xref: /linux/drivers/md/dm-raid1.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-list.h"
9 #include "dm-io.h"
10 #include "dm-log.h"
11 #include "kcopyd.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21 #include <linux/workqueue.h>
22 
23 static struct workqueue_struct *_kmirrord_wq;
24 static struct work_struct _kmirrord_work;
25 
26 static inline void wake(void)
27 {
28 	queue_work(_kmirrord_wq, &_kmirrord_work);
29 }
30 
31 /*-----------------------------------------------------------------
32  * Region hash
33  *
34  * The mirror splits itself up into discrete regions.  Each
35  * region can be in one of three states: clean, dirty,
36  * nosync.  There is no need to put clean regions in the hash.
37  *
38  * In addition to being present in the hash table a region _may_
39  * be present on one of three lists.
40  *
41  *   clean_regions: Regions on this list have no io pending to
42  *   them, they are in sync, we are no longer interested in them,
43  *   they are dull.  rh_update_states() will remove them from the
44  *   hash table.
45  *
46  *   quiesced_regions: These regions have been spun down, ready
47  *   for recovery.  rh_recovery_start() will remove regions from
48  *   this list and hand them to kmirrord, which will schedule the
49  *   recovery io with kcopyd.
50  *
51  *   recovered_regions: Regions that kcopyd has successfully
52  *   recovered.  rh_update_states() will now schedule any delayed
53  *   io, up the recovery_count, and remove the region from the
54  *   hash.
55  *
56  * There are 2 locks:
57  *   A rw spin lock 'hash_lock' protects just the hash table,
58  *   this is never held in write mode from interrupt context,
59  *   which I believe means that we only have to disable irqs when
60  *   doing a write lock.
61  *
62  *   An ordinary spin lock 'region_lock' that protects the three
63  *   lists in the region_hash, with the 'state', 'list' and
64  *   'bhs_delayed' fields of the regions.  This is used from irq
65  *   context, so all other uses will have to suspend local irqs.
66  *---------------------------------------------------------------*/
67 struct mirror_set;
68 struct region_hash {
69 	struct mirror_set *ms;
70 	uint32_t region_size;
71 	unsigned region_shift;
72 
73 	/* holds persistent region state */
74 	struct dirty_log *log;
75 
76 	/* hash table */
77 	rwlock_t hash_lock;
78 	mempool_t *region_pool;
79 	unsigned int mask;
80 	unsigned int nr_buckets;
81 	struct list_head *buckets;
82 
83 	spinlock_t region_lock;
84 	struct semaphore recovery_count;
85 	struct list_head clean_regions;
86 	struct list_head quiesced_regions;
87 	struct list_head recovered_regions;
88 };
89 
90 enum {
91 	RH_CLEAN,
92 	RH_DIRTY,
93 	RH_NOSYNC,
94 	RH_RECOVERING
95 };
96 
97 struct region {
98 	struct region_hash *rh;	/* FIXME: can we get rid of this ? */
99 	region_t key;
100 	int state;
101 
102 	struct list_head hash_list;
103 	struct list_head list;
104 
105 	atomic_t pending;
106 	struct bio_list delayed_bios;
107 };
108 
109 /*
110  * Conversion fns
111  */
112 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio)
113 {
114 	return bio->bi_sector >> rh->region_shift;
115 }
116 
117 static inline sector_t region_to_sector(struct region_hash *rh, region_t region)
118 {
119 	return region << rh->region_shift;
120 }
121 
122 /* FIXME move this */
123 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw);
124 
125 static void *region_alloc(gfp_t gfp_mask, void *pool_data)
126 {
127 	return kmalloc(sizeof(struct region), gfp_mask);
128 }
129 
130 static void region_free(void *element, void *pool_data)
131 {
132 	kfree(element);
133 }
134 
135 #define MIN_REGIONS 64
136 #define MAX_RECOVERY 1
137 static int rh_init(struct region_hash *rh, struct mirror_set *ms,
138 		   struct dirty_log *log, uint32_t region_size,
139 		   region_t nr_regions)
140 {
141 	unsigned int nr_buckets, max_buckets;
142 	size_t i;
143 
144 	/*
145 	 * Calculate a suitable number of buckets for our hash
146 	 * table.
147 	 */
148 	max_buckets = nr_regions >> 6;
149 	for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
150 		;
151 	nr_buckets >>= 1;
152 
153 	rh->ms = ms;
154 	rh->log = log;
155 	rh->region_size = region_size;
156 	rh->region_shift = ffs(region_size) - 1;
157 	rwlock_init(&rh->hash_lock);
158 	rh->mask = nr_buckets - 1;
159 	rh->nr_buckets = nr_buckets;
160 
161 	rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
162 	if (!rh->buckets) {
163 		DMERR("unable to allocate region hash memory");
164 		return -ENOMEM;
165 	}
166 
167 	for (i = 0; i < nr_buckets; i++)
168 		INIT_LIST_HEAD(rh->buckets + i);
169 
170 	spin_lock_init(&rh->region_lock);
171 	sema_init(&rh->recovery_count, 0);
172 	INIT_LIST_HEAD(&rh->clean_regions);
173 	INIT_LIST_HEAD(&rh->quiesced_regions);
174 	INIT_LIST_HEAD(&rh->recovered_regions);
175 
176 	rh->region_pool = mempool_create(MIN_REGIONS, region_alloc,
177 					 region_free, NULL);
178 	if (!rh->region_pool) {
179 		vfree(rh->buckets);
180 		rh->buckets = NULL;
181 		return -ENOMEM;
182 	}
183 
184 	return 0;
185 }
186 
187 static void rh_exit(struct region_hash *rh)
188 {
189 	unsigned int h;
190 	struct region *reg, *nreg;
191 
192 	BUG_ON(!list_empty(&rh->quiesced_regions));
193 	for (h = 0; h < rh->nr_buckets; h++) {
194 		list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) {
195 			BUG_ON(atomic_read(&reg->pending));
196 			mempool_free(reg, rh->region_pool);
197 		}
198 	}
199 
200 	if (rh->log)
201 		dm_destroy_dirty_log(rh->log);
202 	if (rh->region_pool)
203 		mempool_destroy(rh->region_pool);
204 	vfree(rh->buckets);
205 }
206 
207 #define RH_HASH_MULT 2654435387U
208 
209 static inline unsigned int rh_hash(struct region_hash *rh, region_t region)
210 {
211 	return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask;
212 }
213 
214 static struct region *__rh_lookup(struct region_hash *rh, region_t region)
215 {
216 	struct region *reg;
217 
218 	list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list)
219 		if (reg->key == region)
220 			return reg;
221 
222 	return NULL;
223 }
224 
225 static void __rh_insert(struct region_hash *rh, struct region *reg)
226 {
227 	unsigned int h = rh_hash(rh, reg->key);
228 	list_add(&reg->hash_list, rh->buckets + h);
229 }
230 
231 static struct region *__rh_alloc(struct region_hash *rh, region_t region)
232 {
233 	struct region *reg, *nreg;
234 
235 	read_unlock(&rh->hash_lock);
236 	nreg = mempool_alloc(rh->region_pool, GFP_NOIO);
237 	nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
238 		RH_CLEAN : RH_NOSYNC;
239 	nreg->rh = rh;
240 	nreg->key = region;
241 
242 	INIT_LIST_HEAD(&nreg->list);
243 
244 	atomic_set(&nreg->pending, 0);
245 	bio_list_init(&nreg->delayed_bios);
246 	write_lock_irq(&rh->hash_lock);
247 
248 	reg = __rh_lookup(rh, region);
249 	if (reg)
250 		/* we lost the race */
251 		mempool_free(nreg, rh->region_pool);
252 
253 	else {
254 		__rh_insert(rh, nreg);
255 		if (nreg->state == RH_CLEAN) {
256 			spin_lock(&rh->region_lock);
257 			list_add(&nreg->list, &rh->clean_regions);
258 			spin_unlock(&rh->region_lock);
259 		}
260 		reg = nreg;
261 	}
262 	write_unlock_irq(&rh->hash_lock);
263 	read_lock(&rh->hash_lock);
264 
265 	return reg;
266 }
267 
268 static inline struct region *__rh_find(struct region_hash *rh, region_t region)
269 {
270 	struct region *reg;
271 
272 	reg = __rh_lookup(rh, region);
273 	if (!reg)
274 		reg = __rh_alloc(rh, region);
275 
276 	return reg;
277 }
278 
279 static int rh_state(struct region_hash *rh, region_t region, int may_block)
280 {
281 	int r;
282 	struct region *reg;
283 
284 	read_lock(&rh->hash_lock);
285 	reg = __rh_lookup(rh, region);
286 	read_unlock(&rh->hash_lock);
287 
288 	if (reg)
289 		return reg->state;
290 
291 	/*
292 	 * The region wasn't in the hash, so we fall back to the
293 	 * dirty log.
294 	 */
295 	r = rh->log->type->in_sync(rh->log, region, may_block);
296 
297 	/*
298 	 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
299 	 * taken as a RH_NOSYNC
300 	 */
301 	return r == 1 ? RH_CLEAN : RH_NOSYNC;
302 }
303 
304 static inline int rh_in_sync(struct region_hash *rh,
305 			     region_t region, int may_block)
306 {
307 	int state = rh_state(rh, region, may_block);
308 	return state == RH_CLEAN || state == RH_DIRTY;
309 }
310 
311 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list)
312 {
313 	struct bio *bio;
314 
315 	while ((bio = bio_list_pop(bio_list))) {
316 		queue_bio(ms, bio, WRITE);
317 	}
318 }
319 
320 static void rh_update_states(struct region_hash *rh)
321 {
322 	struct region *reg, *next;
323 
324 	LIST_HEAD(clean);
325 	LIST_HEAD(recovered);
326 
327 	/*
328 	 * Quickly grab the lists.
329 	 */
330 	write_lock_irq(&rh->hash_lock);
331 	spin_lock(&rh->region_lock);
332 	if (!list_empty(&rh->clean_regions)) {
333 		list_splice(&rh->clean_regions, &clean);
334 		INIT_LIST_HEAD(&rh->clean_regions);
335 
336 		list_for_each_entry (reg, &clean, list) {
337 			rh->log->type->clear_region(rh->log, reg->key);
338 			list_del(&reg->hash_list);
339 		}
340 	}
341 
342 	if (!list_empty(&rh->recovered_regions)) {
343 		list_splice(&rh->recovered_regions, &recovered);
344 		INIT_LIST_HEAD(&rh->recovered_regions);
345 
346 		list_for_each_entry (reg, &recovered, list)
347 			list_del(&reg->hash_list);
348 	}
349 	spin_unlock(&rh->region_lock);
350 	write_unlock_irq(&rh->hash_lock);
351 
352 	/*
353 	 * All the regions on the recovered and clean lists have
354 	 * now been pulled out of the system, so no need to do
355 	 * any more locking.
356 	 */
357 	list_for_each_entry_safe (reg, next, &recovered, list) {
358 		rh->log->type->clear_region(rh->log, reg->key);
359 		rh->log->type->complete_resync_work(rh->log, reg->key, 1);
360 		dispatch_bios(rh->ms, &reg->delayed_bios);
361 		up(&rh->recovery_count);
362 		mempool_free(reg, rh->region_pool);
363 	}
364 
365 	if (!list_empty(&recovered))
366 		rh->log->type->flush(rh->log);
367 
368 	list_for_each_entry_safe (reg, next, &clean, list)
369 		mempool_free(reg, rh->region_pool);
370 }
371 
372 static void rh_inc(struct region_hash *rh, region_t region)
373 {
374 	struct region *reg;
375 
376 	read_lock(&rh->hash_lock);
377 	reg = __rh_find(rh, region);
378 
379 	atomic_inc(&reg->pending);
380 
381 	spin_lock_irq(&rh->region_lock);
382 	if (reg->state == RH_CLEAN) {
383 		rh->log->type->mark_region(rh->log, reg->key);
384 
385 		reg->state = RH_DIRTY;
386 		list_del_init(&reg->list);	/* take off the clean list */
387 	}
388 	spin_unlock_irq(&rh->region_lock);
389 
390 	read_unlock(&rh->hash_lock);
391 }
392 
393 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios)
394 {
395 	struct bio *bio;
396 
397 	for (bio = bios->head; bio; bio = bio->bi_next)
398 		rh_inc(rh, bio_to_region(rh, bio));
399 }
400 
401 static void rh_dec(struct region_hash *rh, region_t region)
402 {
403 	unsigned long flags;
404 	struct region *reg;
405 	int should_wake = 0;
406 
407 	read_lock(&rh->hash_lock);
408 	reg = __rh_lookup(rh, region);
409 	read_unlock(&rh->hash_lock);
410 
411 	if (atomic_dec_and_test(&reg->pending)) {
412 		spin_lock_irqsave(&rh->region_lock, flags);
413 		if (atomic_read(&reg->pending)) { /* check race */
414 			spin_unlock_irqrestore(&rh->region_lock, flags);
415 			return;
416 		}
417 		if (reg->state == RH_RECOVERING) {
418 			list_add_tail(&reg->list, &rh->quiesced_regions);
419 		} else {
420 			reg->state = RH_CLEAN;
421 			list_add(&reg->list, &rh->clean_regions);
422 		}
423 		spin_unlock_irqrestore(&rh->region_lock, flags);
424 		should_wake = 1;
425 	}
426 
427 	if (should_wake)
428 		wake();
429 }
430 
431 /*
432  * Starts quiescing a region in preparation for recovery.
433  */
434 static int __rh_recovery_prepare(struct region_hash *rh)
435 {
436 	int r;
437 	struct region *reg;
438 	region_t region;
439 
440 	/*
441 	 * Ask the dirty log what's next.
442 	 */
443 	r = rh->log->type->get_resync_work(rh->log, &region);
444 	if (r <= 0)
445 		return r;
446 
447 	/*
448 	 * Get this region, and start it quiescing by setting the
449 	 * recovering flag.
450 	 */
451 	read_lock(&rh->hash_lock);
452 	reg = __rh_find(rh, region);
453 	read_unlock(&rh->hash_lock);
454 
455 	spin_lock_irq(&rh->region_lock);
456 	reg->state = RH_RECOVERING;
457 
458 	/* Already quiesced ? */
459 	if (atomic_read(&reg->pending))
460 		list_del_init(&reg->list);
461 
462 	else {
463 		list_del_init(&reg->list);
464 		list_add(&reg->list, &rh->quiesced_regions);
465 	}
466 	spin_unlock_irq(&rh->region_lock);
467 
468 	return 1;
469 }
470 
471 static void rh_recovery_prepare(struct region_hash *rh)
472 {
473 	while (!down_trylock(&rh->recovery_count))
474 		if (__rh_recovery_prepare(rh) <= 0) {
475 			up(&rh->recovery_count);
476 			break;
477 		}
478 }
479 
480 /*
481  * Returns any quiesced regions.
482  */
483 static struct region *rh_recovery_start(struct region_hash *rh)
484 {
485 	struct region *reg = NULL;
486 
487 	spin_lock_irq(&rh->region_lock);
488 	if (!list_empty(&rh->quiesced_regions)) {
489 		reg = list_entry(rh->quiesced_regions.next,
490 				 struct region, list);
491 		list_del_init(&reg->list);	/* remove from the quiesced list */
492 	}
493 	spin_unlock_irq(&rh->region_lock);
494 
495 	return reg;
496 }
497 
498 /* FIXME: success ignored for now */
499 static void rh_recovery_end(struct region *reg, int success)
500 {
501 	struct region_hash *rh = reg->rh;
502 
503 	spin_lock_irq(&rh->region_lock);
504 	list_add(&reg->list, &reg->rh->recovered_regions);
505 	spin_unlock_irq(&rh->region_lock);
506 
507 	wake();
508 }
509 
510 static void rh_flush(struct region_hash *rh)
511 {
512 	rh->log->type->flush(rh->log);
513 }
514 
515 static void rh_delay(struct region_hash *rh, struct bio *bio)
516 {
517 	struct region *reg;
518 
519 	read_lock(&rh->hash_lock);
520 	reg = __rh_find(rh, bio_to_region(rh, bio));
521 	bio_list_add(&reg->delayed_bios, bio);
522 	read_unlock(&rh->hash_lock);
523 }
524 
525 static void rh_stop_recovery(struct region_hash *rh)
526 {
527 	int i;
528 
529 	/* wait for any recovering regions */
530 	for (i = 0; i < MAX_RECOVERY; i++)
531 		down(&rh->recovery_count);
532 }
533 
534 static void rh_start_recovery(struct region_hash *rh)
535 {
536 	int i;
537 
538 	for (i = 0; i < MAX_RECOVERY; i++)
539 		up(&rh->recovery_count);
540 
541 	wake();
542 }
543 
544 /*-----------------------------------------------------------------
545  * Mirror set structures.
546  *---------------------------------------------------------------*/
547 struct mirror {
548 	atomic_t error_count;
549 	struct dm_dev *dev;
550 	sector_t offset;
551 };
552 
553 struct mirror_set {
554 	struct dm_target *ti;
555 	struct list_head list;
556 	struct region_hash rh;
557 	struct kcopyd_client *kcopyd_client;
558 
559 	spinlock_t lock;	/* protects the next two lists */
560 	struct bio_list reads;
561 	struct bio_list writes;
562 
563 	/* recovery */
564 	region_t nr_regions;
565 	int in_sync;
566 
567 	unsigned int nr_mirrors;
568 	struct mirror mirror[0];
569 };
570 
571 /*
572  * Every mirror should look like this one.
573  */
574 #define DEFAULT_MIRROR 0
575 
576 /*
577  * This is yucky.  We squirrel the mirror_set struct away inside
578  * bi_next for write buffers.  This is safe since the bh
579  * doesn't get submitted to the lower levels of block layer.
580  */
581 static struct mirror_set *bio_get_ms(struct bio *bio)
582 {
583 	return (struct mirror_set *) bio->bi_next;
584 }
585 
586 static void bio_set_ms(struct bio *bio, struct mirror_set *ms)
587 {
588 	bio->bi_next = (struct bio *) ms;
589 }
590 
591 /*-----------------------------------------------------------------
592  * Recovery.
593  *
594  * When a mirror is first activated we may find that some regions
595  * are in the no-sync state.  We have to recover these by
596  * recopying from the default mirror to all the others.
597  *---------------------------------------------------------------*/
598 static void recovery_complete(int read_err, unsigned int write_err,
599 			      void *context)
600 {
601 	struct region *reg = (struct region *) context;
602 
603 	/* FIXME: better error handling */
604 	rh_recovery_end(reg, read_err || write_err);
605 }
606 
607 static int recover(struct mirror_set *ms, struct region *reg)
608 {
609 	int r;
610 	unsigned int i;
611 	struct io_region from, to[KCOPYD_MAX_REGIONS], *dest;
612 	struct mirror *m;
613 	unsigned long flags = 0;
614 
615 	/* fill in the source */
616 	m = ms->mirror + DEFAULT_MIRROR;
617 	from.bdev = m->dev->bdev;
618 	from.sector = m->offset + region_to_sector(reg->rh, reg->key);
619 	if (reg->key == (ms->nr_regions - 1)) {
620 		/*
621 		 * The final region may be smaller than
622 		 * region_size.
623 		 */
624 		from.count = ms->ti->len & (reg->rh->region_size - 1);
625 		if (!from.count)
626 			from.count = reg->rh->region_size;
627 	} else
628 		from.count = reg->rh->region_size;
629 
630 	/* fill in the destinations */
631 	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
632 		if (i == DEFAULT_MIRROR)
633 			continue;
634 
635 		m = ms->mirror + i;
636 		dest->bdev = m->dev->bdev;
637 		dest->sector = m->offset + region_to_sector(reg->rh, reg->key);
638 		dest->count = from.count;
639 		dest++;
640 	}
641 
642 	/* hand to kcopyd */
643 	set_bit(KCOPYD_IGNORE_ERROR, &flags);
644 	r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags,
645 			recovery_complete, reg);
646 
647 	return r;
648 }
649 
650 static void do_recovery(struct mirror_set *ms)
651 {
652 	int r;
653 	struct region *reg;
654 	struct dirty_log *log = ms->rh.log;
655 
656 	/*
657 	 * Start quiescing some regions.
658 	 */
659 	rh_recovery_prepare(&ms->rh);
660 
661 	/*
662 	 * Copy any already quiesced regions.
663 	 */
664 	while ((reg = rh_recovery_start(&ms->rh))) {
665 		r = recover(ms, reg);
666 		if (r)
667 			rh_recovery_end(reg, 0);
668 	}
669 
670 	/*
671 	 * Update the in sync flag.
672 	 */
673 	if (!ms->in_sync &&
674 	    (log->type->get_sync_count(log) == ms->nr_regions)) {
675 		/* the sync is complete */
676 		dm_table_event(ms->ti->table);
677 		ms->in_sync = 1;
678 	}
679 }
680 
681 /*-----------------------------------------------------------------
682  * Reads
683  *---------------------------------------------------------------*/
684 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
685 {
686 	/* FIXME: add read balancing */
687 	return ms->mirror + DEFAULT_MIRROR;
688 }
689 
690 /*
691  * remap a buffer to a particular mirror.
692  */
693 static void map_bio(struct mirror_set *ms, struct mirror *m, struct bio *bio)
694 {
695 	bio->bi_bdev = m->dev->bdev;
696 	bio->bi_sector = m->offset + (bio->bi_sector - ms->ti->begin);
697 }
698 
699 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
700 {
701 	region_t region;
702 	struct bio *bio;
703 	struct mirror *m;
704 
705 	while ((bio = bio_list_pop(reads))) {
706 		region = bio_to_region(&ms->rh, bio);
707 
708 		/*
709 		 * We can only read balance if the region is in sync.
710 		 */
711 		if (rh_in_sync(&ms->rh, region, 0))
712 			m = choose_mirror(ms, bio->bi_sector);
713 		else
714 			m = ms->mirror + DEFAULT_MIRROR;
715 
716 		map_bio(ms, m, bio);
717 		generic_make_request(bio);
718 	}
719 }
720 
721 /*-----------------------------------------------------------------
722  * Writes.
723  *
724  * We do different things with the write io depending on the
725  * state of the region that it's in:
726  *
727  * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
728  * RECOVERING:	delay the io until recovery completes
729  * NOSYNC:	increment pending, just write to the default mirror
730  *---------------------------------------------------------------*/
731 static void write_callback(unsigned long error, void *context)
732 {
733 	unsigned int i;
734 	int uptodate = 1;
735 	struct bio *bio = (struct bio *) context;
736 	struct mirror_set *ms;
737 
738 	ms = bio_get_ms(bio);
739 	bio_set_ms(bio, NULL);
740 
741 	/*
742 	 * NOTE: We don't decrement the pending count here,
743 	 * instead it is done by the targets endio function.
744 	 * This way we handle both writes to SYNC and NOSYNC
745 	 * regions with the same code.
746 	 */
747 
748 	if (error) {
749 		/*
750 		 * only error the io if all mirrors failed.
751 		 * FIXME: bogus
752 		 */
753 		uptodate = 0;
754 		for (i = 0; i < ms->nr_mirrors; i++)
755 			if (!test_bit(i, &error)) {
756 				uptodate = 1;
757 				break;
758 			}
759 	}
760 	bio_endio(bio, bio->bi_size, 0);
761 }
762 
763 static void do_write(struct mirror_set *ms, struct bio *bio)
764 {
765 	unsigned int i;
766 	struct io_region io[KCOPYD_MAX_REGIONS+1];
767 	struct mirror *m;
768 
769 	for (i = 0; i < ms->nr_mirrors; i++) {
770 		m = ms->mirror + i;
771 
772 		io[i].bdev = m->dev->bdev;
773 		io[i].sector = m->offset + (bio->bi_sector - ms->ti->begin);
774 		io[i].count = bio->bi_size >> 9;
775 	}
776 
777 	bio_set_ms(bio, ms);
778 	dm_io_async_bvec(ms->nr_mirrors, io, WRITE,
779 			 bio->bi_io_vec + bio->bi_idx,
780 			 write_callback, bio);
781 }
782 
783 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
784 {
785 	int state;
786 	struct bio *bio;
787 	struct bio_list sync, nosync, recover, *this_list = NULL;
788 
789 	if (!writes->head)
790 		return;
791 
792 	/*
793 	 * Classify each write.
794 	 */
795 	bio_list_init(&sync);
796 	bio_list_init(&nosync);
797 	bio_list_init(&recover);
798 
799 	while ((bio = bio_list_pop(writes))) {
800 		state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1);
801 		switch (state) {
802 		case RH_CLEAN:
803 		case RH_DIRTY:
804 			this_list = &sync;
805 			break;
806 
807 		case RH_NOSYNC:
808 			this_list = &nosync;
809 			break;
810 
811 		case RH_RECOVERING:
812 			this_list = &recover;
813 			break;
814 		}
815 
816 		bio_list_add(this_list, bio);
817 	}
818 
819 	/*
820 	 * Increment the pending counts for any regions that will
821 	 * be written to (writes to recover regions are going to
822 	 * be delayed).
823 	 */
824 	rh_inc_pending(&ms->rh, &sync);
825 	rh_inc_pending(&ms->rh, &nosync);
826 	rh_flush(&ms->rh);
827 
828 	/*
829 	 * Dispatch io.
830 	 */
831 	while ((bio = bio_list_pop(&sync)))
832 		do_write(ms, bio);
833 
834 	while ((bio = bio_list_pop(&recover)))
835 		rh_delay(&ms->rh, bio);
836 
837 	while ((bio = bio_list_pop(&nosync))) {
838 		map_bio(ms, ms->mirror + DEFAULT_MIRROR, bio);
839 		generic_make_request(bio);
840 	}
841 }
842 
843 /*-----------------------------------------------------------------
844  * kmirrord
845  *---------------------------------------------------------------*/
846 static LIST_HEAD(_mirror_sets);
847 static DECLARE_RWSEM(_mirror_sets_lock);
848 
849 static void do_mirror(struct mirror_set *ms)
850 {
851 	struct bio_list reads, writes;
852 
853 	spin_lock(&ms->lock);
854 	reads = ms->reads;
855 	writes = ms->writes;
856 	bio_list_init(&ms->reads);
857 	bio_list_init(&ms->writes);
858 	spin_unlock(&ms->lock);
859 
860 	rh_update_states(&ms->rh);
861 	do_recovery(ms);
862 	do_reads(ms, &reads);
863 	do_writes(ms, &writes);
864 }
865 
866 static void do_work(void *ignored)
867 {
868 	struct mirror_set *ms;
869 
870 	down_read(&_mirror_sets_lock);
871 	list_for_each_entry (ms, &_mirror_sets, list)
872 		do_mirror(ms);
873 	up_read(&_mirror_sets_lock);
874 }
875 
876 /*-----------------------------------------------------------------
877  * Target functions
878  *---------------------------------------------------------------*/
879 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
880 					uint32_t region_size,
881 					struct dm_target *ti,
882 					struct dirty_log *dl)
883 {
884 	size_t len;
885 	struct mirror_set *ms = NULL;
886 
887 	if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors))
888 		return NULL;
889 
890 	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
891 
892 	ms = kmalloc(len, GFP_KERNEL);
893 	if (!ms) {
894 		ti->error = "dm-mirror: Cannot allocate mirror context";
895 		return NULL;
896 	}
897 
898 	memset(ms, 0, len);
899 	spin_lock_init(&ms->lock);
900 
901 	ms->ti = ti;
902 	ms->nr_mirrors = nr_mirrors;
903 	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
904 	ms->in_sync = 0;
905 
906 	if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) {
907 		ti->error = "dm-mirror: Error creating dirty region hash";
908 		kfree(ms);
909 		return NULL;
910 	}
911 
912 	return ms;
913 }
914 
915 static void free_context(struct mirror_set *ms, struct dm_target *ti,
916 			 unsigned int m)
917 {
918 	while (m--)
919 		dm_put_device(ti, ms->mirror[m].dev);
920 
921 	rh_exit(&ms->rh);
922 	kfree(ms);
923 }
924 
925 static inline int _check_region_size(struct dm_target *ti, uint32_t size)
926 {
927 	return !(size % (PAGE_SIZE >> 9) || (size & (size - 1)) ||
928 		 size > ti->len);
929 }
930 
931 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
932 		      unsigned int mirror, char **argv)
933 {
934 	sector_t offset;
935 
936 	if (sscanf(argv[1], SECTOR_FORMAT, &offset) != 1) {
937 		ti->error = "dm-mirror: Invalid offset";
938 		return -EINVAL;
939 	}
940 
941 	if (dm_get_device(ti, argv[0], offset, ti->len,
942 			  dm_table_get_mode(ti->table),
943 			  &ms->mirror[mirror].dev)) {
944 		ti->error = "dm-mirror: Device lookup failure";
945 		return -ENXIO;
946 	}
947 
948 	ms->mirror[mirror].offset = offset;
949 
950 	return 0;
951 }
952 
953 static int add_mirror_set(struct mirror_set *ms)
954 {
955 	down_write(&_mirror_sets_lock);
956 	list_add_tail(&ms->list, &_mirror_sets);
957 	up_write(&_mirror_sets_lock);
958 	wake();
959 
960 	return 0;
961 }
962 
963 static void del_mirror_set(struct mirror_set *ms)
964 {
965 	down_write(&_mirror_sets_lock);
966 	list_del(&ms->list);
967 	up_write(&_mirror_sets_lock);
968 }
969 
970 /*
971  * Create dirty log: log_type #log_params <log_params>
972  */
973 static struct dirty_log *create_dirty_log(struct dm_target *ti,
974 					  unsigned int argc, char **argv,
975 					  unsigned int *args_used)
976 {
977 	unsigned int param_count;
978 	struct dirty_log *dl;
979 
980 	if (argc < 2) {
981 		ti->error = "dm-mirror: Insufficient mirror log arguments";
982 		return NULL;
983 	}
984 
985 	if (sscanf(argv[1], "%u", &param_count) != 1) {
986 		ti->error = "dm-mirror: Invalid mirror log argument count";
987 		return NULL;
988 	}
989 
990 	*args_used = 2 + param_count;
991 
992 	if (argc < *args_used) {
993 		ti->error = "dm-mirror: Insufficient mirror log arguments";
994 		return NULL;
995 	}
996 
997 	dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2);
998 	if (!dl) {
999 		ti->error = "dm-mirror: Error creating mirror dirty log";
1000 		return NULL;
1001 	}
1002 
1003 	if (!_check_region_size(ti, dl->type->get_region_size(dl))) {
1004 		ti->error = "dm-mirror: Invalid region size";
1005 		dm_destroy_dirty_log(dl);
1006 		return NULL;
1007 	}
1008 
1009 	return dl;
1010 }
1011 
1012 /*
1013  * Construct a mirror mapping:
1014  *
1015  * log_type #log_params <log_params>
1016  * #mirrors [mirror_path offset]{2,}
1017  *
1018  * log_type is "core" or "disk"
1019  * #log_params is between 1 and 3
1020  */
1021 #define DM_IO_PAGES 64
1022 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1023 {
1024 	int r;
1025 	unsigned int nr_mirrors, m, args_used;
1026 	struct mirror_set *ms;
1027 	struct dirty_log *dl;
1028 
1029 	dl = create_dirty_log(ti, argc, argv, &args_used);
1030 	if (!dl)
1031 		return -EINVAL;
1032 
1033 	argv += args_used;
1034 	argc -= args_used;
1035 
1036 	if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 ||
1037 	    nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) {
1038 		ti->error = "dm-mirror: Invalid number of mirrors";
1039 		dm_destroy_dirty_log(dl);
1040 		return -EINVAL;
1041 	}
1042 
1043 	argv++, argc--;
1044 
1045 	if (argc != nr_mirrors * 2) {
1046 		ti->error = "dm-mirror: Wrong number of mirror arguments";
1047 		dm_destroy_dirty_log(dl);
1048 		return -EINVAL;
1049 	}
1050 
1051 	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1052 	if (!ms) {
1053 		dm_destroy_dirty_log(dl);
1054 		return -ENOMEM;
1055 	}
1056 
1057 	/* Get the mirror parameter sets */
1058 	for (m = 0; m < nr_mirrors; m++) {
1059 		r = get_mirror(ms, ti, m, argv);
1060 		if (r) {
1061 			free_context(ms, ti, m);
1062 			return r;
1063 		}
1064 		argv += 2;
1065 		argc -= 2;
1066 	}
1067 
1068 	ti->private = ms;
1069  	ti->split_io = ms->rh.region_size;
1070 
1071 	r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client);
1072 	if (r) {
1073 		free_context(ms, ti, ms->nr_mirrors);
1074 		return r;
1075 	}
1076 
1077 	add_mirror_set(ms);
1078 	return 0;
1079 }
1080 
1081 static void mirror_dtr(struct dm_target *ti)
1082 {
1083 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1084 
1085 	del_mirror_set(ms);
1086 	kcopyd_client_destroy(ms->kcopyd_client);
1087 	free_context(ms, ti, ms->nr_mirrors);
1088 }
1089 
1090 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
1091 {
1092 	int should_wake = 0;
1093 	struct bio_list *bl;
1094 
1095 	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
1096 	spin_lock(&ms->lock);
1097 	should_wake = !(bl->head);
1098 	bio_list_add(bl, bio);
1099 	spin_unlock(&ms->lock);
1100 
1101 	if (should_wake)
1102 		wake();
1103 }
1104 
1105 /*
1106  * Mirror mapping function
1107  */
1108 static int mirror_map(struct dm_target *ti, struct bio *bio,
1109 		      union map_info *map_context)
1110 {
1111 	int r, rw = bio_rw(bio);
1112 	struct mirror *m;
1113 	struct mirror_set *ms = ti->private;
1114 
1115 	map_context->ll = bio->bi_sector >> ms->rh.region_shift;
1116 
1117 	if (rw == WRITE) {
1118 		queue_bio(ms, bio, rw);
1119 		return 0;
1120 	}
1121 
1122 	r = ms->rh.log->type->in_sync(ms->rh.log,
1123 				      bio_to_region(&ms->rh, bio), 0);
1124 	if (r < 0 && r != -EWOULDBLOCK)
1125 		return r;
1126 
1127 	if (r == -EWOULDBLOCK)	/* FIXME: ugly */
1128 		r = 0;
1129 
1130 	/*
1131 	 * We don't want to fast track a recovery just for a read
1132 	 * ahead.  So we just let it silently fail.
1133 	 * FIXME: get rid of this.
1134 	 */
1135 	if (!r && rw == READA)
1136 		return -EIO;
1137 
1138 	if (!r) {
1139 		/* Pass this io over to the daemon */
1140 		queue_bio(ms, bio, rw);
1141 		return 0;
1142 	}
1143 
1144 	m = choose_mirror(ms, bio->bi_sector);
1145 	if (!m)
1146 		return -EIO;
1147 
1148 	map_bio(ms, m, bio);
1149 	return 1;
1150 }
1151 
1152 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1153 			 int error, union map_info *map_context)
1154 {
1155 	int rw = bio_rw(bio);
1156 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1157 	region_t region = map_context->ll;
1158 
1159 	/*
1160 	 * We need to dec pending if this was a write.
1161 	 */
1162 	if (rw == WRITE)
1163 		rh_dec(&ms->rh, region);
1164 
1165 	return 0;
1166 }
1167 
1168 static void mirror_postsuspend(struct dm_target *ti)
1169 {
1170 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1171 	struct dirty_log *log = ms->rh.log;
1172 
1173 	rh_stop_recovery(&ms->rh);
1174 	if (log->type->suspend && log->type->suspend(log))
1175 		/* FIXME: need better error handling */
1176 		DMWARN("log suspend failed");
1177 }
1178 
1179 static void mirror_resume(struct dm_target *ti)
1180 {
1181 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1182 	struct dirty_log *log = ms->rh.log;
1183 	if (log->type->resume && log->type->resume(log))
1184 		/* FIXME: need better error handling */
1185 		DMWARN("log resume failed");
1186 	rh_start_recovery(&ms->rh);
1187 }
1188 
1189 static int mirror_status(struct dm_target *ti, status_type_t type,
1190 			 char *result, unsigned int maxlen)
1191 {
1192 	unsigned int m, sz;
1193 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1194 
1195 	sz = ms->rh.log->type->status(ms->rh.log, type, result, maxlen);
1196 
1197 	switch (type) {
1198 	case STATUSTYPE_INFO:
1199 		DMEMIT("%d ", ms->nr_mirrors);
1200 		for (m = 0; m < ms->nr_mirrors; m++)
1201 			DMEMIT("%s ", ms->mirror[m].dev->name);
1202 
1203 		DMEMIT(SECTOR_FORMAT "/" SECTOR_FORMAT,
1204 		       ms->rh.log->type->get_sync_count(ms->rh.log),
1205 		       ms->nr_regions);
1206 		break;
1207 
1208 	case STATUSTYPE_TABLE:
1209 		DMEMIT("%d ", ms->nr_mirrors);
1210 		for (m = 0; m < ms->nr_mirrors; m++)
1211 			DMEMIT("%s " SECTOR_FORMAT " ",
1212 			       ms->mirror[m].dev->name, ms->mirror[m].offset);
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 static struct target_type mirror_target = {
1219 	.name	 = "mirror",
1220 	.version = {1, 0, 1},
1221 	.module	 = THIS_MODULE,
1222 	.ctr	 = mirror_ctr,
1223 	.dtr	 = mirror_dtr,
1224 	.map	 = mirror_map,
1225 	.end_io	 = mirror_end_io,
1226 	.postsuspend = mirror_postsuspend,
1227 	.resume	 = mirror_resume,
1228 	.status	 = mirror_status,
1229 };
1230 
1231 static int __init dm_mirror_init(void)
1232 {
1233 	int r;
1234 
1235 	r = dm_dirty_log_init();
1236 	if (r)
1237 		return r;
1238 
1239 	_kmirrord_wq = create_singlethread_workqueue("kmirrord");
1240 	if (!_kmirrord_wq) {
1241 		DMERR("couldn't start kmirrord");
1242 		dm_dirty_log_exit();
1243 		return r;
1244 	}
1245 	INIT_WORK(&_kmirrord_work, do_work, NULL);
1246 
1247 	r = dm_register_target(&mirror_target);
1248 	if (r < 0) {
1249 		DMERR("%s: Failed to register mirror target",
1250 		      mirror_target.name);
1251 		dm_dirty_log_exit();
1252 		destroy_workqueue(_kmirrord_wq);
1253 	}
1254 
1255 	return r;
1256 }
1257 
1258 static void __exit dm_mirror_exit(void)
1259 {
1260 	int r;
1261 
1262 	r = dm_unregister_target(&mirror_target);
1263 	if (r < 0)
1264 		DMERR("%s: unregister failed %d", mirror_target.name, r);
1265 
1266 	destroy_workqueue(_kmirrord_wq);
1267 	dm_dirty_log_exit();
1268 }
1269 
1270 /* Module hooks */
1271 module_init(dm_mirror_init);
1272 module_exit(dm_mirror_exit);
1273 
1274 MODULE_DESCRIPTION(DM_NAME " mirror target");
1275 MODULE_AUTHOR("Joe Thornber");
1276 MODULE_LICENSE("GPL");
1277