1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Sistina Software Limited. 4 * Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/init.h> 12 #include <linux/mempool.h> 13 #include <linux/module.h> 14 #include <linux/pagemap.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/device-mapper.h> 18 #include <linux/dm-io.h> 19 #include <linux/dm-dirty-log.h> 20 #include <linux/dm-kcopyd.h> 21 #include <linux/dm-region-hash.h> 22 23 #define DM_MSG_PREFIX "raid1" 24 25 #define MAX_RECOVERY 1 /* Maximum number of regions recovered in parallel. */ 26 27 #define MAX_NR_MIRRORS (DM_KCOPYD_MAX_REGIONS + 1) 28 29 #define DM_RAID1_HANDLE_ERRORS 0x01 30 #define DM_RAID1_KEEP_LOG 0x02 31 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS) 32 #define keep_log(p) ((p)->features & DM_RAID1_KEEP_LOG) 33 34 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped); 35 36 /* 37 *--------------------------------------------------------------- 38 * Mirror set structures. 39 *--------------------------------------------------------------- 40 */ 41 enum dm_raid1_error { 42 DM_RAID1_WRITE_ERROR, 43 DM_RAID1_FLUSH_ERROR, 44 DM_RAID1_SYNC_ERROR, 45 DM_RAID1_READ_ERROR 46 }; 47 48 struct mirror { 49 struct mirror_set *ms; 50 atomic_t error_count; 51 unsigned long error_type; 52 struct dm_dev *dev; 53 sector_t offset; 54 }; 55 56 struct mirror_set { 57 struct dm_target *ti; 58 struct list_head list; 59 60 uint64_t features; 61 62 spinlock_t lock; /* protects the lists */ 63 struct bio_list reads; 64 struct bio_list writes; 65 struct bio_list failures; 66 struct bio_list holds; /* bios are waiting until suspend */ 67 68 struct dm_region_hash *rh; 69 struct dm_kcopyd_client *kcopyd_client; 70 struct dm_io_client *io_client; 71 72 /* recovery */ 73 region_t nr_regions; 74 int in_sync; 75 int log_failure; 76 int leg_failure; 77 atomic_t suspend; 78 79 atomic_t default_mirror; /* Default mirror */ 80 81 struct workqueue_struct *kmirrord_wq; 82 struct work_struct kmirrord_work; 83 struct timer_list timer; 84 unsigned long timer_pending; 85 86 struct work_struct trigger_event; 87 88 unsigned int nr_mirrors; 89 struct mirror mirror[]; 90 }; 91 92 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(raid1_resync_throttle, 93 "A percentage of time allocated for raid resynchronization"); 94 95 static void wakeup_mirrord(void *context) 96 { 97 struct mirror_set *ms = context; 98 99 queue_work(ms->kmirrord_wq, &ms->kmirrord_work); 100 } 101 102 static void delayed_wake_fn(struct timer_list *t) 103 { 104 struct mirror_set *ms = from_timer(ms, t, timer); 105 106 clear_bit(0, &ms->timer_pending); 107 wakeup_mirrord(ms); 108 } 109 110 static void delayed_wake(struct mirror_set *ms) 111 { 112 if (test_and_set_bit(0, &ms->timer_pending)) 113 return; 114 115 ms->timer.expires = jiffies + HZ / 5; 116 add_timer(&ms->timer); 117 } 118 119 static void wakeup_all_recovery_waiters(void *context) 120 { 121 wake_up_all(&_kmirrord_recovery_stopped); 122 } 123 124 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw) 125 { 126 unsigned long flags; 127 int should_wake = 0; 128 struct bio_list *bl; 129 130 bl = (rw == WRITE) ? &ms->writes : &ms->reads; 131 spin_lock_irqsave(&ms->lock, flags); 132 should_wake = !(bl->head); 133 bio_list_add(bl, bio); 134 spin_unlock_irqrestore(&ms->lock, flags); 135 136 if (should_wake) 137 wakeup_mirrord(ms); 138 } 139 140 static void dispatch_bios(void *context, struct bio_list *bio_list) 141 { 142 struct mirror_set *ms = context; 143 struct bio *bio; 144 145 while ((bio = bio_list_pop(bio_list))) 146 queue_bio(ms, bio, WRITE); 147 } 148 149 struct dm_raid1_bio_record { 150 struct mirror *m; 151 /* if details->bi_bdev == NULL, details were not saved */ 152 struct dm_bio_details details; 153 region_t write_region; 154 }; 155 156 /* 157 * Every mirror should look like this one. 158 */ 159 #define DEFAULT_MIRROR 0 160 161 /* 162 * This is yucky. We squirrel the mirror struct away inside 163 * bi_next for read/write buffers. This is safe since the bh 164 * doesn't get submitted to the lower levels of block layer. 165 */ 166 static struct mirror *bio_get_m(struct bio *bio) 167 { 168 return (struct mirror *) bio->bi_next; 169 } 170 171 static void bio_set_m(struct bio *bio, struct mirror *m) 172 { 173 bio->bi_next = (struct bio *) m; 174 } 175 176 static struct mirror *get_default_mirror(struct mirror_set *ms) 177 { 178 return &ms->mirror[atomic_read(&ms->default_mirror)]; 179 } 180 181 static void set_default_mirror(struct mirror *m) 182 { 183 struct mirror_set *ms = m->ms; 184 struct mirror *m0 = &(ms->mirror[0]); 185 186 atomic_set(&ms->default_mirror, m - m0); 187 } 188 189 static struct mirror *get_valid_mirror(struct mirror_set *ms) 190 { 191 struct mirror *m; 192 193 for (m = ms->mirror; m < ms->mirror + ms->nr_mirrors; m++) 194 if (!atomic_read(&m->error_count)) 195 return m; 196 197 return NULL; 198 } 199 200 /* fail_mirror 201 * @m: mirror device to fail 202 * @error_type: one of the enum's, DM_RAID1_*_ERROR 203 * 204 * If errors are being handled, record the type of 205 * error encountered for this device. If this type 206 * of error has already been recorded, we can return; 207 * otherwise, we must signal userspace by triggering 208 * an event. Additionally, if the device is the 209 * primary device, we must choose a new primary, but 210 * only if the mirror is in-sync. 211 * 212 * This function must not block. 213 */ 214 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type) 215 { 216 struct mirror_set *ms = m->ms; 217 struct mirror *new; 218 219 ms->leg_failure = 1; 220 221 /* 222 * error_count is used for nothing more than a 223 * simple way to tell if a device has encountered 224 * errors. 225 */ 226 atomic_inc(&m->error_count); 227 228 if (test_and_set_bit(error_type, &m->error_type)) 229 return; 230 231 if (!errors_handled(ms)) 232 return; 233 234 if (m != get_default_mirror(ms)) 235 goto out; 236 237 if (!ms->in_sync && !keep_log(ms)) { 238 /* 239 * Better to issue requests to same failing device 240 * than to risk returning corrupt data. 241 */ 242 DMERR("Primary mirror (%s) failed while out-of-sync: " 243 "Reads may fail.", m->dev->name); 244 goto out; 245 } 246 247 new = get_valid_mirror(ms); 248 if (new) 249 set_default_mirror(new); 250 else 251 DMWARN("All sides of mirror have failed."); 252 253 out: 254 schedule_work(&ms->trigger_event); 255 } 256 257 static int mirror_flush(struct dm_target *ti) 258 { 259 struct mirror_set *ms = ti->private; 260 unsigned long error_bits; 261 262 unsigned int i; 263 struct dm_io_region io[MAX_NR_MIRRORS]; 264 struct mirror *m; 265 struct dm_io_request io_req = { 266 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 267 .mem.type = DM_IO_KMEM, 268 .mem.ptr.addr = NULL, 269 .client = ms->io_client, 270 }; 271 272 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) { 273 io[i].bdev = m->dev->bdev; 274 io[i].sector = 0; 275 io[i].count = 0; 276 } 277 278 error_bits = -1; 279 dm_io(&io_req, ms->nr_mirrors, io, &error_bits); 280 if (unlikely(error_bits != 0)) { 281 for (i = 0; i < ms->nr_mirrors; i++) 282 if (test_bit(i, &error_bits)) 283 fail_mirror(ms->mirror + i, 284 DM_RAID1_FLUSH_ERROR); 285 return -EIO; 286 } 287 288 return 0; 289 } 290 291 /* 292 *--------------------------------------------------------------- 293 * Recovery. 294 * 295 * When a mirror is first activated we may find that some regions 296 * are in the no-sync state. We have to recover these by 297 * recopying from the default mirror to all the others. 298 *--------------------------------------------------------------- 299 */ 300 static void recovery_complete(int read_err, unsigned long write_err, 301 void *context) 302 { 303 struct dm_region *reg = context; 304 struct mirror_set *ms = dm_rh_region_context(reg); 305 int m, bit = 0; 306 307 if (read_err) { 308 /* Read error means the failure of default mirror. */ 309 DMERR_LIMIT("Unable to read primary mirror during recovery"); 310 fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR); 311 } 312 313 if (write_err) { 314 DMERR_LIMIT("Write error during recovery (error = 0x%lx)", 315 write_err); 316 /* 317 * Bits correspond to devices (excluding default mirror). 318 * The default mirror cannot change during recovery. 319 */ 320 for (m = 0; m < ms->nr_mirrors; m++) { 321 if (&ms->mirror[m] == get_default_mirror(ms)) 322 continue; 323 if (test_bit(bit, &write_err)) 324 fail_mirror(ms->mirror + m, 325 DM_RAID1_SYNC_ERROR); 326 bit++; 327 } 328 } 329 330 dm_rh_recovery_end(reg, !(read_err || write_err)); 331 } 332 333 static void recover(struct mirror_set *ms, struct dm_region *reg) 334 { 335 unsigned int i; 336 struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest; 337 struct mirror *m; 338 unsigned long flags = 0; 339 region_t key = dm_rh_get_region_key(reg); 340 sector_t region_size = dm_rh_get_region_size(ms->rh); 341 342 /* fill in the source */ 343 m = get_default_mirror(ms); 344 from.bdev = m->dev->bdev; 345 from.sector = m->offset + dm_rh_region_to_sector(ms->rh, key); 346 if (key == (ms->nr_regions - 1)) { 347 /* 348 * The final region may be smaller than 349 * region_size. 350 */ 351 from.count = ms->ti->len & (region_size - 1); 352 if (!from.count) 353 from.count = region_size; 354 } else 355 from.count = region_size; 356 357 /* fill in the destinations */ 358 for (i = 0, dest = to; i < ms->nr_mirrors; i++) { 359 if (&ms->mirror[i] == get_default_mirror(ms)) 360 continue; 361 362 m = ms->mirror + i; 363 dest->bdev = m->dev->bdev; 364 dest->sector = m->offset + dm_rh_region_to_sector(ms->rh, key); 365 dest->count = from.count; 366 dest++; 367 } 368 369 /* hand to kcopyd */ 370 if (!errors_handled(ms)) 371 flags |= BIT(DM_KCOPYD_IGNORE_ERROR); 372 373 dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, 374 flags, recovery_complete, reg); 375 } 376 377 static void reset_ms_flags(struct mirror_set *ms) 378 { 379 unsigned int m; 380 381 ms->leg_failure = 0; 382 for (m = 0; m < ms->nr_mirrors; m++) { 383 atomic_set(&(ms->mirror[m].error_count), 0); 384 ms->mirror[m].error_type = 0; 385 } 386 } 387 388 static void do_recovery(struct mirror_set *ms) 389 { 390 struct dm_region *reg; 391 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 392 393 /* 394 * Start quiescing some regions. 395 */ 396 dm_rh_recovery_prepare(ms->rh); 397 398 /* 399 * Copy any already quiesced regions. 400 */ 401 while ((reg = dm_rh_recovery_start(ms->rh))) 402 recover(ms, reg); 403 404 /* 405 * Update the in sync flag. 406 */ 407 if (!ms->in_sync && 408 (log->type->get_sync_count(log) == ms->nr_regions)) { 409 /* the sync is complete */ 410 dm_table_event(ms->ti->table); 411 ms->in_sync = 1; 412 reset_ms_flags(ms); 413 } 414 } 415 416 /* 417 *--------------------------------------------------------------- 418 * Reads 419 *--------------------------------------------------------------- 420 */ 421 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector) 422 { 423 struct mirror *m = get_default_mirror(ms); 424 425 do { 426 if (likely(!atomic_read(&m->error_count))) 427 return m; 428 429 if (m-- == ms->mirror) 430 m += ms->nr_mirrors; 431 } while (m != get_default_mirror(ms)); 432 433 return NULL; 434 } 435 436 static int default_ok(struct mirror *m) 437 { 438 struct mirror *default_mirror = get_default_mirror(m->ms); 439 440 return !atomic_read(&default_mirror->error_count); 441 } 442 443 static int mirror_available(struct mirror_set *ms, struct bio *bio) 444 { 445 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 446 region_t region = dm_rh_bio_to_region(ms->rh, bio); 447 448 if (log->type->in_sync(log, region, 0)) 449 return choose_mirror(ms, bio->bi_iter.bi_sector) ? 1 : 0; 450 451 return 0; 452 } 453 454 /* 455 * remap a buffer to a particular mirror. 456 */ 457 static sector_t map_sector(struct mirror *m, struct bio *bio) 458 { 459 if (unlikely(!bio->bi_iter.bi_size)) 460 return 0; 461 return m->offset + dm_target_offset(m->ms->ti, bio->bi_iter.bi_sector); 462 } 463 464 static void map_bio(struct mirror *m, struct bio *bio) 465 { 466 bio_set_dev(bio, m->dev->bdev); 467 bio->bi_iter.bi_sector = map_sector(m, bio); 468 } 469 470 static void map_region(struct dm_io_region *io, struct mirror *m, 471 struct bio *bio) 472 { 473 io->bdev = m->dev->bdev; 474 io->sector = map_sector(m, bio); 475 io->count = bio_sectors(bio); 476 } 477 478 static void hold_bio(struct mirror_set *ms, struct bio *bio) 479 { 480 /* 481 * Lock is required to avoid race condition during suspend 482 * process. 483 */ 484 spin_lock_irq(&ms->lock); 485 486 if (atomic_read(&ms->suspend)) { 487 spin_unlock_irq(&ms->lock); 488 489 /* 490 * If device is suspended, complete the bio. 491 */ 492 if (dm_noflush_suspending(ms->ti)) 493 bio->bi_status = BLK_STS_DM_REQUEUE; 494 else 495 bio->bi_status = BLK_STS_IOERR; 496 497 bio_endio(bio); 498 return; 499 } 500 501 /* 502 * Hold bio until the suspend is complete. 503 */ 504 bio_list_add(&ms->holds, bio); 505 spin_unlock_irq(&ms->lock); 506 } 507 508 /* 509 *--------------------------------------------------------------- 510 * Reads 511 *--------------------------------------------------------------- 512 */ 513 static void read_callback(unsigned long error, void *context) 514 { 515 struct bio *bio = context; 516 struct mirror *m; 517 518 m = bio_get_m(bio); 519 bio_set_m(bio, NULL); 520 521 if (likely(!error)) { 522 bio_endio(bio); 523 return; 524 } 525 526 fail_mirror(m, DM_RAID1_READ_ERROR); 527 528 if (likely(default_ok(m)) || mirror_available(m->ms, bio)) { 529 DMWARN_LIMIT("Read failure on mirror device %s. " 530 "Trying alternative device.", 531 m->dev->name); 532 queue_bio(m->ms, bio, bio_data_dir(bio)); 533 return; 534 } 535 536 DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.", 537 m->dev->name); 538 bio_io_error(bio); 539 } 540 541 /* Asynchronous read. */ 542 static void read_async_bio(struct mirror *m, struct bio *bio) 543 { 544 struct dm_io_region io; 545 struct dm_io_request io_req = { 546 .bi_opf = REQ_OP_READ, 547 .mem.type = DM_IO_BIO, 548 .mem.ptr.bio = bio, 549 .notify.fn = read_callback, 550 .notify.context = bio, 551 .client = m->ms->io_client, 552 }; 553 554 map_region(&io, m, bio); 555 bio_set_m(bio, m); 556 BUG_ON(dm_io(&io_req, 1, &io, NULL)); 557 } 558 559 static inline int region_in_sync(struct mirror_set *ms, region_t region, 560 int may_block) 561 { 562 int state = dm_rh_get_state(ms->rh, region, may_block); 563 return state == DM_RH_CLEAN || state == DM_RH_DIRTY; 564 } 565 566 static void do_reads(struct mirror_set *ms, struct bio_list *reads) 567 { 568 region_t region; 569 struct bio *bio; 570 struct mirror *m; 571 572 while ((bio = bio_list_pop(reads))) { 573 region = dm_rh_bio_to_region(ms->rh, bio); 574 m = get_default_mirror(ms); 575 576 /* 577 * We can only read balance if the region is in sync. 578 */ 579 if (likely(region_in_sync(ms, region, 1))) 580 m = choose_mirror(ms, bio->bi_iter.bi_sector); 581 else if (m && atomic_read(&m->error_count)) 582 m = NULL; 583 584 if (likely(m)) 585 read_async_bio(m, bio); 586 else 587 bio_io_error(bio); 588 } 589 } 590 591 /* 592 *--------------------------------------------------------------------- 593 * Writes. 594 * 595 * We do different things with the write io depending on the 596 * state of the region that it's in: 597 * 598 * SYNC: increment pending, use kcopyd to write to *all* mirrors 599 * RECOVERING: delay the io until recovery completes 600 * NOSYNC: increment pending, just write to the default mirror 601 *--------------------------------------------------------------------- 602 */ 603 static void write_callback(unsigned long error, void *context) 604 { 605 unsigned int i; 606 struct bio *bio = (struct bio *) context; 607 struct mirror_set *ms; 608 int should_wake = 0; 609 unsigned long flags; 610 611 ms = bio_get_m(bio)->ms; 612 bio_set_m(bio, NULL); 613 614 /* 615 * NOTE: We don't decrement the pending count here, 616 * instead it is done by the targets endio function. 617 * This way we handle both writes to SYNC and NOSYNC 618 * regions with the same code. 619 */ 620 if (likely(!error)) { 621 bio_endio(bio); 622 return; 623 } 624 625 /* 626 * If the bio is discard, return an error, but do not 627 * degrade the array. 628 */ 629 if (bio_op(bio) == REQ_OP_DISCARD) { 630 bio->bi_status = BLK_STS_NOTSUPP; 631 bio_endio(bio); 632 return; 633 } 634 635 for (i = 0; i < ms->nr_mirrors; i++) 636 if (test_bit(i, &error)) 637 fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR); 638 639 /* 640 * Need to raise event. Since raising 641 * events can block, we need to do it in 642 * the main thread. 643 */ 644 spin_lock_irqsave(&ms->lock, flags); 645 if (!ms->failures.head) 646 should_wake = 1; 647 bio_list_add(&ms->failures, bio); 648 spin_unlock_irqrestore(&ms->lock, flags); 649 if (should_wake) 650 wakeup_mirrord(ms); 651 } 652 653 static void do_write(struct mirror_set *ms, struct bio *bio) 654 { 655 unsigned int i; 656 struct dm_io_region io[MAX_NR_MIRRORS], *dest = io; 657 struct mirror *m; 658 blk_opf_t op_flags = bio->bi_opf & (REQ_FUA | REQ_PREFLUSH); 659 struct dm_io_request io_req = { 660 .bi_opf = REQ_OP_WRITE | op_flags, 661 .mem.type = DM_IO_BIO, 662 .mem.ptr.bio = bio, 663 .notify.fn = write_callback, 664 .notify.context = bio, 665 .client = ms->io_client, 666 }; 667 668 if (bio_op(bio) == REQ_OP_DISCARD) { 669 io_req.bi_opf = REQ_OP_DISCARD | op_flags; 670 io_req.mem.type = DM_IO_KMEM; 671 io_req.mem.ptr.addr = NULL; 672 } 673 674 for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) 675 map_region(dest++, m, bio); 676 677 /* 678 * Use default mirror because we only need it to retrieve the reference 679 * to the mirror set in write_callback(). 680 */ 681 bio_set_m(bio, get_default_mirror(ms)); 682 683 BUG_ON(dm_io(&io_req, ms->nr_mirrors, io, NULL)); 684 } 685 686 static void do_writes(struct mirror_set *ms, struct bio_list *writes) 687 { 688 int state; 689 struct bio *bio; 690 struct bio_list sync, nosync, recover, *this_list = NULL; 691 struct bio_list requeue; 692 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 693 region_t region; 694 695 if (!writes->head) 696 return; 697 698 /* 699 * Classify each write. 700 */ 701 bio_list_init(&sync); 702 bio_list_init(&nosync); 703 bio_list_init(&recover); 704 bio_list_init(&requeue); 705 706 while ((bio = bio_list_pop(writes))) { 707 if ((bio->bi_opf & REQ_PREFLUSH) || 708 (bio_op(bio) == REQ_OP_DISCARD)) { 709 bio_list_add(&sync, bio); 710 continue; 711 } 712 713 region = dm_rh_bio_to_region(ms->rh, bio); 714 715 if (log->type->is_remote_recovering && 716 log->type->is_remote_recovering(log, region)) { 717 bio_list_add(&requeue, bio); 718 continue; 719 } 720 721 state = dm_rh_get_state(ms->rh, region, 1); 722 switch (state) { 723 case DM_RH_CLEAN: 724 case DM_RH_DIRTY: 725 this_list = &sync; 726 break; 727 728 case DM_RH_NOSYNC: 729 this_list = &nosync; 730 break; 731 732 case DM_RH_RECOVERING: 733 this_list = &recover; 734 break; 735 } 736 737 bio_list_add(this_list, bio); 738 } 739 740 /* 741 * Add bios that are delayed due to remote recovery 742 * back on to the write queue 743 */ 744 if (unlikely(requeue.head)) { 745 spin_lock_irq(&ms->lock); 746 bio_list_merge(&ms->writes, &requeue); 747 spin_unlock_irq(&ms->lock); 748 delayed_wake(ms); 749 } 750 751 /* 752 * Increment the pending counts for any regions that will 753 * be written to (writes to recover regions are going to 754 * be delayed). 755 */ 756 dm_rh_inc_pending(ms->rh, &sync); 757 dm_rh_inc_pending(ms->rh, &nosync); 758 759 /* 760 * If the flush fails on a previous call and succeeds here, 761 * we must not reset the log_failure variable. We need 762 * userspace interaction to do that. 763 */ 764 ms->log_failure = dm_rh_flush(ms->rh) ? 1 : ms->log_failure; 765 766 /* 767 * Dispatch io. 768 */ 769 if (unlikely(ms->log_failure) && errors_handled(ms)) { 770 spin_lock_irq(&ms->lock); 771 bio_list_merge(&ms->failures, &sync); 772 spin_unlock_irq(&ms->lock); 773 wakeup_mirrord(ms); 774 } else 775 while ((bio = bio_list_pop(&sync))) 776 do_write(ms, bio); 777 778 while ((bio = bio_list_pop(&recover))) 779 dm_rh_delay(ms->rh, bio); 780 781 while ((bio = bio_list_pop(&nosync))) { 782 if (unlikely(ms->leg_failure) && errors_handled(ms) && !keep_log(ms)) { 783 spin_lock_irq(&ms->lock); 784 bio_list_add(&ms->failures, bio); 785 spin_unlock_irq(&ms->lock); 786 wakeup_mirrord(ms); 787 } else { 788 map_bio(get_default_mirror(ms), bio); 789 submit_bio_noacct(bio); 790 } 791 } 792 } 793 794 static void do_failures(struct mirror_set *ms, struct bio_list *failures) 795 { 796 struct bio *bio; 797 798 if (likely(!failures->head)) 799 return; 800 801 /* 802 * If the log has failed, unattempted writes are being 803 * put on the holds list. We can't issue those writes 804 * until a log has been marked, so we must store them. 805 * 806 * If a 'noflush' suspend is in progress, we can requeue 807 * the I/O's to the core. This give userspace a chance 808 * to reconfigure the mirror, at which point the core 809 * will reissue the writes. If the 'noflush' flag is 810 * not set, we have no choice but to return errors. 811 * 812 * Some writes on the failures list may have been 813 * submitted before the log failure and represent a 814 * failure to write to one of the devices. It is ok 815 * for us to treat them the same and requeue them 816 * as well. 817 */ 818 while ((bio = bio_list_pop(failures))) { 819 if (!ms->log_failure) { 820 ms->in_sync = 0; 821 dm_rh_mark_nosync(ms->rh, bio); 822 } 823 824 /* 825 * If all the legs are dead, fail the I/O. 826 * If the device has failed and keep_log is enabled, 827 * fail the I/O. 828 * 829 * If we have been told to handle errors, and keep_log 830 * isn't enabled, hold the bio and wait for userspace to 831 * deal with the problem. 832 * 833 * Otherwise pretend that the I/O succeeded. (This would 834 * be wrong if the failed leg returned after reboot and 835 * got replicated back to the good legs.) 836 */ 837 if (unlikely(!get_valid_mirror(ms) || (keep_log(ms) && ms->log_failure))) 838 bio_io_error(bio); 839 else if (errors_handled(ms) && !keep_log(ms)) 840 hold_bio(ms, bio); 841 else 842 bio_endio(bio); 843 } 844 } 845 846 static void trigger_event(struct work_struct *work) 847 { 848 struct mirror_set *ms = 849 container_of(work, struct mirror_set, trigger_event); 850 851 dm_table_event(ms->ti->table); 852 } 853 854 /* 855 *--------------------------------------------------------------- 856 * kmirrord 857 *--------------------------------------------------------------- 858 */ 859 static void do_mirror(struct work_struct *work) 860 { 861 struct mirror_set *ms = container_of(work, struct mirror_set, 862 kmirrord_work); 863 struct bio_list reads, writes, failures; 864 unsigned long flags; 865 866 spin_lock_irqsave(&ms->lock, flags); 867 reads = ms->reads; 868 writes = ms->writes; 869 failures = ms->failures; 870 bio_list_init(&ms->reads); 871 bio_list_init(&ms->writes); 872 bio_list_init(&ms->failures); 873 spin_unlock_irqrestore(&ms->lock, flags); 874 875 dm_rh_update_states(ms->rh, errors_handled(ms)); 876 do_recovery(ms); 877 do_reads(ms, &reads); 878 do_writes(ms, &writes); 879 do_failures(ms, &failures); 880 } 881 882 /* 883 *--------------------------------------------------------------- 884 * Target functions 885 *--------------------------------------------------------------- 886 */ 887 static struct mirror_set *alloc_context(unsigned int nr_mirrors, 888 uint32_t region_size, 889 struct dm_target *ti, 890 struct dm_dirty_log *dl) 891 { 892 struct mirror_set *ms = 893 kzalloc(struct_size(ms, mirror, nr_mirrors), GFP_KERNEL); 894 895 if (!ms) { 896 ti->error = "Cannot allocate mirror context"; 897 return NULL; 898 } 899 900 spin_lock_init(&ms->lock); 901 bio_list_init(&ms->reads); 902 bio_list_init(&ms->writes); 903 bio_list_init(&ms->failures); 904 bio_list_init(&ms->holds); 905 906 ms->ti = ti; 907 ms->nr_mirrors = nr_mirrors; 908 ms->nr_regions = dm_sector_div_up(ti->len, region_size); 909 ms->in_sync = 0; 910 ms->log_failure = 0; 911 ms->leg_failure = 0; 912 atomic_set(&ms->suspend, 0); 913 atomic_set(&ms->default_mirror, DEFAULT_MIRROR); 914 915 ms->io_client = dm_io_client_create(); 916 if (IS_ERR(ms->io_client)) { 917 ti->error = "Error creating dm_io client"; 918 kfree(ms); 919 return NULL; 920 } 921 922 ms->rh = dm_region_hash_create(ms, dispatch_bios, wakeup_mirrord, 923 wakeup_all_recovery_waiters, 924 ms->ti->begin, MAX_RECOVERY, 925 dl, region_size, ms->nr_regions); 926 if (IS_ERR(ms->rh)) { 927 ti->error = "Error creating dirty region hash"; 928 dm_io_client_destroy(ms->io_client); 929 kfree(ms); 930 return NULL; 931 } 932 933 return ms; 934 } 935 936 static void free_context(struct mirror_set *ms, struct dm_target *ti, 937 unsigned int m) 938 { 939 while (m--) 940 dm_put_device(ti, ms->mirror[m].dev); 941 942 dm_io_client_destroy(ms->io_client); 943 dm_region_hash_destroy(ms->rh); 944 kfree(ms); 945 } 946 947 static int get_mirror(struct mirror_set *ms, struct dm_target *ti, 948 unsigned int mirror, char **argv) 949 { 950 unsigned long long offset; 951 char dummy; 952 int ret; 953 954 if (sscanf(argv[1], "%llu%c", &offset, &dummy) != 1 || 955 offset != (sector_t)offset) { 956 ti->error = "Invalid offset"; 957 return -EINVAL; 958 } 959 960 ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), 961 &ms->mirror[mirror].dev); 962 if (ret) { 963 ti->error = "Device lookup failure"; 964 return ret; 965 } 966 967 ms->mirror[mirror].ms = ms; 968 atomic_set(&(ms->mirror[mirror].error_count), 0); 969 ms->mirror[mirror].error_type = 0; 970 ms->mirror[mirror].offset = offset; 971 972 return 0; 973 } 974 975 /* 976 * Create dirty log: log_type #log_params <log_params> 977 */ 978 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti, 979 unsigned int argc, char **argv, 980 unsigned int *args_used) 981 { 982 unsigned int param_count; 983 struct dm_dirty_log *dl; 984 char dummy; 985 986 if (argc < 2) { 987 ti->error = "Insufficient mirror log arguments"; 988 return NULL; 989 } 990 991 if (sscanf(argv[1], "%u%c", ¶m_count, &dummy) != 1) { 992 ti->error = "Invalid mirror log argument count"; 993 return NULL; 994 } 995 996 *args_used = 2 + param_count; 997 998 if (argc < *args_used) { 999 ti->error = "Insufficient mirror log arguments"; 1000 return NULL; 1001 } 1002 1003 dl = dm_dirty_log_create(argv[0], ti, mirror_flush, param_count, 1004 argv + 2); 1005 if (!dl) { 1006 ti->error = "Error creating mirror dirty log"; 1007 return NULL; 1008 } 1009 1010 return dl; 1011 } 1012 1013 static int parse_features(struct mirror_set *ms, unsigned int argc, char **argv, 1014 unsigned int *args_used) 1015 { 1016 unsigned int num_features; 1017 struct dm_target *ti = ms->ti; 1018 char dummy; 1019 int i; 1020 1021 *args_used = 0; 1022 1023 if (!argc) 1024 return 0; 1025 1026 if (sscanf(argv[0], "%u%c", &num_features, &dummy) != 1) { 1027 ti->error = "Invalid number of features"; 1028 return -EINVAL; 1029 } 1030 1031 argc--; 1032 argv++; 1033 (*args_used)++; 1034 1035 if (num_features > argc) { 1036 ti->error = "Not enough arguments to support feature count"; 1037 return -EINVAL; 1038 } 1039 1040 for (i = 0; i < num_features; i++) { 1041 if (!strcmp("handle_errors", argv[0])) 1042 ms->features |= DM_RAID1_HANDLE_ERRORS; 1043 else if (!strcmp("keep_log", argv[0])) 1044 ms->features |= DM_RAID1_KEEP_LOG; 1045 else { 1046 ti->error = "Unrecognised feature requested"; 1047 return -EINVAL; 1048 } 1049 1050 argc--; 1051 argv++; 1052 (*args_used)++; 1053 } 1054 if (!errors_handled(ms) && keep_log(ms)) { 1055 ti->error = "keep_log feature requires the handle_errors feature"; 1056 return -EINVAL; 1057 } 1058 1059 return 0; 1060 } 1061 1062 /* 1063 * Construct a mirror mapping: 1064 * 1065 * log_type #log_params <log_params> 1066 * #mirrors [mirror_path offset]{2,} 1067 * [#features <features>] 1068 * 1069 * log_type is "core" or "disk" 1070 * #log_params is between 1 and 3 1071 * 1072 * If present, supported features are "handle_errors" and "keep_log". 1073 */ 1074 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1075 { 1076 int r; 1077 unsigned int nr_mirrors, m, args_used; 1078 struct mirror_set *ms; 1079 struct dm_dirty_log *dl; 1080 char dummy; 1081 1082 dl = create_dirty_log(ti, argc, argv, &args_used); 1083 if (!dl) 1084 return -EINVAL; 1085 1086 argv += args_used; 1087 argc -= args_used; 1088 1089 if (!argc || sscanf(argv[0], "%u%c", &nr_mirrors, &dummy) != 1 || 1090 nr_mirrors < 2 || nr_mirrors > MAX_NR_MIRRORS) { 1091 ti->error = "Invalid number of mirrors"; 1092 dm_dirty_log_destroy(dl); 1093 return -EINVAL; 1094 } 1095 1096 argv++, argc--; 1097 1098 if (argc < nr_mirrors * 2) { 1099 ti->error = "Too few mirror arguments"; 1100 dm_dirty_log_destroy(dl); 1101 return -EINVAL; 1102 } 1103 1104 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl); 1105 if (!ms) { 1106 dm_dirty_log_destroy(dl); 1107 return -ENOMEM; 1108 } 1109 1110 /* Get the mirror parameter sets */ 1111 for (m = 0; m < nr_mirrors; m++) { 1112 r = get_mirror(ms, ti, m, argv); 1113 if (r) { 1114 free_context(ms, ti, m); 1115 return r; 1116 } 1117 argv += 2; 1118 argc -= 2; 1119 } 1120 1121 ti->private = ms; 1122 1123 r = dm_set_target_max_io_len(ti, dm_rh_get_region_size(ms->rh)); 1124 if (r) 1125 goto err_free_context; 1126 1127 ti->num_flush_bios = 1; 1128 ti->num_discard_bios = 1; 1129 ti->per_io_data_size = sizeof(struct dm_raid1_bio_record); 1130 1131 ms->kmirrord_wq = alloc_workqueue("kmirrord", WQ_MEM_RECLAIM, 0); 1132 if (!ms->kmirrord_wq) { 1133 DMERR("couldn't start kmirrord"); 1134 r = -ENOMEM; 1135 goto err_free_context; 1136 } 1137 INIT_WORK(&ms->kmirrord_work, do_mirror); 1138 timer_setup(&ms->timer, delayed_wake_fn, 0); 1139 ms->timer_pending = 0; 1140 INIT_WORK(&ms->trigger_event, trigger_event); 1141 1142 r = parse_features(ms, argc, argv, &args_used); 1143 if (r) 1144 goto err_destroy_wq; 1145 1146 argv += args_used; 1147 argc -= args_used; 1148 1149 /* 1150 * Any read-balancing addition depends on the 1151 * DM_RAID1_HANDLE_ERRORS flag being present. 1152 * This is because the decision to balance depends 1153 * on the sync state of a region. If the above 1154 * flag is not present, we ignore errors; and 1155 * the sync state may be inaccurate. 1156 */ 1157 1158 if (argc) { 1159 ti->error = "Too many mirror arguments"; 1160 r = -EINVAL; 1161 goto err_destroy_wq; 1162 } 1163 1164 ms->kcopyd_client = dm_kcopyd_client_create(&dm_kcopyd_throttle); 1165 if (IS_ERR(ms->kcopyd_client)) { 1166 r = PTR_ERR(ms->kcopyd_client); 1167 goto err_destroy_wq; 1168 } 1169 1170 wakeup_mirrord(ms); 1171 return 0; 1172 1173 err_destroy_wq: 1174 destroy_workqueue(ms->kmirrord_wq); 1175 err_free_context: 1176 free_context(ms, ti, ms->nr_mirrors); 1177 return r; 1178 } 1179 1180 static void mirror_dtr(struct dm_target *ti) 1181 { 1182 struct mirror_set *ms = (struct mirror_set *) ti->private; 1183 1184 del_timer_sync(&ms->timer); 1185 flush_workqueue(ms->kmirrord_wq); 1186 flush_work(&ms->trigger_event); 1187 dm_kcopyd_client_destroy(ms->kcopyd_client); 1188 destroy_workqueue(ms->kmirrord_wq); 1189 free_context(ms, ti, ms->nr_mirrors); 1190 } 1191 1192 /* 1193 * Mirror mapping function 1194 */ 1195 static int mirror_map(struct dm_target *ti, struct bio *bio) 1196 { 1197 int r, rw = bio_data_dir(bio); 1198 struct mirror *m; 1199 struct mirror_set *ms = ti->private; 1200 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1201 struct dm_raid1_bio_record *bio_record = 1202 dm_per_bio_data(bio, sizeof(struct dm_raid1_bio_record)); 1203 1204 bio_record->details.bi_bdev = NULL; 1205 1206 if (rw == WRITE) { 1207 /* Save region for mirror_end_io() handler */ 1208 bio_record->write_region = dm_rh_bio_to_region(ms->rh, bio); 1209 queue_bio(ms, bio, rw); 1210 return DM_MAPIO_SUBMITTED; 1211 } 1212 1213 r = log->type->in_sync(log, dm_rh_bio_to_region(ms->rh, bio), 0); 1214 if (r < 0 && r != -EWOULDBLOCK) 1215 return DM_MAPIO_KILL; 1216 1217 /* 1218 * If region is not in-sync queue the bio. 1219 */ 1220 if (!r || (r == -EWOULDBLOCK)) { 1221 if (bio->bi_opf & REQ_RAHEAD) 1222 return DM_MAPIO_KILL; 1223 1224 queue_bio(ms, bio, rw); 1225 return DM_MAPIO_SUBMITTED; 1226 } 1227 1228 /* 1229 * The region is in-sync and we can perform reads directly. 1230 * Store enough information so we can retry if it fails. 1231 */ 1232 m = choose_mirror(ms, bio->bi_iter.bi_sector); 1233 if (unlikely(!m)) 1234 return DM_MAPIO_KILL; 1235 1236 dm_bio_record(&bio_record->details, bio); 1237 bio_record->m = m; 1238 1239 map_bio(m, bio); 1240 1241 return DM_MAPIO_REMAPPED; 1242 } 1243 1244 static int mirror_end_io(struct dm_target *ti, struct bio *bio, 1245 blk_status_t *error) 1246 { 1247 int rw = bio_data_dir(bio); 1248 struct mirror_set *ms = (struct mirror_set *) ti->private; 1249 struct mirror *m = NULL; 1250 struct dm_bio_details *bd = NULL; 1251 struct dm_raid1_bio_record *bio_record = 1252 dm_per_bio_data(bio, sizeof(struct dm_raid1_bio_record)); 1253 1254 /* 1255 * We need to dec pending if this was a write. 1256 */ 1257 if (rw == WRITE) { 1258 if (!(bio->bi_opf & REQ_PREFLUSH) && 1259 bio_op(bio) != REQ_OP_DISCARD) 1260 dm_rh_dec(ms->rh, bio_record->write_region); 1261 return DM_ENDIO_DONE; 1262 } 1263 1264 if (*error == BLK_STS_NOTSUPP) 1265 goto out; 1266 1267 if (bio->bi_opf & REQ_RAHEAD) 1268 goto out; 1269 1270 if (unlikely(*error)) { 1271 if (!bio_record->details.bi_bdev) { 1272 /* 1273 * There wasn't enough memory to record necessary 1274 * information for a retry or there was no other 1275 * mirror in-sync. 1276 */ 1277 DMERR_LIMIT("Mirror read failed."); 1278 return DM_ENDIO_DONE; 1279 } 1280 1281 m = bio_record->m; 1282 1283 DMERR("Mirror read failed from %s. Trying alternative device.", 1284 m->dev->name); 1285 1286 fail_mirror(m, DM_RAID1_READ_ERROR); 1287 1288 /* 1289 * A failed read is requeued for another attempt using an intact 1290 * mirror. 1291 */ 1292 if (default_ok(m) || mirror_available(ms, bio)) { 1293 bd = &bio_record->details; 1294 1295 dm_bio_restore(bd, bio); 1296 bio_record->details.bi_bdev = NULL; 1297 bio->bi_status = 0; 1298 1299 queue_bio(ms, bio, rw); 1300 return DM_ENDIO_INCOMPLETE; 1301 } 1302 DMERR("All replicated volumes dead, failing I/O"); 1303 } 1304 1305 out: 1306 bio_record->details.bi_bdev = NULL; 1307 1308 return DM_ENDIO_DONE; 1309 } 1310 1311 static void mirror_presuspend(struct dm_target *ti) 1312 { 1313 struct mirror_set *ms = (struct mirror_set *) ti->private; 1314 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1315 1316 struct bio_list holds; 1317 struct bio *bio; 1318 1319 atomic_set(&ms->suspend, 1); 1320 1321 /* 1322 * Process bios in the hold list to start recovery waiting 1323 * for bios in the hold list. After the process, no bio has 1324 * a chance to be added in the hold list because ms->suspend 1325 * is set. 1326 */ 1327 spin_lock_irq(&ms->lock); 1328 holds = ms->holds; 1329 bio_list_init(&ms->holds); 1330 spin_unlock_irq(&ms->lock); 1331 1332 while ((bio = bio_list_pop(&holds))) 1333 hold_bio(ms, bio); 1334 1335 /* 1336 * We must finish up all the work that we've 1337 * generated (i.e. recovery work). 1338 */ 1339 dm_rh_stop_recovery(ms->rh); 1340 1341 wait_event(_kmirrord_recovery_stopped, 1342 !dm_rh_recovery_in_flight(ms->rh)); 1343 1344 if (log->type->presuspend && log->type->presuspend(log)) 1345 /* FIXME: need better error handling */ 1346 DMWARN("log presuspend failed"); 1347 1348 /* 1349 * Now that recovery is complete/stopped and the 1350 * delayed bios are queued, we need to wait for 1351 * the worker thread to complete. This way, 1352 * we know that all of our I/O has been pushed. 1353 */ 1354 flush_workqueue(ms->kmirrord_wq); 1355 } 1356 1357 static void mirror_postsuspend(struct dm_target *ti) 1358 { 1359 struct mirror_set *ms = ti->private; 1360 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1361 1362 if (log->type->postsuspend && log->type->postsuspend(log)) 1363 /* FIXME: need better error handling */ 1364 DMWARN("log postsuspend failed"); 1365 } 1366 1367 static void mirror_resume(struct dm_target *ti) 1368 { 1369 struct mirror_set *ms = ti->private; 1370 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1371 1372 atomic_set(&ms->suspend, 0); 1373 if (log->type->resume && log->type->resume(log)) 1374 /* FIXME: need better error handling */ 1375 DMWARN("log resume failed"); 1376 dm_rh_start_recovery(ms->rh); 1377 } 1378 1379 /* 1380 * device_status_char 1381 * @m: mirror device/leg we want the status of 1382 * 1383 * We return one character representing the most severe error 1384 * we have encountered. 1385 * A => Alive - No failures 1386 * D => Dead - A write failure occurred leaving mirror out-of-sync 1387 * S => Sync - A sychronization failure occurred, mirror out-of-sync 1388 * R => Read - A read failure occurred, mirror data unaffected 1389 * 1390 * Returns: <char> 1391 */ 1392 static char device_status_char(struct mirror *m) 1393 { 1394 if (!atomic_read(&(m->error_count))) 1395 return 'A'; 1396 1397 return (test_bit(DM_RAID1_FLUSH_ERROR, &(m->error_type))) ? 'F' : 1398 (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' : 1399 (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' : 1400 (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U'; 1401 } 1402 1403 1404 static void mirror_status(struct dm_target *ti, status_type_t type, 1405 unsigned int status_flags, char *result, unsigned int maxlen) 1406 { 1407 unsigned int m, sz = 0; 1408 int num_feature_args = 0; 1409 struct mirror_set *ms = (struct mirror_set *) ti->private; 1410 struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh); 1411 char buffer[MAX_NR_MIRRORS + 1]; 1412 1413 switch (type) { 1414 case STATUSTYPE_INFO: 1415 DMEMIT("%d ", ms->nr_mirrors); 1416 for (m = 0; m < ms->nr_mirrors; m++) { 1417 DMEMIT("%s ", ms->mirror[m].dev->name); 1418 buffer[m] = device_status_char(&(ms->mirror[m])); 1419 } 1420 buffer[m] = '\0'; 1421 1422 DMEMIT("%llu/%llu 1 %s ", 1423 (unsigned long long)log->type->get_sync_count(log), 1424 (unsigned long long)ms->nr_regions, buffer); 1425 1426 sz += log->type->status(log, type, result+sz, maxlen-sz); 1427 1428 break; 1429 1430 case STATUSTYPE_TABLE: 1431 sz = log->type->status(log, type, result, maxlen); 1432 1433 DMEMIT("%d", ms->nr_mirrors); 1434 for (m = 0; m < ms->nr_mirrors; m++) 1435 DMEMIT(" %s %llu", ms->mirror[m].dev->name, 1436 (unsigned long long)ms->mirror[m].offset); 1437 1438 num_feature_args += !!errors_handled(ms); 1439 num_feature_args += !!keep_log(ms); 1440 if (num_feature_args) { 1441 DMEMIT(" %d", num_feature_args); 1442 if (errors_handled(ms)) 1443 DMEMIT(" handle_errors"); 1444 if (keep_log(ms)) 1445 DMEMIT(" keep_log"); 1446 } 1447 1448 break; 1449 1450 case STATUSTYPE_IMA: 1451 DMEMIT_TARGET_NAME_VERSION(ti->type); 1452 DMEMIT(",nr_mirrors=%d", ms->nr_mirrors); 1453 for (m = 0; m < ms->nr_mirrors; m++) { 1454 DMEMIT(",mirror_device_%d=%s", m, ms->mirror[m].dev->name); 1455 DMEMIT(",mirror_device_%d_status=%c", 1456 m, device_status_char(&(ms->mirror[m]))); 1457 } 1458 1459 DMEMIT(",handle_errors=%c", errors_handled(ms) ? 'y' : 'n'); 1460 DMEMIT(",keep_log=%c", keep_log(ms) ? 'y' : 'n'); 1461 1462 DMEMIT(",log_type_status="); 1463 sz += log->type->status(log, type, result+sz, maxlen-sz); 1464 DMEMIT(";"); 1465 break; 1466 } 1467 } 1468 1469 static int mirror_iterate_devices(struct dm_target *ti, 1470 iterate_devices_callout_fn fn, void *data) 1471 { 1472 struct mirror_set *ms = ti->private; 1473 int ret = 0; 1474 unsigned int i; 1475 1476 for (i = 0; !ret && i < ms->nr_mirrors; i++) 1477 ret = fn(ti, ms->mirror[i].dev, 1478 ms->mirror[i].offset, ti->len, data); 1479 1480 return ret; 1481 } 1482 1483 static struct target_type mirror_target = { 1484 .name = "mirror", 1485 .version = {1, 14, 0}, 1486 .module = THIS_MODULE, 1487 .ctr = mirror_ctr, 1488 .dtr = mirror_dtr, 1489 .map = mirror_map, 1490 .end_io = mirror_end_io, 1491 .presuspend = mirror_presuspend, 1492 .postsuspend = mirror_postsuspend, 1493 .resume = mirror_resume, 1494 .status = mirror_status, 1495 .iterate_devices = mirror_iterate_devices, 1496 }; 1497 1498 static int __init dm_mirror_init(void) 1499 { 1500 int r; 1501 1502 r = dm_register_target(&mirror_target); 1503 if (r < 0) { 1504 DMERR("Failed to register mirror target"); 1505 goto bad_target; 1506 } 1507 1508 return 0; 1509 1510 bad_target: 1511 return r; 1512 } 1513 1514 static void __exit dm_mirror_exit(void) 1515 { 1516 dm_unregister_target(&mirror_target); 1517 } 1518 1519 /* Module hooks */ 1520 module_init(dm_mirror_init); 1521 module_exit(dm_mirror_exit); 1522 1523 MODULE_DESCRIPTION(DM_NAME " mirror target"); 1524 MODULE_AUTHOR("Joe Thornber"); 1525 MODULE_LICENSE("GPL"); 1526