1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-list.h" 9 #include "dm-io.h" 10 #include "dm-log.h" 11 #include "kcopyd.h" 12 13 #include <linux/ctype.h> 14 #include <linux/init.h> 15 #include <linux/mempool.h> 16 #include <linux/module.h> 17 #include <linux/pagemap.h> 18 #include <linux/slab.h> 19 #include <linux/time.h> 20 #include <linux/vmalloc.h> 21 #include <linux/workqueue.h> 22 23 #define DM_MSG_PREFIX "raid1" 24 #define DM_IO_PAGES 64 25 26 #define DM_RAID1_HANDLE_ERRORS 0x01 27 #define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS) 28 29 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped); 30 31 /*----------------------------------------------------------------- 32 * Region hash 33 * 34 * The mirror splits itself up into discrete regions. Each 35 * region can be in one of three states: clean, dirty, 36 * nosync. There is no need to put clean regions in the hash. 37 * 38 * In addition to being present in the hash table a region _may_ 39 * be present on one of three lists. 40 * 41 * clean_regions: Regions on this list have no io pending to 42 * them, they are in sync, we are no longer interested in them, 43 * they are dull. rh_update_states() will remove them from the 44 * hash table. 45 * 46 * quiesced_regions: These regions have been spun down, ready 47 * for recovery. rh_recovery_start() will remove regions from 48 * this list and hand them to kmirrord, which will schedule the 49 * recovery io with kcopyd. 50 * 51 * recovered_regions: Regions that kcopyd has successfully 52 * recovered. rh_update_states() will now schedule any delayed 53 * io, up the recovery_count, and remove the region from the 54 * hash. 55 * 56 * There are 2 locks: 57 * A rw spin lock 'hash_lock' protects just the hash table, 58 * this is never held in write mode from interrupt context, 59 * which I believe means that we only have to disable irqs when 60 * doing a write lock. 61 * 62 * An ordinary spin lock 'region_lock' that protects the three 63 * lists in the region_hash, with the 'state', 'list' and 64 * 'bhs_delayed' fields of the regions. This is used from irq 65 * context, so all other uses will have to suspend local irqs. 66 *---------------------------------------------------------------*/ 67 struct mirror_set; 68 struct region_hash { 69 struct mirror_set *ms; 70 uint32_t region_size; 71 unsigned region_shift; 72 73 /* holds persistent region state */ 74 struct dirty_log *log; 75 76 /* hash table */ 77 rwlock_t hash_lock; 78 mempool_t *region_pool; 79 unsigned int mask; 80 unsigned int nr_buckets; 81 struct list_head *buckets; 82 83 spinlock_t region_lock; 84 atomic_t recovery_in_flight; 85 struct semaphore recovery_count; 86 struct list_head clean_regions; 87 struct list_head quiesced_regions; 88 struct list_head recovered_regions; 89 struct list_head failed_recovered_regions; 90 }; 91 92 enum { 93 RH_CLEAN, 94 RH_DIRTY, 95 RH_NOSYNC, 96 RH_RECOVERING 97 }; 98 99 struct region { 100 struct region_hash *rh; /* FIXME: can we get rid of this ? */ 101 region_t key; 102 int state; 103 104 struct list_head hash_list; 105 struct list_head list; 106 107 atomic_t pending; 108 struct bio_list delayed_bios; 109 }; 110 111 112 /*----------------------------------------------------------------- 113 * Mirror set structures. 114 *---------------------------------------------------------------*/ 115 struct mirror { 116 atomic_t error_count; 117 struct dm_dev *dev; 118 sector_t offset; 119 }; 120 121 struct mirror_set { 122 struct dm_target *ti; 123 struct list_head list; 124 struct region_hash rh; 125 struct kcopyd_client *kcopyd_client; 126 uint64_t features; 127 128 spinlock_t lock; /* protects the next two lists */ 129 struct bio_list reads; 130 struct bio_list writes; 131 132 struct dm_io_client *io_client; 133 134 /* recovery */ 135 region_t nr_regions; 136 int in_sync; 137 int log_failure; 138 139 struct mirror *default_mirror; /* Default mirror */ 140 141 struct workqueue_struct *kmirrord_wq; 142 struct work_struct kmirrord_work; 143 144 unsigned int nr_mirrors; 145 struct mirror mirror[0]; 146 }; 147 148 /* 149 * Conversion fns 150 */ 151 static inline region_t bio_to_region(struct region_hash *rh, struct bio *bio) 152 { 153 return (bio->bi_sector - rh->ms->ti->begin) >> rh->region_shift; 154 } 155 156 static inline sector_t region_to_sector(struct region_hash *rh, region_t region) 157 { 158 return region << rh->region_shift; 159 } 160 161 static void wake(struct mirror_set *ms) 162 { 163 queue_work(ms->kmirrord_wq, &ms->kmirrord_work); 164 } 165 166 /* FIXME move this */ 167 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw); 168 169 #define MIN_REGIONS 64 170 #define MAX_RECOVERY 1 171 static int rh_init(struct region_hash *rh, struct mirror_set *ms, 172 struct dirty_log *log, uint32_t region_size, 173 region_t nr_regions) 174 { 175 unsigned int nr_buckets, max_buckets; 176 size_t i; 177 178 /* 179 * Calculate a suitable number of buckets for our hash 180 * table. 181 */ 182 max_buckets = nr_regions >> 6; 183 for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1) 184 ; 185 nr_buckets >>= 1; 186 187 rh->ms = ms; 188 rh->log = log; 189 rh->region_size = region_size; 190 rh->region_shift = ffs(region_size) - 1; 191 rwlock_init(&rh->hash_lock); 192 rh->mask = nr_buckets - 1; 193 rh->nr_buckets = nr_buckets; 194 195 rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets)); 196 if (!rh->buckets) { 197 DMERR("unable to allocate region hash memory"); 198 return -ENOMEM; 199 } 200 201 for (i = 0; i < nr_buckets; i++) 202 INIT_LIST_HEAD(rh->buckets + i); 203 204 spin_lock_init(&rh->region_lock); 205 sema_init(&rh->recovery_count, 0); 206 atomic_set(&rh->recovery_in_flight, 0); 207 INIT_LIST_HEAD(&rh->clean_regions); 208 INIT_LIST_HEAD(&rh->quiesced_regions); 209 INIT_LIST_HEAD(&rh->recovered_regions); 210 INIT_LIST_HEAD(&rh->failed_recovered_regions); 211 212 rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS, 213 sizeof(struct region)); 214 if (!rh->region_pool) { 215 vfree(rh->buckets); 216 rh->buckets = NULL; 217 return -ENOMEM; 218 } 219 220 return 0; 221 } 222 223 static void rh_exit(struct region_hash *rh) 224 { 225 unsigned int h; 226 struct region *reg, *nreg; 227 228 BUG_ON(!list_empty(&rh->quiesced_regions)); 229 for (h = 0; h < rh->nr_buckets; h++) { 230 list_for_each_entry_safe(reg, nreg, rh->buckets + h, hash_list) { 231 BUG_ON(atomic_read(®->pending)); 232 mempool_free(reg, rh->region_pool); 233 } 234 } 235 236 if (rh->log) 237 dm_destroy_dirty_log(rh->log); 238 if (rh->region_pool) 239 mempool_destroy(rh->region_pool); 240 vfree(rh->buckets); 241 } 242 243 #define RH_HASH_MULT 2654435387U 244 245 static inline unsigned int rh_hash(struct region_hash *rh, region_t region) 246 { 247 return (unsigned int) ((region * RH_HASH_MULT) >> 12) & rh->mask; 248 } 249 250 static struct region *__rh_lookup(struct region_hash *rh, region_t region) 251 { 252 struct region *reg; 253 254 list_for_each_entry (reg, rh->buckets + rh_hash(rh, region), hash_list) 255 if (reg->key == region) 256 return reg; 257 258 return NULL; 259 } 260 261 static void __rh_insert(struct region_hash *rh, struct region *reg) 262 { 263 unsigned int h = rh_hash(rh, reg->key); 264 list_add(®->hash_list, rh->buckets + h); 265 } 266 267 static struct region *__rh_alloc(struct region_hash *rh, region_t region) 268 { 269 struct region *reg, *nreg; 270 271 read_unlock(&rh->hash_lock); 272 nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC); 273 if (unlikely(!nreg)) 274 nreg = kmalloc(sizeof(struct region), GFP_NOIO); 275 nreg->state = rh->log->type->in_sync(rh->log, region, 1) ? 276 RH_CLEAN : RH_NOSYNC; 277 nreg->rh = rh; 278 nreg->key = region; 279 280 INIT_LIST_HEAD(&nreg->list); 281 282 atomic_set(&nreg->pending, 0); 283 bio_list_init(&nreg->delayed_bios); 284 write_lock_irq(&rh->hash_lock); 285 286 reg = __rh_lookup(rh, region); 287 if (reg) 288 /* we lost the race */ 289 mempool_free(nreg, rh->region_pool); 290 291 else { 292 __rh_insert(rh, nreg); 293 if (nreg->state == RH_CLEAN) { 294 spin_lock(&rh->region_lock); 295 list_add(&nreg->list, &rh->clean_regions); 296 spin_unlock(&rh->region_lock); 297 } 298 reg = nreg; 299 } 300 write_unlock_irq(&rh->hash_lock); 301 read_lock(&rh->hash_lock); 302 303 return reg; 304 } 305 306 static inline struct region *__rh_find(struct region_hash *rh, region_t region) 307 { 308 struct region *reg; 309 310 reg = __rh_lookup(rh, region); 311 if (!reg) 312 reg = __rh_alloc(rh, region); 313 314 return reg; 315 } 316 317 static int rh_state(struct region_hash *rh, region_t region, int may_block) 318 { 319 int r; 320 struct region *reg; 321 322 read_lock(&rh->hash_lock); 323 reg = __rh_lookup(rh, region); 324 read_unlock(&rh->hash_lock); 325 326 if (reg) 327 return reg->state; 328 329 /* 330 * The region wasn't in the hash, so we fall back to the 331 * dirty log. 332 */ 333 r = rh->log->type->in_sync(rh->log, region, may_block); 334 335 /* 336 * Any error from the dirty log (eg. -EWOULDBLOCK) gets 337 * taken as a RH_NOSYNC 338 */ 339 return r == 1 ? RH_CLEAN : RH_NOSYNC; 340 } 341 342 static inline int rh_in_sync(struct region_hash *rh, 343 region_t region, int may_block) 344 { 345 int state = rh_state(rh, region, may_block); 346 return state == RH_CLEAN || state == RH_DIRTY; 347 } 348 349 static void dispatch_bios(struct mirror_set *ms, struct bio_list *bio_list) 350 { 351 struct bio *bio; 352 353 while ((bio = bio_list_pop(bio_list))) { 354 queue_bio(ms, bio, WRITE); 355 } 356 } 357 358 static void complete_resync_work(struct region *reg, int success) 359 { 360 struct region_hash *rh = reg->rh; 361 362 rh->log->type->set_region_sync(rh->log, reg->key, success); 363 dispatch_bios(rh->ms, ®->delayed_bios); 364 if (atomic_dec_and_test(&rh->recovery_in_flight)) 365 wake_up_all(&_kmirrord_recovery_stopped); 366 up(&rh->recovery_count); 367 } 368 369 static void rh_update_states(struct region_hash *rh) 370 { 371 struct region *reg, *next; 372 373 LIST_HEAD(clean); 374 LIST_HEAD(recovered); 375 LIST_HEAD(failed_recovered); 376 377 /* 378 * Quickly grab the lists. 379 */ 380 write_lock_irq(&rh->hash_lock); 381 spin_lock(&rh->region_lock); 382 if (!list_empty(&rh->clean_regions)) { 383 list_splice(&rh->clean_regions, &clean); 384 INIT_LIST_HEAD(&rh->clean_regions); 385 386 list_for_each_entry(reg, &clean, list) 387 list_del(®->hash_list); 388 } 389 390 if (!list_empty(&rh->recovered_regions)) { 391 list_splice(&rh->recovered_regions, &recovered); 392 INIT_LIST_HEAD(&rh->recovered_regions); 393 394 list_for_each_entry (reg, &recovered, list) 395 list_del(®->hash_list); 396 } 397 398 if (!list_empty(&rh->failed_recovered_regions)) { 399 list_splice(&rh->failed_recovered_regions, &failed_recovered); 400 INIT_LIST_HEAD(&rh->failed_recovered_regions); 401 402 list_for_each_entry(reg, &failed_recovered, list) 403 list_del(®->hash_list); 404 } 405 406 spin_unlock(&rh->region_lock); 407 write_unlock_irq(&rh->hash_lock); 408 409 /* 410 * All the regions on the recovered and clean lists have 411 * now been pulled out of the system, so no need to do 412 * any more locking. 413 */ 414 list_for_each_entry_safe (reg, next, &recovered, list) { 415 rh->log->type->clear_region(rh->log, reg->key); 416 complete_resync_work(reg, 1); 417 mempool_free(reg, rh->region_pool); 418 } 419 420 list_for_each_entry_safe(reg, next, &failed_recovered, list) { 421 complete_resync_work(reg, errors_handled(rh->ms) ? 0 : 1); 422 mempool_free(reg, rh->region_pool); 423 } 424 425 list_for_each_entry_safe(reg, next, &clean, list) { 426 rh->log->type->clear_region(rh->log, reg->key); 427 mempool_free(reg, rh->region_pool); 428 } 429 430 rh->log->type->flush(rh->log); 431 } 432 433 static void rh_inc(struct region_hash *rh, region_t region) 434 { 435 struct region *reg; 436 437 read_lock(&rh->hash_lock); 438 reg = __rh_find(rh, region); 439 440 spin_lock_irq(&rh->region_lock); 441 atomic_inc(®->pending); 442 443 if (reg->state == RH_CLEAN) { 444 reg->state = RH_DIRTY; 445 list_del_init(®->list); /* take off the clean list */ 446 spin_unlock_irq(&rh->region_lock); 447 448 rh->log->type->mark_region(rh->log, reg->key); 449 } else 450 spin_unlock_irq(&rh->region_lock); 451 452 453 read_unlock(&rh->hash_lock); 454 } 455 456 static void rh_inc_pending(struct region_hash *rh, struct bio_list *bios) 457 { 458 struct bio *bio; 459 460 for (bio = bios->head; bio; bio = bio->bi_next) 461 rh_inc(rh, bio_to_region(rh, bio)); 462 } 463 464 static void rh_dec(struct region_hash *rh, region_t region) 465 { 466 unsigned long flags; 467 struct region *reg; 468 int should_wake = 0; 469 470 read_lock(&rh->hash_lock); 471 reg = __rh_lookup(rh, region); 472 read_unlock(&rh->hash_lock); 473 474 spin_lock_irqsave(&rh->region_lock, flags); 475 if (atomic_dec_and_test(®->pending)) { 476 /* 477 * There is no pending I/O for this region. 478 * We can move the region to corresponding list for next action. 479 * At this point, the region is not yet connected to any list. 480 * 481 * If the state is RH_NOSYNC, the region should be kept off 482 * from clean list. 483 * The hash entry for RH_NOSYNC will remain in memory 484 * until the region is recovered or the map is reloaded. 485 */ 486 487 /* do nothing for RH_NOSYNC */ 488 if (reg->state == RH_RECOVERING) { 489 list_add_tail(®->list, &rh->quiesced_regions); 490 } else if (reg->state == RH_DIRTY) { 491 reg->state = RH_CLEAN; 492 list_add(®->list, &rh->clean_regions); 493 } 494 should_wake = 1; 495 } 496 spin_unlock_irqrestore(&rh->region_lock, flags); 497 498 if (should_wake) 499 wake(rh->ms); 500 } 501 502 /* 503 * Starts quiescing a region in preparation for recovery. 504 */ 505 static int __rh_recovery_prepare(struct region_hash *rh) 506 { 507 int r; 508 struct region *reg; 509 region_t region; 510 511 /* 512 * Ask the dirty log what's next. 513 */ 514 r = rh->log->type->get_resync_work(rh->log, ®ion); 515 if (r <= 0) 516 return r; 517 518 /* 519 * Get this region, and start it quiescing by setting the 520 * recovering flag. 521 */ 522 read_lock(&rh->hash_lock); 523 reg = __rh_find(rh, region); 524 read_unlock(&rh->hash_lock); 525 526 spin_lock_irq(&rh->region_lock); 527 reg->state = RH_RECOVERING; 528 529 /* Already quiesced ? */ 530 if (atomic_read(®->pending)) 531 list_del_init(®->list); 532 else 533 list_move(®->list, &rh->quiesced_regions); 534 535 spin_unlock_irq(&rh->region_lock); 536 537 return 1; 538 } 539 540 static void rh_recovery_prepare(struct region_hash *rh) 541 { 542 /* Extra reference to avoid race with rh_stop_recovery */ 543 atomic_inc(&rh->recovery_in_flight); 544 545 while (!down_trylock(&rh->recovery_count)) { 546 atomic_inc(&rh->recovery_in_flight); 547 if (__rh_recovery_prepare(rh) <= 0) { 548 atomic_dec(&rh->recovery_in_flight); 549 up(&rh->recovery_count); 550 break; 551 } 552 } 553 554 /* Drop the extra reference */ 555 if (atomic_dec_and_test(&rh->recovery_in_flight)) 556 wake_up_all(&_kmirrord_recovery_stopped); 557 } 558 559 /* 560 * Returns any quiesced regions. 561 */ 562 static struct region *rh_recovery_start(struct region_hash *rh) 563 { 564 struct region *reg = NULL; 565 566 spin_lock_irq(&rh->region_lock); 567 if (!list_empty(&rh->quiesced_regions)) { 568 reg = list_entry(rh->quiesced_regions.next, 569 struct region, list); 570 list_del_init(®->list); /* remove from the quiesced list */ 571 } 572 spin_unlock_irq(&rh->region_lock); 573 574 return reg; 575 } 576 577 static void rh_recovery_end(struct region *reg, int success) 578 { 579 struct region_hash *rh = reg->rh; 580 581 spin_lock_irq(&rh->region_lock); 582 if (success) 583 list_add(®->list, ®->rh->recovered_regions); 584 else { 585 reg->state = RH_NOSYNC; 586 list_add(®->list, ®->rh->failed_recovered_regions); 587 } 588 spin_unlock_irq(&rh->region_lock); 589 590 wake(rh->ms); 591 } 592 593 static int rh_flush(struct region_hash *rh) 594 { 595 return rh->log->type->flush(rh->log); 596 } 597 598 static void rh_delay(struct region_hash *rh, struct bio *bio) 599 { 600 struct region *reg; 601 602 read_lock(&rh->hash_lock); 603 reg = __rh_find(rh, bio_to_region(rh, bio)); 604 bio_list_add(®->delayed_bios, bio); 605 read_unlock(&rh->hash_lock); 606 } 607 608 static void rh_stop_recovery(struct region_hash *rh) 609 { 610 int i; 611 612 /* wait for any recovering regions */ 613 for (i = 0; i < MAX_RECOVERY; i++) 614 down(&rh->recovery_count); 615 } 616 617 static void rh_start_recovery(struct region_hash *rh) 618 { 619 int i; 620 621 for (i = 0; i < MAX_RECOVERY; i++) 622 up(&rh->recovery_count); 623 624 wake(rh->ms); 625 } 626 627 /* 628 * Every mirror should look like this one. 629 */ 630 #define DEFAULT_MIRROR 0 631 632 /* 633 * This is yucky. We squirrel the mirror_set struct away inside 634 * bi_next for write buffers. This is safe since the bh 635 * doesn't get submitted to the lower levels of block layer. 636 */ 637 static struct mirror_set *bio_get_ms(struct bio *bio) 638 { 639 return (struct mirror_set *) bio->bi_next; 640 } 641 642 static void bio_set_ms(struct bio *bio, struct mirror_set *ms) 643 { 644 bio->bi_next = (struct bio *) ms; 645 } 646 647 /*----------------------------------------------------------------- 648 * Recovery. 649 * 650 * When a mirror is first activated we may find that some regions 651 * are in the no-sync state. We have to recover these by 652 * recopying from the default mirror to all the others. 653 *---------------------------------------------------------------*/ 654 static void recovery_complete(int read_err, unsigned int write_err, 655 void *context) 656 { 657 struct region *reg = (struct region *) context; 658 659 if (read_err) 660 /* Read error means the failure of default mirror. */ 661 DMERR_LIMIT("Unable to read primary mirror during recovery"); 662 663 if (write_err) 664 DMERR_LIMIT("Write error during recovery (error = 0x%x)", 665 write_err); 666 667 rh_recovery_end(reg, !(read_err || write_err)); 668 } 669 670 static int recover(struct mirror_set *ms, struct region *reg) 671 { 672 int r; 673 unsigned int i; 674 struct io_region from, to[KCOPYD_MAX_REGIONS], *dest; 675 struct mirror *m; 676 unsigned long flags = 0; 677 678 /* fill in the source */ 679 m = ms->default_mirror; 680 from.bdev = m->dev->bdev; 681 from.sector = m->offset + region_to_sector(reg->rh, reg->key); 682 if (reg->key == (ms->nr_regions - 1)) { 683 /* 684 * The final region may be smaller than 685 * region_size. 686 */ 687 from.count = ms->ti->len & (reg->rh->region_size - 1); 688 if (!from.count) 689 from.count = reg->rh->region_size; 690 } else 691 from.count = reg->rh->region_size; 692 693 /* fill in the destinations */ 694 for (i = 0, dest = to; i < ms->nr_mirrors; i++) { 695 if (&ms->mirror[i] == ms->default_mirror) 696 continue; 697 698 m = ms->mirror + i; 699 dest->bdev = m->dev->bdev; 700 dest->sector = m->offset + region_to_sector(reg->rh, reg->key); 701 dest->count = from.count; 702 dest++; 703 } 704 705 /* hand to kcopyd */ 706 set_bit(KCOPYD_IGNORE_ERROR, &flags); 707 r = kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to, flags, 708 recovery_complete, reg); 709 710 return r; 711 } 712 713 static void do_recovery(struct mirror_set *ms) 714 { 715 int r; 716 struct region *reg; 717 struct dirty_log *log = ms->rh.log; 718 719 /* 720 * Start quiescing some regions. 721 */ 722 rh_recovery_prepare(&ms->rh); 723 724 /* 725 * Copy any already quiesced regions. 726 */ 727 while ((reg = rh_recovery_start(&ms->rh))) { 728 r = recover(ms, reg); 729 if (r) 730 rh_recovery_end(reg, 0); 731 } 732 733 /* 734 * Update the in sync flag. 735 */ 736 if (!ms->in_sync && 737 (log->type->get_sync_count(log) == ms->nr_regions)) { 738 /* the sync is complete */ 739 dm_table_event(ms->ti->table); 740 ms->in_sync = 1; 741 } 742 } 743 744 /*----------------------------------------------------------------- 745 * Reads 746 *---------------------------------------------------------------*/ 747 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector) 748 { 749 /* FIXME: add read balancing */ 750 return ms->default_mirror; 751 } 752 753 /* 754 * remap a buffer to a particular mirror. 755 */ 756 static void map_bio(struct mirror_set *ms, struct mirror *m, struct bio *bio) 757 { 758 bio->bi_bdev = m->dev->bdev; 759 bio->bi_sector = m->offset + (bio->bi_sector - ms->ti->begin); 760 } 761 762 static void do_reads(struct mirror_set *ms, struct bio_list *reads) 763 { 764 region_t region; 765 struct bio *bio; 766 struct mirror *m; 767 768 while ((bio = bio_list_pop(reads))) { 769 region = bio_to_region(&ms->rh, bio); 770 771 /* 772 * We can only read balance if the region is in sync. 773 */ 774 if (rh_in_sync(&ms->rh, region, 1)) 775 m = choose_mirror(ms, bio->bi_sector); 776 else 777 m = ms->default_mirror; 778 779 map_bio(ms, m, bio); 780 generic_make_request(bio); 781 } 782 } 783 784 /*----------------------------------------------------------------- 785 * Writes. 786 * 787 * We do different things with the write io depending on the 788 * state of the region that it's in: 789 * 790 * SYNC: increment pending, use kcopyd to write to *all* mirrors 791 * RECOVERING: delay the io until recovery completes 792 * NOSYNC: increment pending, just write to the default mirror 793 *---------------------------------------------------------------*/ 794 static void write_callback(unsigned long error, void *context) 795 { 796 unsigned int i; 797 int uptodate = 1; 798 struct bio *bio = (struct bio *) context; 799 struct mirror_set *ms; 800 801 ms = bio_get_ms(bio); 802 bio_set_ms(bio, NULL); 803 804 /* 805 * NOTE: We don't decrement the pending count here, 806 * instead it is done by the targets endio function. 807 * This way we handle both writes to SYNC and NOSYNC 808 * regions with the same code. 809 */ 810 811 if (error) { 812 /* 813 * only error the io if all mirrors failed. 814 * FIXME: bogus 815 */ 816 uptodate = 0; 817 for (i = 0; i < ms->nr_mirrors; i++) 818 if (!test_bit(i, &error)) { 819 uptodate = 1; 820 break; 821 } 822 } 823 bio_endio(bio, 0); 824 } 825 826 static void do_write(struct mirror_set *ms, struct bio *bio) 827 { 828 unsigned int i; 829 struct io_region io[KCOPYD_MAX_REGIONS+1]; 830 struct mirror *m; 831 struct dm_io_request io_req = { 832 .bi_rw = WRITE, 833 .mem.type = DM_IO_BVEC, 834 .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, 835 .notify.fn = write_callback, 836 .notify.context = bio, 837 .client = ms->io_client, 838 }; 839 840 for (i = 0; i < ms->nr_mirrors; i++) { 841 m = ms->mirror + i; 842 843 io[i].bdev = m->dev->bdev; 844 io[i].sector = m->offset + (bio->bi_sector - ms->ti->begin); 845 io[i].count = bio->bi_size >> 9; 846 } 847 848 bio_set_ms(bio, ms); 849 850 (void) dm_io(&io_req, ms->nr_mirrors, io, NULL); 851 } 852 853 static void do_writes(struct mirror_set *ms, struct bio_list *writes) 854 { 855 int state; 856 struct bio *bio; 857 struct bio_list sync, nosync, recover, *this_list = NULL; 858 859 if (!writes->head) 860 return; 861 862 /* 863 * Classify each write. 864 */ 865 bio_list_init(&sync); 866 bio_list_init(&nosync); 867 bio_list_init(&recover); 868 869 while ((bio = bio_list_pop(writes))) { 870 state = rh_state(&ms->rh, bio_to_region(&ms->rh, bio), 1); 871 switch (state) { 872 case RH_CLEAN: 873 case RH_DIRTY: 874 this_list = &sync; 875 break; 876 877 case RH_NOSYNC: 878 this_list = &nosync; 879 break; 880 881 case RH_RECOVERING: 882 this_list = &recover; 883 break; 884 } 885 886 bio_list_add(this_list, bio); 887 } 888 889 /* 890 * Increment the pending counts for any regions that will 891 * be written to (writes to recover regions are going to 892 * be delayed). 893 */ 894 rh_inc_pending(&ms->rh, &sync); 895 rh_inc_pending(&ms->rh, &nosync); 896 ms->log_failure = rh_flush(&ms->rh) ? 1 : 0; 897 898 /* 899 * Dispatch io. 900 */ 901 if (unlikely(ms->log_failure)) 902 while ((bio = bio_list_pop(&sync))) 903 bio_endio(bio, -EIO); 904 else while ((bio = bio_list_pop(&sync))) 905 do_write(ms, bio); 906 907 while ((bio = bio_list_pop(&recover))) 908 rh_delay(&ms->rh, bio); 909 910 while ((bio = bio_list_pop(&nosync))) { 911 map_bio(ms, ms->default_mirror, bio); 912 generic_make_request(bio); 913 } 914 } 915 916 /*----------------------------------------------------------------- 917 * kmirrord 918 *---------------------------------------------------------------*/ 919 static void do_mirror(struct work_struct *work) 920 { 921 struct mirror_set *ms =container_of(work, struct mirror_set, 922 kmirrord_work); 923 struct bio_list reads, writes; 924 925 spin_lock(&ms->lock); 926 reads = ms->reads; 927 writes = ms->writes; 928 bio_list_init(&ms->reads); 929 bio_list_init(&ms->writes); 930 spin_unlock(&ms->lock); 931 932 rh_update_states(&ms->rh); 933 do_recovery(ms); 934 do_reads(ms, &reads); 935 do_writes(ms, &writes); 936 } 937 938 /*----------------------------------------------------------------- 939 * Target functions 940 *---------------------------------------------------------------*/ 941 static struct mirror_set *alloc_context(unsigned int nr_mirrors, 942 uint32_t region_size, 943 struct dm_target *ti, 944 struct dirty_log *dl) 945 { 946 size_t len; 947 struct mirror_set *ms = NULL; 948 949 if (array_too_big(sizeof(*ms), sizeof(ms->mirror[0]), nr_mirrors)) 950 return NULL; 951 952 len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors); 953 954 ms = kzalloc(len, GFP_KERNEL); 955 if (!ms) { 956 ti->error = "Cannot allocate mirror context"; 957 return NULL; 958 } 959 960 spin_lock_init(&ms->lock); 961 962 ms->ti = ti; 963 ms->nr_mirrors = nr_mirrors; 964 ms->nr_regions = dm_sector_div_up(ti->len, region_size); 965 ms->in_sync = 0; 966 ms->default_mirror = &ms->mirror[DEFAULT_MIRROR]; 967 968 ms->io_client = dm_io_client_create(DM_IO_PAGES); 969 if (IS_ERR(ms->io_client)) { 970 ti->error = "Error creating dm_io client"; 971 kfree(ms); 972 return NULL; 973 } 974 975 if (rh_init(&ms->rh, ms, dl, region_size, ms->nr_regions)) { 976 ti->error = "Error creating dirty region hash"; 977 kfree(ms); 978 return NULL; 979 } 980 981 return ms; 982 } 983 984 static void free_context(struct mirror_set *ms, struct dm_target *ti, 985 unsigned int m) 986 { 987 while (m--) 988 dm_put_device(ti, ms->mirror[m].dev); 989 990 dm_io_client_destroy(ms->io_client); 991 rh_exit(&ms->rh); 992 kfree(ms); 993 } 994 995 static inline int _check_region_size(struct dm_target *ti, uint32_t size) 996 { 997 return !(size % (PAGE_SIZE >> 9) || (size & (size - 1)) || 998 size > ti->len); 999 } 1000 1001 static int get_mirror(struct mirror_set *ms, struct dm_target *ti, 1002 unsigned int mirror, char **argv) 1003 { 1004 unsigned long long offset; 1005 1006 if (sscanf(argv[1], "%llu", &offset) != 1) { 1007 ti->error = "Invalid offset"; 1008 return -EINVAL; 1009 } 1010 1011 if (dm_get_device(ti, argv[0], offset, ti->len, 1012 dm_table_get_mode(ti->table), 1013 &ms->mirror[mirror].dev)) { 1014 ti->error = "Device lookup failure"; 1015 return -ENXIO; 1016 } 1017 1018 ms->mirror[mirror].offset = offset; 1019 1020 return 0; 1021 } 1022 1023 /* 1024 * Create dirty log: log_type #log_params <log_params> 1025 */ 1026 static struct dirty_log *create_dirty_log(struct dm_target *ti, 1027 unsigned int argc, char **argv, 1028 unsigned int *args_used) 1029 { 1030 unsigned int param_count; 1031 struct dirty_log *dl; 1032 1033 if (argc < 2) { 1034 ti->error = "Insufficient mirror log arguments"; 1035 return NULL; 1036 } 1037 1038 if (sscanf(argv[1], "%u", ¶m_count) != 1) { 1039 ti->error = "Invalid mirror log argument count"; 1040 return NULL; 1041 } 1042 1043 *args_used = 2 + param_count; 1044 1045 if (argc < *args_used) { 1046 ti->error = "Insufficient mirror log arguments"; 1047 return NULL; 1048 } 1049 1050 dl = dm_create_dirty_log(argv[0], ti, param_count, argv + 2); 1051 if (!dl) { 1052 ti->error = "Error creating mirror dirty log"; 1053 return NULL; 1054 } 1055 1056 if (!_check_region_size(ti, dl->type->get_region_size(dl))) { 1057 ti->error = "Invalid region size"; 1058 dm_destroy_dirty_log(dl); 1059 return NULL; 1060 } 1061 1062 return dl; 1063 } 1064 1065 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv, 1066 unsigned *args_used) 1067 { 1068 unsigned num_features; 1069 struct dm_target *ti = ms->ti; 1070 1071 *args_used = 0; 1072 1073 if (!argc) 1074 return 0; 1075 1076 if (sscanf(argv[0], "%u", &num_features) != 1) { 1077 ti->error = "Invalid number of features"; 1078 return -EINVAL; 1079 } 1080 1081 argc--; 1082 argv++; 1083 (*args_used)++; 1084 1085 if (num_features > argc) { 1086 ti->error = "Not enough arguments to support feature count"; 1087 return -EINVAL; 1088 } 1089 1090 if (!strcmp("handle_errors", argv[0])) 1091 ms->features |= DM_RAID1_HANDLE_ERRORS; 1092 else { 1093 ti->error = "Unrecognised feature requested"; 1094 return -EINVAL; 1095 } 1096 1097 (*args_used)++; 1098 1099 return 0; 1100 } 1101 1102 /* 1103 * Construct a mirror mapping: 1104 * 1105 * log_type #log_params <log_params> 1106 * #mirrors [mirror_path offset]{2,} 1107 * [#features <features>] 1108 * 1109 * log_type is "core" or "disk" 1110 * #log_params is between 1 and 3 1111 * 1112 * If present, features must be "handle_errors". 1113 */ 1114 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1115 { 1116 int r; 1117 unsigned int nr_mirrors, m, args_used; 1118 struct mirror_set *ms; 1119 struct dirty_log *dl; 1120 1121 dl = create_dirty_log(ti, argc, argv, &args_used); 1122 if (!dl) 1123 return -EINVAL; 1124 1125 argv += args_used; 1126 argc -= args_used; 1127 1128 if (!argc || sscanf(argv[0], "%u", &nr_mirrors) != 1 || 1129 nr_mirrors < 2 || nr_mirrors > KCOPYD_MAX_REGIONS + 1) { 1130 ti->error = "Invalid number of mirrors"; 1131 dm_destroy_dirty_log(dl); 1132 return -EINVAL; 1133 } 1134 1135 argv++, argc--; 1136 1137 if (argc < nr_mirrors * 2) { 1138 ti->error = "Too few mirror arguments"; 1139 dm_destroy_dirty_log(dl); 1140 return -EINVAL; 1141 } 1142 1143 ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl); 1144 if (!ms) { 1145 dm_destroy_dirty_log(dl); 1146 return -ENOMEM; 1147 } 1148 1149 /* Get the mirror parameter sets */ 1150 for (m = 0; m < nr_mirrors; m++) { 1151 r = get_mirror(ms, ti, m, argv); 1152 if (r) { 1153 free_context(ms, ti, m); 1154 return r; 1155 } 1156 argv += 2; 1157 argc -= 2; 1158 } 1159 1160 ti->private = ms; 1161 ti->split_io = ms->rh.region_size; 1162 1163 ms->kmirrord_wq = create_singlethread_workqueue("kmirrord"); 1164 if (!ms->kmirrord_wq) { 1165 DMERR("couldn't start kmirrord"); 1166 free_context(ms, ti, m); 1167 return -ENOMEM; 1168 } 1169 INIT_WORK(&ms->kmirrord_work, do_mirror); 1170 1171 r = parse_features(ms, argc, argv, &args_used); 1172 if (r) { 1173 free_context(ms, ti, ms->nr_mirrors); 1174 return r; 1175 } 1176 1177 argv += args_used; 1178 argc -= args_used; 1179 1180 /* 1181 * Any read-balancing addition depends on the 1182 * DM_RAID1_HANDLE_ERRORS flag being present. 1183 * This is because the decision to balance depends 1184 * on the sync state of a region. If the above 1185 * flag is not present, we ignore errors; and 1186 * the sync state may be inaccurate. 1187 */ 1188 1189 if (argc) { 1190 ti->error = "Too many mirror arguments"; 1191 free_context(ms, ti, ms->nr_mirrors); 1192 return -EINVAL; 1193 } 1194 1195 r = kcopyd_client_create(DM_IO_PAGES, &ms->kcopyd_client); 1196 if (r) { 1197 destroy_workqueue(ms->kmirrord_wq); 1198 free_context(ms, ti, ms->nr_mirrors); 1199 return r; 1200 } 1201 1202 wake(ms); 1203 return 0; 1204 } 1205 1206 static void mirror_dtr(struct dm_target *ti) 1207 { 1208 struct mirror_set *ms = (struct mirror_set *) ti->private; 1209 1210 flush_workqueue(ms->kmirrord_wq); 1211 kcopyd_client_destroy(ms->kcopyd_client); 1212 destroy_workqueue(ms->kmirrord_wq); 1213 free_context(ms, ti, ms->nr_mirrors); 1214 } 1215 1216 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw) 1217 { 1218 int should_wake = 0; 1219 struct bio_list *bl; 1220 1221 bl = (rw == WRITE) ? &ms->writes : &ms->reads; 1222 spin_lock(&ms->lock); 1223 should_wake = !(bl->head); 1224 bio_list_add(bl, bio); 1225 spin_unlock(&ms->lock); 1226 1227 if (should_wake) 1228 wake(ms); 1229 } 1230 1231 /* 1232 * Mirror mapping function 1233 */ 1234 static int mirror_map(struct dm_target *ti, struct bio *bio, 1235 union map_info *map_context) 1236 { 1237 int r, rw = bio_rw(bio); 1238 struct mirror *m; 1239 struct mirror_set *ms = ti->private; 1240 1241 map_context->ll = bio_to_region(&ms->rh, bio); 1242 1243 if (rw == WRITE) { 1244 queue_bio(ms, bio, rw); 1245 return DM_MAPIO_SUBMITTED; 1246 } 1247 1248 r = ms->rh.log->type->in_sync(ms->rh.log, 1249 bio_to_region(&ms->rh, bio), 0); 1250 if (r < 0 && r != -EWOULDBLOCK) 1251 return r; 1252 1253 if (r == -EWOULDBLOCK) /* FIXME: ugly */ 1254 r = DM_MAPIO_SUBMITTED; 1255 1256 /* 1257 * We don't want to fast track a recovery just for a read 1258 * ahead. So we just let it silently fail. 1259 * FIXME: get rid of this. 1260 */ 1261 if (!r && rw == READA) 1262 return -EIO; 1263 1264 if (!r) { 1265 /* Pass this io over to the daemon */ 1266 queue_bio(ms, bio, rw); 1267 return DM_MAPIO_SUBMITTED; 1268 } 1269 1270 m = choose_mirror(ms, bio->bi_sector); 1271 if (!m) 1272 return -EIO; 1273 1274 map_bio(ms, m, bio); 1275 return DM_MAPIO_REMAPPED; 1276 } 1277 1278 static int mirror_end_io(struct dm_target *ti, struct bio *bio, 1279 int error, union map_info *map_context) 1280 { 1281 int rw = bio_rw(bio); 1282 struct mirror_set *ms = (struct mirror_set *) ti->private; 1283 region_t region = map_context->ll; 1284 1285 /* 1286 * We need to dec pending if this was a write. 1287 */ 1288 if (rw == WRITE) 1289 rh_dec(&ms->rh, region); 1290 1291 return 0; 1292 } 1293 1294 static void mirror_postsuspend(struct dm_target *ti) 1295 { 1296 struct mirror_set *ms = (struct mirror_set *) ti->private; 1297 struct dirty_log *log = ms->rh.log; 1298 1299 rh_stop_recovery(&ms->rh); 1300 1301 /* Wait for all I/O we generated to complete */ 1302 wait_event(_kmirrord_recovery_stopped, 1303 !atomic_read(&ms->rh.recovery_in_flight)); 1304 1305 if (log->type->suspend && log->type->suspend(log)) 1306 /* FIXME: need better error handling */ 1307 DMWARN("log suspend failed"); 1308 } 1309 1310 static void mirror_resume(struct dm_target *ti) 1311 { 1312 struct mirror_set *ms = (struct mirror_set *) ti->private; 1313 struct dirty_log *log = ms->rh.log; 1314 if (log->type->resume && log->type->resume(log)) 1315 /* FIXME: need better error handling */ 1316 DMWARN("log resume failed"); 1317 rh_start_recovery(&ms->rh); 1318 } 1319 1320 static int mirror_status(struct dm_target *ti, status_type_t type, 1321 char *result, unsigned int maxlen) 1322 { 1323 unsigned int m, sz = 0; 1324 struct mirror_set *ms = (struct mirror_set *) ti->private; 1325 1326 switch (type) { 1327 case STATUSTYPE_INFO: 1328 DMEMIT("%d ", ms->nr_mirrors); 1329 for (m = 0; m < ms->nr_mirrors; m++) 1330 DMEMIT("%s ", ms->mirror[m].dev->name); 1331 1332 DMEMIT("%llu/%llu 0 ", 1333 (unsigned long long)ms->rh.log->type-> 1334 get_sync_count(ms->rh.log), 1335 (unsigned long long)ms->nr_regions); 1336 1337 sz += ms->rh.log->type->status(ms->rh.log, type, result+sz, maxlen-sz); 1338 1339 break; 1340 1341 case STATUSTYPE_TABLE: 1342 sz = ms->rh.log->type->status(ms->rh.log, type, result, maxlen); 1343 1344 DMEMIT("%d", ms->nr_mirrors); 1345 for (m = 0; m < ms->nr_mirrors; m++) 1346 DMEMIT(" %s %llu", ms->mirror[m].dev->name, 1347 (unsigned long long)ms->mirror[m].offset); 1348 1349 if (ms->features & DM_RAID1_HANDLE_ERRORS) 1350 DMEMIT(" 1 handle_errors"); 1351 } 1352 1353 return 0; 1354 } 1355 1356 static struct target_type mirror_target = { 1357 .name = "mirror", 1358 .version = {1, 0, 3}, 1359 .module = THIS_MODULE, 1360 .ctr = mirror_ctr, 1361 .dtr = mirror_dtr, 1362 .map = mirror_map, 1363 .end_io = mirror_end_io, 1364 .postsuspend = mirror_postsuspend, 1365 .resume = mirror_resume, 1366 .status = mirror_status, 1367 }; 1368 1369 static int __init dm_mirror_init(void) 1370 { 1371 int r; 1372 1373 r = dm_dirty_log_init(); 1374 if (r) 1375 return r; 1376 1377 r = dm_register_target(&mirror_target); 1378 if (r < 0) { 1379 DMERR("Failed to register mirror target"); 1380 dm_dirty_log_exit(); 1381 } 1382 1383 return r; 1384 } 1385 1386 static void __exit dm_mirror_exit(void) 1387 { 1388 int r; 1389 1390 r = dm_unregister_target(&mirror_target); 1391 if (r < 0) 1392 DMERR("unregister failed %d", r); 1393 1394 dm_dirty_log_exit(); 1395 } 1396 1397 /* Module hooks */ 1398 module_init(dm_mirror_init); 1399 module_exit(dm_mirror_exit); 1400 1401 MODULE_DESCRIPTION(DM_NAME " mirror target"); 1402 MODULE_AUTHOR("Joe Thornber"); 1403 MODULE_LICENSE("GPL"); 1404