_t len, void *data) 422 { 423 struct queue_limits *limits = data; 424 struct block_device *bdev = dev->bdev; 425 struct request_queue *q = bdev_get_queue(bdev); 426 427 if (unlikely(!q)) { 428 DMWARN("%s: Cannot set limits for nonexistent device %pg", 429 dm_device_name(ti->table->md), bdev); 430 return 0; 431 } 432 433 mutex_lock(&q->limits_lock); 434 /* 435 * BLK_FEAT_ATOMIC_WRITES is not inherited from the bottom device in 436 * blk_stack_limits(), so do it manually. 437 */ 438 limits->features |= (q->limits.features & BLK_FEAT_ATOMIC_WRITES); 439 440 if (blk_stack_limits(limits, &q->limits, 441 get_start_sect(bdev) + start) < 0) 442 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 443 "physical_block_size=%u, logical_block_size=%u, " 444 "alignment_offset=%u, start=%llu", 445 dm_device_name(ti->table->md), bdev, 446 q->limits.physical_block_size, 447 q->limits.logical_block_size, 448 q->limits.alignment_offset, 449 (unsigned long long) start << SECTOR_SHIFT); 450 451 /* 452 * Only stack the integrity profile if the target doesn't have native 453 * integrity support. 454 */ 455 if (!dm_target_has_integrity(ti->type)) 456 queue_limits_stack_integrity_bdev(limits, bdev); 457 mutex_unlock(&q->limits_lock); 458 return 0; 459 } 460 461 /* 462 * Decrement a device's use count and remove it if necessary. 463 */ 464 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 465 { 466 int found = 0; 467 struct dm_table *t = ti->table; 468 struct list_head *devices = &t->devices; 469 struct dm_dev_internal *dd; 470 471 down_write(&t->devices_lock); 472 473 list_for_each_entry(dd, devices, list) { 474 if (dd->dm_dev == d) { 475 found = 1; 476 break; 477 } 478 } 479 if (!found) { 480 DMERR("%s: device %s not in table devices list", 481 dm_device_name(t->md), d->name); 482 goto unlock_ret; 483 } 484 if (refcount_dec_and_test(&dd->count)) { 485 dm_put_table_device(t->md, d); 486 list_del(&dd->list); 487 kfree(dd); 488 } 489 490 unlock_ret: 491 up_write(&t->devices_lock); 492 } 493 EXPORT_SYMBOL(dm_put_device); 494 495 /* 496 * Checks to see if the target joins onto the end of the table. 497 */ 498 static int adjoin(struct dm_table *t, struct dm_target *ti) 499 { 500 struct dm_target *prev; 501 502 if (!t->num_targets) 503 return !ti->begin; 504 505 prev = &t->targets[t->num_targets - 1]; 506 return (ti->begin == (prev->begin + prev->len)); 507 } 508 509 /* 510 * Used to dynamically allocate the arg array. 511 * 512 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 513 * process messages even if some device is suspended. These messages have a 514 * small fixed number of arguments. 515 * 516 * On the other hand, dm-switch needs to process bulk data using messages and 517 * excessive use of GFP_NOIO could cause trouble. 518 */ 519 static char **realloc_argv(unsigned int *size, char **old_argv) 520 { 521 char **argv; 522 unsigned int new_size; 523 gfp_t gfp; 524 525 if (*size) { 526 new_size = *size * 2; 527 gfp = GFP_KERNEL; 528 } else { 529 new_size = 8; 530 gfp = GFP_NOIO; 531 } 532 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 533 if (argv) { 534 if (old_argv) 535 memcpy(argv, old_argv, *size * sizeof(*argv)); 536 *size = new_size; 537 } 538 539 kfree(old_argv); 540 return argv; 541 } 542 543 /* 544 * Destructively splits up the argument list to pass to ctr. 545 */ 546 int dm_split_args(int *argc, char ***argvp, char *input) 547 { 548 char *start, *end = input, *out, **argv = NULL; 549 unsigned int array_size = 0; 550 551 *argc = 0; 552 553 if (!input) { 554 *argvp = NULL; 555 return 0; 556 } 557 558 argv = realloc_argv(&array_size, argv); 559 if (!argv) 560 return -ENOMEM; 561 562 while (1) { 563 /* Skip whitespace */ 564 start = skip_spaces(end); 565 566 if (!*start) 567 break; /* success, we hit the end */ 568 569 /* 'out' is used to remove any back-quotes */ 570 end = out = start; 571 while (*end) { 572 /* Everything apart from '\0' can be quoted */ 573 if (*end == '\\' && *(end + 1)) { 574 *out++ = *(end + 1); 575 end += 2; 576 continue; 577 } 578 579 if (isspace(*end)) 580 break; /* end of token */ 581 582 *out++ = *end++; 583 } 584 585 /* have we already filled the array ? */ 586 if ((*argc + 1) > array_size) { 587 argv = realloc_argv(&array_size, argv); 588 if (!argv) 589 return -ENOMEM; 590 } 591 592 /* we know this is whitespace */ 593 if (*end) 594 end++; 595 596 /* terminate the string and put it in the array */ 597 *out = '\0'; 598 argv[*argc] = start; 599 (*argc)++; 600 } 601 602 *argvp = argv; 603 return 0; 604 } 605 606 static void dm_set_stacking_limits(struct queue_limits *limits) 607 { 608 blk_set_stacking_limits(limits); 609 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL; 610 } 611 612 /* 613 * Impose necessary and sufficient conditions on a devices's table such 614 * that any incoming bio which respects its logical_block_size can be 615 * processed successfully. If it falls across the boundary between 616 * two or more targets, the size of each piece it gets split into must 617 * be compatible with the logical_block_size of the target processing it. 618 */ 619 static int validate_hardware_logical_block_alignment(struct dm_table *t, 620 struct queue_limits *limits) 621 { 622 /* 623 * This function uses arithmetic modulo the logical_block_size 624 * (in units of 512-byte sectors). 625 */ 626 unsigned short device_logical_block_size_sects = 627 limits->logical_block_size >> SECTOR_SHIFT; 628 629 /* 630 * Offset of the start of the next table entry, mod logical_block_size. 631 */ 632 unsigned short next_target_start = 0; 633 634 /* 635 * Given an aligned bio that extends beyond the end of a 636 * target, how many sectors must the next target handle? 637 */ 638 unsigned short remaining = 0; 639 640 struct dm_target *ti; 641 struct queue_limits ti_limits; 642 unsigned int i; 643 644 /* 645 * Check each entry in the table in turn. 646 */ 647 for (i = 0; i < t->num_targets; i++) { 648 ti = dm_table_get_target(t, i); 649 650 dm_set_stacking_limits(&ti_limits); 651 652 /* combine all target devices' limits */ 653 if (ti->type->iterate_devices) 654 ti->type->iterate_devices(ti, dm_set_device_limits, 655 &ti_limits); 656 657 /* 658 * If the remaining sectors fall entirely within this 659 * table entry are they compatible with its logical_block_size? 660 */ 661 if (remaining < ti->len && 662 remaining & ((ti_limits.logical_block_size >> 663 SECTOR_SHIFT) - 1)) 664 break; /* Error */ 665 666 next_target_start = 667 (unsigned short) ((next_target_start + ti->len) & 668 (device_logical_block_size_sects - 1)); 669 remaining = next_target_start ? 670 device_logical_block_size_sects - next_target_start : 0; 671 } 672 673 if (remaining) { 674 DMERR("%s: table line %u (start sect %llu len %llu) " 675 "not aligned to h/w logical block size %u", 676 dm_device_name(t->md), i, 677 (unsigned long long) ti->begin, 678 (unsigned long long) ti->len, 679 limits->logical_block_size); 680 return -EINVAL; 681 } 682 683 return 0; 684 } 685 686 int dm_table_add_target(struct dm_table *t, const char *type, 687 sector_t start, sector_t len, char *params) 688 { 689 int r = -EINVAL, argc; 690 char **argv; 691 struct dm_target *ti; 692 693 if (t->singleton) { 694 DMERR("%s: target type %s must appear alone in table", 695 dm_device_name(t->md), t->targets->type->name); 696 return -EINVAL; 697 } 698 699 BUG_ON(t->num_targets >= t->num_allocated); 700 701 ti = t->targets + t->num_targets; 702 memset(ti, 0, sizeof(*ti)); 703 704 if (!len) { 705 DMERR("%s: zero-length target", dm_device_name(t->md)); 706 return -EINVAL; 707 } 708 if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) { 709 DMERR("%s: too large device", dm_device_name(t->md)); 710 return -EINVAL; 711 } 712 713 ti->type = dm_get_target_type(type); 714 if (!ti->type) { 715 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 716 return -EINVAL; 717 } 718 719 if (dm_target_needs_singleton(ti->type)) { 720 if (t->num_targets) { 721 ti->error = "singleton target type must appear alone in table"; 722 goto bad; 723 } 724 t->singleton = true; 725 } 726 727 if (dm_target_always_writeable(ti->type) && 728 !(t->mode & BLK_OPEN_WRITE)) { 729 ti->error = "target type may not be included in a read-only table"; 730 goto bad; 731 } 732 733 if (t->immutable_target_type) { 734 if (t->immutable_target_type != ti->type) { 735 ti->error = "immutable target type cannot be mixed with other target types"; 736 goto bad; 737 } 738 } else if (dm_target_is_immutable(ti->type)) { 739 if (t->num_targets) { 740 ti->error = "immutable target type cannot be mixed with other target types"; 741 goto bad; 742 } 743 t->immutable_target_type = ti->type; 744 } 745 746 ti->table = t; 747 ti->begin = start; 748 ti->len = len; 749 ti->error = "Unknown error"; 750 751 /* 752 * Does this target adjoin the previous one ? 753 */ 754 if (!adjoin(t, ti)) { 755 ti->error = "Gap in table"; 756 goto bad; 757 } 758 759 r = dm_split_args(&argc, &argv, params); 760 if (r) { 761 ti->error = "couldn't split parameters"; 762 goto bad; 763 } 764 765 r = ti->type->ctr(ti, argc, argv); 766 kfree(argv); 767 if (r) 768 goto bad; 769 770 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 771 772 if (!ti->num_discard_bios && ti->discards_supported) 773 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 774 dm_device_name(t->md), type); 775 776 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 777 static_branch_enable(&swap_bios_enabled); 778 779 if (!ti->flush_bypasses_map) 780 t->flush_bypasses_map = false; 781 782 return 0; 783 784 bad: 785 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 786 dm_put_target_type(ti->type); 787 return r; 788 } 789 790 /* 791 * Target argument parsing helpers. 792 */ 793 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 794 unsigned int *value, char **error, unsigned int grouped) 795 { 796 const char *arg_str = dm_shift_arg(arg_set); 797 char dummy; 798 799 if (!arg_str || 800 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 801 (*value < arg->min) || 802 (*value > arg->max) || 803 (grouped && arg_set->argc < *value)) { 804 *error = arg->error; 805 return -EINVAL; 806 } 807 808 return 0; 809 } 810 811 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 812 unsigned int *value, char **error) 813 { 814 return validate_next_arg(arg, arg_set, value, error, 0); 815 } 816 EXPORT_SYMBOL(dm_read_arg); 817 818 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 819 unsigned int *value, char **error) 820 { 821 return validate_next_arg(arg, arg_set, value, error, 1); 822 } 823 EXPORT_SYMBOL(dm_read_arg_group); 824 825 const char *dm_shift_arg(struct dm_arg_set *as) 826 { 827 char *r; 828 829 if (as->argc) { 830 as->argc--; 831 r = *as->argv; 832 as->argv++; 833 return r; 834 } 835 836 return NULL; 837 } 838 EXPORT_SYMBOL(dm_shift_arg); 839 840 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 841 { 842 BUG_ON(as->argc < num_args); 843 as->argc -= num_args; 844 as->argv += num_args; 845 } 846 EXPORT_SYMBOL(dm_consume_args); 847 848 static bool __table_type_bio_based(enum dm_queue_mode table_type) 849 { 850 return (table_type == DM_TYPE_BIO_BASED || 851 table_type == DM_TYPE_DAX_BIO_BASED); 852 } 853 854 static bool __table_type_request_based(enum dm_queue_mode table_type) 855 { 856 return table_type == DM_TYPE_REQUEST_BASED; 857 } 858 859 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 860 { 861 t->type = type; 862 } 863 EXPORT_SYMBOL_GPL(dm_table_set_type); 864 865 /* validate the dax capability of the target device span */ 866 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 867 sector_t start, sector_t len, void *data) 868 { 869 if (dev->dax_dev) 870 return false; 871 872 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 873 return true; 874 } 875 876 /* Check devices support synchronous DAX */ 877 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 878 sector_t start, sector_t len, void *data) 879 { 880 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 881 } 882 883 static bool dm_table_supports_dax(struct dm_table *t, 884 iterate_devices_callout_fn iterate_fn) 885 { 886 /* Ensure that all targets support DAX. */ 887 for (unsigned int i = 0; i < t->num_targets; i++) { 888 struct dm_target *ti = dm_table_get_target(t, i); 889 890 if (!ti->type->direct_access) 891 return false; 892 893 if (dm_target_is_wildcard(ti->type) || 894 !ti->type->iterate_devices || 895 ti->type->iterate_devices(ti, iterate_fn, NULL)) 896 return false; 897 } 898 899 return true; 900 } 901 902 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 903 sector_t start, sector_t len, void *data) 904 { 905 struct block_device *bdev = dev->bdev; 906 struct request_queue *q = bdev_get_queue(bdev); 907 908 /* request-based cannot stack on partitions! */ 909 if (bdev_is_partition(bdev)) 910 return false; 911 912 return queue_is_mq(q); 913 } 914 915 static int dm_table_determine_type(struct dm_table *t) 916 { 917 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 918 struct dm_target *ti; 919 struct list_head *devices = dm_table_get_devices(t); 920 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 921 922 if (t->type != DM_TYPE_NONE) { 923 /* target already set the table's type */ 924 if (t->type == DM_TYPE_BIO_BASED) { 925 /* possibly upgrade to a variant of bio-based */ 926 goto verify_bio_based; 927 } 928 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 929 goto verify_rq_based; 930 } 931 932 for (unsigned int i = 0; i < t->num_targets; i++) { 933 ti = dm_table_get_target(t, i); 934 if (dm_target_hybrid(ti)) 935 hybrid = 1; 936 else if (dm_target_request_based(ti)) 937 request_based = 1; 938 else 939 bio_based = 1; 940 941 if (bio_based && request_based) { 942 DMERR("Inconsistent table: different target types can't be mixed up"); 943 return -EINVAL; 944 } 945 } 946 947 if (hybrid && !bio_based && !request_based) { 948 /* 949 * The targets can work either way. 950 * Determine the type from the live device. 951 * Default to bio-based if device is new. 952 */ 953 if (__table_type_request_based(live_md_type)) 954 request_based = 1; 955 else 956 bio_based = 1; 957 } 958 959 if (bio_based) { 960 verify_bio_based: 961 /* We must use this table as bio-based */ 962 t->type = DM_TYPE_BIO_BASED; 963 if (dm_table_supports_dax(t, device_not_dax_capable) || 964 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 965 t->type = DM_TYPE_DAX_BIO_BASED; 966 } 967 return 0; 968 } 969 970 BUG_ON(!request_based); /* No targets in this table */ 971 972 t->type = DM_TYPE_REQUEST_BASED; 973 974 verify_rq_based: 975 /* 976 * Request-based dm supports only tables that have a single target now. 977 * To support multiple targets, request splitting support is needed, 978 * and that needs lots of changes in the block-layer. 979 * (e.g. request completion process for partial completion.) 980 */ 981 if (t->num_targets > 1) { 982 DMERR("request-based DM doesn't support multiple targets"); 983 return -EINVAL; 984 } 985 986 if (list_empty(devices)) { 987 int srcu_idx; 988 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 989 990 /* inherit live table's type */ 991 if (live_table) 992 t->type = live_table->type; 993 dm_put_live_table(t->md, srcu_idx); 994 return 0; 995 } 996 997 ti = dm_table_get_immutable_target(t); 998 if (!ti) { 999 DMERR("table load rejected: immutable target is required"); 1000 return -EINVAL; 1001 } else if (ti->max_io_len) { 1002 DMERR("table load rejected: immutable target that splits IO is not supported"); 1003 return -EINVAL; 1004 } 1005 1006 /* Non-request-stackable devices can't be used for request-based dm */ 1007 if (!ti->type->iterate_devices || 1008 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 1009 DMERR("table load rejected: including non-request-stackable devices"); 1010 return -EINVAL; 1011 } 1012 1013 return 0; 1014 } 1015 1016 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1017 { 1018 return t->type; 1019 } 1020 1021 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1022 { 1023 return t->immutable_target_type; 1024 } 1025 1026 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1027 { 1028 /* Immutable target is implicitly a singleton */ 1029 if (t->num_targets > 1 || 1030 !dm_target_is_immutable(t->targets[0].type)) 1031 return NULL; 1032 1033 return t->targets; 1034 } 1035 1036 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1037 { 1038 for (unsigned int i = 0; i < t->num_targets; i++) { 1039 struct dm_target *ti = dm_table_get_target(t, i); 1040 1041 if (dm_target_is_wildcard(ti->type)) 1042 return ti; 1043 } 1044 1045 return NULL; 1046 } 1047 1048 bool dm_table_request_based(struct dm_table *t) 1049 { 1050 return __table_type_request_based(dm_table_get_type(t)); 1051 } 1052 1053 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1054 { 1055 enum dm_queue_mode type = dm_table_get_type(t); 1056 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1057 unsigned int min_pool_size = 0, pool_size; 1058 struct dm_md_mempools *pools; 1059 unsigned int bioset_flags = 0; 1060 1061 if (unlikely(type == DM_TYPE_NONE)) { 1062 DMERR("no table type is set, can't allocate mempools"); 1063 return -EINVAL; 1064 } 1065 1066 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1067 if (!pools) 1068 return -ENOMEM; 1069 1070 if (type == DM_TYPE_REQUEST_BASED) { 1071 pool_size = dm_get_reserved_rq_based_ios(); 1072 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1073 goto init_bs; 1074 } 1075 1076 if (md->queue->limits.features & BLK_FEAT_POLL) 1077 bioset_flags |= BIOSET_PERCPU_CACHE; 1078 1079 for (unsigned int i = 0; i < t->num_targets; i++) { 1080 struct dm_target *ti = dm_table_get_target(t, i); 1081 1082 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1083 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1084 } 1085 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1086 front_pad = roundup(per_io_data_size, 1087 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1088 1089 io_front_pad = roundup(per_io_data_size, 1090 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1091 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags)) 1092 goto out_free_pools; 1093 init_bs: 1094 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1095 goto out_free_pools; 1096 1097 t->mempools = pools; 1098 return 0; 1099 1100 out_free_pools: 1101 dm_free_md_mempools(pools); 1102 return -ENOMEM; 1103 } 1104 1105 static int setup_indexes(struct dm_table *t) 1106 { 1107 int i; 1108 unsigned int total = 0; 1109 sector_t *indexes; 1110 1111 /* allocate the space for *all* the indexes */ 1112 for (i = t->depth - 2; i >= 0; i--) { 1113 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1114 total += t->counts[i]; 1115 } 1116 1117 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1118 if (!indexes) 1119 return -ENOMEM; 1120 1121 /* set up internal nodes, bottom-up */ 1122 for (i = t->depth - 2; i >= 0; i--) { 1123 t->index[i] = indexes; 1124 indexes += (KEYS_PER_NODE * t->counts[i]); 1125 setup_btree_index(i, t); 1126 } 1127 1128 return 0; 1129 } 1130 1131 /* 1132 * Builds the btree to index the map. 1133 */ 1134 static int dm_table_build_index(struct dm_table *t) 1135 { 1136 int r = 0; 1137 unsigned int leaf_nodes; 1138 1139 /* how many indexes will the btree have ? */ 1140 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1141 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1142 1143 /* leaf layer has already been set up */ 1144 t->counts[t->depth - 1] = leaf_nodes; 1145 t->index[t->depth - 1] = t->highs; 1146 1147 if (t->depth >= 2) 1148 r = setup_indexes(t); 1149 1150 return r; 1151 } 1152 1153 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1154 1155 struct dm_crypto_profile { 1156 struct blk_crypto_profile profile; 1157 struct mapped_device *md; 1158 }; 1159 1160 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1161 sector_t start, sector_t len, void *data) 1162 { 1163 const struct blk_crypto_key *key = data; 1164 1165 blk_crypto_evict_key(dev->bdev, key); 1166 return 0; 1167 } 1168 1169 /* 1170 * When an inline encryption key is evicted from a device-mapper device, evict 1171 * it from all the underlying devices. 1172 */ 1173 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1174 const struct blk_crypto_key *key, unsigned int slot) 1175 { 1176 struct mapped_device *md = 1177 container_of(profile, struct dm_crypto_profile, profile)->md; 1178 struct dm_table *t; 1179 int srcu_idx; 1180 1181 t = dm_get_live_table(md, &srcu_idx); 1182 if (!t) 1183 goto put_live_table; 1184 1185 for (unsigned int i = 0; i < t->num_targets; i++) { 1186 struct dm_target *ti = dm_table_get_target(t, i); 1187 1188 if (!ti->type->iterate_devices) 1189 continue; 1190 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1191 (void *)key); 1192 } 1193 1194 put_live_table: 1195 dm_put_live_table(md, srcu_idx); 1196 return 0; 1197 } 1198 1199 enum dm_wrappedkey_op { 1200 DERIVE_SW_SECRET, 1201 IMPORT_KEY, 1202 GENERATE_KEY, 1203 PREPARE_KEY, 1204 }; 1205 1206 struct dm_wrappedkey_op_args { 1207 enum dm_wrappedkey_op op; 1208 int err; 1209 union { 1210 struct { 1211 const u8 *eph_key; 1212 size_t eph_key_size; 1213 u8 *sw_secret; 1214 } derive_sw_secret; 1215 struct { 1216 const u8 *raw_key; 1217 size_t raw_key_size; 1218 u8 *lt_key; 1219 } import_key; 1220 struct { 1221 u8 *lt_key; 1222 } generate_key; 1223 struct { 1224 const u8 *lt_key; 1225 size_t lt_key_size; 1226 u8 *eph_key; 1227 } prepare_key; 1228 }; 1229 }; 1230 1231 static int dm_wrappedkey_op_callback(struct dm_target *ti, struct dm_dev *dev, 1232 sector_t start, sector_t len, void *data) 1233 { 1234 struct dm_wrappedkey_op_args *args = data; 1235 struct block_device *bdev = dev->bdev; 1236 struct blk_crypto_profile *profile = 1237 bdev_get_queue(bdev)->crypto_profile; 1238 int err = -EOPNOTSUPP; 1239 1240 if (!args->err) 1241 return 0; 1242 1243 switch (args->op) { 1244 case DERIVE_SW_SECRET: 1245 err = blk_crypto_derive_sw_secret( 1246 bdev, 1247 args->derive_sw_secret.eph_key, 1248 args->derive_sw_secret.eph_key_size, 1249 args->derive_sw_secret.sw_secret); 1250 break; 1251 case IMPORT_KEY: 1252 err = blk_crypto_import_key(profile, 1253 args->import_key.raw_key, 1254 args->import_key.raw_key_size, 1255 args->import_key.lt_key); 1256 break; 1257 case GENERATE_KEY: 1258 err = blk_crypto_generate_key(profile, 1259 args->generate_key.lt_key); 1260 break; 1261 case PREPARE_KEY: 1262 err = blk_crypto_prepare_key(profile, 1263 args->prepare_key.lt_key, 1264 args->prepare_key.lt_key_size, 1265 args->prepare_key.eph_key); 1266 break; 1267 } 1268 args->err = err; 1269 1270 /* Try another device in case this fails. */ 1271 return 0; 1272 } 1273 1274 static int dm_exec_wrappedkey_op(struct blk_crypto_profile *profile, 1275 struct dm_wrappedkey_op_args *args) 1276 { 1277 struct mapped_device *md = 1278 container_of(profile, struct dm_crypto_profile, profile)->md; 1279 struct dm_target *ti; 1280 struct dm_table *t; 1281 int srcu_idx; 1282 int i; 1283 1284 args->err = -EOPNOTSUPP; 1285 1286 t = dm_get_live_table(md, &srcu_idx); 1287 if (!t) 1288 goto out; 1289 1290 /* 1291 * blk-crypto currently has no support for multiple incompatible 1292 * implementations of wrapped inline crypto keys on a single system. 1293 * It was already checked earlier that support for wrapped keys was 1294 * declared on all underlying devices. Thus, all the underlying devices 1295 * should support all wrapped key operations and they should behave 1296 * identically, i.e. work with the same keys. So, just executing the 1297 * operation on the first device on which it works suffices for now. 1298 */ 1299 for (i = 0; i < t->num_targets; i++) { 1300 ti = dm_table_get_target(t, i); 1301 if (!ti->type->iterate_devices) 1302 continue; 1303 ti->type->iterate_devices(ti, dm_wrappedkey_op_callback, args); 1304 if (!args->err) 1305 break; 1306 } 1307 out: 1308 dm_put_live_table(md, srcu_idx); 1309 return args->err; 1310 } 1311 1312 static int dm_derive_sw_secret(struct blk_crypto_profile *profile, 1313 const u8 *eph_key, size_t eph_key_size, 1314 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]) 1315 { 1316 struct dm_wrappedkey_op_args args = { 1317 .op = DERIVE_SW_SECRET, 1318 .derive_sw_secret = { 1319 .eph_key = eph_key, 1320 .eph_key_size = eph_key_size, 1321 .sw_secret = sw_secret, 1322 }, 1323 }; 1324 return dm_exec_wrappedkey_op(profile, &args); 1325 } 1326 1327 static int dm_import_key(struct blk_crypto_profile *profile, 1328 const u8 *raw_key, size_t raw_key_size, 1329 u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) 1330 { 1331 struct dm_wrappedkey_op_args args = { 1332 .op = IMPORT_KEY, 1333 .import_key = { 1334 .raw_key = raw_key, 1335 .raw_key_size = raw_key_size, 1336 .lt_key = lt_key, 1337 }, 1338 }; 1339 return dm_exec_wrappedkey_op(profile, &args); 1340 } 1341 1342 static int dm_generate_key(struct blk_crypto_profile *profile, 1343 u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) 1344 { 1345 struct dm_wrappedkey_op_args args = { 1346 .op = GENERATE_KEY, 1347 .generate_key = { 1348 .lt_key = lt_key, 1349 }, 1350 }; 1351 return dm_exec_wrappedkey_op(profile, &args); 1352 } 1353 1354 static int dm_prepare_key(struct blk_crypto_profile *profile, 1355 const u8 *lt_key, size_t lt_key_size, 1356 u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE]) 1357 { 1358 struct dm_wrappedkey_op_args args = { 1359 .op = PREPARE_KEY, 1360 .prepare_key = { 1361 .lt_key = lt_key, 1362 .lt_key_size = lt_key_size, 1363 .eph_key = eph_key, 1364 }, 1365 }; 1366 return dm_exec_wrappedkey_op(profile, &args); 1367 } 1368 1369 static int 1370 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1371 sector_t start, sector_t len, void *data) 1372 { 1373 struct blk_crypto_profile *parent = data; 1374 struct blk_crypto_profile *child = 1375 bdev_get_queue(dev->bdev)->crypto_profile; 1376 1377 blk_crypto_intersect_capabilities(parent, child); 1378 return 0; 1379 } 1380 1381 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1382 { 1383 struct dm_crypto_profile *dmcp = container_of(profile, 1384 struct dm_crypto_profile, 1385 profile); 1386 1387 if (!profile) 1388 return; 1389 1390 blk_crypto_profile_destroy(profile); 1391 kfree(dmcp); 1392 } 1393 1394 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1395 { 1396 dm_destroy_crypto_profile(t->crypto_profile); 1397 t->crypto_profile = NULL; 1398 } 1399 1400 /* 1401 * Constructs and initializes t->crypto_profile with a crypto profile that 1402 * represents the common set of crypto capabilities of the devices described by 1403 * the dm_table. However, if the constructed crypto profile doesn't support all 1404 * crypto capabilities that are supported by the current mapped_device, it 1405 * returns an error instead, since we don't support removing crypto capabilities 1406 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1407 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1408 */ 1409 static int dm_table_construct_crypto_profile(struct dm_table *t) 1410 { 1411 struct dm_crypto_profile *dmcp; 1412 struct blk_crypto_profile *profile; 1413 unsigned int i; 1414 bool empty_profile = true; 1415 1416 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1417 if (!dmcp) 1418 return -ENOMEM; 1419 dmcp->md = t->md; 1420 1421 profile = &dmcp->profile; 1422 blk_crypto_profile_init(profile, 0); 1423 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1424 profile->max_dun_bytes_supported = UINT_MAX; 1425 memset(profile->modes_supported, 0xFF, 1426 sizeof(profile->modes_supported)); 1427 profile->key_types_supported = ~0; 1428 1429 for (i = 0; i < t->num_targets; i++) { 1430 struct dm_target *ti = dm_table_get_target(t, i); 1431 1432 if (!dm_target_passes_crypto(ti->type)) { 1433 blk_crypto_intersect_capabilities(profile, NULL); 1434 break; 1435 } 1436 if (!ti->type->iterate_devices) 1437 continue; 1438 ti->type->iterate_devices(ti, 1439 device_intersect_crypto_capabilities, 1440 profile); 1441 } 1442 1443 if (profile->key_types_supported & BLK_CRYPTO_KEY_TYPE_HW_WRAPPED) { 1444 profile->ll_ops.derive_sw_secret = dm_derive_sw_secret; 1445 profile->ll_ops.import_key = dm_import_key; 1446 profile->ll_ops.generate_key = dm_generate_key; 1447 profile->ll_ops.prepare_key = dm_prepare_key; 1448 } 1449 1450 if (t->md->queue && 1451 !blk_crypto_has_capabilities(profile, 1452 t->md->queue->crypto_profile)) { 1453 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1454 dm_destroy_crypto_profile(profile); 1455 return -EINVAL; 1456 } 1457 1458 /* 1459 * If the new profile doesn't actually support any crypto capabilities, 1460 * we may as well represent it with a NULL profile. 1461 */ 1462 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1463 if (profile->modes_supported[i]) { 1464 empty_profile = false; 1465 break; 1466 } 1467 } 1468 1469 if (empty_profile) { 1470 dm_destroy_crypto_profile(profile); 1471 profile = NULL; 1472 } 1473 1474 /* 1475 * t->crypto_profile is only set temporarily while the table is being 1476 * set up, and it gets set to NULL after the profile has been 1477 * transferred to the request_queue. 1478 */ 1479 t->crypto_profile = profile; 1480 1481 return 0; 1482 } 1483 1484 static void dm_update_crypto_profile(struct request_queue *q, 1485 struct dm_table *t) 1486 { 1487 if (!t->crypto_profile) 1488 return; 1489 1490 /* Make the crypto profile less restrictive. */ 1491 if (!q->crypto_profile) { 1492 blk_crypto_register(t->crypto_profile, q); 1493 } else { 1494 blk_crypto_update_capabilities(q->crypto_profile, 1495 t->crypto_profile); 1496 dm_destroy_crypto_profile(t->crypto_profile); 1497 } 1498 t->crypto_profile = NULL; 1499 } 1500 1501 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1502 1503 static int dm_table_construct_crypto_profile(struct dm_table *t) 1504 { 1505 return 0; 1506 } 1507 1508 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1509 { 1510 } 1511 1512 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1513 { 1514 } 1515 1516 static void dm_update_crypto_profile(struct request_queue *q, 1517 struct dm_table *t) 1518 { 1519 } 1520 1521 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1522 1523 /* 1524 * Prepares the table for use by building the indices, 1525 * setting the type, and allocating mempools. 1526 */ 1527 int dm_table_complete(struct dm_table *t) 1528 { 1529 int r; 1530 1531 r = dm_table_determine_type(t); 1532 if (r) { 1533 DMERR("unable to determine table type"); 1534 return r; 1535 } 1536 1537 r = dm_table_build_index(t); 1538 if (r) { 1539 DMERR("unable to build btrees"); 1540 return r; 1541 } 1542 1543 r = dm_table_construct_crypto_profile(t); 1544 if (r) { 1545 DMERR("could not construct crypto profile."); 1546 return r; 1547 } 1548 1549 r = dm_table_alloc_md_mempools(t, t->md); 1550 if (r) 1551 DMERR("unable to allocate mempools"); 1552 1553 return r; 1554 } 1555 1556 static DEFINE_MUTEX(_event_lock); 1557 void dm_table_event_callback(struct dm_table *t, 1558 void (*fn)(void *), void *context) 1559 { 1560 mutex_lock(&_event_lock); 1561 t->event_fn = fn; 1562 t->event_context = context; 1563 mutex_unlock(&_event_lock); 1564 } 1565 1566 void dm_table_event(struct dm_table *t) 1567 { 1568 mutex_lock(&_event_lock); 1569 if (t->event_fn) 1570 t->event_fn(t->event_context); 1571 mutex_unlock(&_event_lock); 1572 } 1573 EXPORT_SYMBOL(dm_table_event); 1574 1575 inline sector_t dm_table_get_size(struct dm_table *t) 1576 { 1577 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1578 } 1579 EXPORT_SYMBOL(dm_table_get_size); 1580 1581 /* 1582 * Search the btree for the correct target. 1583 * 1584 * Caller should check returned pointer for NULL 1585 * to trap I/O beyond end of device. 1586 */ 1587 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1588 { 1589 unsigned int l, n = 0, k = 0; 1590 sector_t *node; 1591 1592 if (unlikely(sector >= dm_table_get_size(t))) 1593 return NULL; 1594 1595 for (l = 0; l < t->depth; l++) { 1596 n = get_child(n, k); 1597 node = get_node(t, l, n); 1598 1599 for (k = 0; k < KEYS_PER_NODE; k++) 1600 if (node[k] >= sector) 1601 break; 1602 } 1603 1604 return &t->targets[(KEYS_PER_NODE * n) + k]; 1605 } 1606 1607 /* 1608 * type->iterate_devices() should be called when the sanity check needs to 1609 * iterate and check all underlying data devices. iterate_devices() will 1610 * iterate all underlying data devices until it encounters a non-zero return 1611 * code, returned by whether the input iterate_devices_callout_fn, or 1612 * iterate_devices() itself internally. 1613 * 1614 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1615 * iterate multiple underlying devices internally, in which case a non-zero 1616 * return code returned by iterate_devices_callout_fn will stop the iteration 1617 * in advance. 1618 * 1619 * Cases requiring _any_ underlying device supporting some kind of attribute, 1620 * should use the iteration structure like dm_table_any_dev_attr(), or call 1621 * it directly. @func should handle semantics of positive examples, e.g. 1622 * capable of something. 1623 * 1624 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1625 * should use the iteration structure like dm_table_supports_nowait() or 1626 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1627 * uses an @anti_func that handle semantics of counter examples, e.g. not 1628 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1629 */ 1630 static bool dm_table_any_dev_attr(struct dm_table *t, 1631 iterate_devices_callout_fn func, void *data) 1632 { 1633 for (unsigned int i = 0; i < t->num_targets; i++) { 1634 struct dm_target *ti = dm_table_get_target(t, i); 1635 1636 if (ti->type->iterate_devices && 1637 ti->type->iterate_devices(ti, func, data)) 1638 return true; 1639 } 1640 1641 return false; 1642 } 1643 1644 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1645 sector_t start, sector_t len, void *data) 1646 { 1647 unsigned int *num_devices = data; 1648 1649 (*num_devices)++; 1650 1651 return 0; 1652 } 1653 1654 /* 1655 * Check whether a table has no data devices attached using each 1656 * target's iterate_devices method. 1657 * Returns false if the result is unknown because a target doesn't 1658 * support iterate_devices. 1659 */ 1660 bool dm_table_has_no_data_devices(struct dm_table *t) 1661 { 1662 for (unsigned int i = 0; i < t->num_targets; i++) { 1663 struct dm_target *ti = dm_table_get_target(t, i); 1664 unsigned int num_devices = 0; 1665 1666 if (!ti->type->iterate_devices) 1667 return false; 1668 1669 ti->type->iterate_devices(ti, count_device, &num_devices); 1670 if (num_devices) 1671 return false; 1672 } 1673 1674 return true; 1675 } 1676 1677 bool dm_table_is_wildcard(struct dm_table *t) 1678 { 1679 for (unsigned int i = 0; i < t->num_targets; i++) { 1680 struct dm_target *ti = dm_table_get_target(t, i); 1681 1682 if (!dm_target_is_wildcard(ti->type)) 1683 return false; 1684 } 1685 1686 return true; 1687 } 1688 1689 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, 1690 sector_t start, sector_t len, void *data) 1691 { 1692 bool *zoned = data; 1693 1694 return bdev_is_zoned(dev->bdev) != *zoned; 1695 } 1696 1697 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1698 sector_t start, sector_t len, void *data) 1699 { 1700 return bdev_is_zoned(dev->bdev); 1701 } 1702 1703 /* 1704 * Check the device zoned model based on the target feature flag. If the target 1705 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1706 * also accepted but all devices must have the same zoned model. If the target 1707 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1708 * zoned model with all zoned devices having the same zone size. 1709 */ 1710 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) 1711 { 1712 for (unsigned int i = 0; i < t->num_targets; i++) { 1713 struct dm_target *ti = dm_table_get_target(t, i); 1714 1715 /* 1716 * For the wildcard target (dm-error), if we do not have a 1717 * backing device, we must always return false. If we have a 1718 * backing device, the result must depend on checking zoned 1719 * model, like for any other target. So for this, check directly 1720 * if the target backing device is zoned as we get "false" when 1721 * dm-error was set without a backing device. 1722 */ 1723 if (dm_target_is_wildcard(ti->type) && 1724 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) 1725 return false; 1726 1727 if (dm_target_supports_zoned_hm(ti->type)) { 1728 if (!ti->type->iterate_devices || 1729 ti->type->iterate_devices(ti, device_not_zoned, 1730 &zoned)) 1731 return false; 1732 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1733 if (zoned) 1734 return false; 1735 } 1736 } 1737 1738 return true; 1739 } 1740 1741 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1742 sector_t start, sector_t len, void *data) 1743 { 1744 unsigned int *zone_sectors = data; 1745 1746 if (!bdev_is_zoned(dev->bdev)) 1747 return 0; 1748 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1749 } 1750 1751 /* 1752 * Check consistency of zoned model and zone sectors across all targets. For 1753 * zone sectors, if the destination device is a zoned block device, it shall 1754 * have the specified zone_sectors. 1755 */ 1756 static int validate_hardware_zoned(struct dm_table *t, bool zoned, 1757 unsigned int zone_sectors) 1758 { 1759 if (!zoned) 1760 return 0; 1761 1762 if (!dm_table_supports_zoned(t, zoned)) { 1763 DMERR("%s: zoned model is not consistent across all devices", 1764 dm_device_name(t->md)); 1765 return -EINVAL; 1766 } 1767 1768 /* Check zone size validity and compatibility */ 1769 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1770 return -EINVAL; 1771 1772 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1773 DMERR("%s: zone sectors is not consistent across all zoned devices", 1774 dm_device_name(t->md)); 1775 return -EINVAL; 1776 } 1777 1778 return 0; 1779 } 1780 1781 /* 1782 * Establish the new table's queue_limits and validate them. 1783 */ 1784 int dm_calculate_queue_limits(struct dm_table *t, 1785 struct queue_limits *limits) 1786 { 1787 struct queue_limits ti_limits; 1788 unsigned int zone_sectors = 0; 1789 bool zoned = false; 1790 1791 dm_set_stacking_limits(limits); 1792 1793 t->integrity_supported = true; 1794 for (unsigned int i = 0; i < t->num_targets; i++) { 1795 struct dm_target *ti = dm_table_get_target(t, i); 1796 1797 if (!dm_target_passes_integrity(ti->type)) 1798 t->integrity_supported = false; 1799 } 1800 1801 for (unsigned int i = 0; i < t->num_targets; i++) { 1802 struct dm_target *ti = dm_table_get_target(t, i); 1803 1804 dm_set_stacking_limits(&ti_limits); 1805 1806 if (!ti->type->iterate_devices) { 1807 /* Set I/O hints portion of queue limits */ 1808 if (ti->type->io_hints) 1809 ti->type->io_hints(ti, &ti_limits); 1810 goto combine_limits; 1811 } 1812 1813 /* 1814 * Combine queue limits of all the devices this target uses. 1815 */ 1816 ti->type->iterate_devices(ti, dm_set_device_limits, 1817 &ti_limits); 1818 1819 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) { 1820 /* 1821 * After stacking all limits, validate all devices 1822 * in table support this zoned model and zone sectors. 1823 */ 1824 zoned = (ti_limits.features & BLK_FEAT_ZONED); 1825 zone_sectors = ti_limits.chunk_sectors; 1826 } 1827 1828 /* Set I/O hints portion of queue limits */ 1829 if (ti->type->io_hints) 1830 ti->type->io_hints(ti, &ti_limits); 1831 1832 /* 1833 * Check each device area is consistent with the target's 1834 * overall queue limits. 1835 */ 1836 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1837 &ti_limits)) 1838 return -EINVAL; 1839 1840 combine_limits: 1841 /* 1842 * Merge this target's queue limits into the overall limits 1843 * for the table. 1844 */ 1845 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1846 DMWARN("%s: adding target device (start sect %llu len %llu) " 1847 "caused an alignment inconsistency", 1848 dm_device_name(t->md), 1849 (unsigned long long) ti->begin, 1850 (unsigned long long) ti->len); 1851 1852 if (t->integrity_supported || 1853 dm_target_has_integrity(ti->type)) { 1854 if (!queue_limits_stack_integrity(limits, &ti_limits)) { 1855 DMWARN("%s: adding target device (start sect %llu len %llu) " 1856 "disabled integrity support due to incompatibility", 1857 dm_device_name(t->md), 1858 (unsigned long long) ti->begin, 1859 (unsigned long long) ti->len); 1860 t->integrity_supported = false; 1861 } 1862 } 1863 } 1864 1865 /* 1866 * Verify that the zoned model and zone sectors, as determined before 1867 * any .io_hints override, are the same across all devices in the table. 1868 * - this is especially relevant if .io_hints is emulating a disk-managed 1869 * zoned model on host-managed zoned block devices. 1870 * BUT... 1871 */ 1872 if (limits->features & BLK_FEAT_ZONED) { 1873 /* 1874 * ...IF the above limits stacking determined a zoned model 1875 * validate that all of the table's devices conform to it. 1876 */ 1877 zoned = limits->features & BLK_FEAT_ZONED; 1878 zone_sectors = limits->chunk_sectors; 1879 } 1880 if (validate_hardware_zoned(t, zoned, zone_sectors)) 1881 return -EINVAL; 1882 1883 return validate_hardware_logical_block_alignment(t, limits); 1884 } 1885 1886 /* 1887 * Check if a target requires flush support even if none of the underlying 1888 * devices need it (e.g. to persist target-specific metadata). 1889 */ 1890 static bool dm_table_supports_flush(struct dm_table *t) 1891 { 1892 for (unsigned int i = 0; i < t->num_targets; i++) { 1893 struct dm_target *ti = dm_table_get_target(t, i); 1894 1895 if (ti->num_flush_bios && ti->flush_supported) 1896 return true; 1897 } 1898 1899 return false; 1900 } 1901 1902 static int device_dax_write_cache_enabled(struct dm_target *ti, 1903 struct dm_dev *dev, sector_t start, 1904 sector_t len, void *data) 1905 { 1906 struct dax_device *dax_dev = dev->dax_dev; 1907 1908 if (!dax_dev) 1909 return false; 1910 1911 if (dax_write_cache_enabled(dax_dev)) 1912 return true; 1913 return false; 1914 } 1915 1916 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1917 sector_t start, sector_t len, void *data) 1918 { 1919 struct request_queue *q = bdev_get_queue(dev->bdev); 1920 int b; 1921 1922 mutex_lock(&q->limits_lock); 1923 b = !q->limits.max_write_zeroes_sectors; 1924 mutex_unlock(&q->limits_lock); 1925 return b; 1926 } 1927 1928 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1929 { 1930 for (unsigned int i = 0; i < t->num_targets; i++) { 1931 struct dm_target *ti = dm_table_get_target(t, i); 1932 1933 if (!ti->num_write_zeroes_bios) 1934 return false; 1935 1936 if (!ti->type->iterate_devices || 1937 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1938 return false; 1939 } 1940 1941 return true; 1942 } 1943 1944 static bool dm_table_supports_nowait(struct dm_table *t) 1945 { 1946 for (unsigned int i = 0; i < t->num_targets; i++) { 1947 struct dm_target *ti = dm_table_get_target(t, i); 1948 1949 if (!dm_target_supports_nowait(ti->type)) 1950 return false; 1951 } 1952 1953 return true; 1954 } 1955 1956 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1957 sector_t start, sector_t len, void *data) 1958 { 1959 return !bdev_max_discard_sectors(dev->bdev); 1960 } 1961 1962 static bool dm_table_supports_discards(struct dm_table *t) 1963 { 1964 for (unsigned int i = 0; i < t->num_targets; i++) { 1965 struct dm_target *ti = dm_table_get_target(t, i); 1966 1967 if (!ti->num_discard_bios) 1968 return false; 1969 1970 /* 1971 * Either the target provides discard support (as implied by setting 1972 * 'discards_supported') or it relies on _all_ data devices having 1973 * discard support. 1974 */ 1975 if (!ti->discards_supported && 1976 (!ti->type->iterate_devices || 1977 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1978 return false; 1979 } 1980 1981 return true; 1982 } 1983 1984 static int device_not_secure_erase_capable(struct dm_target *ti, 1985 struct dm_dev *dev, sector_t start, 1986 sector_t len, void *data) 1987 { 1988 return !bdev_max_secure_erase_sectors(dev->bdev); 1989 } 1990 1991 static bool dm_table_supports_secure_erase(struct dm_table *t) 1992 { 1993 for (unsigned int i = 0; i < t->num_targets; i++) { 1994 struct dm_target *ti = dm_table_get_target(t, i); 1995 1996 if (!ti->num_secure_erase_bios) 1997 return false; 1998 1999 if (!ti->type->iterate_devices || 2000 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 2001 return false; 2002 } 2003 2004 return true; 2005 } 2006 2007 static int device_not_atomic_write_capable(struct dm_target *ti, 2008 struct dm_dev *dev, sector_t start, 2009 sector_t len, void *data) 2010 { 2011 return !bdev_can_atomic_write(dev->bdev); 2012 } 2013 2014 static bool dm_table_supports_atomic_writes(struct dm_table *t) 2015 { 2016 for (unsigned int i = 0; i < t->num_targets; i++) { 2017 struct dm_target *ti = dm_table_get_target(t, i); 2018 2019 if (!dm_target_supports_atomic_writes(ti->type)) 2020 return false; 2021 2022 if (!ti->type->iterate_devices) 2023 return false; 2024 2025 if (ti->type->iterate_devices(ti, 2026 device_not_atomic_write_capable, NULL)) { 2027 return false; 2028 } 2029 } 2030 return true; 2031 } 2032 2033 bool dm_table_supports_size_change(struct dm_table *t, sector_t old_size, 2034 sector_t new_size) 2035 { 2036 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && dm_has_zone_plugs(t->md) && 2037 old_size != new_size) { 2038 DMWARN("%s: device has zone write plug resources. " 2039 "Cannot change size", 2040 dm_device_name(t->md)); 2041 return false; 2042 } 2043 return true; 2044 } 2045 2046 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 2047 struct queue_limits *limits) 2048 { 2049 int r; 2050 struct queue_limits old_limits; 2051 2052 if (!dm_table_supports_nowait(t)) 2053 limits->features &= ~BLK_FEAT_NOWAIT; 2054 2055 /* 2056 * The current polling impementation does not support request based 2057 * stacking. 2058 */ 2059 if (!__table_type_bio_based(t->type)) 2060 limits->features &= ~BLK_FEAT_POLL; 2061 2062 if (!dm_table_supports_discards(t)) { 2063 limits->max_hw_discard_sectors = 0; 2064 limits->discard_granularity = 0; 2065 limits->discard_alignment = 0; 2066 } 2067 2068 if (!dm_table_supports_write_zeroes(t)) 2069 limits->max_write_zeroes_sectors = 0; 2070 2071 if (!dm_table_supports_secure_erase(t)) 2072 limits->max_secure_erase_sectors = 0; 2073 2074 if (dm_table_supports_flush(t)) 2075 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2076 2077 if (dm_table_supports_dax(t, device_not_dax_capable)) 2078 limits->features |= BLK_FEAT_DAX; 2079 else 2080 limits->features &= ~BLK_FEAT_DAX; 2081 2082 /* For a zoned table, setup the zone related queue attributes. */ 2083 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2084 if (limits->features & BLK_FEAT_ZONED) { 2085 r = dm_set_zones_restrictions(t, q, limits); 2086 if (r) 2087 return r; 2088 } else if (dm_has_zone_plugs(t->md)) { 2089 DMWARN("%s: device has zone write plug resources. " 2090 "Cannot switch to non-zoned table.", 2091 dm_device_name(t->md)); 2092 return -EINVAL; 2093 } 2094 } 2095 2096 if (dm_table_supports_atomic_writes(t)) 2097 limits->features |= BLK_FEAT_ATOMIC_WRITES; 2098 2099 old_limits = queue_limits_start_update(q); 2100 r = queue_limits_commit_update(q, limits); 2101 if (r) 2102 return r; 2103 2104 /* 2105 * Now that the limits are set, check the zones mapped by the table 2106 * and setup the resources for zone append emulation if necessary. 2107 */ 2108 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2109 (limits->features & BLK_FEAT_ZONED)) { 2110 r = dm_revalidate_zones(t, q); 2111 if (r) { 2112 queue_limits_set(q, &old_limits); 2113 return r; 2114 } 2115 } 2116 2117 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 2118 dm_finalize_zone_settings(t, limits); 2119 2120 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 2121 set_dax_synchronous(t->md->dax_dev); 2122 2123 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 2124 dax_write_cache(t->md->dax_dev, true); 2125 2126 dm_update_crypto_profile(q, t); 2127 return 0; 2128 } 2129 2130 struct list_head *dm_table_get_devices(struct dm_table *t) 2131 { 2132 return &t->devices; 2133 } 2134 2135 blk_mode_t dm_table_get_mode(struct dm_table *t) 2136 { 2137 return t->mode; 2138 } 2139 EXPORT_SYMBOL(dm_table_get_mode); 2140 2141 enum suspend_mode { 2142 PRESUSPEND, 2143 PRESUSPEND_UNDO, 2144 POSTSUSPEND, 2145 }; 2146 2147 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2148 { 2149 lockdep_assert_held(&t->md->suspend_lock); 2150 2151 for (unsigned int i = 0; i < t->num_targets; i++) { 2152 struct dm_target *ti = dm_table_get_target(t, i); 2153 2154 switch (mode) { 2155 case PRESUSPEND: 2156 if (ti->type->presuspend) 2157 ti->type->presuspend(ti); 2158 break; 2159 case PRESUSPEND_UNDO: 2160 if (ti->type->presuspend_undo) 2161 ti->type->presuspend_undo(ti); 2162 break; 2163 case POSTSUSPEND: 2164 if (ti->type->postsuspend) 2165 ti->type->postsuspend(ti); 2166 break; 2167 } 2168 } 2169 } 2170 2171 void dm_table_presuspend_targets(struct dm_table *t) 2172 { 2173 if (!t) 2174 return; 2175 2176 suspend_targets(t, PRESUSPEND); 2177 } 2178 2179 void dm_table_presuspend_undo_targets(struct dm_table *t) 2180 { 2181 if (!t) 2182 return; 2183 2184 suspend_targets(t, PRESUSPEND_UNDO); 2185 } 2186 2187 void dm_table_postsuspend_targets(struct dm_table *t) 2188 { 2189 if (!t) 2190 return; 2191 2192 suspend_targets(t, POSTSUSPEND); 2193 } 2194 2195 int dm_table_resume_targets(struct dm_table *t) 2196 { 2197 unsigned int i; 2198 int r = 0; 2199 2200 lockdep_assert_held(&t->md->suspend_lock); 2201 2202 for (i = 0; i < t->num_targets; i++) { 2203 struct dm_target *ti = dm_table_get_target(t, i); 2204 2205 if (!ti->type->preresume) 2206 continue; 2207 2208 r = ti->type->preresume(ti); 2209 if (r) { 2210 DMERR("%s: %s: preresume failed, error = %d", 2211 dm_device_name(t->md), ti->type->name, r); 2212 return r; 2213 } 2214 } 2215 2216 for (i = 0; i < t->num_targets; i++) { 2217 struct dm_target *ti = dm_table_get_target(t, i); 2218 2219 if (ti->type->resume) 2220 ti->type->resume(ti); 2221 } 2222 2223 return 0; 2224 } 2225 2226 struct mapped_device *dm_table_get_md(struct dm_table *t) 2227 { 2228 return t->md; 2229 } 2230 EXPORT_SYMBOL(dm_table_get_md); 2231 2232 const char *dm_table_device_name(struct dm_table *t) 2233 { 2234 return dm_device_name(t->md); 2235 } 2236 EXPORT_SYMBOL_GPL(dm_table_device_name); 2237 2238 void dm_table_run_md_queue_async(struct dm_table *t) 2239 { 2240 if (!dm_table_request_based(t)) 2241 return; 2242 2243 if (t->md->queue) 2244 blk_mq_run_hw_queues(t->md->queue, true); 2245 } 2246 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2247 2248