1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-list.h" 9 #include "dm-io.h" 10 #include "dm-log.h" 11 #include "kcopyd.h" 12 13 #include <linux/ctype.h> 14 #include <linux/init.h> 15 #include <linux/mempool.h> 16 #include <linux/module.h> 17 #include <linux/pagemap.h> 18 #include <linux/slab.h> 19 #include <linux/time.h> 20 #include <linux/vmalloc.h> 21 #include <linux/workqueue.h> 22 23 static struct workqueue_struct *_kmirrord_wq; 24 static struct work_struct _kmirrord_work; 25 26 static inline void wake(void) 27 { 28 queue_work(_kmirrord_wq, &_kmirrord_work); 29 } 30 31 /*----------------------------------------------------------------- 32 * Region hash 33 * 34 * The mirror splits itself up into discrete regions. Each 35 * region can be in one of three states: clean, dirty, 36 * nosync. There is no need to put clean regions in the hash. 37 * 38 * In addition to being present in the hash table a region _may_ 39 * be present on one of three lists. 40 * 41 * clean_regions: Regions on this list have no io pending to 42 * them, they are in sync, we are no longer interested in them, 43 * they are dull. rh_update_states() will remove them from the 44 * hash table. 45 * 46 * quiesced_regions: These regions have been spun down, ready 47 * for recovery. rh_recovery_start() will remove regions from 48 * this list and hand them to kmirrord, which will schedule the 49 * recovery io with kcopyd. 50 * 51 * recovered_regions: Regions that kcopyd has successfully 52 * recovered. rh_update_states() will now schedule any delayed 53 * io, up the recovery_count, and remove the region from the 54 * hash. 55 * 56 * There are 2 locks: 57 * A rw spin lock 'hash_lock' protects just the hash table, 58 * this is never held in write mode from interrupt context, 59 * which I believe means that we only have to disable irqs when 60 * doing a write lock. 61 * 62 * An ordinary spin lock 'region_lock' that protects the three 63 * lists in the region_hash, with the 'state', 'list' and 64 * 'bhs_delayed' fields of the regions. This is used from irq 65 * context, so all other uses will have to suspend local irqs. 66 *---------------------------------------------------------------*/ 67 struct mirror_set; 68 struct region_hash { 69 struct mirror_set *ms; 70 uint32_t region_size; 71 unsigned region_shift; 72 73 /* holds persistent region state */ 74 struct dirty_log *log; 75 76 /* hash table */ 77 rwlock_t hash_lock; 78 mempool_t *region_pool; 79 unsigned int mask; 80 unsigned int nr_buckets; 81 struct list_head *buckets; 82 83 spinlock_t region_lock; 84 struct semaphore recovery_count; 85 struct list_head clean_regions; 86 struct list_head quiesced_regions; 87 struct list_head recovered_regions; 88 }; 89 90 enum { 91 RH_CLEAN, 92 RH_DIRTY, 93 RH_NOSYNC, 94 RH_RECOVERING 95 }; 96 97 struct region { 98 struct region_hash *rh; /* FIXME: can we get rid of this ? */ 99 region_t key; 100 int state; 101 102 struct list_head hash_list; 103 struct list_head list; 104 105 atomic_t pending; 106 struct bio_list delayed_bios; 107 }; 108 109 /* 110 * Conversion fns 111 */ 112 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio) 113 { 114 return bio->bi_sector >> rh->region_shift; 115 } 116 117 static inline sector_t region_to_sector(struct region_hash *rh, region_t region) 118 { 119 return region << rh->region_shift; 120 } 121 122 /* FIXME move this */ 123 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw); 124 125 static void *region_alloc(gfp_t gfp_mask, void *pool_data) 126 { 127 return kmalloc(sizeof(struct region), gfp_mask); 128 } 129 130 static void region_free(void *element, void *pool_data) 131 { 132 kfree(element); 133 } 134 135 #define MIN_REGIONS 64 136 #define MAX_RECOVERY 1 137 static int rh_init(struct region_hash *rh, struct mirror_set *ms, 138 struct dirty_log *log, uint32_t region_size, 139 region_t nr_regions) 140 { 141 unsigned int nr_buckets, max_buckets; 142 size_t i; 143 144 /* 145 * Calculate a suitable number of buckets for our hash 146 * table. 147 */ 148 max_buckets = nr_regions >> 6; 149 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1) 150 ; 151 nr_buckets >>= 1; 152 153 rh->ms = ms; 154 rh->log = log; 155 rh->region_size = region_size; 156 rh->region_shift = ffs(region_size) - 1; 157 rwlock_init(&rh->hash_lock); 158 rh->mask = nr_buckets - 1; 159 rh->nr_buckets = nr_buckets; 160 161 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets)); 162 if (!rh->buckets) { 163 DMERR("unable to allocate region hash memory"); 164 return -ENOMEM; 165 } 166 167 for (i = 0; i < nr_buckets; i++) 168 INIT_LIST_HEAD(rh->buckets + i); 169 170 spin_lock_init(&rh->region_lock); 171 sema_init(&rh->recovery_count, 0); 172 INIT_LIST_HEAD(&rh->clean_regions); 173 INIT_LIST_HEAD(&rh->quiesced_regions); 174 INIT_LIST_HEAD(&rh->recovered_regions); 175 176 rh->region_pool = mempool_create(MIN_REGIONS, region_alloc, 177 region_free, NULL); 178 if (!rh->region_pool) { 179 vfree(rh->buckets); 180 rh->buckets = NULL; 181 return -ENOMEM; 182 } 183 184 return 0; 185 } 186 187 static void rh_exit(struct region_hash *rh) 188 { 189 unsigned int h; 190 struct region *reg, *nreg; 191 192 BUG_ON(!list_empty(&rh->quiesced_regions)); 193 for (h = 0; h < rh->nr_buckets; h++) { 194 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) { 195 BUG_ON(atomic_read(®->pending)); 196 mempool_free(reg, rh->region_pool); 197 } 198 } 199 200 if (rh->log) 201 dm_destroy_dirty_log(rh->log); 202 if (rh->region_pool) 203 mempool_destroy(rh->region_pool); 204 vfree(rh->buckets); 205 } 206 207 #define RH_HASH_MULT 2654435387U 208 209 static inline unsigned int rh_hash(struct region_hash *rh, region_t region) 210 { 211 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask; 212 } 213 214 static struct region *__rh_lookup(struct region_hash *rh, region_t region) 215 { 216 struct region *reg; 217 218 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list) 219 if (reg->key == region) 220 return reg; 221 222 return NULL; 223 } 224 225 static void __rh_insert(struct region_hash *rh, struct region *reg) 226 { 227 unsigned int h = rh_hash(rh, reg->key); 228 list_add(®->hash_list, rh->buckets + h); 229 } 230 231 static struct region *__rh_alloc(struct region_hash *rh, region_t region) 232 { 233 struct region *reg, *nreg; 234 235 read_unlock(&rh->hash_lock); 236 nreg = mempool_alloc(rh->region_pool, GFP_NOIO); 237 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ? 238 RH_CLEAN : RH_NOSYNC; 239 nreg->rh = rh; 240 nreg->key = region; 241 242 INIT_LIST_HEAD(&nreg->list); 243 244 atomic_set(&nreg->pending, 0); 245 bio_list_init(&nreg->delayed_bios); 246 write_lock_irq(&rh->hash_lock); 247 248 reg = __rh_lookup(rh, region); 249 if (reg) 250 /* we lost the race */ 251 mempool_free(nreg, rh->region_pool); 252 253 else { 254 __rh_insert(rh, nreg); 255 if (nreg->state == RH_CLEAN) { 256 spin_lock(&rh->region_lock); 257 list_add(&nreg->list, &rh->clean_regions); 258 spin_unlock(&rh->region_lock); 259 } 260 reg = nreg; 261 } 262 write_unlock_irq(&rh->hash_lock); 263 read_lock(&rh->hash_lock); 264 265 return reg; 266 } 267 268 static inline struct region *__rh_find(struct region_hash *rh, region_t region) 269 { 270 struct region *reg; 271 272 reg = __rh_lookup(rh, region); 273 if (!reg) 274 reg = __rh_alloc(rh, region); 275 276 return reg; 277 } 278 279 static int rh_state(struct region_hash *rh, region_t region, int may_block) 280 { 281 int r; 282 struct region *reg; 283 284 read_lock(&rh->hash_lock); 285 reg = __rh_lookup(rh, region); 286 read_unlock(&rh->hash_lock); 287 288 if (reg) 289 return reg->state; 290 291 /* 292 * The region wasn't in the hash, so we fall back to the 293 * dirty log. 294 */ 295 r = rh->log->type->in_sync(rh->log, region, may_block); 296 297 /* 298 * Any error from the dirty log (eg. -EWOULDBLOCK) gets 299 * taken as a RH_NOSYNC 300 */ 301 return r == 1 ? RH_CLEAN : RH_NOSYNC; 302 } 303 304 static inline int rh_in_sync(struct region_hash *rh, 305 region_t region, int may_block) 306 { 307 int state = rh_state(rh, region, may_block); 308 return state == RH_CLEAN || state == RH_DIRTY; 309 } 310 311 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list) 312 { 313 struct bio *bio; 314 315 while ((bio = bio_list_pop(bio_list))) { 316 queue_bio(ms, bio, WRITE); 317 } 318 } 319 320 static void rh_update_states(struct region_hash *rh) 321 { 322 struct region *reg, *next; 323 324 LIST_HEAD(clean); 325 LIST_HEAD(recovered); 326 327 /* 328 * Quickly grab the lists. 329 */ 330 write_lock_irq(&rh->hash_lock); 331 spin_lock(&rh->region_lock); 332 if (!list_empty(&rh->clean_regions)) { 333 list_splice(&rh->clean_regions, &clean); 334 INIT_LIST_HEAD(&rh->clean_regions); 335 336 list_for_each_entry (reg, &clean, list) { 337 rh->log->type->clear_region(rh->log, reg->key); 338 list_del(®->hash_list); 339 } 340 } 341 342 if (!list_empty(&rh->recovered_regions)) { 343 list_splice(&rh->recovered_regions, &recovered); 344 INIT_LIST_HEAD(&rh->recovered_regions); 345 346 list_for_each_entry (reg, &recovered, list) 347 list_del(®->hash_list); 348 } 349 spin_unlock(&rh->region_lock); 350 write_unlock_irq(&rh->hash_lock); 351 352 /* 353 * All the regions on the recovered and clean lists have 354 * now been pulled out of the system, so no need to do 355 * any more locking. 356 */ 357 list_for_each_entry_safe (reg, next, &recovered, list) { 358 rh->log->type->clear_region(rh->log, reg->key); 359 rh->log->type->complete_resync_work(rh->log, reg->key, 1); 360 dispatch_bios(rh->ms, ®->delayed_bios); 361 up(&rh->recovery_count); 362 mempool_free(reg, rh->region_pool); 363 } 364 365 if (!list_empty(&recovered)) 366 rh->log->type->flush(rh->log); 367 368 list_for_each_entry_safe (reg, next, &clean, list) 369 mempool_free(reg, rh->region_pool); 370 } 371 372 static void rh_inc(struct region_hash *rh, region_t region) 373 { 374 struct region *reg; 375 376 read_lock(&rh->hash_lock); 377 reg = __rh_find(rh, region); 378 379 atomic_inc(®->pending); 380 381 spin_lock_irq(&rh->region_lock); 382 if (reg->state == RH_CLEAN) { 383 rh->log->type->mark_region(rh->log, reg->key); 384 385 reg->state = RH_DIRTY; 386 list_del_init(®->list); /* take off the clean list */ 387 } 388 spin_unlock_irq(&rh->region_lock); 389 390 read_unlock(&rh->hash_lock); 391 } 392 393 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios) 394 { 395 struct bio *bio; 396 397 for (bio = bios->head; bio; bio = bio->bi_next) 398 rh_inc(rh, bio_to_region(rh, bio)); 399 } 400 401 static void rh_dec(struct region_hash *rh, region_t region) 402 { 403 unsigned long flags; 404 struct region *reg; 405 int should_wake = 0; 406 407 read_lock(&rh->hash_lock); 408 reg = __rh_lookup(rh, region); 409 read_unlock(&rh->hash_lock); 410 411 if (atomic_dec_and_test(®->pending)) { 412 spin_lock_irqsave(&rh->region_lock, flags); 413 if (atomic_read(®->pending)) { /* check race */ 414 spin_unlock_irqrestore(&rh->region_lock, flags); 415 return; 416 } 417 if (reg->state == RH_RECOVERING) { 418 list_add_tail(®->list, &rh->quiesced_regions); 419 } else { 420 reg->state = RH_CLEAN; 421 list_add(®->list, &rh->clean_regions); 422 } 423 spin_unlock_irqrestore(&rh->region_lock, flags); 424 should_wake = 1; 425 } 426 427 if (should_wake) 428 wake(); 429 } 430 431 /* 432 * Starts quiescing a region in preparation for recovery. 433 */ 434 static int __rh_recovery_prepare(struct region_hash *rh) 435 { 436 int r; 437 struct region *reg; 438 region_t region; 439 440 /* 441 * Ask the dirty log what's next. 442 */ 443 r = rh->log->type->get_resync_work(rh->log, ®ion); 444 if (r <= 0) 445 return r; 446 447 /* 448 * Get this region, and start it quiescing by setting the 449 * recovering flag. 450 */ 451 read_lock(&rh->hash_lock); 452 reg = __rh_find(rh, region); 453 read_unlock(&rh->hash_lock); 454 455 spin_lock_irq(&rh->region_lock); 456 reg->state = RH_RECOVERING; 457 458 /* Already quiesced ? */ 459 if (atomic_read(®->pending)) 460 list_del_init(®->list); 461 462 else { 463 list_del_init(®->list); 464 list_add(®->list, &rh->quiesced_regions); 465 } 466 spin_unlock_irq(&rh->region_lock); 467 468 return 1; 469 } 470 471 static void rh_recovery_prepare(struct region_hash *rh) 472 { 473 while (!down_trylock(&rh->recovery_count)) 474 if (__rh_recovery_prepare(rh) <= 0) { 475 up(&rh->recovery_count); 476 break; 477 } 478 } 479 480 /* 481 * Returns any quiesced regions. 482 */ 483 static struct region *rh_recovery_start(struct region_hash *rh) 484 { 485 struct region *reg = NULL; 486 487 spin_lock_irq(&rh->region_lock); 488 if (!list_empty(&rh->quiesced_regions)) { 489 reg = list_entry(rh->quiesced_regions.next, 490 struct region, list); 491 list_del_init(®->list); /* remove from the quiesced list */ 492 } 493 spin_unlock_irq(&rh->region_lock); 494 495 return reg; 496 } 497 498 /* FIXME: success ignored for now */ 499 static void rh_recovery_end(struct region *reg, int success) 500 { 501 struct region_hash *rh = reg->rh; 502 503 spin_lock_irq(&rh->region_lock); 504 list_add(®->list, ®->rh->recovered_regions); 505 spin_unlock_irq(&rh->region_lock); 506 507 wake(); 508 } 509 510 static void rh_flush(struct region_hash *rh) 511 { 512 rh->log->type->flush(rh->log); 513 } 514 515 static void rh_delay(struct region_hash *rh, struct bio *bio) 516 { 517 struct region *reg; 518 519 read_lock(&rh->hash_lock); 520 reg = __rh_find(rh, bio_to_region(rh, bio)); 521 bio_list_add(®->delayed_bios, bio); 522 read_unlock(&rh->hash_lock); 523 } 524 525 static void rh_stop_recovery(struct region_hash *rh) 526 { 527 int i; 528 529 /* wait for any recovering regions */ 530 for (i = 0; i < MAX_RECOVERY; i++) 531 down(&rh->recovery_count); 532 } 533 534 static void rh_start_recovery(struct region_hash *rh) 535 { 536 int i; 537 538 for (i = 0; i < MAX_RECOVERY; i++) 539 up(&rh->recovery_count); 540 541 wake(); 542 } 543 544 /*----------------------------------------------------------------- 545 * Mirror set structures. 546 *---------------------------------------------------------------*/ 547 struct mirror { 548 atomic_t error_count; 549 struct dm_dev *dev; 550 sector_t offset; 551 }; 552 553 struct mirror_set { 554 struct dm_target *ti; 555 struct list_head list; 556 struct region_hash rh; 557 struct kcopyd_client *kcopyd_client; 558 559 spinlock_t lock; /* protects the next two lists */ 560 struct bio_list reads; 561 struct bio_list writes; 562 563 /* recovery */ 564 region_t nr_regions; 565 int in_sync; 566 567 unsigned int nr_mirrors; 568 struct mirror mirror[0]; 569 }; 570 571 /* 572 * Every mirror should look like this one. 573 */ 574 #define DEFAULT_MIRROR 0 575 576 /* 577 * This is yucky. We squirrel the mirror_set struct away inside 578 * bi_next for write buffers. This is safe since the bh 579 * doesn't get submitted to the lower levels of block layer. 580 */ 581 static struct mirror_set *bio_get_ms(struct bio *bio) 582 { 583 return (struct mirror_set *) bio->bi_next; 584 } 585 586 static void bio_set_ms(struct bio *bio, struct mirror_set *ms) 587 { 588 bio->bi_next = (struct bio *) ms; 589 } 590 591 /*----------------------------------------------------------------- 592 * Recovery. 593 * 594 * When a mirror is first activated we may find that some regions 595 * are in the no-sync state. We have to recover these by 596 * recopying from the default mirror to all the others. 597 *---------------------------------------------------------------*/ 598 static void recovery_complete(int read_err, unsigned int write_err, 599 void *context) 600 { 601 struct region *reg = (struct region *) context; 602 603 /* FIXME: better error handling */ 604 rh_recovery_end(reg, read_err || write_err); 605 } 606 607 static int recover(struct mirror_set *ms, struct region *reg) 608 { 609 int r; 610 unsigned int i; 611 struct io_region from, to[KCOPYD_MAX_REGIONS], *dest; 612 struct mirror *m; 613 unsigned long flags = 0; 614 615 /* fill in the source */ 616 m = ms->mirror + DEFAULT_MIRROR; 617 from.bdev = m->dev->bdev; 618 from.sector = m->offset + region_to_sector(reg->rh, reg->key); 619 if (reg->key == (ms->nr_regions - 1)) { 620 /* 621 * The final region may be smaller than 622 * region_size. 623 */ 624 from.count = ms->ti->len & (reg->rh->region_size - 1); 625 if (!from.count) 626 from.count = reg->rh->region_size; 627 } else 628 from.count = reg->rh->region_size; 629 630 /* fill in the destinations */ 631 for (i = 0, dest = to; i < ms->nr_mirrors; i++) { 632 if (i == DEFAULT_MIRROR) 633 continue; 634 635 m = ms->mirror + i; 636 dest->bdev = m->dev->bdev; 637 dest->sector = m->offset + region_to_sector(reg->rh, reg->key); 638 dest->count = from.count; 639 dest++; 640 } 641 642 /* hand to kcopyd */ 643 set_bit(KCOPYD_IGNORE_ERROR, &flags); 644 r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags, 645 recovery_complete, reg); 646 647 return r; 648 } 649 650 static void do_recovery(struct mirror_set *ms) 651 { 652 int r; 653 struct region *reg; 654 struct dirty_log *log = ms->rh.log; 655 656 /* 657 * Start quiescing some regions. 658 */ 659 rh_recovery_prepare(&ms->rh); 660 661 /* 662 * Copy any already quiesced regions. 663 */ 664 while ((reg = rh_recovery_start(&ms->rh))) { 665 r = recover(ms, reg); 666 if (r) 667 rh_recovery_end(reg, 0); 668 } 669 670 /* 671 * Update the in sync flag. 672 */ 673 if (!ms->in_sync && 674 (log->type->get_sync_count(log) == ms->nr_regions)) { 675 /* the sync is complete */ 676 dm_table_event(ms->ti->table); 677 ms->in_sync = 1; 678 } 679 } 680 681 /*----------------------------------------------------------------- 682 * Reads 683 *---------------------------------------------------------------*/ 684 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector) 685 { 686 /* FIXME: add read balancing */ 687 return ms->mirror + DEFAULT_MIRROR; 688 } 689 690 /* 691 * remap a buffer to a particular mirror. 692 */ 693 static void map_bio(struct mirror_set *ms, struct mirror *m, struct bio *bio) 694 { 695 bio->bi_bdev = m->dev->bdev; 696 bio->bi_sector = m->offset + (bio->bi_sector - ms->ti->begin); 697 } 698 699 static void do_reads(struct mirror_set *ms, struct bio_list *reads) 700 { 701 region_t region; 702 struct bio *bio; 703 struct mirror *m; 704 705 while ((bio = bio_list_pop(reads))) { 706 region = bio_to_region(&ms->rh, bio); 707 708 /* 709 * We can only read balance if the region is in sync. 710 */ 711 if (rh_in_sync(&ms->rh, region, 0)) 712 m = choose_mirror(ms, bio->bi_sector); 713 else 714 m = ms->mirror + DEFAULT_MIRROR; 715 716 map_bio(ms, m, bio); 717 generic_make_request(bio); 718 } 719 } 720 721 /*----------------------------------------------------------------- 722 * Writes. 723 * 724 * We do different things with the write io depending on the 725 * state of the region that it's in: 726 * 727 * SYNC: increment pending, use kcopyd to write to *all* mirrors 728 * RECOVERING: delay the io until recovery completes 729 * NOSYNC: increment pending, just write to the default mirror 730 *---------------------------------------------------------------*/ 731 static void write_callback(unsigned long error, void *context) 732 { 733 unsigned int i; 734 int uptodate = 1; 735 struct bio *bio = (struct bio *) context; 736 struct mirror_set *ms; 737 738 ms = bio_get_ms(bio); 739 bio_set_ms(bio, NULL); 740 741 /* 742 * NOTE: We don't decrement the pending count here, 743 * instead it is done by the targets endio function. 744 * This way we handle both writes to SYNC and NOSYNC 745 * regions with the same code. 746 */ 747 748 if (error) { 749 /* 750 * only error the io if all mirrors failed. 751 * FIXME: bogus 752 */ 753 uptodate = 0; 754 for (i = 0; i < ms->nr_mirrors; i++) 755 if (!test_bit(i, &error)) { 756 uptodate = 1; 757 break; 758 } 759 } 760 bio_endio(bio, bio->bi_size, 0); 761 } 762 763 static void do_write(struct mirror_set *ms, struct bio *bio) 764 { 765 unsigned int i; 766 struct io_region io[KCOPYD_MAX_REGIONS+1]; 767 struct mirror *m; 768 769 for (i = 0; i < ms->nr_mirrors; i++) { 770 m = ms->mirror + i; 771 772 io[i].bdev = m->dev->bdev; 773 io[i].sector = m->offset + (bio->bi_sector - ms->ti->begin); 774 io[i].count = bio->bi_size >> 9; 775 } 776 777 bio_set_ms(bio, ms); 778 dm_io_async_bvec(ms->nr_mirrors, io, WRITE, 779 bio->bi_io_vec + bio->bi_idx, 780 write_callback, bio); 781 } 782 783 static void do_writes(struct mirror_set *ms, struct bio_list *writes) 784 { 785 int state; 786 struct bio *bio; 787 struct bio_list sync, nosync, recover, *this_list = NULL; 788 789 if (!writes->head) 790 return; 791 792 /* 793 * Classify each write. 794 */ 795 bio_list_init(&sync); 796 bio_list_init(&nosync); 797 bio_list_init(&recover); 798 799 while ((bio = bio_list_pop(writes))) { 800 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1); 801 switch (state) { 802 case RH_CLEAN: 803 case RH_DIRTY: 804 this_list = &sync; 805 break; 806 807 case RH_NOSYNC: 808 this_list = &nosync; 809 break; 810 811 case RH_RECOVERING: 812 this_list = &recover; 813 break; 814 } 815 816 bio_list_add(this_list, bio); 817 } 818 819 /* 820 * Increment the pending counts for any regions that will 821 * be written to (writes to recover regions are going to 822 * be delayed). 823 */ 824 rh_inc_pending(&ms->rh, &sync); 825 rh_inc_pending(&ms->rh, &nosync); 826 rh_flush(&ms->rh); 827 828 /* 829 * Dispatch io. 830 */ 831 while ((bio = bio_list_pop(&sync))) 832 do_write(ms, bio); 833 834 while ((bio = bio_list_pop(&recover))) 835 rh_delay(&ms->rh, bio); 836 837 while ((bio = bio_list_pop(&nosync))) { 838 map_bio(ms, ms->mirror + DEFAULT_MIRROR, bio); 839 generic_make_request(bio); 840 } 841 } 842 843 /*----------------------------------------------------------------- 844 * kmirrord 845 *---------------------------------------------------------------*/ 846 static LIST_HEAD(_mirror_sets); 847 static DECLARE_RWSEM(_mirror_sets_lock); 848 849 static void do_mirror(struct mirror_set *ms) 850 { 851 struct bio_list reads, writes; 852 853 spin_lock(&ms->lock); 854 reads = ms->reads; 855 writes = ms->writes; 856 bio_list_init(&ms->reads); 857 bio_list_init(&ms->writes); 858 spin_unlock(&ms->lock); 859 860 rh_update_states(&ms->rh); 861 do_recovery(ms); 862 do_reads(ms, &reads); 863 do_writes(ms, &writes); 864 } 865 866 static void do_work(void *ignored) 867 { 868 struct mirror_set *ms; 869 870 down_read(&_mirror_sets_lock); 871 list_for_each_entry (ms, &_mirror_sets, list) 872 do_mirror(ms); 873 up_read(&_mirror_sets_lock); 874 } 875 876 /*----------------------------------------------------------------- 877 * Target functions 878 *---------------------------------------------------------------*/ 879 static struct mirror_set *alloc_context(unsigned int nr_mirrors, 880 uint32_t region_size, 881 struct dm_target *ti, 882 struct dirty_log *dl) 883 { 884 size_t len; 885 struct mirror_set *ms = NULL; 886 887 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors)) 888 return NULL; 889 890 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors); 891 892 ms = kmalloc(len, GFP_KERNEL); 893 if (!ms) { 894 ti->error = "dm-mirror: Cannot allocate mirror context"; 895 return NULL; 896 } 897 898 memset(ms, 0, len); 899 spin_lock_init(&ms->lock); 900 901 ms->ti = ti; 902 ms->nr_mirrors = nr_mirrors; 903 ms->nr_regions = dm_sector_div_up(ti->len, region_size); 904 ms->in_sync = 0; 905 906 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) { 907 ti->error = "dm-mirror: Error creating dirty region hash"; 908 kfree(ms); 909 return NULL; 910 } 911 912 return ms; 913 } 914 915 static void free_context(struct mirror_set *ms, struct dm_target *ti, 916 unsigned int m) 917 { 918 while (m--) 919 dm_put_device(ti, ms->mirror[m].dev); 920 921 rh_exit(&ms->rh); 922 kfree(ms); 923 } 924 925 static inline int _check_region_size(struct dm_target *ti, uint32_t size) 926 { 927 return !(size % (PAGE_SIZE >> 9) || (size & (size - 1)) || 928 size > ti->len); 929 } 930 931 static int get_mirror(struct mirror_set *ms, struct dm_target *ti, 932 unsigned int mirror, char **argv) 933 { 934 sector_t offset; 935 936 if (sscanf(argv[1], SECTOR_FORMAT, &offset) != 1) { 937 ti->error = "dm-mirror: Invalid offset"; 938 return -EINVAL; 939 } 940 941 if (dm_get_device(ti, argv[0], offset, ti->len, 942 dm_table_get_mode(ti->table), 943 &ms->mirror[mirror].dev)) { 944 ti->error = "dm-mirror: Device lookup failure"; 945 return -ENXIO; 946 } 947 948 ms->mirror[mirror].offset = offset; 949 950 return 0; 951 } 952 953 static int add_mirror_set(struct mirror_set *ms) 954 { 955 down_write(&_mirror_sets_lock); 956 list_add_tail(&ms->list, &_mirror_sets); 957 up_write(&_mirror_sets_lock); 958 wake(); 959 960 return 0; 961 } 962 963 static void del_mirror_set(struct mirror_set *ms) 964 { 965 down_write(&_mirror_sets_lock); 966 list_del(&ms->list); 967 up_write(&_mirror_sets_lock); 968 } 969 970 /* 971 * Create dirty log: log_type #log_params <log_params> 972 */ 973 static struct dirty_log *create_dirty_log(struct dm_target *ti, 974 unsigned int argc, char **argv, 975 unsigned int *args_used) 976 { 977 unsigned int param_count; 978 struct dirty_log *dl; 979 980 if (argc < 2) { 981 ti->error = "dm-mirror: Insufficient mirror log arguments"; 982 return NULL; 983 } 984 985 if (sscanf(argv[1], "%u", ¶m_count) != 1) { 986 ti->error = "dm-mirror: Invalid mirror log argument count"; 987 return NULL; 988 } 989 990 *args_used = 2 + param_count; 991 992 if (argc < *args_used) { 993 ti->error = "dm-mirror: Insufficient mirror log arguments"; 994 return NULL; 995 } 996 997 dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2); 998 if (!dl) { 999 ti->error = "dm-mirror: Error creating mirror dirty log"; 1000 return NULL; 1001 } 1002 1003 if (!_check_region_size(ti, dl->type->get_region_size(dl))) { 1004 ti->error = "dm-mirror: Invalid region size"; 1005 dm_destroy_dirty_log(dl); 1006 return NULL; 1007 } 1008 1009 return dl; 1010 } 1011 1012 /* 1013 * Construct a mirror mapping: 1014 * 1015 * log_type #log_params <log_params> 1016 * #mirrors [mirror_path offset]{2,} 1017 * 1018 * log_type is "core" or "disk" 1019 * #log_params is between 1 and 3 1020 */ 1021 #define DM_IO_PAGES 64 1022 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1023 { 1024 int r; 1025 unsigned int nr_mirrors, m, args_used; 1026 struct mirror_set *ms; 1027 struct dirty_log *dl; 1028 1029 dl = create_dirty_log(ti, argc, argv, &args_used); 1030 if (!dl) 1031 return -EINVAL; 1032 1033 argv += args_used; 1034 argc -= args_used; 1035 1036 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 || 1037 nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) { 1038 ti->error = "dm-mirror: Invalid number of mirrors"; 1039 dm_destroy_dirty_log(dl); 1040 return -EINVAL; 1041 } 1042 1043 argv++, argc--; 1044 1045 if (argc != nr_mirrors * 2) { 1046 ti->error = "dm-mirror: Wrong number of mirror arguments"; 1047 dm_destroy_dirty_log(dl); 1048 return -EINVAL; 1049 } 1050 1051 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl); 1052 if (!ms) { 1053 dm_destroy_dirty_log(dl); 1054 return -ENOMEM; 1055 } 1056 1057 /* Get the mirror parameter sets */ 1058 for (m = 0; m < nr_mirrors; m++) { 1059 r = get_mirror(ms, ti, m, argv); 1060 if (r) { 1061 free_context(ms, ti, m); 1062 return r; 1063 } 1064 argv += 2; 1065 argc -= 2; 1066 } 1067 1068 ti->private = ms; 1069 ti->split_io = ms->rh.region_size; 1070 1071 r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client); 1072 if (r) { 1073 free_context(ms, ti, ms->nr_mirrors); 1074 return r; 1075 } 1076 1077 add_mirror_set(ms); 1078 return 0; 1079 } 1080 1081 static void mirror_dtr(struct dm_target *ti) 1082 { 1083 struct mirror_set *ms = (struct mirror_set *) ti->private; 1084 1085 del_mirror_set(ms); 1086 kcopyd_client_destroy(ms->kcopyd_client); 1087 free_context(ms, ti, ms->nr_mirrors); 1088 } 1089 1090 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw) 1091 { 1092 int should_wake = 0; 1093 struct bio_list *bl; 1094 1095 bl = (rw == WRITE) ? &ms->writes : &ms->reads; 1096 spin_lock(&ms->lock); 1097 should_wake = !(bl->head); 1098 bio_list_add(bl, bio); 1099 spin_unlock(&ms->lock); 1100 1101 if (should_wake) 1102 wake(); 1103 } 1104 1105 /* 1106 * Mirror mapping function 1107 */ 1108 static int mirror_map(struct dm_target *ti, struct bio *bio, 1109 union map_info *map_context) 1110 { 1111 int r, rw = bio_rw(bio); 1112 struct mirror *m; 1113 struct mirror_set *ms = ti->private; 1114 1115 map_context->ll = bio->bi_sector >> ms->rh.region_shift; 1116 1117 if (rw == WRITE) { 1118 queue_bio(ms, bio, rw); 1119 return 0; 1120 } 1121 1122 r = ms->rh.log->type->in_sync(ms->rh.log, 1123 bio_to_region(&ms->rh, bio), 0); 1124 if (r < 0 && r != -EWOULDBLOCK) 1125 return r; 1126 1127 if (r == -EWOULDBLOCK) /* FIXME: ugly */ 1128 r = 0; 1129 1130 /* 1131 * We don't want to fast track a recovery just for a read 1132 * ahead. So we just let it silently fail. 1133 * FIXME: get rid of this. 1134 */ 1135 if (!r && rw == READA) 1136 return -EIO; 1137 1138 if (!r) { 1139 /* Pass this io over to the daemon */ 1140 queue_bio(ms, bio, rw); 1141 return 0; 1142 } 1143 1144 m = choose_mirror(ms, bio->bi_sector); 1145 if (!m) 1146 return -EIO; 1147 1148 map_bio(ms, m, bio); 1149 return 1; 1150 } 1151 1152 static int mirror_end_io(struct dm_target *ti, struct bio *bio, 1153 int error, union map_info *map_context) 1154 { 1155 int rw = bio_rw(bio); 1156 struct mirror_set *ms = (struct mirror_set *) ti->private; 1157 region_t region = map_context->ll; 1158 1159 /* 1160 * We need to dec pending if this was a write. 1161 */ 1162 if (rw == WRITE) 1163 rh_dec(&ms->rh, region); 1164 1165 return 0; 1166 } 1167 1168 static void mirror_postsuspend(struct dm_target *ti) 1169 { 1170 struct mirror_set *ms = (struct mirror_set *) ti->private; 1171 struct dirty_log *log = ms->rh.log; 1172 1173 rh_stop_recovery(&ms->rh); 1174 if (log->type->suspend && log->type->suspend(log)) 1175 /* FIXME: need better error handling */ 1176 DMWARN("log suspend failed"); 1177 } 1178 1179 static void mirror_resume(struct dm_target *ti) 1180 { 1181 struct mirror_set *ms = (struct mirror_set *) ti->private; 1182 struct dirty_log *log = ms->rh.log; 1183 if (log->type->resume && log->type->resume(log)) 1184 /* FIXME: need better error handling */ 1185 DMWARN("log resume failed"); 1186 rh_start_recovery(&ms->rh); 1187 } 1188 1189 static int mirror_status(struct dm_target *ti, status_type_t type, 1190 char *result, unsigned int maxlen) 1191 { 1192 unsigned int m, sz; 1193 struct mirror_set *ms = (struct mirror_set *) ti->private; 1194 1195 sz = ms->rh.log->type->status(ms->rh.log, type, result, maxlen); 1196 1197 switch (type) { 1198 case STATUSTYPE_INFO: 1199 DMEMIT("%d ", ms->nr_mirrors); 1200 for (m = 0; m < ms->nr_mirrors; m++) 1201 DMEMIT("%s ", ms->mirror[m].dev->name); 1202 1203 DMEMIT(SECTOR_FORMAT "/" SECTOR_FORMAT, 1204 ms->rh.log->type->get_sync_count(ms->rh.log), 1205 ms->nr_regions); 1206 break; 1207 1208 case STATUSTYPE_TABLE: 1209 DMEMIT("%d ", ms->nr_mirrors); 1210 for (m = 0; m < ms->nr_mirrors; m++) 1211 DMEMIT("%s " SECTOR_FORMAT " ", 1212 ms->mirror[m].dev->name, ms->mirror[m].offset); 1213 } 1214 1215 return 0; 1216 } 1217 1218 static struct target_type mirror_target = { 1219 .name = "mirror", 1220 .version = {1, 0, 1}, 1221 .module = THIS_MODULE, 1222 .ctr = mirror_ctr, 1223 .dtr = mirror_dtr, 1224 .map = mirror_map, 1225 .end_io = mirror_end_io, 1226 .postsuspend = mirror_postsuspend, 1227 .resume = mirror_resume, 1228 .status = mirror_status, 1229 }; 1230 1231 static int __init dm_mirror_init(void) 1232 { 1233 int r; 1234 1235 r = dm_dirty_log_init(); 1236 if (r) 1237 return r; 1238 1239 _kmirrord_wq = create_singlethread_workqueue("kmirrord"); 1240 if (!_kmirrord_wq) { 1241 DMERR("couldn't start kmirrord"); 1242 dm_dirty_log_exit(); 1243 return r; 1244 } 1245 INIT_WORK(&_kmirrord_work, do_work, NULL); 1246 1247 r = dm_register_target(&mirror_target); 1248 if (r < 0) { 1249 DMERR("%s: Failed to register mirror target", 1250 mirror_target.name); 1251 dm_dirty_log_exit(); 1252 destroy_workqueue(_kmirrord_wq); 1253 } 1254 1255 return r; 1256 } 1257 1258 static void __exit dm_mirror_exit(void) 1259 { 1260 int r; 1261 1262 r = dm_unregister_target(&mirror_target); 1263 if (r < 0) 1264 DMERR("%s: unregister failed %d", mirror_target.name, r); 1265 1266 destroy_workqueue(_kmirrord_wq); 1267 dm_dirty_log_exit(); 1268 } 1269 1270 /* Module hooks */ 1271 module_init(dm_mirror_init); 1272 module_exit(dm_mirror_exit); 1273 1274 MODULE_DESCRIPTION(DM_NAME " mirror target"); 1275 MODULE_AUTHOR("Joe Thornber"); 1276 MODULE_LICENSE("GPL"); 1277