1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-list.h" 9 #include "dm-io.h" 10 #include "dm-log.h" 11 #include "kcopyd.h" 12 13 #include <linux/ctype.h> 14 #include <linux/init.h> 15 #include <linux/mempool.h> 16 #include <linux/module.h> 17 #include <linux/pagemap.h> 18 #include <linux/slab.h> 19 #include <linux/time.h> 20 #include <linux/vmalloc.h> 21 #include <linux/workqueue.h> 22 23 static struct workqueue_struct *_kmirrord_wq; 24 static struct work_struct _kmirrord_work; 25 26 static inline void wake(void) 27 { 28 queue_work(_kmirrord_wq, &_kmirrord_work); 29 } 30 31 /*----------------------------------------------------------------- 32 * Region hash 33 * 34 * The mirror splits itself up into discrete regions. Each 35 * region can be in one of three states: clean, dirty, 36 * nosync. There is no need to put clean regions in the hash. 37 * 38 * In addition to being present in the hash table a region _may_ 39 * be present on one of three lists. 40 * 41 * clean_regions: Regions on this list have no io pending to 42 * them, they are in sync, we are no longer interested in them, 43 * they are dull. rh_update_states() will remove them from the 44 * hash table. 45 * 46 * quiesced_regions: These regions have been spun down, ready 47 * for recovery. rh_recovery_start() will remove regions from 48 * this list and hand them to kmirrord, which will schedule the 49 * recovery io with kcopyd. 50 * 51 * recovered_regions: Regions that kcopyd has successfully 52 * recovered. rh_update_states() will now schedule any delayed 53 * io, up the recovery_count, and remove the region from the 54 * hash. 55 * 56 * There are 2 locks: 57 * A rw spin lock 'hash_lock' protects just the hash table, 58 * this is never held in write mode from interrupt context, 59 * which I believe means that we only have to disable irqs when 60 * doing a write lock. 61 * 62 * An ordinary spin lock 'region_lock' that protects the three 63 * lists in the region_hash, with the 'state', 'list' and 64 * 'bhs_delayed' fields of the regions. This is used from irq 65 * context, so all other uses will have to suspend local irqs. 66 *---------------------------------------------------------------*/ 67 struct mirror_set; 68 struct region_hash { 69 struct mirror_set *ms; 70 uint32_t region_size; 71 unsigned region_shift; 72 73 /* holds persistent region state */ 74 struct dirty_log *log; 75 76 /* hash table */ 77 rwlock_t hash_lock; 78 mempool_t *region_pool; 79 unsigned int mask; 80 unsigned int nr_buckets; 81 struct list_head *buckets; 82 83 spinlock_t region_lock; 84 struct semaphore recovery_count; 85 struct list_head clean_regions; 86 struct list_head quiesced_regions; 87 struct list_head recovered_regions; 88 }; 89 90 enum { 91 RH_CLEAN, 92 RH_DIRTY, 93 RH_NOSYNC, 94 RH_RECOVERING 95 }; 96 97 struct region { 98 struct region_hash *rh; /* FIXME: can we get rid of this ? */ 99 region_t key; 100 int state; 101 102 struct list_head hash_list; 103 struct list_head list; 104 105 atomic_t pending; 106 struct bio_list delayed_bios; 107 }; 108 109 /* 110 * Conversion fns 111 */ 112 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio) 113 { 114 return bio->bi_sector >> rh->region_shift; 115 } 116 117 static inline sector_t region_to_sector(struct region_hash *rh, region_t region) 118 { 119 return region << rh->region_shift; 120 } 121 122 /* FIXME move this */ 123 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw); 124 125 #define MIN_REGIONS 64 126 #define MAX_RECOVERY 1 127 static int rh_init(struct region_hash *rh, struct mirror_set *ms, 128 struct dirty_log *log, uint32_t region_size, 129 region_t nr_regions) 130 { 131 unsigned int nr_buckets, max_buckets; 132 size_t i; 133 134 /* 135 * Calculate a suitable number of buckets for our hash 136 * table. 137 */ 138 max_buckets = nr_regions >> 6; 139 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1) 140 ; 141 nr_buckets >>= 1; 142 143 rh->ms = ms; 144 rh->log = log; 145 rh->region_size = region_size; 146 rh->region_shift = ffs(region_size) - 1; 147 rwlock_init(&rh->hash_lock); 148 rh->mask = nr_buckets - 1; 149 rh->nr_buckets = nr_buckets; 150 151 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets)); 152 if (!rh->buckets) { 153 DMERR("unable to allocate region hash memory"); 154 return -ENOMEM; 155 } 156 157 for (i = 0; i < nr_buckets; i++) 158 INIT_LIST_HEAD(rh->buckets + i); 159 160 spin_lock_init(&rh->region_lock); 161 sema_init(&rh->recovery_count, 0); 162 INIT_LIST_HEAD(&rh->clean_regions); 163 INIT_LIST_HEAD(&rh->quiesced_regions); 164 INIT_LIST_HEAD(&rh->recovered_regions); 165 166 rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS, 167 sizeof(struct region)); 168 if (!rh->region_pool) { 169 vfree(rh->buckets); 170 rh->buckets = NULL; 171 return -ENOMEM; 172 } 173 174 return 0; 175 } 176 177 static void rh_exit(struct region_hash *rh) 178 { 179 unsigned int h; 180 struct region *reg, *nreg; 181 182 BUG_ON(!list_empty(&rh->quiesced_regions)); 183 for (h = 0; h < rh->nr_buckets; h++) { 184 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) { 185 BUG_ON(atomic_read(®->pending)); 186 mempool_free(reg, rh->region_pool); 187 } 188 } 189 190 if (rh->log) 191 dm_destroy_dirty_log(rh->log); 192 if (rh->region_pool) 193 mempool_destroy(rh->region_pool); 194 vfree(rh->buckets); 195 } 196 197 #define RH_HASH_MULT 2654435387U 198 199 static inline unsigned int rh_hash(struct region_hash *rh, region_t region) 200 { 201 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask; 202 } 203 204 static struct region *__rh_lookup(struct region_hash *rh, region_t region) 205 { 206 struct region *reg; 207 208 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list) 209 if (reg->key == region) 210 return reg; 211 212 return NULL; 213 } 214 215 static void __rh_insert(struct region_hash *rh, struct region *reg) 216 { 217 unsigned int h = rh_hash(rh, reg->key); 218 list_add(®->hash_list, rh->buckets + h); 219 } 220 221 static struct region *__rh_alloc(struct region_hash *rh, region_t region) 222 { 223 struct region *reg, *nreg; 224 225 read_unlock(&rh->hash_lock); 226 nreg = mempool_alloc(rh->region_pool, GFP_NOIO); 227 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ? 228 RH_CLEAN : RH_NOSYNC; 229 nreg->rh = rh; 230 nreg->key = region; 231 232 INIT_LIST_HEAD(&nreg->list); 233 234 atomic_set(&nreg->pending, 0); 235 bio_list_init(&nreg->delayed_bios); 236 write_lock_irq(&rh->hash_lock); 237 238 reg = __rh_lookup(rh, region); 239 if (reg) 240 /* we lost the race */ 241 mempool_free(nreg, rh->region_pool); 242 243 else { 244 __rh_insert(rh, nreg); 245 if (nreg->state == RH_CLEAN) { 246 spin_lock(&rh->region_lock); 247 list_add(&nreg->list, &rh->clean_regions); 248 spin_unlock(&rh->region_lock); 249 } 250 reg = nreg; 251 } 252 write_unlock_irq(&rh->hash_lock); 253 read_lock(&rh->hash_lock); 254 255 return reg; 256 } 257 258 static inline struct region *__rh_find(struct region_hash *rh, region_t region) 259 { 260 struct region *reg; 261 262 reg = __rh_lookup(rh, region); 263 if (!reg) 264 reg = __rh_alloc(rh, region); 265 266 return reg; 267 } 268 269 static int rh_state(struct region_hash *rh, region_t region, int may_block) 270 { 271 int r; 272 struct region *reg; 273 274 read_lock(&rh->hash_lock); 275 reg = __rh_lookup(rh, region); 276 read_unlock(&rh->hash_lock); 277 278 if (reg) 279 return reg->state; 280 281 /* 282 * The region wasn't in the hash, so we fall back to the 283 * dirty log. 284 */ 285 r = rh->log->type->in_sync(rh->log, region, may_block); 286 287 /* 288 * Any error from the dirty log (eg. -EWOULDBLOCK) gets 289 * taken as a RH_NOSYNC 290 */ 291 return r == 1 ? RH_CLEAN : RH_NOSYNC; 292 } 293 294 static inline int rh_in_sync(struct region_hash *rh, 295 region_t region, int may_block) 296 { 297 int state = rh_state(rh, region, may_block); 298 return state == RH_CLEAN || state == RH_DIRTY; 299 } 300 301 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list) 302 { 303 struct bio *bio; 304 305 while ((bio = bio_list_pop(bio_list))) { 306 queue_bio(ms, bio, WRITE); 307 } 308 } 309 310 static void rh_update_states(struct region_hash *rh) 311 { 312 struct region *reg, *next; 313 314 LIST_HEAD(clean); 315 LIST_HEAD(recovered); 316 317 /* 318 * Quickly grab the lists. 319 */ 320 write_lock_irq(&rh->hash_lock); 321 spin_lock(&rh->region_lock); 322 if (!list_empty(&rh->clean_regions)) { 323 list_splice(&rh->clean_regions, &clean); 324 INIT_LIST_HEAD(&rh->clean_regions); 325 326 list_for_each_entry (reg, &clean, list) { 327 rh->log->type->clear_region(rh->log, reg->key); 328 list_del(®->hash_list); 329 } 330 } 331 332 if (!list_empty(&rh->recovered_regions)) { 333 list_splice(&rh->recovered_regions, &recovered); 334 INIT_LIST_HEAD(&rh->recovered_regions); 335 336 list_for_each_entry (reg, &recovered, list) 337 list_del(®->hash_list); 338 } 339 spin_unlock(&rh->region_lock); 340 write_unlock_irq(&rh->hash_lock); 341 342 /* 343 * All the regions on the recovered and clean lists have 344 * now been pulled out of the system, so no need to do 345 * any more locking. 346 */ 347 list_for_each_entry_safe (reg, next, &recovered, list) { 348 rh->log->type->clear_region(rh->log, reg->key); 349 rh->log->type->complete_resync_work(rh->log, reg->key, 1); 350 dispatch_bios(rh->ms, ®->delayed_bios); 351 up(&rh->recovery_count); 352 mempool_free(reg, rh->region_pool); 353 } 354 355 if (!list_empty(&recovered)) 356 rh->log->type->flush(rh->log); 357 358 list_for_each_entry_safe (reg, next, &clean, list) 359 mempool_free(reg, rh->region_pool); 360 } 361 362 static void rh_inc(struct region_hash *rh, region_t region) 363 { 364 struct region *reg; 365 366 read_lock(&rh->hash_lock); 367 reg = __rh_find(rh, region); 368 369 spin_lock_irq(&rh->region_lock); 370 atomic_inc(®->pending); 371 372 if (reg->state == RH_CLEAN) { 373 reg->state = RH_DIRTY; 374 list_del_init(®->list); /* take off the clean list */ 375 spin_unlock_irq(&rh->region_lock); 376 377 rh->log->type->mark_region(rh->log, reg->key); 378 } else 379 spin_unlock_irq(&rh->region_lock); 380 381 382 read_unlock(&rh->hash_lock); 383 } 384 385 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios) 386 { 387 struct bio *bio; 388 389 for (bio = bios->head; bio; bio = bio->bi_next) 390 rh_inc(rh, bio_to_region(rh, bio)); 391 } 392 393 static void rh_dec(struct region_hash *rh, region_t region) 394 { 395 unsigned long flags; 396 struct region *reg; 397 int should_wake = 0; 398 399 read_lock(&rh->hash_lock); 400 reg = __rh_lookup(rh, region); 401 read_unlock(&rh->hash_lock); 402 403 spin_lock_irqsave(&rh->region_lock, flags); 404 if (atomic_dec_and_test(®->pending)) { 405 /* 406 * There is no pending I/O for this region. 407 * We can move the region to corresponding list for next action. 408 * At this point, the region is not yet connected to any list. 409 * 410 * If the state is RH_NOSYNC, the region should be kept off 411 * from clean list. 412 * The hash entry for RH_NOSYNC will remain in memory 413 * until the region is recovered or the map is reloaded. 414 */ 415 416 /* do nothing for RH_NOSYNC */ 417 if (reg->state == RH_RECOVERING) { 418 list_add_tail(®->list, &rh->quiesced_regions); 419 } else if (reg->state == RH_DIRTY) { 420 reg->state = RH_CLEAN; 421 list_add(®->list, &rh->clean_regions); 422 } 423 should_wake = 1; 424 } 425 spin_unlock_irqrestore(&rh->region_lock, flags); 426 427 if (should_wake) 428 wake(); 429 } 430 431 /* 432 * Starts quiescing a region in preparation for recovery. 433 */ 434 static int __rh_recovery_prepare(struct region_hash *rh) 435 { 436 int r; 437 struct region *reg; 438 region_t region; 439 440 /* 441 * Ask the dirty log what's next. 442 */ 443 r = rh->log->type->get_resync_work(rh->log, ®ion); 444 if (r <= 0) 445 return r; 446 447 /* 448 * Get this region, and start it quiescing by setting the 449 * recovering flag. 450 */ 451 read_lock(&rh->hash_lock); 452 reg = __rh_find(rh, region); 453 read_unlock(&rh->hash_lock); 454 455 spin_lock_irq(&rh->region_lock); 456 reg->state = RH_RECOVERING; 457 458 /* Already quiesced ? */ 459 if (atomic_read(®->pending)) 460 list_del_init(®->list); 461 462 else { 463 list_del_init(®->list); 464 list_add(®->list, &rh->quiesced_regions); 465 } 466 spin_unlock_irq(&rh->region_lock); 467 468 return 1; 469 } 470 471 static void rh_recovery_prepare(struct region_hash *rh) 472 { 473 while (!down_trylock(&rh->recovery_count)) 474 if (__rh_recovery_prepare(rh) <= 0) { 475 up(&rh->recovery_count); 476 break; 477 } 478 } 479 480 /* 481 * Returns any quiesced regions. 482 */ 483 static struct region *rh_recovery_start(struct region_hash *rh) 484 { 485 struct region *reg = NULL; 486 487 spin_lock_irq(&rh->region_lock); 488 if (!list_empty(&rh->quiesced_regions)) { 489 reg = list_entry(rh->quiesced_regions.next, 490 struct region, list); 491 list_del_init(®->list); /* remove from the quiesced list */ 492 } 493 spin_unlock_irq(&rh->region_lock); 494 495 return reg; 496 } 497 498 /* FIXME: success ignored for now */ 499 static void rh_recovery_end(struct region *reg, int success) 500 { 501 struct region_hash *rh = reg->rh; 502 503 spin_lock_irq(&rh->region_lock); 504 list_add(®->list, ®->rh->recovered_regions); 505 spin_unlock_irq(&rh->region_lock); 506 507 wake(); 508 } 509 510 static void rh_flush(struct region_hash *rh) 511 { 512 rh->log->type->flush(rh->log); 513 } 514 515 static void rh_delay(struct region_hash *rh, struct bio *bio) 516 { 517 struct region *reg; 518 519 read_lock(&rh->hash_lock); 520 reg = __rh_find(rh, bio_to_region(rh, bio)); 521 bio_list_add(®->delayed_bios, bio); 522 read_unlock(&rh->hash_lock); 523 } 524 525 static void rh_stop_recovery(struct region_hash *rh) 526 { 527 int i; 528 529 /* wait for any recovering regions */ 530 for (i = 0; i < MAX_RECOVERY; i++) 531 down(&rh->recovery_count); 532 } 533 534 static void rh_start_recovery(struct region_hash *rh) 535 { 536 int i; 537 538 for (i = 0; i < MAX_RECOVERY; i++) 539 up(&rh->recovery_count); 540 541 wake(); 542 } 543 544 /*----------------------------------------------------------------- 545 * Mirror set structures. 546 *---------------------------------------------------------------*/ 547 struct mirror { 548 atomic_t error_count; 549 struct dm_dev *dev; 550 sector_t offset; 551 }; 552 553 struct mirror_set { 554 struct dm_target *ti; 555 struct list_head list; 556 struct region_hash rh; 557 struct kcopyd_client *kcopyd_client; 558 559 spinlock_t lock; /* protects the next two lists */ 560 struct bio_list reads; 561 struct bio_list writes; 562 563 /* recovery */ 564 region_t nr_regions; 565 int in_sync; 566 567 struct mirror *default_mirror; /* Default mirror */ 568 569 unsigned int nr_mirrors; 570 struct mirror mirror[0]; 571 }; 572 573 /* 574 * Every mirror should look like this one. 575 */ 576 #define DEFAULT_MIRROR 0 577 578 /* 579 * This is yucky. We squirrel the mirror_set struct away inside 580 * bi_next for write buffers. This is safe since the bh 581 * doesn't get submitted to the lower levels of block layer. 582 */ 583 static struct mirror_set *bio_get_ms(struct bio *bio) 584 { 585 return (struct mirror_set *) bio->bi_next; 586 } 587 588 static void bio_set_ms(struct bio *bio, struct mirror_set *ms) 589 { 590 bio->bi_next = (struct bio *) ms; 591 } 592 593 /*----------------------------------------------------------------- 594 * Recovery. 595 * 596 * When a mirror is first activated we may find that some regions 597 * are in the no-sync state. We have to recover these by 598 * recopying from the default mirror to all the others. 599 *---------------------------------------------------------------*/ 600 static void recovery_complete(int read_err, unsigned int write_err, 601 void *context) 602 { 603 struct region *reg = (struct region *) context; 604 605 /* FIXME: better error handling */ 606 rh_recovery_end(reg, read_err || write_err); 607 } 608 609 static int recover(struct mirror_set *ms, struct region *reg) 610 { 611 int r; 612 unsigned int i; 613 struct io_region from, to[KCOPYD_MAX_REGIONS], *dest; 614 struct mirror *m; 615 unsigned long flags = 0; 616 617 /* fill in the source */ 618 m = ms->default_mirror; 619 from.bdev = m->dev->bdev; 620 from.sector = m->offset + region_to_sector(reg->rh, reg->key); 621 if (reg->key == (ms->nr_regions - 1)) { 622 /* 623 * The final region may be smaller than 624 * region_size. 625 */ 626 from.count = ms->ti->len & (reg->rh->region_size - 1); 627 if (!from.count) 628 from.count = reg->rh->region_size; 629 } else 630 from.count = reg->rh->region_size; 631 632 /* fill in the destinations */ 633 for (i = 0, dest = to; i < ms->nr_mirrors; i++) { 634 if (&ms->mirror[i] == ms->default_mirror) 635 continue; 636 637 m = ms->mirror + i; 638 dest->bdev = m->dev->bdev; 639 dest->sector = m->offset + region_to_sector(reg->rh, reg->key); 640 dest->count = from.count; 641 dest++; 642 } 643 644 /* hand to kcopyd */ 645 set_bit(KCOPYD_IGNORE_ERROR, &flags); 646 r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags, 647 recovery_complete, reg); 648 649 return r; 650 } 651 652 static void do_recovery(struct mirror_set *ms) 653 { 654 int r; 655 struct region *reg; 656 struct dirty_log *log = ms->rh.log; 657 658 /* 659 * Start quiescing some regions. 660 */ 661 rh_recovery_prepare(&ms->rh); 662 663 /* 664 * Copy any already quiesced regions. 665 */ 666 while ((reg = rh_recovery_start(&ms->rh))) { 667 r = recover(ms, reg); 668 if (r) 669 rh_recovery_end(reg, 0); 670 } 671 672 /* 673 * Update the in sync flag. 674 */ 675 if (!ms->in_sync && 676 (log->type->get_sync_count(log) == ms->nr_regions)) { 677 /* the sync is complete */ 678 dm_table_event(ms->ti->table); 679 ms->in_sync = 1; 680 } 681 } 682 683 /*----------------------------------------------------------------- 684 * Reads 685 *---------------------------------------------------------------*/ 686 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector) 687 { 688 /* FIXME: add read balancing */ 689 return ms->default_mirror; 690 } 691 692 /* 693 * remap a buffer to a particular mirror. 694 */ 695 static void map_bio(struct mirror_set *ms, struct mirror *m, struct bio *bio) 696 { 697 bio->bi_bdev = m->dev->bdev; 698 bio->bi_sector = m->offset + (bio->bi_sector - ms->ti->begin); 699 } 700 701 static void do_reads(struct mirror_set *ms, struct bio_list *reads) 702 { 703 region_t region; 704 struct bio *bio; 705 struct mirror *m; 706 707 while ((bio = bio_list_pop(reads))) { 708 region = bio_to_region(&ms->rh, bio); 709 710 /* 711 * We can only read balance if the region is in sync. 712 */ 713 if (rh_in_sync(&ms->rh, region, 0)) 714 m = choose_mirror(ms, bio->bi_sector); 715 else 716 m = ms->default_mirror; 717 718 map_bio(ms, m, bio); 719 generic_make_request(bio); 720 } 721 } 722 723 /*----------------------------------------------------------------- 724 * Writes. 725 * 726 * We do different things with the write io depending on the 727 * state of the region that it's in: 728 * 729 * SYNC: increment pending, use kcopyd to write to *all* mirrors 730 * RECOVERING: delay the io until recovery completes 731 * NOSYNC: increment pending, just write to the default mirror 732 *---------------------------------------------------------------*/ 733 static void write_callback(unsigned long error, void *context) 734 { 735 unsigned int i; 736 int uptodate = 1; 737 struct bio *bio = (struct bio *) context; 738 struct mirror_set *ms; 739 740 ms = bio_get_ms(bio); 741 bio_set_ms(bio, NULL); 742 743 /* 744 * NOTE: We don't decrement the pending count here, 745 * instead it is done by the targets endio function. 746 * This way we handle both writes to SYNC and NOSYNC 747 * regions with the same code. 748 */ 749 750 if (error) { 751 /* 752 * only error the io if all mirrors failed. 753 * FIXME: bogus 754 */ 755 uptodate = 0; 756 for (i = 0; i < ms->nr_mirrors; i++) 757 if (!test_bit(i, &error)) { 758 uptodate = 1; 759 break; 760 } 761 } 762 bio_endio(bio, bio->bi_size, 0); 763 } 764 765 static void do_write(struct mirror_set *ms, struct bio *bio) 766 { 767 unsigned int i; 768 struct io_region io[KCOPYD_MAX_REGIONS+1]; 769 struct mirror *m; 770 771 for (i = 0; i < ms->nr_mirrors; i++) { 772 m = ms->mirror + i; 773 774 io[i].bdev = m->dev->bdev; 775 io[i].sector = m->offset + (bio->bi_sector - ms->ti->begin); 776 io[i].count = bio->bi_size >> 9; 777 } 778 779 bio_set_ms(bio, ms); 780 dm_io_async_bvec(ms->nr_mirrors, io, WRITE, 781 bio->bi_io_vec + bio->bi_idx, 782 write_callback, bio); 783 } 784 785 static void do_writes(struct mirror_set *ms, struct bio_list *writes) 786 { 787 int state; 788 struct bio *bio; 789 struct bio_list sync, nosync, recover, *this_list = NULL; 790 791 if (!writes->head) 792 return; 793 794 /* 795 * Classify each write. 796 */ 797 bio_list_init(&sync); 798 bio_list_init(&nosync); 799 bio_list_init(&recover); 800 801 while ((bio = bio_list_pop(writes))) { 802 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1); 803 switch (state) { 804 case RH_CLEAN: 805 case RH_DIRTY: 806 this_list = &sync; 807 break; 808 809 case RH_NOSYNC: 810 this_list = &nosync; 811 break; 812 813 case RH_RECOVERING: 814 this_list = &recover; 815 break; 816 } 817 818 bio_list_add(this_list, bio); 819 } 820 821 /* 822 * Increment the pending counts for any regions that will 823 * be written to (writes to recover regions are going to 824 * be delayed). 825 */ 826 rh_inc_pending(&ms->rh, &sync); 827 rh_inc_pending(&ms->rh, &nosync); 828 rh_flush(&ms->rh); 829 830 /* 831 * Dispatch io. 832 */ 833 while ((bio = bio_list_pop(&sync))) 834 do_write(ms, bio); 835 836 while ((bio = bio_list_pop(&recover))) 837 rh_delay(&ms->rh, bio); 838 839 while ((bio = bio_list_pop(&nosync))) { 840 map_bio(ms, ms->default_mirror, bio); 841 generic_make_request(bio); 842 } 843 } 844 845 /*----------------------------------------------------------------- 846 * kmirrord 847 *---------------------------------------------------------------*/ 848 static LIST_HEAD(_mirror_sets); 849 static DECLARE_RWSEM(_mirror_sets_lock); 850 851 static void do_mirror(struct mirror_set *ms) 852 { 853 struct bio_list reads, writes; 854 855 spin_lock(&ms->lock); 856 reads = ms->reads; 857 writes = ms->writes; 858 bio_list_init(&ms->reads); 859 bio_list_init(&ms->writes); 860 spin_unlock(&ms->lock); 861 862 rh_update_states(&ms->rh); 863 do_recovery(ms); 864 do_reads(ms, &reads); 865 do_writes(ms, &writes); 866 } 867 868 static void do_work(void *ignored) 869 { 870 struct mirror_set *ms; 871 872 down_read(&_mirror_sets_lock); 873 list_for_each_entry (ms, &_mirror_sets, list) 874 do_mirror(ms); 875 up_read(&_mirror_sets_lock); 876 } 877 878 /*----------------------------------------------------------------- 879 * Target functions 880 *---------------------------------------------------------------*/ 881 static struct mirror_set *alloc_context(unsigned int nr_mirrors, 882 uint32_t region_size, 883 struct dm_target *ti, 884 struct dirty_log *dl) 885 { 886 size_t len; 887 struct mirror_set *ms = NULL; 888 889 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors)) 890 return NULL; 891 892 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors); 893 894 ms = kmalloc(len, GFP_KERNEL); 895 if (!ms) { 896 ti->error = "dm-mirror: Cannot allocate mirror context"; 897 return NULL; 898 } 899 900 memset(ms, 0, len); 901 spin_lock_init(&ms->lock); 902 903 ms->ti = ti; 904 ms->nr_mirrors = nr_mirrors; 905 ms->nr_regions = dm_sector_div_up(ti->len, region_size); 906 ms->in_sync = 0; 907 ms->default_mirror = &ms->mirror[DEFAULT_MIRROR]; 908 909 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) { 910 ti->error = "dm-mirror: Error creating dirty region hash"; 911 kfree(ms); 912 return NULL; 913 } 914 915 return ms; 916 } 917 918 static void free_context(struct mirror_set *ms, struct dm_target *ti, 919 unsigned int m) 920 { 921 while (m--) 922 dm_put_device(ti, ms->mirror[m].dev); 923 924 rh_exit(&ms->rh); 925 kfree(ms); 926 } 927 928 static inline int _check_region_size(struct dm_target *ti, uint32_t size) 929 { 930 return !(size % (PAGE_SIZE >> 9) || (size & (size - 1)) || 931 size > ti->len); 932 } 933 934 static int get_mirror(struct mirror_set *ms, struct dm_target *ti, 935 unsigned int mirror, char **argv) 936 { 937 unsigned long long offset; 938 939 if (sscanf(argv[1], "%llu", &offset) != 1) { 940 ti->error = "dm-mirror: Invalid offset"; 941 return -EINVAL; 942 } 943 944 if (dm_get_device(ti, argv[0], offset, ti->len, 945 dm_table_get_mode(ti->table), 946 &ms->mirror[mirror].dev)) { 947 ti->error = "dm-mirror: Device lookup failure"; 948 return -ENXIO; 949 } 950 951 ms->mirror[mirror].offset = offset; 952 953 return 0; 954 } 955 956 static int add_mirror_set(struct mirror_set *ms) 957 { 958 down_write(&_mirror_sets_lock); 959 list_add_tail(&ms->list, &_mirror_sets); 960 up_write(&_mirror_sets_lock); 961 wake(); 962 963 return 0; 964 } 965 966 static void del_mirror_set(struct mirror_set *ms) 967 { 968 down_write(&_mirror_sets_lock); 969 list_del(&ms->list); 970 up_write(&_mirror_sets_lock); 971 } 972 973 /* 974 * Create dirty log: log_type #log_params <log_params> 975 */ 976 static struct dirty_log *create_dirty_log(struct dm_target *ti, 977 unsigned int argc, char **argv, 978 unsigned int *args_used) 979 { 980 unsigned int param_count; 981 struct dirty_log *dl; 982 983 if (argc < 2) { 984 ti->error = "dm-mirror: Insufficient mirror log arguments"; 985 return NULL; 986 } 987 988 if (sscanf(argv[1], "%u", ¶m_count) != 1) { 989 ti->error = "dm-mirror: Invalid mirror log argument count"; 990 return NULL; 991 } 992 993 *args_used = 2 + param_count; 994 995 if (argc < *args_used) { 996 ti->error = "dm-mirror: Insufficient mirror log arguments"; 997 return NULL; 998 } 999 1000 dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2); 1001 if (!dl) { 1002 ti->error = "dm-mirror: Error creating mirror dirty log"; 1003 return NULL; 1004 } 1005 1006 if (!_check_region_size(ti, dl->type->get_region_size(dl))) { 1007 ti->error = "dm-mirror: Invalid region size"; 1008 dm_destroy_dirty_log(dl); 1009 return NULL; 1010 } 1011 1012 return dl; 1013 } 1014 1015 /* 1016 * Construct a mirror mapping: 1017 * 1018 * log_type #log_params <log_params> 1019 * #mirrors [mirror_path offset]{2,} 1020 * 1021 * log_type is "core" or "disk" 1022 * #log_params is between 1 and 3 1023 */ 1024 #define DM_IO_PAGES 64 1025 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1026 { 1027 int r; 1028 unsigned int nr_mirrors, m, args_used; 1029 struct mirror_set *ms; 1030 struct dirty_log *dl; 1031 1032 dl = create_dirty_log(ti, argc, argv, &args_used); 1033 if (!dl) 1034 return -EINVAL; 1035 1036 argv += args_used; 1037 argc -= args_used; 1038 1039 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 || 1040 nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) { 1041 ti->error = "dm-mirror: Invalid number of mirrors"; 1042 dm_destroy_dirty_log(dl); 1043 return -EINVAL; 1044 } 1045 1046 argv++, argc--; 1047 1048 if (argc != nr_mirrors * 2) { 1049 ti->error = "dm-mirror: Wrong number of mirror arguments"; 1050 dm_destroy_dirty_log(dl); 1051 return -EINVAL; 1052 } 1053 1054 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl); 1055 if (!ms) { 1056 dm_destroy_dirty_log(dl); 1057 return -ENOMEM; 1058 } 1059 1060 /* Get the mirror parameter sets */ 1061 for (m = 0; m < nr_mirrors; m++) { 1062 r = get_mirror(ms, ti, m, argv); 1063 if (r) { 1064 free_context(ms, ti, m); 1065 return r; 1066 } 1067 argv += 2; 1068 argc -= 2; 1069 } 1070 1071 ti->private = ms; 1072 ti->split_io = ms->rh.region_size; 1073 1074 r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client); 1075 if (r) { 1076 free_context(ms, ti, ms->nr_mirrors); 1077 return r; 1078 } 1079 1080 add_mirror_set(ms); 1081 return 0; 1082 } 1083 1084 static void mirror_dtr(struct dm_target *ti) 1085 { 1086 struct mirror_set *ms = (struct mirror_set *) ti->private; 1087 1088 del_mirror_set(ms); 1089 kcopyd_client_destroy(ms->kcopyd_client); 1090 free_context(ms, ti, ms->nr_mirrors); 1091 } 1092 1093 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw) 1094 { 1095 int should_wake = 0; 1096 struct bio_list *bl; 1097 1098 bl = (rw == WRITE) ? &ms->writes : &ms->reads; 1099 spin_lock(&ms->lock); 1100 should_wake = !(bl->head); 1101 bio_list_add(bl, bio); 1102 spin_unlock(&ms->lock); 1103 1104 if (should_wake) 1105 wake(); 1106 } 1107 1108 /* 1109 * Mirror mapping function 1110 */ 1111 static int mirror_map(struct dm_target *ti, struct bio *bio, 1112 union map_info *map_context) 1113 { 1114 int r, rw = bio_rw(bio); 1115 struct mirror *m; 1116 struct mirror_set *ms = ti->private; 1117 1118 map_context->ll = bio->bi_sector >> ms->rh.region_shift; 1119 1120 if (rw == WRITE) { 1121 queue_bio(ms, bio, rw); 1122 return 0; 1123 } 1124 1125 r = ms->rh.log->type->in_sync(ms->rh.log, 1126 bio_to_region(&ms->rh, bio), 0); 1127 if (r < 0 && r != -EWOULDBLOCK) 1128 return r; 1129 1130 if (r == -EWOULDBLOCK) /* FIXME: ugly */ 1131 r = 0; 1132 1133 /* 1134 * We don't want to fast track a recovery just for a read 1135 * ahead. So we just let it silently fail. 1136 * FIXME: get rid of this. 1137 */ 1138 if (!r && rw == READA) 1139 return -EIO; 1140 1141 if (!r) { 1142 /* Pass this io over to the daemon */ 1143 queue_bio(ms, bio, rw); 1144 return 0; 1145 } 1146 1147 m = choose_mirror(ms, bio->bi_sector); 1148 if (!m) 1149 return -EIO; 1150 1151 map_bio(ms, m, bio); 1152 return 1; 1153 } 1154 1155 static int mirror_end_io(struct dm_target *ti, struct bio *bio, 1156 int error, union map_info *map_context) 1157 { 1158 int rw = bio_rw(bio); 1159 struct mirror_set *ms = (struct mirror_set *) ti->private; 1160 region_t region = map_context->ll; 1161 1162 /* 1163 * We need to dec pending if this was a write. 1164 */ 1165 if (rw == WRITE) 1166 rh_dec(&ms->rh, region); 1167 1168 return 0; 1169 } 1170 1171 static void mirror_postsuspend(struct dm_target *ti) 1172 { 1173 struct mirror_set *ms = (struct mirror_set *) ti->private; 1174 struct dirty_log *log = ms->rh.log; 1175 1176 rh_stop_recovery(&ms->rh); 1177 if (log->type->suspend && log->type->suspend(log)) 1178 /* FIXME: need better error handling */ 1179 DMWARN("log suspend failed"); 1180 } 1181 1182 static void mirror_resume(struct dm_target *ti) 1183 { 1184 struct mirror_set *ms = (struct mirror_set *) ti->private; 1185 struct dirty_log *log = ms->rh.log; 1186 if (log->type->resume && log->type->resume(log)) 1187 /* FIXME: need better error handling */ 1188 DMWARN("log resume failed"); 1189 rh_start_recovery(&ms->rh); 1190 } 1191 1192 static int mirror_status(struct dm_target *ti, status_type_t type, 1193 char *result, unsigned int maxlen) 1194 { 1195 unsigned int m, sz; 1196 struct mirror_set *ms = (struct mirror_set *) ti->private; 1197 1198 sz = ms->rh.log->type->status(ms->rh.log, type, result, maxlen); 1199 1200 switch (type) { 1201 case STATUSTYPE_INFO: 1202 DMEMIT("%d ", ms->nr_mirrors); 1203 for (m = 0; m < ms->nr_mirrors; m++) 1204 DMEMIT("%s ", ms->mirror[m].dev->name); 1205 1206 DMEMIT("%llu/%llu", 1207 (unsigned long long)ms->rh.log->type-> 1208 get_sync_count(ms->rh.log), 1209 (unsigned long long)ms->nr_regions); 1210 break; 1211 1212 case STATUSTYPE_TABLE: 1213 DMEMIT("%d ", ms->nr_mirrors); 1214 for (m = 0; m < ms->nr_mirrors; m++) 1215 DMEMIT("%s %llu ", ms->mirror[m].dev->name, 1216 (unsigned long long)ms->mirror[m].offset); 1217 } 1218 1219 return 0; 1220 } 1221 1222 static struct target_type mirror_target = { 1223 .name = "mirror", 1224 .version = {1, 0, 1}, 1225 .module = THIS_MODULE, 1226 .ctr = mirror_ctr, 1227 .dtr = mirror_dtr, 1228 .map = mirror_map, 1229 .end_io = mirror_end_io, 1230 .postsuspend = mirror_postsuspend, 1231 .resume = mirror_resume, 1232 .status = mirror_status, 1233 }; 1234 1235 static int __init dm_mirror_init(void) 1236 { 1237 int r; 1238 1239 r = dm_dirty_log_init(); 1240 if (r) 1241 return r; 1242 1243 _kmirrord_wq = create_singlethread_workqueue("kmirrord"); 1244 if (!_kmirrord_wq) { 1245 DMERR("couldn't start kmirrord"); 1246 dm_dirty_log_exit(); 1247 return r; 1248 } 1249 INIT_WORK(&_kmirrord_work, do_work, NULL); 1250 1251 r = dm_register_target(&mirror_target); 1252 if (r < 0) { 1253 DMERR("%s: Failed to register mirror target", 1254 mirror_target.name); 1255 dm_dirty_log_exit(); 1256 destroy_workqueue(_kmirrord_wq); 1257 } 1258 1259 return r; 1260 } 1261 1262 static void __exit dm_mirror_exit(void) 1263 { 1264 int r; 1265 1266 r = dm_unregister_target(&mirror_target); 1267 if (r < 0) 1268 DMERR("%s: unregister failed %d", mirror_target.name, r); 1269 1270 destroy_workqueue(_kmirrord_wq); 1271 dm_dirty_log_exit(); 1272 } 1273 1274 /* Module hooks */ 1275 module_init(dm_mirror_init); 1276 module_exit(dm_mirror_exit); 1277 1278 MODULE_DESCRIPTION(DM_NAME " mirror target"); 1279 MODULE_AUTHOR("Joe Thornber"); 1280 MODULE_LICENSE("GPL"); 1281