xref: /linux/drivers/md/dm-raid1.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-bio-record.h"
9 
10 #include <linux/init.h>
11 #include <linux/mempool.h>
12 #include <linux/module.h>
13 #include <linux/pagemap.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/device-mapper.h>
17 #include <linux/dm-io.h>
18 #include <linux/dm-dirty-log.h>
19 #include <linux/dm-kcopyd.h>
20 #include <linux/dm-region-hash.h>
21 
22 #define DM_MSG_PREFIX "raid1"
23 
24 #define MAX_RECOVERY 1	/* Maximum number of regions recovered in parallel. */
25 
26 #define DM_RAID1_HANDLE_ERRORS 0x01
27 #define errors_handled(p)	((p)->features & DM_RAID1_HANDLE_ERRORS)
28 
29 static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
30 
31 /*-----------------------------------------------------------------
32  * Mirror set structures.
33  *---------------------------------------------------------------*/
34 enum dm_raid1_error {
35 	DM_RAID1_WRITE_ERROR,
36 	DM_RAID1_FLUSH_ERROR,
37 	DM_RAID1_SYNC_ERROR,
38 	DM_RAID1_READ_ERROR
39 };
40 
41 struct mirror {
42 	struct mirror_set *ms;
43 	atomic_t error_count;
44 	unsigned long error_type;
45 	struct dm_dev *dev;
46 	sector_t offset;
47 };
48 
49 struct mirror_set {
50 	struct dm_target *ti;
51 	struct list_head list;
52 
53 	uint64_t features;
54 
55 	spinlock_t lock;	/* protects the lists */
56 	struct bio_list reads;
57 	struct bio_list writes;
58 	struct bio_list failures;
59 	struct bio_list holds;	/* bios are waiting until suspend */
60 
61 	struct dm_region_hash *rh;
62 	struct dm_kcopyd_client *kcopyd_client;
63 	struct dm_io_client *io_client;
64 	mempool_t *read_record_pool;
65 
66 	/* recovery */
67 	region_t nr_regions;
68 	int in_sync;
69 	int log_failure;
70 	int leg_failure;
71 	atomic_t suspend;
72 
73 	atomic_t default_mirror;	/* Default mirror */
74 
75 	struct workqueue_struct *kmirrord_wq;
76 	struct work_struct kmirrord_work;
77 	struct timer_list timer;
78 	unsigned long timer_pending;
79 
80 	struct work_struct trigger_event;
81 
82 	unsigned nr_mirrors;
83 	struct mirror mirror[0];
84 };
85 
86 static void wakeup_mirrord(void *context)
87 {
88 	struct mirror_set *ms = context;
89 
90 	queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
91 }
92 
93 static void delayed_wake_fn(unsigned long data)
94 {
95 	struct mirror_set *ms = (struct mirror_set *) data;
96 
97 	clear_bit(0, &ms->timer_pending);
98 	wakeup_mirrord(ms);
99 }
100 
101 static void delayed_wake(struct mirror_set *ms)
102 {
103 	if (test_and_set_bit(0, &ms->timer_pending))
104 		return;
105 
106 	ms->timer.expires = jiffies + HZ / 5;
107 	ms->timer.data = (unsigned long) ms;
108 	ms->timer.function = delayed_wake_fn;
109 	add_timer(&ms->timer);
110 }
111 
112 static void wakeup_all_recovery_waiters(void *context)
113 {
114 	wake_up_all(&_kmirrord_recovery_stopped);
115 }
116 
117 static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
118 {
119 	unsigned long flags;
120 	int should_wake = 0;
121 	struct bio_list *bl;
122 
123 	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
124 	spin_lock_irqsave(&ms->lock, flags);
125 	should_wake = !(bl->head);
126 	bio_list_add(bl, bio);
127 	spin_unlock_irqrestore(&ms->lock, flags);
128 
129 	if (should_wake)
130 		wakeup_mirrord(ms);
131 }
132 
133 static void dispatch_bios(void *context, struct bio_list *bio_list)
134 {
135 	struct mirror_set *ms = context;
136 	struct bio *bio;
137 
138 	while ((bio = bio_list_pop(bio_list)))
139 		queue_bio(ms, bio, WRITE);
140 }
141 
142 #define MIN_READ_RECORDS 20
143 struct dm_raid1_read_record {
144 	struct mirror *m;
145 	struct dm_bio_details details;
146 };
147 
148 static struct kmem_cache *_dm_raid1_read_record_cache;
149 
150 /*
151  * Every mirror should look like this one.
152  */
153 #define DEFAULT_MIRROR 0
154 
155 /*
156  * This is yucky.  We squirrel the mirror struct away inside
157  * bi_next for read/write buffers.  This is safe since the bh
158  * doesn't get submitted to the lower levels of block layer.
159  */
160 static struct mirror *bio_get_m(struct bio *bio)
161 {
162 	return (struct mirror *) bio->bi_next;
163 }
164 
165 static void bio_set_m(struct bio *bio, struct mirror *m)
166 {
167 	bio->bi_next = (struct bio *) m;
168 }
169 
170 static struct mirror *get_default_mirror(struct mirror_set *ms)
171 {
172 	return &ms->mirror[atomic_read(&ms->default_mirror)];
173 }
174 
175 static void set_default_mirror(struct mirror *m)
176 {
177 	struct mirror_set *ms = m->ms;
178 	struct mirror *m0 = &(ms->mirror[0]);
179 
180 	atomic_set(&ms->default_mirror, m - m0);
181 }
182 
183 static struct mirror *get_valid_mirror(struct mirror_set *ms)
184 {
185 	struct mirror *m;
186 
187 	for (m = ms->mirror; m < ms->mirror + ms->nr_mirrors; m++)
188 		if (!atomic_read(&m->error_count))
189 			return m;
190 
191 	return NULL;
192 }
193 
194 /* fail_mirror
195  * @m: mirror device to fail
196  * @error_type: one of the enum's, DM_RAID1_*_ERROR
197  *
198  * If errors are being handled, record the type of
199  * error encountered for this device.  If this type
200  * of error has already been recorded, we can return;
201  * otherwise, we must signal userspace by triggering
202  * an event.  Additionally, if the device is the
203  * primary device, we must choose a new primary, but
204  * only if the mirror is in-sync.
205  *
206  * This function must not block.
207  */
208 static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
209 {
210 	struct mirror_set *ms = m->ms;
211 	struct mirror *new;
212 
213 	ms->leg_failure = 1;
214 
215 	/*
216 	 * error_count is used for nothing more than a
217 	 * simple way to tell if a device has encountered
218 	 * errors.
219 	 */
220 	atomic_inc(&m->error_count);
221 
222 	if (test_and_set_bit(error_type, &m->error_type))
223 		return;
224 
225 	if (!errors_handled(ms))
226 		return;
227 
228 	if (m != get_default_mirror(ms))
229 		goto out;
230 
231 	if (!ms->in_sync) {
232 		/*
233 		 * Better to issue requests to same failing device
234 		 * than to risk returning corrupt data.
235 		 */
236 		DMERR("Primary mirror (%s) failed while out-of-sync: "
237 		      "Reads may fail.", m->dev->name);
238 		goto out;
239 	}
240 
241 	new = get_valid_mirror(ms);
242 	if (new)
243 		set_default_mirror(new);
244 	else
245 		DMWARN("All sides of mirror have failed.");
246 
247 out:
248 	schedule_work(&ms->trigger_event);
249 }
250 
251 static int mirror_flush(struct dm_target *ti)
252 {
253 	struct mirror_set *ms = ti->private;
254 	unsigned long error_bits;
255 
256 	unsigned int i;
257 	struct dm_io_region io[ms->nr_mirrors];
258 	struct mirror *m;
259 	struct dm_io_request io_req = {
260 		.bi_rw = WRITE_FLUSH,
261 		.mem.type = DM_IO_KMEM,
262 		.mem.ptr.addr = NULL,
263 		.client = ms->io_client,
264 	};
265 
266 	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) {
267 		io[i].bdev = m->dev->bdev;
268 		io[i].sector = 0;
269 		io[i].count = 0;
270 	}
271 
272 	error_bits = -1;
273 	dm_io(&io_req, ms->nr_mirrors, io, &error_bits);
274 	if (unlikely(error_bits != 0)) {
275 		for (i = 0; i < ms->nr_mirrors; i++)
276 			if (test_bit(i, &error_bits))
277 				fail_mirror(ms->mirror + i,
278 					    DM_RAID1_FLUSH_ERROR);
279 		return -EIO;
280 	}
281 
282 	return 0;
283 }
284 
285 /*-----------------------------------------------------------------
286  * Recovery.
287  *
288  * When a mirror is first activated we may find that some regions
289  * are in the no-sync state.  We have to recover these by
290  * recopying from the default mirror to all the others.
291  *---------------------------------------------------------------*/
292 static void recovery_complete(int read_err, unsigned long write_err,
293 			      void *context)
294 {
295 	struct dm_region *reg = context;
296 	struct mirror_set *ms = dm_rh_region_context(reg);
297 	int m, bit = 0;
298 
299 	if (read_err) {
300 		/* Read error means the failure of default mirror. */
301 		DMERR_LIMIT("Unable to read primary mirror during recovery");
302 		fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
303 	}
304 
305 	if (write_err) {
306 		DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
307 			    write_err);
308 		/*
309 		 * Bits correspond to devices (excluding default mirror).
310 		 * The default mirror cannot change during recovery.
311 		 */
312 		for (m = 0; m < ms->nr_mirrors; m++) {
313 			if (&ms->mirror[m] == get_default_mirror(ms))
314 				continue;
315 			if (test_bit(bit, &write_err))
316 				fail_mirror(ms->mirror + m,
317 					    DM_RAID1_SYNC_ERROR);
318 			bit++;
319 		}
320 	}
321 
322 	dm_rh_recovery_end(reg, !(read_err || write_err));
323 }
324 
325 static int recover(struct mirror_set *ms, struct dm_region *reg)
326 {
327 	int r;
328 	unsigned i;
329 	struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
330 	struct mirror *m;
331 	unsigned long flags = 0;
332 	region_t key = dm_rh_get_region_key(reg);
333 	sector_t region_size = dm_rh_get_region_size(ms->rh);
334 
335 	/* fill in the source */
336 	m = get_default_mirror(ms);
337 	from.bdev = m->dev->bdev;
338 	from.sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
339 	if (key == (ms->nr_regions - 1)) {
340 		/*
341 		 * The final region may be smaller than
342 		 * region_size.
343 		 */
344 		from.count = ms->ti->len & (region_size - 1);
345 		if (!from.count)
346 			from.count = region_size;
347 	} else
348 		from.count = region_size;
349 
350 	/* fill in the destinations */
351 	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
352 		if (&ms->mirror[i] == get_default_mirror(ms))
353 			continue;
354 
355 		m = ms->mirror + i;
356 		dest->bdev = m->dev->bdev;
357 		dest->sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
358 		dest->count = from.count;
359 		dest++;
360 	}
361 
362 	/* hand to kcopyd */
363 	if (!errors_handled(ms))
364 		set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
365 
366 	r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
367 			   flags, recovery_complete, reg);
368 
369 	return r;
370 }
371 
372 static void do_recovery(struct mirror_set *ms)
373 {
374 	struct dm_region *reg;
375 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
376 	int r;
377 
378 	/*
379 	 * Start quiescing some regions.
380 	 */
381 	dm_rh_recovery_prepare(ms->rh);
382 
383 	/*
384 	 * Copy any already quiesced regions.
385 	 */
386 	while ((reg = dm_rh_recovery_start(ms->rh))) {
387 		r = recover(ms, reg);
388 		if (r)
389 			dm_rh_recovery_end(reg, 0);
390 	}
391 
392 	/*
393 	 * Update the in sync flag.
394 	 */
395 	if (!ms->in_sync &&
396 	    (log->type->get_sync_count(log) == ms->nr_regions)) {
397 		/* the sync is complete */
398 		dm_table_event(ms->ti->table);
399 		ms->in_sync = 1;
400 	}
401 }
402 
403 /*-----------------------------------------------------------------
404  * Reads
405  *---------------------------------------------------------------*/
406 static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
407 {
408 	struct mirror *m = get_default_mirror(ms);
409 
410 	do {
411 		if (likely(!atomic_read(&m->error_count)))
412 			return m;
413 
414 		if (m-- == ms->mirror)
415 			m += ms->nr_mirrors;
416 	} while (m != get_default_mirror(ms));
417 
418 	return NULL;
419 }
420 
421 static int default_ok(struct mirror *m)
422 {
423 	struct mirror *default_mirror = get_default_mirror(m->ms);
424 
425 	return !atomic_read(&default_mirror->error_count);
426 }
427 
428 static int mirror_available(struct mirror_set *ms, struct bio *bio)
429 {
430 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
431 	region_t region = dm_rh_bio_to_region(ms->rh, bio);
432 
433 	if (log->type->in_sync(log, region, 0))
434 		return choose_mirror(ms,  bio->bi_sector) ? 1 : 0;
435 
436 	return 0;
437 }
438 
439 /*
440  * remap a buffer to a particular mirror.
441  */
442 static sector_t map_sector(struct mirror *m, struct bio *bio)
443 {
444 	if (unlikely(!bio->bi_size))
445 		return 0;
446 	return m->offset + dm_target_offset(m->ms->ti, bio->bi_sector);
447 }
448 
449 static void map_bio(struct mirror *m, struct bio *bio)
450 {
451 	bio->bi_bdev = m->dev->bdev;
452 	bio->bi_sector = map_sector(m, bio);
453 }
454 
455 static void map_region(struct dm_io_region *io, struct mirror *m,
456 		       struct bio *bio)
457 {
458 	io->bdev = m->dev->bdev;
459 	io->sector = map_sector(m, bio);
460 	io->count = bio->bi_size >> 9;
461 }
462 
463 static void hold_bio(struct mirror_set *ms, struct bio *bio)
464 {
465 	/*
466 	 * Lock is required to avoid race condition during suspend
467 	 * process.
468 	 */
469 	spin_lock_irq(&ms->lock);
470 
471 	if (atomic_read(&ms->suspend)) {
472 		spin_unlock_irq(&ms->lock);
473 
474 		/*
475 		 * If device is suspended, complete the bio.
476 		 */
477 		if (dm_noflush_suspending(ms->ti))
478 			bio_endio(bio, DM_ENDIO_REQUEUE);
479 		else
480 			bio_endio(bio, -EIO);
481 		return;
482 	}
483 
484 	/*
485 	 * Hold bio until the suspend is complete.
486 	 */
487 	bio_list_add(&ms->holds, bio);
488 	spin_unlock_irq(&ms->lock);
489 }
490 
491 /*-----------------------------------------------------------------
492  * Reads
493  *---------------------------------------------------------------*/
494 static void read_callback(unsigned long error, void *context)
495 {
496 	struct bio *bio = context;
497 	struct mirror *m;
498 
499 	m = bio_get_m(bio);
500 	bio_set_m(bio, NULL);
501 
502 	if (likely(!error)) {
503 		bio_endio(bio, 0);
504 		return;
505 	}
506 
507 	fail_mirror(m, DM_RAID1_READ_ERROR);
508 
509 	if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
510 		DMWARN_LIMIT("Read failure on mirror device %s.  "
511 			     "Trying alternative device.",
512 			     m->dev->name);
513 		queue_bio(m->ms, bio, bio_rw(bio));
514 		return;
515 	}
516 
517 	DMERR_LIMIT("Read failure on mirror device %s.  Failing I/O.",
518 		    m->dev->name);
519 	bio_endio(bio, -EIO);
520 }
521 
522 /* Asynchronous read. */
523 static void read_async_bio(struct mirror *m, struct bio *bio)
524 {
525 	struct dm_io_region io;
526 	struct dm_io_request io_req = {
527 		.bi_rw = READ,
528 		.mem.type = DM_IO_BVEC,
529 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
530 		.notify.fn = read_callback,
531 		.notify.context = bio,
532 		.client = m->ms->io_client,
533 	};
534 
535 	map_region(&io, m, bio);
536 	bio_set_m(bio, m);
537 	BUG_ON(dm_io(&io_req, 1, &io, NULL));
538 }
539 
540 static inline int region_in_sync(struct mirror_set *ms, region_t region,
541 				 int may_block)
542 {
543 	int state = dm_rh_get_state(ms->rh, region, may_block);
544 	return state == DM_RH_CLEAN || state == DM_RH_DIRTY;
545 }
546 
547 static void do_reads(struct mirror_set *ms, struct bio_list *reads)
548 {
549 	region_t region;
550 	struct bio *bio;
551 	struct mirror *m;
552 
553 	while ((bio = bio_list_pop(reads))) {
554 		region = dm_rh_bio_to_region(ms->rh, bio);
555 		m = get_default_mirror(ms);
556 
557 		/*
558 		 * We can only read balance if the region is in sync.
559 		 */
560 		if (likely(region_in_sync(ms, region, 1)))
561 			m = choose_mirror(ms, bio->bi_sector);
562 		else if (m && atomic_read(&m->error_count))
563 			m = NULL;
564 
565 		if (likely(m))
566 			read_async_bio(m, bio);
567 		else
568 			bio_endio(bio, -EIO);
569 	}
570 }
571 
572 /*-----------------------------------------------------------------
573  * Writes.
574  *
575  * We do different things with the write io depending on the
576  * state of the region that it's in:
577  *
578  * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
579  * RECOVERING:	delay the io until recovery completes
580  * NOSYNC:	increment pending, just write to the default mirror
581  *---------------------------------------------------------------*/
582 
583 
584 static void write_callback(unsigned long error, void *context)
585 {
586 	unsigned i, ret = 0;
587 	struct bio *bio = (struct bio *) context;
588 	struct mirror_set *ms;
589 	int should_wake = 0;
590 	unsigned long flags;
591 
592 	ms = bio_get_m(bio)->ms;
593 	bio_set_m(bio, NULL);
594 
595 	/*
596 	 * NOTE: We don't decrement the pending count here,
597 	 * instead it is done by the targets endio function.
598 	 * This way we handle both writes to SYNC and NOSYNC
599 	 * regions with the same code.
600 	 */
601 	if (likely(!error)) {
602 		bio_endio(bio, ret);
603 		return;
604 	}
605 
606 	for (i = 0; i < ms->nr_mirrors; i++)
607 		if (test_bit(i, &error))
608 			fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
609 
610 	/*
611 	 * Need to raise event.  Since raising
612 	 * events can block, we need to do it in
613 	 * the main thread.
614 	 */
615 	spin_lock_irqsave(&ms->lock, flags);
616 	if (!ms->failures.head)
617 		should_wake = 1;
618 	bio_list_add(&ms->failures, bio);
619 	spin_unlock_irqrestore(&ms->lock, flags);
620 	if (should_wake)
621 		wakeup_mirrord(ms);
622 }
623 
624 static void do_write(struct mirror_set *ms, struct bio *bio)
625 {
626 	unsigned int i;
627 	struct dm_io_region io[ms->nr_mirrors], *dest = io;
628 	struct mirror *m;
629 	struct dm_io_request io_req = {
630 		.bi_rw = WRITE | (bio->bi_rw & WRITE_FLUSH_FUA),
631 		.mem.type = DM_IO_BVEC,
632 		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
633 		.notify.fn = write_callback,
634 		.notify.context = bio,
635 		.client = ms->io_client,
636 	};
637 
638 	if (bio->bi_rw & REQ_DISCARD) {
639 		io_req.bi_rw |= REQ_DISCARD;
640 		io_req.mem.type = DM_IO_KMEM;
641 		io_req.mem.ptr.addr = NULL;
642 	}
643 
644 	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
645 		map_region(dest++, m, bio);
646 
647 	/*
648 	 * Use default mirror because we only need it to retrieve the reference
649 	 * to the mirror set in write_callback().
650 	 */
651 	bio_set_m(bio, get_default_mirror(ms));
652 
653 	BUG_ON(dm_io(&io_req, ms->nr_mirrors, io, NULL));
654 }
655 
656 static void do_writes(struct mirror_set *ms, struct bio_list *writes)
657 {
658 	int state;
659 	struct bio *bio;
660 	struct bio_list sync, nosync, recover, *this_list = NULL;
661 	struct bio_list requeue;
662 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
663 	region_t region;
664 
665 	if (!writes->head)
666 		return;
667 
668 	/*
669 	 * Classify each write.
670 	 */
671 	bio_list_init(&sync);
672 	bio_list_init(&nosync);
673 	bio_list_init(&recover);
674 	bio_list_init(&requeue);
675 
676 	while ((bio = bio_list_pop(writes))) {
677 		if ((bio->bi_rw & REQ_FLUSH) ||
678 		    (bio->bi_rw & REQ_DISCARD)) {
679 			bio_list_add(&sync, bio);
680 			continue;
681 		}
682 
683 		region = dm_rh_bio_to_region(ms->rh, bio);
684 
685 		if (log->type->is_remote_recovering &&
686 		    log->type->is_remote_recovering(log, region)) {
687 			bio_list_add(&requeue, bio);
688 			continue;
689 		}
690 
691 		state = dm_rh_get_state(ms->rh, region, 1);
692 		switch (state) {
693 		case DM_RH_CLEAN:
694 		case DM_RH_DIRTY:
695 			this_list = &sync;
696 			break;
697 
698 		case DM_RH_NOSYNC:
699 			this_list = &nosync;
700 			break;
701 
702 		case DM_RH_RECOVERING:
703 			this_list = &recover;
704 			break;
705 		}
706 
707 		bio_list_add(this_list, bio);
708 	}
709 
710 	/*
711 	 * Add bios that are delayed due to remote recovery
712 	 * back on to the write queue
713 	 */
714 	if (unlikely(requeue.head)) {
715 		spin_lock_irq(&ms->lock);
716 		bio_list_merge(&ms->writes, &requeue);
717 		spin_unlock_irq(&ms->lock);
718 		delayed_wake(ms);
719 	}
720 
721 	/*
722 	 * Increment the pending counts for any regions that will
723 	 * be written to (writes to recover regions are going to
724 	 * be delayed).
725 	 */
726 	dm_rh_inc_pending(ms->rh, &sync);
727 	dm_rh_inc_pending(ms->rh, &nosync);
728 
729 	/*
730 	 * If the flush fails on a previous call and succeeds here,
731 	 * we must not reset the log_failure variable.  We need
732 	 * userspace interaction to do that.
733 	 */
734 	ms->log_failure = dm_rh_flush(ms->rh) ? 1 : ms->log_failure;
735 
736 	/*
737 	 * Dispatch io.
738 	 */
739 	if (unlikely(ms->log_failure) && errors_handled(ms)) {
740 		spin_lock_irq(&ms->lock);
741 		bio_list_merge(&ms->failures, &sync);
742 		spin_unlock_irq(&ms->lock);
743 		wakeup_mirrord(ms);
744 	} else
745 		while ((bio = bio_list_pop(&sync)))
746 			do_write(ms, bio);
747 
748 	while ((bio = bio_list_pop(&recover)))
749 		dm_rh_delay(ms->rh, bio);
750 
751 	while ((bio = bio_list_pop(&nosync))) {
752 		if (unlikely(ms->leg_failure) && errors_handled(ms)) {
753 			spin_lock_irq(&ms->lock);
754 			bio_list_add(&ms->failures, bio);
755 			spin_unlock_irq(&ms->lock);
756 			wakeup_mirrord(ms);
757 		} else {
758 			map_bio(get_default_mirror(ms), bio);
759 			generic_make_request(bio);
760 		}
761 	}
762 }
763 
764 static void do_failures(struct mirror_set *ms, struct bio_list *failures)
765 {
766 	struct bio *bio;
767 
768 	if (likely(!failures->head))
769 		return;
770 
771 	/*
772 	 * If the log has failed, unattempted writes are being
773 	 * put on the holds list.  We can't issue those writes
774 	 * until a log has been marked, so we must store them.
775 	 *
776 	 * If a 'noflush' suspend is in progress, we can requeue
777 	 * the I/O's to the core.  This give userspace a chance
778 	 * to reconfigure the mirror, at which point the core
779 	 * will reissue the writes.  If the 'noflush' flag is
780 	 * not set, we have no choice but to return errors.
781 	 *
782 	 * Some writes on the failures list may have been
783 	 * submitted before the log failure and represent a
784 	 * failure to write to one of the devices.  It is ok
785 	 * for us to treat them the same and requeue them
786 	 * as well.
787 	 */
788 	while ((bio = bio_list_pop(failures))) {
789 		if (!ms->log_failure) {
790 			ms->in_sync = 0;
791 			dm_rh_mark_nosync(ms->rh, bio);
792 		}
793 
794 		/*
795 		 * If all the legs are dead, fail the I/O.
796 		 * If we have been told to handle errors, hold the bio
797 		 * and wait for userspace to deal with the problem.
798 		 * Otherwise pretend that the I/O succeeded. (This would
799 		 * be wrong if the failed leg returned after reboot and
800 		 * got replicated back to the good legs.)
801 		 */
802 		if (!get_valid_mirror(ms))
803 			bio_endio(bio, -EIO);
804 		else if (errors_handled(ms))
805 			hold_bio(ms, bio);
806 		else
807 			bio_endio(bio, 0);
808 	}
809 }
810 
811 static void trigger_event(struct work_struct *work)
812 {
813 	struct mirror_set *ms =
814 		container_of(work, struct mirror_set, trigger_event);
815 
816 	dm_table_event(ms->ti->table);
817 }
818 
819 /*-----------------------------------------------------------------
820  * kmirrord
821  *---------------------------------------------------------------*/
822 static void do_mirror(struct work_struct *work)
823 {
824 	struct mirror_set *ms = container_of(work, struct mirror_set,
825 					     kmirrord_work);
826 	struct bio_list reads, writes, failures;
827 	unsigned long flags;
828 
829 	spin_lock_irqsave(&ms->lock, flags);
830 	reads = ms->reads;
831 	writes = ms->writes;
832 	failures = ms->failures;
833 	bio_list_init(&ms->reads);
834 	bio_list_init(&ms->writes);
835 	bio_list_init(&ms->failures);
836 	spin_unlock_irqrestore(&ms->lock, flags);
837 
838 	dm_rh_update_states(ms->rh, errors_handled(ms));
839 	do_recovery(ms);
840 	do_reads(ms, &reads);
841 	do_writes(ms, &writes);
842 	do_failures(ms, &failures);
843 }
844 
845 /*-----------------------------------------------------------------
846  * Target functions
847  *---------------------------------------------------------------*/
848 static struct mirror_set *alloc_context(unsigned int nr_mirrors,
849 					uint32_t region_size,
850 					struct dm_target *ti,
851 					struct dm_dirty_log *dl)
852 {
853 	size_t len;
854 	struct mirror_set *ms = NULL;
855 
856 	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
857 
858 	ms = kzalloc(len, GFP_KERNEL);
859 	if (!ms) {
860 		ti->error = "Cannot allocate mirror context";
861 		return NULL;
862 	}
863 
864 	spin_lock_init(&ms->lock);
865 	bio_list_init(&ms->reads);
866 	bio_list_init(&ms->writes);
867 	bio_list_init(&ms->failures);
868 	bio_list_init(&ms->holds);
869 
870 	ms->ti = ti;
871 	ms->nr_mirrors = nr_mirrors;
872 	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
873 	ms->in_sync = 0;
874 	ms->log_failure = 0;
875 	ms->leg_failure = 0;
876 	atomic_set(&ms->suspend, 0);
877 	atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
878 
879 	ms->read_record_pool = mempool_create_slab_pool(MIN_READ_RECORDS,
880 						_dm_raid1_read_record_cache);
881 
882 	if (!ms->read_record_pool) {
883 		ti->error = "Error creating mirror read_record_pool";
884 		kfree(ms);
885 		return NULL;
886 	}
887 
888 	ms->io_client = dm_io_client_create();
889 	if (IS_ERR(ms->io_client)) {
890 		ti->error = "Error creating dm_io client";
891 		mempool_destroy(ms->read_record_pool);
892 		kfree(ms);
893  		return NULL;
894 	}
895 
896 	ms->rh = dm_region_hash_create(ms, dispatch_bios, wakeup_mirrord,
897 				       wakeup_all_recovery_waiters,
898 				       ms->ti->begin, MAX_RECOVERY,
899 				       dl, region_size, ms->nr_regions);
900 	if (IS_ERR(ms->rh)) {
901 		ti->error = "Error creating dirty region hash";
902 		dm_io_client_destroy(ms->io_client);
903 		mempool_destroy(ms->read_record_pool);
904 		kfree(ms);
905 		return NULL;
906 	}
907 
908 	return ms;
909 }
910 
911 static void free_context(struct mirror_set *ms, struct dm_target *ti,
912 			 unsigned int m)
913 {
914 	while (m--)
915 		dm_put_device(ti, ms->mirror[m].dev);
916 
917 	dm_io_client_destroy(ms->io_client);
918 	dm_region_hash_destroy(ms->rh);
919 	mempool_destroy(ms->read_record_pool);
920 	kfree(ms);
921 }
922 
923 static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
924 		      unsigned int mirror, char **argv)
925 {
926 	unsigned long long offset;
927 	char dummy;
928 
929 	if (sscanf(argv[1], "%llu%c", &offset, &dummy) != 1) {
930 		ti->error = "Invalid offset";
931 		return -EINVAL;
932 	}
933 
934 	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
935 			  &ms->mirror[mirror].dev)) {
936 		ti->error = "Device lookup failure";
937 		return -ENXIO;
938 	}
939 
940 	ms->mirror[mirror].ms = ms;
941 	atomic_set(&(ms->mirror[mirror].error_count), 0);
942 	ms->mirror[mirror].error_type = 0;
943 	ms->mirror[mirror].offset = offset;
944 
945 	return 0;
946 }
947 
948 /*
949  * Create dirty log: log_type #log_params <log_params>
950  */
951 static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
952 					     unsigned argc, char **argv,
953 					     unsigned *args_used)
954 {
955 	unsigned param_count;
956 	struct dm_dirty_log *dl;
957 	char dummy;
958 
959 	if (argc < 2) {
960 		ti->error = "Insufficient mirror log arguments";
961 		return NULL;
962 	}
963 
964 	if (sscanf(argv[1], "%u%c", &param_count, &dummy) != 1) {
965 		ti->error = "Invalid mirror log argument count";
966 		return NULL;
967 	}
968 
969 	*args_used = 2 + param_count;
970 
971 	if (argc < *args_used) {
972 		ti->error = "Insufficient mirror log arguments";
973 		return NULL;
974 	}
975 
976 	dl = dm_dirty_log_create(argv[0], ti, mirror_flush, param_count,
977 				 argv + 2);
978 	if (!dl) {
979 		ti->error = "Error creating mirror dirty log";
980 		return NULL;
981 	}
982 
983 	return dl;
984 }
985 
986 static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
987 			  unsigned *args_used)
988 {
989 	unsigned num_features;
990 	struct dm_target *ti = ms->ti;
991 	char dummy;
992 
993 	*args_used = 0;
994 
995 	if (!argc)
996 		return 0;
997 
998 	if (sscanf(argv[0], "%u%c", &num_features, &dummy) != 1) {
999 		ti->error = "Invalid number of features";
1000 		return -EINVAL;
1001 	}
1002 
1003 	argc--;
1004 	argv++;
1005 	(*args_used)++;
1006 
1007 	if (num_features > argc) {
1008 		ti->error = "Not enough arguments to support feature count";
1009 		return -EINVAL;
1010 	}
1011 
1012 	if (!strcmp("handle_errors", argv[0]))
1013 		ms->features |= DM_RAID1_HANDLE_ERRORS;
1014 	else {
1015 		ti->error = "Unrecognised feature requested";
1016 		return -EINVAL;
1017 	}
1018 
1019 	(*args_used)++;
1020 
1021 	return 0;
1022 }
1023 
1024 /*
1025  * Construct a mirror mapping:
1026  *
1027  * log_type #log_params <log_params>
1028  * #mirrors [mirror_path offset]{2,}
1029  * [#features <features>]
1030  *
1031  * log_type is "core" or "disk"
1032  * #log_params is between 1 and 3
1033  *
1034  * If present, features must be "handle_errors".
1035  */
1036 static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1037 {
1038 	int r;
1039 	unsigned int nr_mirrors, m, args_used;
1040 	struct mirror_set *ms;
1041 	struct dm_dirty_log *dl;
1042 	char dummy;
1043 
1044 	dl = create_dirty_log(ti, argc, argv, &args_used);
1045 	if (!dl)
1046 		return -EINVAL;
1047 
1048 	argv += args_used;
1049 	argc -= args_used;
1050 
1051 	if (!argc || sscanf(argv[0], "%u%c", &nr_mirrors, &dummy) != 1 ||
1052 	    nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) {
1053 		ti->error = "Invalid number of mirrors";
1054 		dm_dirty_log_destroy(dl);
1055 		return -EINVAL;
1056 	}
1057 
1058 	argv++, argc--;
1059 
1060 	if (argc < nr_mirrors * 2) {
1061 		ti->error = "Too few mirror arguments";
1062 		dm_dirty_log_destroy(dl);
1063 		return -EINVAL;
1064 	}
1065 
1066 	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1067 	if (!ms) {
1068 		dm_dirty_log_destroy(dl);
1069 		return -ENOMEM;
1070 	}
1071 
1072 	/* Get the mirror parameter sets */
1073 	for (m = 0; m < nr_mirrors; m++) {
1074 		r = get_mirror(ms, ti, m, argv);
1075 		if (r) {
1076 			free_context(ms, ti, m);
1077 			return r;
1078 		}
1079 		argv += 2;
1080 		argc -= 2;
1081 	}
1082 
1083 	ti->private = ms;
1084 
1085 	r = dm_set_target_max_io_len(ti, dm_rh_get_region_size(ms->rh));
1086 	if (r)
1087 		goto err_free_context;
1088 
1089 	ti->num_flush_requests = 1;
1090 	ti->num_discard_requests = 1;
1091 	ti->discard_zeroes_data_unsupported = true;
1092 
1093 	ms->kmirrord_wq = alloc_workqueue("kmirrord",
1094 					  WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1095 	if (!ms->kmirrord_wq) {
1096 		DMERR("couldn't start kmirrord");
1097 		r = -ENOMEM;
1098 		goto err_free_context;
1099 	}
1100 	INIT_WORK(&ms->kmirrord_work, do_mirror);
1101 	init_timer(&ms->timer);
1102 	ms->timer_pending = 0;
1103 	INIT_WORK(&ms->trigger_event, trigger_event);
1104 
1105 	r = parse_features(ms, argc, argv, &args_used);
1106 	if (r)
1107 		goto err_destroy_wq;
1108 
1109 	argv += args_used;
1110 	argc -= args_used;
1111 
1112 	/*
1113 	 * Any read-balancing addition depends on the
1114 	 * DM_RAID1_HANDLE_ERRORS flag being present.
1115 	 * This is because the decision to balance depends
1116 	 * on the sync state of a region.  If the above
1117 	 * flag is not present, we ignore errors; and
1118 	 * the sync state may be inaccurate.
1119 	 */
1120 
1121 	if (argc) {
1122 		ti->error = "Too many mirror arguments";
1123 		r = -EINVAL;
1124 		goto err_destroy_wq;
1125 	}
1126 
1127 	ms->kcopyd_client = dm_kcopyd_client_create();
1128 	if (IS_ERR(ms->kcopyd_client)) {
1129 		r = PTR_ERR(ms->kcopyd_client);
1130 		goto err_destroy_wq;
1131 	}
1132 
1133 	wakeup_mirrord(ms);
1134 	return 0;
1135 
1136 err_destroy_wq:
1137 	destroy_workqueue(ms->kmirrord_wq);
1138 err_free_context:
1139 	free_context(ms, ti, ms->nr_mirrors);
1140 	return r;
1141 }
1142 
1143 static void mirror_dtr(struct dm_target *ti)
1144 {
1145 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1146 
1147 	del_timer_sync(&ms->timer);
1148 	flush_workqueue(ms->kmirrord_wq);
1149 	flush_work(&ms->trigger_event);
1150 	dm_kcopyd_client_destroy(ms->kcopyd_client);
1151 	destroy_workqueue(ms->kmirrord_wq);
1152 	free_context(ms, ti, ms->nr_mirrors);
1153 }
1154 
1155 /*
1156  * Mirror mapping function
1157  */
1158 static int mirror_map(struct dm_target *ti, struct bio *bio,
1159 		      union map_info *map_context)
1160 {
1161 	int r, rw = bio_rw(bio);
1162 	struct mirror *m;
1163 	struct mirror_set *ms = ti->private;
1164 	struct dm_raid1_read_record *read_record = NULL;
1165 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1166 
1167 	if (rw == WRITE) {
1168 		/* Save region for mirror_end_io() handler */
1169 		map_context->ll = dm_rh_bio_to_region(ms->rh, bio);
1170 		queue_bio(ms, bio, rw);
1171 		return DM_MAPIO_SUBMITTED;
1172 	}
1173 
1174 	r = log->type->in_sync(log, dm_rh_bio_to_region(ms->rh, bio), 0);
1175 	if (r < 0 && r != -EWOULDBLOCK)
1176 		return r;
1177 
1178 	/*
1179 	 * If region is not in-sync queue the bio.
1180 	 */
1181 	if (!r || (r == -EWOULDBLOCK)) {
1182 		if (rw == READA)
1183 			return -EWOULDBLOCK;
1184 
1185 		queue_bio(ms, bio, rw);
1186 		return DM_MAPIO_SUBMITTED;
1187 	}
1188 
1189 	/*
1190 	 * The region is in-sync and we can perform reads directly.
1191 	 * Store enough information so we can retry if it fails.
1192 	 */
1193 	m = choose_mirror(ms, bio->bi_sector);
1194 	if (unlikely(!m))
1195 		return -EIO;
1196 
1197 	read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1198 	if (likely(read_record)) {
1199 		dm_bio_record(&read_record->details, bio);
1200 		map_context->ptr = read_record;
1201 		read_record->m = m;
1202 	}
1203 
1204 	map_bio(m, bio);
1205 
1206 	return DM_MAPIO_REMAPPED;
1207 }
1208 
1209 static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1210 			 int error, union map_info *map_context)
1211 {
1212 	int rw = bio_rw(bio);
1213 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1214 	struct mirror *m = NULL;
1215 	struct dm_bio_details *bd = NULL;
1216 	struct dm_raid1_read_record *read_record = map_context->ptr;
1217 
1218 	/*
1219 	 * We need to dec pending if this was a write.
1220 	 */
1221 	if (rw == WRITE) {
1222 		if (!(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD)))
1223 			dm_rh_dec(ms->rh, map_context->ll);
1224 		return error;
1225 	}
1226 
1227 	if (error == -EOPNOTSUPP)
1228 		goto out;
1229 
1230 	if ((error == -EWOULDBLOCK) && (bio->bi_rw & REQ_RAHEAD))
1231 		goto out;
1232 
1233 	if (unlikely(error)) {
1234 		if (!read_record) {
1235 			/*
1236 			 * There wasn't enough memory to record necessary
1237 			 * information for a retry or there was no other
1238 			 * mirror in-sync.
1239 			 */
1240 			DMERR_LIMIT("Mirror read failed.");
1241 			return -EIO;
1242 		}
1243 
1244 		m = read_record->m;
1245 
1246 		DMERR("Mirror read failed from %s. Trying alternative device.",
1247 		      m->dev->name);
1248 
1249 		fail_mirror(m, DM_RAID1_READ_ERROR);
1250 
1251 		/*
1252 		 * A failed read is requeued for another attempt using an intact
1253 		 * mirror.
1254 		 */
1255 		if (default_ok(m) || mirror_available(ms, bio)) {
1256 			bd = &read_record->details;
1257 
1258 			dm_bio_restore(bd, bio);
1259 			mempool_free(read_record, ms->read_record_pool);
1260 			map_context->ptr = NULL;
1261 			queue_bio(ms, bio, rw);
1262 			return 1;
1263 		}
1264 		DMERR("All replicated volumes dead, failing I/O");
1265 	}
1266 
1267 out:
1268 	if (read_record) {
1269 		mempool_free(read_record, ms->read_record_pool);
1270 		map_context->ptr = NULL;
1271 	}
1272 
1273 	return error;
1274 }
1275 
1276 static void mirror_presuspend(struct dm_target *ti)
1277 {
1278 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1279 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1280 
1281 	struct bio_list holds;
1282 	struct bio *bio;
1283 
1284 	atomic_set(&ms->suspend, 1);
1285 
1286 	/*
1287 	 * Process bios in the hold list to start recovery waiting
1288 	 * for bios in the hold list. After the process, no bio has
1289 	 * a chance to be added in the hold list because ms->suspend
1290 	 * is set.
1291 	 */
1292 	spin_lock_irq(&ms->lock);
1293 	holds = ms->holds;
1294 	bio_list_init(&ms->holds);
1295 	spin_unlock_irq(&ms->lock);
1296 
1297 	while ((bio = bio_list_pop(&holds)))
1298 		hold_bio(ms, bio);
1299 
1300 	/*
1301 	 * We must finish up all the work that we've
1302 	 * generated (i.e. recovery work).
1303 	 */
1304 	dm_rh_stop_recovery(ms->rh);
1305 
1306 	wait_event(_kmirrord_recovery_stopped,
1307 		   !dm_rh_recovery_in_flight(ms->rh));
1308 
1309 	if (log->type->presuspend && log->type->presuspend(log))
1310 		/* FIXME: need better error handling */
1311 		DMWARN("log presuspend failed");
1312 
1313 	/*
1314 	 * Now that recovery is complete/stopped and the
1315 	 * delayed bios are queued, we need to wait for
1316 	 * the worker thread to complete.  This way,
1317 	 * we know that all of our I/O has been pushed.
1318 	 */
1319 	flush_workqueue(ms->kmirrord_wq);
1320 }
1321 
1322 static void mirror_postsuspend(struct dm_target *ti)
1323 {
1324 	struct mirror_set *ms = ti->private;
1325 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1326 
1327 	if (log->type->postsuspend && log->type->postsuspend(log))
1328 		/* FIXME: need better error handling */
1329 		DMWARN("log postsuspend failed");
1330 }
1331 
1332 static void mirror_resume(struct dm_target *ti)
1333 {
1334 	struct mirror_set *ms = ti->private;
1335 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1336 
1337 	atomic_set(&ms->suspend, 0);
1338 	if (log->type->resume && log->type->resume(log))
1339 		/* FIXME: need better error handling */
1340 		DMWARN("log resume failed");
1341 	dm_rh_start_recovery(ms->rh);
1342 }
1343 
1344 /*
1345  * device_status_char
1346  * @m: mirror device/leg we want the status of
1347  *
1348  * We return one character representing the most severe error
1349  * we have encountered.
1350  *    A => Alive - No failures
1351  *    D => Dead - A write failure occurred leaving mirror out-of-sync
1352  *    S => Sync - A sychronization failure occurred, mirror out-of-sync
1353  *    R => Read - A read failure occurred, mirror data unaffected
1354  *
1355  * Returns: <char>
1356  */
1357 static char device_status_char(struct mirror *m)
1358 {
1359 	if (!atomic_read(&(m->error_count)))
1360 		return 'A';
1361 
1362 	return (test_bit(DM_RAID1_FLUSH_ERROR, &(m->error_type))) ? 'F' :
1363 		(test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1364 		(test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1365 		(test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1366 }
1367 
1368 
1369 static int mirror_status(struct dm_target *ti, status_type_t type,
1370 			 unsigned status_flags, char *result, unsigned maxlen)
1371 {
1372 	unsigned int m, sz = 0;
1373 	struct mirror_set *ms = (struct mirror_set *) ti->private;
1374 	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1375 	char buffer[ms->nr_mirrors + 1];
1376 
1377 	switch (type) {
1378 	case STATUSTYPE_INFO:
1379 		DMEMIT("%d ", ms->nr_mirrors);
1380 		for (m = 0; m < ms->nr_mirrors; m++) {
1381 			DMEMIT("%s ", ms->mirror[m].dev->name);
1382 			buffer[m] = device_status_char(&(ms->mirror[m]));
1383 		}
1384 		buffer[m] = '\0';
1385 
1386 		DMEMIT("%llu/%llu 1 %s ",
1387 		      (unsigned long long)log->type->get_sync_count(log),
1388 		      (unsigned long long)ms->nr_regions, buffer);
1389 
1390 		sz += log->type->status(log, type, result+sz, maxlen-sz);
1391 
1392 		break;
1393 
1394 	case STATUSTYPE_TABLE:
1395 		sz = log->type->status(log, type, result, maxlen);
1396 
1397 		DMEMIT("%d", ms->nr_mirrors);
1398 		for (m = 0; m < ms->nr_mirrors; m++)
1399 			DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1400 			       (unsigned long long)ms->mirror[m].offset);
1401 
1402 		if (ms->features & DM_RAID1_HANDLE_ERRORS)
1403 			DMEMIT(" 1 handle_errors");
1404 	}
1405 
1406 	return 0;
1407 }
1408 
1409 static int mirror_iterate_devices(struct dm_target *ti,
1410 				  iterate_devices_callout_fn fn, void *data)
1411 {
1412 	struct mirror_set *ms = ti->private;
1413 	int ret = 0;
1414 	unsigned i;
1415 
1416 	for (i = 0; !ret && i < ms->nr_mirrors; i++)
1417 		ret = fn(ti, ms->mirror[i].dev,
1418 			 ms->mirror[i].offset, ti->len, data);
1419 
1420 	return ret;
1421 }
1422 
1423 static struct target_type mirror_target = {
1424 	.name	 = "mirror",
1425 	.version = {1, 12, 1},
1426 	.module	 = THIS_MODULE,
1427 	.ctr	 = mirror_ctr,
1428 	.dtr	 = mirror_dtr,
1429 	.map	 = mirror_map,
1430 	.end_io	 = mirror_end_io,
1431 	.presuspend = mirror_presuspend,
1432 	.postsuspend = mirror_postsuspend,
1433 	.resume	 = mirror_resume,
1434 	.status	 = mirror_status,
1435 	.iterate_devices = mirror_iterate_devices,
1436 };
1437 
1438 static int __init dm_mirror_init(void)
1439 {
1440 	int r;
1441 
1442 	_dm_raid1_read_record_cache = KMEM_CACHE(dm_raid1_read_record, 0);
1443 	if (!_dm_raid1_read_record_cache) {
1444 		DMERR("Can't allocate dm_raid1_read_record cache");
1445 		r = -ENOMEM;
1446 		goto bad_cache;
1447 	}
1448 
1449 	r = dm_register_target(&mirror_target);
1450 	if (r < 0) {
1451 		DMERR("Failed to register mirror target");
1452 		goto bad_target;
1453 	}
1454 
1455 	return 0;
1456 
1457 bad_target:
1458 	kmem_cache_destroy(_dm_raid1_read_record_cache);
1459 bad_cache:
1460 	return r;
1461 }
1462 
1463 static void __exit dm_mirror_exit(void)
1464 {
1465 	dm_unregister_target(&mirror_target);
1466 	kmem_cache_destroy(_dm_raid1_read_record_cache);
1467 }
1468 
1469 /* Module hooks */
1470 module_init(dm_mirror_init);
1471 module_exit(dm_mirror_exit);
1472 
1473 MODULE_DESCRIPTION(DM_NAME " mirror target");
1474 MODULE_AUTHOR("Joe Thornber");
1475 MODULE_LICENSE("GPL");
1476